JP2621507B2 - Insulated gate semiconductor device - Google Patents
Insulated gate semiconductor deviceInfo
- Publication number
- JP2621507B2 JP2621507B2 JP1259265A JP25926589A JP2621507B2 JP 2621507 B2 JP2621507 B2 JP 2621507B2 JP 1259265 A JP1259265 A JP 1259265A JP 25926589 A JP25926589 A JP 25926589A JP 2621507 B2 JP2621507 B2 JP 2621507B2
- Authority
- JP
- Japan
- Prior art keywords
- gate
- semiconductor device
- insulated gate
- source
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、絶縁ゲート形半導体素子に係り、特に1
つまたは複数の半導体素子を支持する金属基板と、絶縁
材料枠体とよりなる槽状容器に樹脂を注入封止した樹脂
封止形半導体装置(以下、パワーモジュールと呼ぶ)に
関するものである。Description: TECHNICAL FIELD The present invention relates to an insulated gate semiconductor device, and
The present invention relates to a resin-encapsulated semiconductor device (hereinafter referred to as a power module) in which a resin is injected and sealed in a tank-shaped container formed of a metal substrate supporting one or a plurality of semiconductor elements and an insulating material frame.
パワーモジュールは、装置の高周波化要求に対応し
て、近年バイポーラ素子からパワーMOSFETに代表される
絶縁ゲート形半導体素子に移行しつつある。In recent years, power modules have been shifting from bipolar devices to insulated gate semiconductor devices typified by power MOSFETs in response to demands for higher frequency devices.
絶縁ゲート形半導体素子の場合、静電気等によって絶
縁破壊を発生するため、取扱いが難しかった。In the case of an insulated gate type semiconductor device, dielectric breakdown occurs due to static electricity or the like, so that it is difficult to handle.
第3図にパワーMOSETFモジュールの回路構成の一例を
示す。この図で、11はパワーMOSFET、12はこのパワーMO
SFET11に逆並列に接続された還流用ダイオード(MOSFET
の場合、内蔵ダイオードが使用される場合もある)を示
す。D,S,Gは各々ドレイン,ソース,ゲート電極を示
す。FIG. 3 shows an example of a circuit configuration of the power MOSETF module. In this figure, 11 is the power MOSFET and 12 is this power MO
Reflux diode (MOSFET connected in anti-parallel to SFET11)
, A built-in diode may be used). D, S, and G indicate a drain, a source, and a gate electrode, respectively.
上記のようなパワーMOSFET11はゲート構造が、酸化膜
等による絶縁ゲート形になっているため、素子を装置に
組み込むときに静電気によって素子が絶縁破壊すること
があった。Since the power MOSFET 11 described above has a gate structure of an insulated gate made of an oxide film or the like, when the element is incorporated in a device, the element may be broken down due to static electricity.
また、絶縁ゲート形半導体素子のゲート・ソース間に
逆直列のツェナーダイオードを接続し、ゲート絶縁破壊
を防止することも公知である。これを第4図に示す。2
3,24はツェナーダイオードで、ソースSとゲートG間に
逆直列に接続されている。この場合、静電気によって、
ソース・ゲート間にサージ電圧がかっても、ツェナーダ
イオード23,24によって電圧がクランプされるため、ゲ
ート絶縁破壊が発生しにくくなる。It is also known to connect an anti-series zener diode between the gate and source of an insulated gate semiconductor device to prevent gate breakdown. This is shown in FIG. Two
Zener diodes 3 and 24 are connected between the source S and the gate G in anti-series. In this case,
Even if a surge voltage is applied between the source and the gate, the voltage is clamped by the Zener diodes 23 and 24, so that gate insulation breakdown hardly occurs.
しかし、第4図の従来例の場合、ゲート・ソース信号
の接続がルーズコンタクト状態で素子に電圧を印加した
場合、素子が破壊することがあった。However, in the case of the conventional example shown in FIG. 4, when a voltage is applied to the device while the connection between the gate and the source signal is in a loose contact state, the device may be broken.
