[go: up one dir, main page]

JP2014043622A - High-strength copper alloy tube - Google Patents

High-strength copper alloy tube Download PDF

Info

Publication number
JP2014043622A
JP2014043622A JP2012187610A JP2012187610A JP2014043622A JP 2014043622 A JP2014043622 A JP 2014043622A JP 2012187610 A JP2012187610 A JP 2012187610A JP 2012187610 A JP2012187610 A JP 2012187610A JP 2014043622 A JP2014043622 A JP 2014043622A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
precipitates
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012187610A
Other languages
Japanese (ja)
Other versions
JP5792696B2 (en
Inventor
Hisao Shishido
久郎 宍戸
Masao Kinebuchi
雅男 杵渕
Masahito Watanabe
雅人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobe Steel Ltd
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco and Materials Copper Tube Ltd filed Critical Kobe Steel Ltd
Priority to JP2012187610A priority Critical patent/JP5792696B2/en
Publication of JP2014043622A publication Critical patent/JP2014043622A/en
Application granted granted Critical
Publication of JP5792696B2 publication Critical patent/JP5792696B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy tube excellent in strength by controlling precipitates and crystal grain sizes, as well as having good processability.SOLUTION: A copper alloy tube has an alloy content consisting of Co:0.16 mass% to 0.30 mass%, P:0.02 mass% to 0.1 mass% and the balance Cu with inevitable impurities, and has an average crystal grain size of 5 μm to 40 μm, an average diameter of precipitates of 3 nm to 10 nm, and a number density of the precipitates having a diameter of 1 nm to 10 nm, of 5,000/μmor more.

Description

本発明は、熱交換器の配管等に用いられる高強度銅合金管に関する。 The present invention relates to a high-strength copper alloy tube used for piping of a heat exchanger.

一般に、銅は展性、延性に優れると共に、熱伝導性に特に優れることから熱交換器の配管等によく用いられている。
例えば、エアコンの熱交換器は、まず、銅合金直管をアルミニウムフィンの貫通孔に通し、前記銅合金直管を治具により拡管することにより銅合金直管とアルミニウムフィンとを密着させる。次に、銅合金管の開放端を拡管し、この拡管部にU字型に曲げ加工したU字型銅合金管を挿入し、リン銅ろうによりU字型銅合金管を拡管部にろう付けする。
このため、熱交換器に使用される銅合金直管及びU字型銅合金管である銅合金管には、曲げ加工、拡管・フレア加工、縮管・絞り加工等の加工性が良好であることが要求される。
In general, copper is often used for piping and the like of heat exchangers because it is excellent in malleability and ductility, and is particularly excellent in thermal conductivity.
For example, in a heat exchanger of an air conditioner, first, a copper alloy straight pipe is passed through a through hole of an aluminum fin, and the copper alloy straight pipe is expanded with a jig, thereby bringing the copper alloy straight pipe and the aluminum fin into close contact with each other. Next, the open end of the copper alloy tube is expanded, a U-shaped copper alloy tube bent into a U-shape is inserted into this expanded portion, and the U-shaped copper alloy tube is brazed to the expanded portion with phosphorous copper brazing. To do.
For this reason, copper alloy straight pipes used in heat exchangers and copper alloy pipes that are U-shaped copper alloy pipes have good workability such as bending, pipe expansion / flaring, contraction / drawing, etc. Is required.

又、熱交換器では、オゾン層破壊などの環境問題対策から使用する冷媒が変化し、銅合金管に従来以上の圧力が加わること、及び、世界的な資源獲得競争による銅地金高騰に伴い銅合金管薄肉化による銅使用量低減要求が高まることにより、耐破壊圧力の高い銅合金管が開発されてきた。この様な耐破壊圧力に優れた銅合金管として、特許文献1及び特許文献2に記載された析出強化型のCu−Co−P系合金からなる銅合金管が知られている。   In heat exchangers, the refrigerant used changes due to measures against environmental problems such as ozone depletion, and more pressure is applied to copper alloy tubes, and with the rise in copper bullion due to global competition for resources. Due to the increasing demand for reducing the amount of copper used due to the thinning of copper alloy pipes, copper alloy pipes with high fracture pressure resistance have been developed. As such a copper alloy tube excellent in breakdown pressure, a copper alloy tube made of a precipitation-strengthened Cu—Co—P alloy described in Patent Document 1 and Patent Document 2 is known.

更に、熱交換器ではその配管となる銅合金管に曲げ加工等の加工性のほかにも、熱交換器として完成した際にその機能を発揮させるためのアルミニウムフィンとの接合の必要性から、ろう付け性、ろう付け加熱後の耐力及び疲れ強さも要求される。この様なろう付け性、ろう付け加熱後の耐力及び疲れ強さに優れた銅合金として、特許文献3に記載された固溶強化型のCu−Sn−P系合金が知られている。   Furthermore, in addition to workability such as bending work on the copper alloy tube that is the pipe in the heat exchanger, from the necessity of joining with aluminum fins to demonstrate its function when completed as a heat exchanger, Brazing properties, proof stress after brazing heating and fatigue strength are also required. A solid solution strengthened Cu—Sn—P based alloy described in Patent Document 3 is known as a copper alloy having excellent brazing properties, proof stress after brazing heating and fatigue strength.

特許第3414294号公報Japanese Patent No. 3414294 特許第4228166号公報Japanese Patent No. 4228166 特許第3794971号公報Japanese Patent No. 3794971

昨今では、熱交換器に使用される銅合金管の薄肉化要求が一層厳しいものとなり、銅合金管においては更なる高強度化が求められている。従来のCu−Co−P系合金では、例えば、特許文献1に係る発明のように酸素含有量を規制することで高強度が図られてきた。又、特許文献2に係る発明のように結晶粒径及び析出物状態を制御することで、高強度化が進められてきた。   In recent years, the demand for thinner copper alloy tubes used in heat exchangers has become more severe, and higher strength is required for copper alloy tubes. In the conventional Cu—Co—P-based alloy, for example, as in the invention according to Patent Document 1, high strength has been achieved by regulating the oxygen content. Further, as in the invention according to Patent Document 2, increasing the strength has been promoted by controlling the crystal grain size and the precipitate state.

しかし、従来の低酸素銅溶湯を作製することにより酸素含有量を規制する方法では工程が増加すると共に、コストも増加する。又、従来の熱間加工、冷間加工、焼鈍といった工程を経る製造方法では、焼鈍温度が低いと析出物を微細にすることは可能であるが、再結晶が生じないため結晶粒径を制御することができない。反対に、当該製造方法では焼鈍温度が高いと、再結晶により結晶粒径を制御することは可能であるが、析出物が大きくなりすぎてしまう。
この様に、従来のCu−Co−P系合金では、焼鈍条件により析出物と結晶粒径が同時に変化してしまうため、結晶粒径と析出物を同時に制御するには限界が存在した。その結果、従来の熱交換器に使用される銅合金管では、高強度化において満足するものではなかった。
However, in the conventional method of regulating the oxygen content by producing a molten low oxygen copper, the number of steps increases and the cost also increases. In addition, in conventional manufacturing methods that go through processes such as hot working, cold working, and annealing, it is possible to make the precipitate finer if the annealing temperature is low, but the crystal grain size is controlled because recrystallization does not occur. Can not do it. On the other hand, if the annealing temperature is high in the production method, the crystal grain size can be controlled by recrystallization, but the precipitates become too large.
As described above, in the conventional Cu—Co—P-based alloy, the precipitate and the crystal grain size change at the same time depending on the annealing conditions, and thus there is a limit to simultaneously control the crystal grain size and the precipitate. As a result, the copper alloy tube used in the conventional heat exchanger was not satisfactory in increasing the strength.

更に、従来のCu−Sn−P系合金では、特許文献3に係る発明のように熱間押出及び熱間押出後の冷却速度により結晶粒径を制御しており、製造工程が複雑化しやすく細い制御がし難いものであった。その結果、従来の熱交換器に使用される銅合金管では、高強度化において満足するものではなかった。   Furthermore, in the conventional Cu-Sn-P alloy, the crystal grain size is controlled by the hot extrusion and the cooling rate after hot extrusion as in the invention according to Patent Document 3, and the manufacturing process is likely to be complicated and thin. It was difficult to control. As a result, the copper alloy tube used in the conventional heat exchanger was not satisfactory in increasing the strength.

本発明は、前記問題点に鑑みてなされたものであり、平均結晶粒径及び析出物をそれぞれ制御して強度に優れると共に、良好な加工性を有する銅合金管を提供することを課題とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a copper alloy tube having excellent workability as well as excellent strength by controlling the average crystal grain size and precipitates, respectively. .

本発明に係る高強度銅合金管は、Co:0.16質量%以上0.30質量%以下、P:0.02質量%以上0.1質量%以下を含有し、残部がCuおよび不可避的不純物からなる合金成分を有し、平均結晶粒径が5μm以上40μm以下であり、析出物の平均直径が3nm以上10nm以下であり、かつ、直径が1nm以上10nm以下である析出物の数密度が5000個/μm以上であることを特徴とする。 The high-strength copper alloy tube according to the present invention contains Co: 0.16% by mass to 0.30% by mass, P: 0.02% by mass to 0.1% by mass, with the balance being Cu and inevitable An alloy component composed of impurities, an average crystal grain size of 5 μm or more and 40 μm or less, an average diameter of precipitates of 3 nm or more and 10 nm or less, and a number density of 5000 precipitates having a diameter of 1 nm or more and 10 nm or less / Μm 3 or more.

前記の構成にすることにより高強度銅合金管は、各元素の量を所定量に制御して、かつ、平均結晶粒径、析出物の平均直径、所定の直径の析出物の数密度を5000個/μm以上に制御することで、強度に優れると共に、良好な加工性を獲得することが可能となる。 With the above structure, the high-strength copper alloy tube controls the amount of each element to a predetermined amount, and has an average crystal grain size, an average diameter of precipitates, and a number density of precipitates with a predetermined diameter of 5000 / By controlling to μm 3 or more, it is possible to obtain excellent workability as well as excellent strength.

又、本発明に係る高強度銅合金管は前記高強度銅合金管であって、前記成分として、Ni:0.005質量%以上0.10質量%以下、Zn:0.005質量%以上1.0質量%以下、及び、Sn:0.05質量%以上1.0質量%以下の少なくとも1種を更に含有することを特徴とする。   The high-strength copper alloy tube according to the present invention is the high-strength copper alloy tube, and the components include Ni: 0.005% by mass to 0.10% by mass, Zn: 0.005% by mass to 1 0.0 mass% or less and Sn: 0.05 mass% or more and 1.0 mass% or less are further contained.