この発明は、上記のような問題点を解消するためにな
されたもので、静電気やゲート・ソース間のルーズコン
タクトによる電圧印加での破壊に強い絶縁ゲート形半導
体素子を提供するものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to provide an insulated gate semiconductor device which is resistant to static electricity and destruction by voltage application due to loose contact between a gate and a source.
この発明にかかる絶縁ゲート形半導体素子は、少なく
とも1つの半導体素子が絶縁ゲート形半導体素子で、そ
の絶縁ゲート形半導体素子のゲート・ソース間に逆直列
のツェナーダイオードのそれぞれに並列に抵抗体を接続
したものである。In the insulated gate semiconductor device according to the present invention, at least one semiconductor device is an insulated gate semiconductor device, and a resistor is connected in parallel with each of the anti-series zener diodes between the gate and the source of the insulated gate semiconductor device. It was done.
この発明においては、ツェナーダイオードのゲート・
ソース間に逆直列のツェナーダイオードを接続し、さら
に、これらのツェナーダイオードのそれぞれに並列に抵
抗体を接続したことから、ソース・ゲート間の信号端子
の接続がルーズコンタクトで電圧が印加されても、ゲー
ト・ソース間容量が抵抗体に放電され、ゲート絶縁破壊
は防止される。In the present invention, the Zener diode gate
Since an anti-series zener diode is connected between the sources and a resistor is connected in parallel with each of these zener diodes, even if the connection of the signal terminal between the source and gate is loose contact and voltage is applied. Then, the gate-source capacitance is discharged to the resistor, and the gate dielectric breakdown is prevented.
以下、この発明の実施例を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図はこの発明の一実施例を示す絶縁ゲート形半導
体素子の回路構成例を示す図である。この図において、
21はパワーMOSFET、22はこのパワーMOSFET21に逆並列に
接続された還流用ダイオードを示す。23,24は前記パワ
ーMOSFET21のソース・ゲート間に互いに逆直列接続され
たツェナーダイオードを示し、25,26は前記ツェナーダ
イオード23,24のそれぞれに並列に接続された抵抗体を
示す。FIG. 1 is a diagram showing an example of a circuit configuration of an insulated gate semiconductor device showing one embodiment of the present invention. In this figure,
Reference numeral 21 denotes a power MOSFET, and reference numeral 22 denotes a freewheeling diode connected in anti-parallel to the power MOSFET 21. Reference numerals 23 and 24 denote Zener diodes connected in reverse series between the source and gate of the power MOSFET 21. Reference numerals 25 and 26 denote resistors connected in parallel to the Zener diodes 23 and 24, respectively.
この場合、静電気によってソース・ゲート間にサージ
電圧がかかっても、このツェナーダイオード23,24によ
って電圧がクランプされるため、ゲート絶縁破壊が発生
しにくくなる。また、最近ICから直接駆動可能なゲート
電圧が4Vで動作するパワーMOSFETが使われるようになっ
てきている。この場合、一般にゲート酸化膜の厚みは約
400Å程度と薄いため、ゲート酸化膜の絶縁耐圧は約30V
と低い。このため、前記ツェナーダイオード23,24のツ
ェナー耐圧を適切に選べば、外来サージ耐圧の保護とし
ても用いられる。In this case, even if a surge voltage is applied between the source and the gate due to static electricity, the voltage is clamped by the Zener diodes 23 and 24, so that gate insulation breakdown hardly occurs. Recently, power MOSFETs that operate at a gate voltage of 4 V, which can be directly driven by ICs, have been used. In this case, the thickness of the gate oxide film is generally about
The gate oxide film has a withstand voltage of about 30 V because it is as thin as 400 mm
And low. Therefore, if the Zener breakdown voltage of the Zener diodes 23 and 24 is properly selected, the Zener diodes 23 and 24 can be used for protection against external surge breakdown voltage.