前記の構成に、Ni、Zn、及び、Snの少なくとも1種を更に含有することにより、優れた耐食性を獲得することが可能となる。   By further including at least one of Ni, Zn, and Sn in the above configuration, excellent corrosion resistance can be obtained.

更に、本発明に係る高強度銅合金管は前記高強度銅合金管であって、前記成分として、Fe、Mn、Mg、Cr、Ti、Zr、及び、Agの中から選択される1種以上を更に含有し、その合計量が0.10質量%未満であることを特徴とする。   Furthermore, the high-strength copper alloy tube according to the present invention is the high-strength copper alloy tube, and the component includes at least one selected from Fe, Mn, Mg, Cr, Ti, Zr, and Ag. Further, the total amount is less than 0.10% by mass.

前記の構成に、Fe、Mn、Mg、Cr、Ti、Zr、及び、Agの中から選択される1種以上を更に含有し、その合計量が0.10質量%未満であることにより、銅合金管の強度、及び、耐食性を向上させることが可能となる。   In the said structure, it contains further 1 or more types selected from Fe, Mn, Mg, Cr, Ti, Zr, and Ag, and the total amount is less than 0.10 mass%, copper It is possible to improve the strength and corrosion resistance of the alloy tube.

本発明は、前記問題点に鑑みてなされたものであり、平均結晶粒径及び析出物をそれぞれ制御して強度に優れると共に、良好な加工性を有する銅合金管が得られる。   The present invention has been made in view of the above problems, and a copper alloy tube having excellent workability and excellent workability can be obtained by controlling the average crystal grain size and precipitates, respectively.

本発明に係る高強度銅合金管を本発明の実施の形態に基づいて詳細に説明する。以下に記載する元素組成、平均結晶粒径、析出物の平均直径、及び、析出物の数密度とすることにより、高強度銅合金管が優れた引っ張り強度を有することになる。
これら各成分の限定理由、並びに、平均結晶粒径、析出物の平均直径、及び、析出物の数密度の規定理由について説明する。
A high-strength copper alloy tube according to the present invention will be described in detail based on an embodiment of the present invention. By setting the elemental composition, the average crystal grain size, the average diameter of the precipitates, and the number density of the precipitates described below, the high-strength copper alloy tube has excellent tensile strength.
The reasons for limiting these components and the reasons for defining the average crystal grain size, the average diameter of the precipitates, and the number density of the precipitates will be described.

<合金成分>
本発明に係る高強度銅合金管は、Co、Pを所定量含有し、残部がCu、及び、不可避的不純物からなる。
<Alloy components>
The high-strength copper alloy tube according to the present invention contains a predetermined amount of Co and P, with the balance being Cu and inevitable impurities.

(Co:0.16質量%以上0.30質量%以下)
Coは銅合金管の強度及び加工性を向上させるため有効な元素である。又、Coは銅合金管の選択的成分としてSnを含有する場合には銅合金管組織中にSnを含有する微細なリン化析出物を析出させて、銅合金管の強度及び加工性を更に向上させるため有効な元素である。
(Co: 0.16 mass% or more and 0.30 mass% or less)
Co is an effective element for improving the strength and workability of the copper alloy tube. Further, when Co contains Sn as a selective component of the copper alloy tube, fine phosphide precipitates containing Sn are precipitated in the copper alloy tube structure, thereby further improving the strength and workability of the copper alloy tube. It is an effective element for improving.

Coの含有量は0.16質量%以上0.30質量%以下とする。Coの含有量が0.16質量%未満では、銅合金管組織中に粗大な結晶が生成し銅合金管の強度が不足する。又、銅合金管の選択的成分としてSnを含有する場合には前記リン化析出物が少なく、強度及び加工性の向上が図りにくい。一方、Coの含有量が0.30質量%を超えると、熱間押出時に割れが発生し、製造された銅合金管の加工性が低下する。
より好ましくは、0.18質量%以上0.25質量%以下とする。
The Co content is 0.16 mass% or more and 0.30 mass% or less. If the Co content is less than 0.16% by mass, coarse crystals are generated in the copper alloy tube structure, and the strength of the copper alloy tube is insufficient. Further, when Sn is contained as a selective component of the copper alloy tube, the amount of the phosphide precipitate is small, and it is difficult to improve the strength and workability. On the other hand, if the Co content exceeds 0.30% by mass, cracks occur during hot extrusion, and the workability of the manufactured copper alloy tube is lowered.
More preferably, it is 0.18 mass% or more and 0.25 mass% or less.

(P:0.02質量%以上0.1質量%以下)
Pは銅合金の脱酸素を行うために添加する。
Pの含有量は0.02質量%以上0.1質量%以下とする。Pの含有量が0.02質量%未満では、銅合金管組織中に粗大な結晶が生成し銅合金管の強度が不足する。一方、Pの含有量が0.1質量%を超えると、熱間押出時に割れが発生し、製造された銅合金管の加工性が低下する。
より好ましくは、0.03質量%以上0.08質量%以下とする。
(P: 0.02 mass% to 0.1 mass%)
P is added to deoxidize the copper alloy.
Content of P shall be 0.02 mass% or more and 0.1 mass% or less. If the P content is less than 0.02 mass%, coarse crystals are generated in the copper alloy tube structure, and the strength of the copper alloy tube is insufficient. On the other hand, when the content of P exceeds 0.1% by mass, cracks occur during hot extrusion, and the workability of the manufactured copper alloy tube is lowered.
More preferably, it is 0.03 mass% or more and 0.08 mass% or less.

(残部:Cu及び不可避的不純物)
銅合金の成分は、前記のほか、残部がCu及び不可避的不純物からなるものである。なお、不可避的不純物として、例えば、地金や中間合金に含まれている、Al、Be、V、Nb、Mo、W等が挙げられる。これら不可避的不純物元素は、粗大な晶出物や析出物が生成しやすくなるため、極力少ない含有量にすることが好ましい。
通常知られている範囲内のAl、Be、V、Nb、Mo、W等は、本発明に係るCu合金の加工特性その他の特性を阻害しない。
(Balance: Cu and inevitable impurities)
In addition to the above, the copper alloy component is composed of Cu and inevitable impurities. Inevitable impurities include, for example, Al, Be, V, Nb, Mo, W, and the like, which are contained in metal and intermediate alloys. These inevitable impurity elements are liable to produce coarse crystallized products and precipitates, so that the content is preferably as small as possible.
Al, Be, V, Nb, Mo, W, etc. within the generally known range do not impair the processing characteristics and other characteristics of the Cu alloy according to the present invention.

(平均結晶粒径:5μm以上40μm以下)
本発明においては、銅合金管において平均結晶粒径が小さいほど、高強度及び優れた曲げ加工性をバランスよく備えた銅合金管を得ることができる。このため、後記する溶体化処理により、強度の向上に有効なCoを含む結晶をはじめとした平均結晶粒径を5μm以上40μm以下に制御する。
(Average crystal grain size: 5 μm or more and 40 μm or less)
In the present invention, as the average crystal grain size is smaller in the copper alloy tube, a copper alloy tube having a high balance of strength and excellent bending workability can be obtained. For this reason, the average crystal grain size including the crystal containing Co effective in improving the strength is controlled to 5 μm or more and 40 μm or less by the solution treatment described later.

平均結晶粒径が40μmを超えると、結晶粒微細化による強化量が小さくなり、強度が不足しやすくなる。又、平均結晶粒径が40μmを超えると、加工性が低下してしまう。平均結晶粒径の下限値は特に存在しないが、製造上の理由により5μmが下限となる。なお、制御方法については後記する。   When the average crystal grain size exceeds 40 μm, the amount of strengthening due to crystal grain refinement becomes small, and the strength tends to be insufficient. On the other hand, if the average crystal grain size exceeds 40 μm, the workability deteriorates. There is no lower limit for the average grain size, but 5 μm is the lower limit for manufacturing reasons. The control method will be described later.

平均結晶粒径は、管長手方向と平行な面で銅合金管を切断した切断面の肉厚方向の中心部を任意に3点選択して、JIS H 0501に記載されている比較法で結晶粒径を測定し、この測定値から平均値を算出して求められる。   For the average crystal grain size, three points were selected at the center in the thickness direction of the cut surface obtained by cutting the copper alloy tube in a plane parallel to the longitudinal direction of the tube, and the crystal grain size was determined by the comparison method described in JIS H 0501. The particle diameter is measured, and an average value is calculated from the measured value.

(析出物の平均直径:3nm以上10nm以下)
本発明においては、平均結晶粒径を前記規定の範囲内に制御するのみならず、析出物の平均直径を制御することによって、更に高強度及び優れた曲げ加工性をバランスよく備えた銅合金を得ることができる。このため、後記する溶体化処理、及び、焼鈍処理により、析出物の平均直径を3nm以上10nm以下に制御する。
(Average diameter of precipitate: 3 nm or more and 10 nm or less)
In the present invention, not only the average crystal grain size is controlled within the specified range, but also by controlling the average diameter of the precipitates, a copper alloy having a high strength and excellent bending workability in a well-balanced manner. Can be obtained. For this reason, the average diameter of precipitates is controlled to 3 nm or more and 10 nm or less by solution treatment and annealing treatment described later.

析出物の平均直径が10nmを超えると、析出物の粒子間距離が大きくなるため析出強化量が小さくなり、銅合金管の強度が不足しやすくなる。一方、析出物の平均直径が3nm未満であると、転移により結合が切断されてしまうため析出強化量が小さくなり、銅合金管の強度が不足しやすくなる。なお、制御方法については後記する。   When the average diameter of the precipitates exceeds 10 nm, the distance between the particles of the precipitates increases, so that the precipitation strengthening amount decreases and the strength of the copper alloy tube tends to be insufficient. On the other hand, if the average diameter of the precipitates is less than 3 nm, the bond is cut by the transition, so that the precipitation strengthening amount becomes small and the strength of the copper alloy tube tends to be insufficient. The control method will be described later.

析出物の平均直径は、透過型電子顕微鏡(TEM)を用いて倍率10万倍で観察を行い、膜厚100nmのもとで、500nm×500nmの範囲で観察される析出物について各析出物の直径を測定した後、各析出物の直径から、それらの平均値を算出して求められる。   The average diameter of the precipitates was observed at a magnification of 100,000 times using a transmission electron microscope (TEM), and the precipitates observed in a range of 500 nm × 500 nm under a film thickness of 100 nm were measured for each precipitate. After measuring the diameter, the average value is calculated from the diameter of each precipitate.