そして、ツェナーダイオード23,24に並列に抵抗体25,
26が接続されていることによって、MOSFETのゲート・ソ
ース間の容量の電荷を放電させる役割が発生する。この
ため、誤ってゲート・ソース間の信号端子の接続がルー
ズコンタクトで種電圧を印加してもゲート・ソース間容
量の電化が低抗体25,26によって放電されているため、
素子破壊は発生しなくなる。Then, resistors 25, 25 are connected in parallel with the Zener diodes 23, 24.
The connection of 26 serves to discharge the charge of the capacitance between the gate and the source of the MOSFET. For this reason, even if the connection of the signal terminal between the gate and source is accidentally applied with a loose contact and a seed voltage is applied, the electrification of the gate-source capacitance is discharged by the low antibodies 25 and 26,
Element destruction does not occur.
次に、この発明の絶縁ゲート形半導体素子の構造の一
実施例について説明する。Next, an embodiment of the structure of the insulated gate semiconductor device of the present invention will be described.
第2図はこの発明のパワーMOSモジュールの内部構造
を示す斜視図である。この図で、301はCu等の金属基
板、302はこの金属基板301上にろう付け等の方法で取り
付けられたセラミック等の絶縁基板であり、この絶縁基
板302は枠状をなして金属基板301とともに槽状容器を構
成し、各部の取り付けが終わった後、この槽状容器に樹
脂が注入され封止が行われるが、第3図では槽状容器の
構成は省略されている。303はこの絶縁基板302上に半田
付けされたドレイン電極、このドレイン電極303は、外
部取出し用のドレイン端子310と接続されている。ま
た、このドレイン電極303上にはMOSFEチップ304が半田
付けされている。この場合、還流用ダイオード22はMOSF
ETチップ304に内蔵された構造になっているが、別チッ
プでもよい。305,306は各々ソース電極,ゲート電極を
示す。また、307は2つのツェナーダイオード(または
1チップで構成された抵抗体付きツェナーダイオード)
308,309を接続するための金属電極で、絶縁基板302上に
半田付けされている。なお、第1図の抵抗体25,26は図
示を省略してある。FIG. 2 is a perspective view showing the internal structure of the power MOS module of the present invention. In this figure, reference numeral 301 denotes a metal substrate made of Cu or the like, 302 denotes an insulating substrate made of ceramic or the like mounted on the metal substrate 301 by a method such as brazing, and the insulating substrate 302 has a frame-like shape. After the tanks have been mounted, the resin is injected into the tanks and sealing is performed after the components have been attached. However, the configuration of the tanks is omitted in FIG. Reference numeral 303 denotes a drain electrode soldered on the insulating substrate 302, and the drain electrode 303 is connected to a drain terminal 310 for external extraction. A MOSFE chip 304 is soldered on the drain electrode 303. In this case, the reflux diode 22 is MOSF
Although the structure is built in the ET chip 304, another chip may be used. Reference numerals 305 and 306 denote a source electrode and a gate electrode, respectively. 307 is two Zener diodes (or a Zener diode with a resistor composed of one chip)
Metal electrodes for connecting 308 and 309, which are soldered on the insulating substrate 302. The resistors 25 and 26 in FIG. 1 are not shown.
MOSFETチップ304のソース311およびゲート312は各
々、ソース電極305,ゲート電極306にワイヤボンディン
グ等の方法で電気的に接続されている。さらに、2つの
ツェナーダイオード308,309は、一方がゲート電極306
に、もううっぽうがソース電極305に接続されている。The source 311 and the gate 312 of the MOSFET chip 304 are electrically connected to the source electrode 305 and the gate electrode 306 by wire bonding or the like, respectively. Further, one of the two Zener diodes 308 and 309 is
Then, it is already connected to the source electrode 305.