(析出物の数密度:5000個/μm以上)
本発明においては、平均結晶粒径及び析出物の平均直径を制御することに加えて析出物の数密度を制御することで、より一層高強度及び優れた曲げ加工性をバランスよく備えた銅合金を得ることができる。このため、後記する溶体化処理、及び、焼鈍処理により、直径が1nm以上10nm以下である析出物の数密度を5000個/μm以上に制御する。
(Number density of precipitates: 5000 / μm 3 or more)
In the present invention, by controlling the number density of precipitates in addition to controlling the average crystal grain size and the average diameter of precipitates, a copper alloy having a higher balance of strength and excellent bending workability is obtained. be able to. For this reason, the number density of precipitates having a diameter of 1 nm or more and 10 nm or less is controlled to 5000 / μm 3 or more by solution treatment and annealing treatment described later.

直径が1nm以上10nm以下である析出物の数密度が5000個/μm未満であると、析出強化量が小さくなり、強度が不足しやすくなる。又、析出物の数密度に上限はないが、本実施形態に係る合金の成分範囲では、100000個/μmが限界である。なお、制御方法については後記する。 When the number density of precipitates having a diameter of 1 nm or more and 10 nm or less is less than 5000 / μm 3 , the precipitation strengthening amount becomes small and the strength tends to be insufficient. Further, although there is no upper limit to the number density of precipitates, the limit is 100,000 pieces / μm 3 in the component range of the alloy according to the present embodiment. The control method will be described later.

析出物の数密度は、透過型電子顕微鏡(TEM)を用いて倍率10万倍で観察を行い、膜厚100nmのもとで、500nm×500nmの範囲で観察される直径が1nm以上10nm以下の析出物について個数を測定し、計算することにより求められる。   The number density of precipitates is observed with a transmission electron microscope (TEM) at a magnification of 100,000 times, and the precipitates having a diameter of 1 nm or more and 10 nm or less are observed in a range of 500 nm × 500 nm under a film thickness of 100 nm. It is calculated | required by measuring a number about and calculating.

又、本発明の高強度銅合金管は、前記合金成分に加えて選択的成分として、Ni、Sn、若しくは、Znから選択された1種以上を所定量以下含有してもよい。   The high-strength copper alloy tube of the present invention may contain a predetermined amount or less selected from Ni, Sn, or Zn as a selective component in addition to the alloy component.

(Ni:0.005質量%以上0.10質量%以下)
NiはPとリン化物を形成し、析出強化により強度を高くする元素である。
Niの含有量は、0.005質量%以上0.10質量%以下が好ましい。Niによる前記効果を有効に発揮させるには、0.005質量%以上含有することが好ましい。しかし、過剰に含有させると却って強度が低下するため、0.10質量%以下が好ましい。
より好ましくは、0.01質量%以上0.05質量%以下とする。
(Ni: 0.005 mass% or more and 0.10 mass% or less)
Ni is an element that forms a phosphide with P and increases the strength by precipitation strengthening.
The content of Ni is preferably 0.005% by mass or more and 0.10% by mass or less. In order to effectively exhibit the above-described effects due to Ni, it is preferable to contain 0.005% by mass or more. However, since an intensity | strength falls on the contrary when it contains excessively, 0.10 mass% or less is preferable.
More preferably, it is 0.01 mass% or more and 0.05 mass% or less.

(Zn:0.005質量%以上1.0質量%以下)
Znは、耐食性を改善し、腐食を抑制するため有効な元素である。
Znの含有量は、0.005質量%以上1.0質量%以下が好ましい。Znによる前記効果を有効に発揮させるには、0.005質量%以上含有することが好ましい。しかし、過剰に含有すると却って耐食性が低下するため、1.0質量%以下が好ましい。
より好ましくは、0.01質量%以上0.5質量%以下とする。
(Zn: 0.005 mass% or more and 1.0 mass% or less)
Zn is an effective element for improving corrosion resistance and suppressing corrosion.
The content of Zn is preferably 0.005% by mass or more and 1.0% by mass or less. In order to exhibit the said effect by Zn effectively, it is preferable to contain 0.005 mass% or more. However, if it is excessively contained, the corrosion resistance is lowered, so 1.0% by mass or less is preferable.
More preferably, it is 0.01 mass% or more and 0.5 mass% or less.

(Sn:0.05質量%以上1.0質量%以下)
Snは、固溶硬化によって強度を向上させるため、及び、析出物の粗大化を抑制するため、銅合金管の耐食性の向上に有効である。
Snの含有量は0.05質量%以上1.0質量%以下が好ましい。前記Snによる効果を有効に発揮させるには、0.05質量%以上含有することが好ましい。Snの含有量が0.05質量%未満ではこれらの効果が不十分である。一方、Snの含有量が1.0質量%を超えると、熱間押出工程における熱間変形抵抗が高くなって生産性が低下する。
より好ましくは、0.1質量%以上0.8質量%以下とする。
(Sn: 0.05 mass% or more and 1.0 mass% or less)
Sn is effective in improving the corrosion resistance of the copper alloy tube in order to improve the strength by solid solution hardening and to suppress the coarsening of precipitates.
The content of Sn is preferably 0.05% by mass or more and 1.0% by mass or less. In order to effectively exhibit the effect of Sn, it is preferable to contain 0.05% by mass or more. When the Sn content is less than 0.05% by mass, these effects are insufficient. On the other hand, if the Sn content exceeds 1.0% by mass, the hot deformation resistance in the hot extrusion process is increased and the productivity is lowered.
More preferably, the content is 0.1% by mass or more and 0.8% by mass or less.

更に、本発明の高強度銅合金管は、前記合金成分に加えて更に選択的成分として、Fe、Mn、Mg、Cr、Ti、Zr、及び、Agから選択された1種類以上を所定量未満含有してもよい。   Furthermore, the high-strength copper alloy tube of the present invention includes, as a selective component in addition to the alloy component, one or more selected from Fe, Mn, Mg, Cr, Ti, Zr, and Ag, less than a predetermined amount. You may contain.

(Fe、Mn、Mg、Cr、Ti、Zr、Ag:合計0.10質量%未満)
Fe、Mn、Mg、Cr、Ti、Zr、及び、Agは、銅合金管の強度、及び、耐食性を向上させると共に、結晶、及び、析出物を微細化して曲げ加工性を向上させるため有効である。これら効果を有効に発揮させるには、合計して0.10質量%未満含有することが好ましい。
これら元素の合計含有量が0.10質量%以上となると、熱間押出時に押出圧力が上昇するため、これら元素を含有しないものと同一の押出圧力で熱間押出を行うには熱間押出圧力を上昇させることが必要となる。これにより、押出材の表面酸化が多くなる結果、銅合金管において表面欠陥が多発する。このため、本発明の目的用途のひとつである薄肉化された伝熱管に期待される耐食性の向上を図ることができない。
したがって、これらの元素の合計含有量は0.10質量%未満が好ましい。
(Fe, Mn, Mg, Cr, Ti, Zr, Ag: total less than 0.10% by mass)
Fe, Mn, Mg, Cr, Ti, Zr, and Ag are effective for improving the strength and corrosion resistance of the copper alloy tube and improving the bending workability by refining the crystals and precipitates. is there. In order to exhibit these effects effectively, it is preferable to contain less than 0.10 mass% in total.
When the total content of these elements is 0.10% by mass or more, the extrusion pressure increases at the time of hot extrusion. Therefore, hot extrusion pressure is used to perform hot extrusion at the same extrusion pressure as those not containing these elements. It is necessary to raise. As a result, surface oxidation of the extruded material increases, resulting in frequent surface defects in the copper alloy tube. For this reason, it is impossible to improve the corrosion resistance expected of the thinned heat transfer tube, which is one of the intended uses of the present invention.
Therefore, the total content of these elements is preferably less than 0.10% by mass.

<銅合金の製造方法>
次に、本発明に係る銅合金管の製造方法について説明する。
本発明における銅合金の製造工程自体は、従来の銅合金管の製造工程と基本的に同じである。つまり、本発明に係る銅合金管の製造工程は、ビレット作製工程と、均質化熱処理工程と、熱間押出工程と、圧延加工工程と、粗抽伸加工工程と、溶体化処理工程と、焼鈍工程からなる。
<Manufacturing method of copper alloy>
Next, a method for producing a copper alloy tube according to the present invention will be described.
The manufacturing process itself of the copper alloy in the present invention is basically the same as the manufacturing process of the conventional copper alloy tube. That is, the manufacturing process of the copper alloy tube according to the present invention includes a billet manufacturing process, a homogenization heat treatment process, a hot extrusion process, a rolling process, a rough drawing process, a solution treatment process, and an annealing process. Consists of.

始めに、原料の電気銅を木炭被覆の下で溶解し、銅が溶解した後、Coを所定量添加し、更に脱酸素のために15質量%程度のPを含有する銅合金を添加し、成分調整した後、半連続鋳造により所定の寸法のビレットを作製する(ビレット作製工程)。次に、必要に応じて、偏析改善のため、ビレットを750〜950℃に加熱して0.1〜2時間程度保持して均質化熱処理を行う(均質化熱処理工程)。その後、ビレットを750〜850℃で熱間押出しにより押出素管とする(熱間押出工程)。押出素管を圧延して圧延素管とし(圧延加工工程)、更に抽伸加工にて所定の寸法の抽伸管(素管)を製造する(粗抽伸加工工程)。圧延加工工程における加工率を92%以下、粗抽伸加工工程における加工率を35%以下とすることにより、それぞれの加工時の製品不良を低減できる。   First, the raw electrolytic copper is dissolved under the charcoal coating, after the copper is dissolved, a predetermined amount of Co is added, and further a copper alloy containing about 15% by mass of P is added for deoxidation, After adjusting the components, a billet of a predetermined size is produced by semi-continuous casting (billet production process). Next, in order to improve segregation, the billet is heated to 750 to 950 ° C. and held for about 0.1 to 2 hours as necessary to perform a homogenization heat treatment (homogenization heat treatment step). Then, a billet is made into an extrusion element pipe by hot extrusion at 750-850 ° C (hot extrusion process). The extruded element tube is rolled into a rolled element tube (rolling process), and a drawn tube (element pipe) having a predetermined size is manufactured by a drawing process (rough drawing process). By setting the processing rate in the rolling process to 92% or less and the processing rate in the rough drawing process to 35% or less, product defects during each processing can be reduced.

次に、銅合金組成の平均結晶粒径、並びに、析出物の平均直径、数密度、及び、体積分率に影響を与える、溶体化処理工程、及び、焼鈍工程を以下の条件で行う。   Next, a solution treatment step and an annealing step that affect the average crystal grain size of the copper alloy composition and the average diameter, number density, and volume fraction of the precipitate are performed under the following conditions.