なお、上記実施例は、抵抗体とツェナーダイオードが
1チップで構成されている場合について説明したが、別
チップであってももちろんよい。また、上記実施例はパ
ワーMOSFETを例に取ったが、IGBT(絶縁ゲート形バイポ
ーラトランジスタ)や、MCT(MOSコントロールサイリス
タ)等の絶縁ゲート形素子には全て適用できる。特にIG
BTの場合、ゲート電圧が高くなると飽和電流が多く流れ
るようになるため、短絡時の耐量が弱くなる面があるた
め、ツェナー耐圧を適切に制御することによって、従来
のものよりも使いやすくなる。ツェナー耐圧を用途に応
じて10〜20Vの範囲で適切に選ぶことが望ましい。特に
主市場であるインバータ用途では12〜15Vの範囲内に設
定することが望ましい。In the above embodiment, the case where the resistor and the Zener diode are formed on one chip has been described. In the above embodiment, a power MOSFET is taken as an example, but the present invention can be applied to all insulated gate devices such as IGBTs (insulated gate bipolar transistors) and MCTs (MOS control thyristors). Especially IG
In the case of BT, when the gate voltage becomes high, a large amount of saturation current flows, and there is a surface in which the withstand voltage at the time of short circuit is weakened. Therefore, by appropriately controlling the Zener withstand voltage, it becomes easier to use than the conventional one. It is desirable to select an appropriate Zener withstand voltage in the range of 10 to 20 V depending on the application. In particular, for inverter applications, which are the main market, it is desirable to set the voltage within the range of 12 to 15V.
以上説明したように、この発明は、少なくとも1つの
半導体素子が絶縁ゲート半導体素子で、その絶縁ゲート
半導体素子のゲート・ソース間に逆直列のツェナーダイ
オードが接続され、かつ前記各ツェナーダイオードのそ
れぞれに並列に抵抗体を接続したので、ソース・ゲート
間の信号端子の接続がルーズコンタクトで電圧が印加さ
れても、ゲート・ソース間容量が抵抗体に放電されるた
め、ゲート絶縁破壊は防止される。As described above, according to the present invention, at least one semiconductor element is an insulated gate semiconductor element, an anti-series zener diode is connected between the gate and source of the insulated gate semiconductor element, and each of the zener diodes is Since the resistor is connected in parallel, the gate-source capacitance is discharged to the resistor even if a loose connection is applied to the signal terminal connection between the source and gate, preventing gate breakdown. .
第1図はこの発明の実施例を示す絶縁ゲート形半導体素
子の回路構成図、第2図はこの発明の絶縁ゲート形半導
体素子の内部構造を示す斜視図、第3図は従来の回路構
成の一例を説明する図、第4図はほかの従来例を説明す
る図である。 図において、21はパワーMOSFET、22は還流用ダイオー
ド、23,24はツェナーダイオード、25,26は抵抗体、Sは
ソース電極、Gはゲート電極、Dはドレイン電極であ
る。FIG. 1 is a circuit diagram of an insulated gate semiconductor device showing an embodiment of the present invention, FIG. 2 is a perspective view showing an internal structure of the insulated gate semiconductor device of the present invention, and FIG. FIG. 4 is a diagram for explaining an example, and FIG. 4 is a diagram for explaining another conventional example. In the figure, 21 is a power MOSFET, 22 is a reflux diode, 23 and 24 are Zener diodes, 25 and 26 are resistors, S is a source electrode, G is a gate electrode, and D is a drain electrode.
Claims (1)
属基板と、絶縁材料枠体とよりなる槽状容器に樹脂を注
入封止した樹脂封止形半導体装置において、少なくとも
1つの半導体素子が絶縁ゲート半導体素子で、その絶縁
ゲート半導体素子のゲート・ソース間に逆直列のツェナ
ーダイオードが接続され、かつ前記各ツェナーダイオー
ドのそれぞれに並列に抵抗体を接続したことを特徴とす
る絶縁ゲート形半導体素子。1. A resin-encapsulated semiconductor device in which a resin is injected and sealed in a tank-shaped container formed of a metal substrate supporting one or a plurality of semiconductor elements and an insulating material frame, wherein at least one semiconductor element is provided. An insulated gate semiconductor device, wherein an anti-series zener diode is connected between the gate and source of the insulated gate semiconductor device, and a resistor is connected in parallel to each of the zener diodes. element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1259265A JP2621507B2 (en) | 1989-10-03 | 1989-10-03 | Insulated gate semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1259265A JP2621507B2 (en) | 1989-10-03 | 1989-10-03 | Insulated gate semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03120758A JPH03120758A (en) | 1991-05-22 |
JP2621507B2 true JP2621507B2 (en) | 1997-06-18 |
Family
ID=17331705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1259265A Expired - Lifetime JP2621507B2 (en) | 1989-10-03 | 1989-10-03 | Insulated gate semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2621507B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103367402A (en) * | 2012-04-10 | 2013-10-23 | 三菱电机株式会社 | Protection diode |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5528064A (en) * | 1994-08-17 | 1996-06-18 | Texas Instruments Inc. | Structure for protecting integrated circuits from electro-static discharge |
FR2734114B1 (en) * | 1995-05-12 | 1997-07-25 | Sgs Thomson Microelectronics | SENSITIVE PROTECTION COMPONENT OF SUBSCRIBER LINE INTERFACE CIRCUIT |
JP5595067B2 (en) * | 2010-02-25 | 2014-09-24 | 富士電機株式会社 | Semiconductor device |
JP2013239697A (en) * | 2012-04-16 | 2013-11-28 | Fuji Electric Co Ltd | Semiconductor device |
-
1989
- 1989-10-03 JP JP1259265A patent/JP2621507B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103367402A (en) * | 2012-04-10 | 2013-10-23 | 三菱电机株式会社 | Protection diode |
CN103367402B (en) * | 2012-04-10 | 2016-03-02 | 三菱电机株式会社 | Protection diode |
Also Published As
Publication number | Publication date |
---|---|
JPH03120758A (en) | 1991-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2960375B2 (en) | Power module | |
US6991961B2 (en) | Method of forming a high-voltage/high-power die package | |
US5341003A (en) | MOS semiconductor device having a main unit element and a sense unit element for monitoring the current in the main unit element | |
US20020113274A1 (en) | Field effect semiconductor device and its production method | |
US5221850A (en) | Conductivity-modulating mosfet | |
EP1145302A1 (en) | Semiconductor device with bond pad and test pad | |
US6281569B1 (en) | Pressure-contact semiconductor device | |
KR100280168B1 (en) | Voltage-Driven Power Semiconductor Device | |
JP2621507B2 (en) | Insulated gate semiconductor device | |
US6967357B1 (en) | Voltage-driven power semiconductor device | |
US5617293A (en) | Bridge module | |
JP3183020B2 (en) | Insulated gate semiconductor device with built-in protection circuit | |
JP2000058820A (en) | Power semiconductor element and power module | |
JP3612226B2 (en) | Semiconductor device and semiconductor module | |
EP0527033B1 (en) | Semiconductor module | |
JP2002141465A (en) | Semiconductor module for electric power | |
JP3525823B2 (en) | Mounting structure of complementary IGBT | |
JPH01305576A (en) | Mis type field effect transistor | |
JPS58127376A (en) | Gto thyristor | |
JP2559801B2 (en) | Power transistor | |
JP2579490Y2 (en) | Snubber module for semiconductor device | |
JP3000809B2 (en) | Semiconductor device | |
US11398768B2 (en) | Semiconductor module arrangement with fast switching, reduced losses, and low voltage overshoot and method for operating the same | |
GB2268332A (en) | Power transistor with reduced gate resistance and inductance | |
JP2001015672A (en) | Semiconductor device |