(溶体化処理工程)
溶体化処理は750℃以上900℃以下とし、10〜300秒間加熱を行う。
溶体化処理温度が750℃未満の低温の場合、溶体化処理の時点で粗大な析出物が生成するため、析出物の平均直径が10nmより大きくなりやすい。又、この後の焼鈍工程で生成する析出物が減少するため、直径が1nm以上10nm以下である析出物の数密度も5000個/μm未満になりやすい。その結果、銅合金管の強度が不足しやすくなる。一方、溶体化処理温度が900℃を超える高温の場合は、平均結晶粒径が40μmよりも大きくなりやすい。その結果、銅合金管の耐食性が低下しやすくなる。
前記条件により、平均結晶粒径が上限である40μm以下となるように制御し、析出物の平均直径が上限である10nm以下となるように制御する。同時に、続く焼鈍工程にて生成する析出物について直径が1nm以上10nm以下である析出物の数密度が下限である5000個/μm以上となるように制御する。
このように、溶体化処理は同時に変化しやすい平均結晶粒径及び析出物のうちのどちらか一方を効果的に制御するために重要な工程である。
(Solution treatment process)
The solution treatment is performed at 750 ° C. or more and 900 ° C. or less, and heating is performed for 10 to 300 seconds.
When the solution treatment temperature is a low temperature of less than 750 ° C., a coarse precipitate is generated at the time of the solution treatment, and therefore the average diameter of the precipitate tends to be larger than 10 nm. In addition, since the precipitates generated in the subsequent annealing step are reduced, the number density of the precipitates having a diameter of 1 nm or more and 10 nm or less tends to be less than 5000 / μm 3 . As a result, the strength of the copper alloy tube tends to be insufficient. On the other hand, when the solution treatment temperature is a high temperature exceeding 900 ° C., the average crystal grain size tends to be larger than 40 μm. As a result, the corrosion resistance of the copper alloy tube tends to decrease.
Under the above conditions, the average crystal grain size is controlled to be 40 μm or less, which is the upper limit, and the average diameter of the precipitate is controlled to be 10 nm or less, which is the upper limit. At the same time, the number of precipitates having a diameter of 1 nm or more and 10 nm or less is controlled so that the number of precipitates generated in the subsequent annealing step is 5000 / μm 3 or more which is the lower limit.
As described above, the solution treatment is an important process for effectively controlling either the average crystal grain size or the precipitates which are easily changed at the same time.

(焼鈍工程)
焼鈍処理は450℃を超えて700℃未満とし、5分〜1時間加熱を行う。焼鈍温度が450℃以下の低温の場合は、析出物の平均直径が3nm未満と微細になりすぎてしまい、銅合金管の強度が不足する。一方、焼鈍温度が700℃以上の高温の場合は、析出物の平均直径が10nmより大きくなると共に、直径が1nm以上10nm以下である析出物の数密度が5000個/μm未満に減少するため、銅合金管の強度が不足する。
本発明においては、溶体化処理後の前記抽伸管について前記処理を行うことにより、平均結晶粒径が前記規定値内に収まるように制御し、析出物の平均直径が前記規定値内に収まるように制御すると共に、直径が1nm以上10nm以下である析出物の数密度が5000個/μm以上に制御する。
このように、焼鈍処理は溶体化処理と組み合わせることにより、同時に変化しやすい平均結晶粒径と析出物のうちのどちらか一方を効果的に制御するために重要な工程である。
(Annealing process)
The annealing treatment is performed at a temperature exceeding 450 ° C. and less than 700 ° C., and heating is performed for 5 minutes to 1 hour. When the annealing temperature is a low temperature of 450 ° C. or less, the average diameter of the precipitates becomes too fine as less than 3 nm, and the strength of the copper alloy tube is insufficient. On the other hand, when the annealing temperature is 700 ° C. or higher, the average diameter of the precipitates is larger than 10 nm, and the number density of the precipitates having a diameter of 1 nm or more and 10 nm or less is reduced to less than 5000 / μm 3. The strength of the alloy tube is insufficient.
In the present invention, by performing the treatment on the drawing tube after the solution treatment, the average crystal grain size is controlled to be within the specified value, and the average diameter of the precipitate is to be within the specified value. And the number density of precipitates having a diameter of 1 nm to 10 nm is controlled to 5000 / μm 3 or more.
As described above, the annealing treatment is an important process for effectively controlling either the average crystal grain size or the precipitates which are easily changed by being combined with the solution treatment.

以上、本発明を実施するための形態について述べてきたが、本発明によれば、強度に優れると共に良好な加工性を有する、曲げ加工時に明瞭な割れが観察されない高強度銅合金管が得られる。このため、熱交換器においては本発明に係る高強度銅合金管を用いることで、銅使用量を低減しつつ拡管・フレア加工が可能となり、ヘアピン状に曲げ加工した配管を有する熱交換器を効率よく製造することが可能となる。特に、本発明に係る高強度銅合金管は曲げ加工の要求条件が厳しい小型の熱交換器への使用が好適である。更に、本発明に係る高強度銅合金管は耐食性に優れるため、熱交換器及び空調機の長寿命化という効果も得られる。
なお、本発明はこのような実施の形態のみに限定されるものではなく、本発明の技術的思想を逸脱しない範囲において、適宜変更することができる。
As mentioned above, although the form for implementing this invention has been described, according to this invention, the high intensity | strength copper alloy pipe | tube which is excellent in intensity | strength and has favorable workability and a clear crack is not observed at the time of a bending process is obtained. . For this reason, in the heat exchanger, by using the high-strength copper alloy tube according to the present invention, it is possible to expand and flare while reducing the amount of copper used, and a heat exchanger having a pipe bent into a hairpin shape. It becomes possible to manufacture efficiently. In particular, the high-strength copper alloy tube according to the present invention is suitable for use in a small heat exchanger having severe bending requirements. Furthermore, since the high-strength copper alloy tube according to the present invention is excellent in corrosion resistance, an effect of extending the life of the heat exchanger and the air conditioner is also obtained.
Note that the present invention is not limited to such an embodiment, and can be appropriately changed without departing from the technical idea of the present invention.

以下に、本発明の効果を確認した実施例1ないし実施例3を、本発明の要件を満たさない比較例と対比して具体的に説明する。
なお、[実施例1]は表1のNo.1〜4、17、18、[実施例2]は表1のNo.5〜10、[実施例3]は表1のNo.11〜16に該当する。
Hereinafter, Examples 1 to 3 in which the effects of the present invention have been confirmed will be specifically described in comparison with Comparative Examples that do not satisfy the requirements of the present invention.
In addition, [Example 1] is Nos. 1 to 4, 17, 18 in Table 1, [Example 2] is Nos. 5 to 10 in Table 1, and [Example 3] is No. 1 in Table 1. It corresponds to 11-16.

(供試材)
供試材を、以下の工程により作製した。
まず、電気銅を原料とした溶湯中にCoを添加した後、Cu−P合金を添加して脱酸した溶湯を用いて、鋳造温度1200℃で、直径300mm、長さ3000mmの鋳塊を半連続鋳造した。鋳塊から長さ475mmのビレットを切り出し、均質化処理として、ビレットを900℃に加熱した後、1.5時間保持し、冷却した。
(Sample material)
The sample material was produced by the following steps.
First, after adding Co to a molten metal made of electrolytic copper, a cast ingot having a diameter of 300 mm and a length of 3000 mm at a casting temperature of 1200 ° C. using a Cu-P alloy added and deoxidized. Continuous casting. A billet having a length of 475 mm was cut out from the ingot, and as a homogenization treatment, the billet was heated to 900 ° C., held for 1.5 hours, and then cooled.

次に、均質化したビレットを830℃に加熱して3分間保持した後、熱間押出しにより、外径94mm、肉厚10mmの押出素管を作製した。この押出素管を外径38mm、肉厚2.1mmに圧延し、さらに加工率35%で抽伸して、外径9.52mm、肉厚0.8mmの平滑管を作製した。平滑管を焼鈍炉にて表1に示す条件で焼鈍して供試材とした。
供試材より所定量の試料を採取し、組成を分析して表1に示す。又、以下の手順で平均結晶粒径、並びに、析出物の平均直径、数密度、及び、体積分率を測定し、その結果を表1に示す。
Next, the homogenized billet was heated to 830 ° C. and held for 3 minutes, and then extruded to produce an extruded element tube having an outer diameter of 94 mm and a wall thickness of 10 mm. The extruded element tube was rolled to an outer diameter of 38 mm and a wall thickness of 2.1 mm, and further drawn at a processing rate of 35% to produce a smooth tube having an outer diameter of 9.52 mm and a wall thickness of 0.8 mm. The smooth tube was annealed in the annealing furnace under the conditions shown in Table 1 to obtain a test material.
A predetermined amount of sample is taken from the test material, and the composition is analyzed and shown in Table 1. In addition, the average crystal grain size, the average diameter, the number density, and the volume fraction of the precipitates were measured by the following procedure, and the results are shown in Table 1.

Figure 2014043622
Figure 2014043622

(平均結晶粒径測定)
平均結晶粒径は、以下の方法により算出した。
まず、管長手方向と平行な面で銅合金管を切断した後、断面を研磨して観察面とした。次に、この観察面を光学顕微鏡で観察して、銅合金管の肉厚方向の中心部を任意に3点選択した。そして、JIS H 0501に記載されている比較法で結晶粒径を測定し、測定された結晶粒径の平均値として平均結晶粒径を算出した。
(Average crystal grain size measurement)
The average crystal grain size was calculated by the following method.
First, after cutting a copper alloy tube along a plane parallel to the longitudinal direction of the tube, the cross section was polished to obtain an observation surface. Next, this observation surface was observed with an optical microscope, and three central portions in the thickness direction of the copper alloy tube were arbitrarily selected. Then, the crystal grain size was measured by a comparative method described in JIS H 0501, and the average crystal grain size was calculated as the average value of the measured crystal grain sizes.

(析出物平均直径測定)
析出物の平均直径は、以下の方法により算出した。
まず、透過型電子顕微鏡(TEM、JEOL社製)を用いて倍率10万倍で観察を行った。次に、膜厚100nmのもとで、500nm×500nmの範囲で観察される析出物について画像解析ソフトImage Pro plus(日本ローバー製)により析出物すべての直径を測定した。そして、各析出物から測定された直径の平均値として析出物の平均直径を算出した。
(Precipitate average diameter measurement)
The average diameter of the precipitate was calculated by the following method.
First, observation was performed at a magnification of 100,000 times using a transmission electron microscope (TEM, manufactured by JEOL). Next, the diameter of all the precipitates was measured with an image analysis software Image Pro plus (manufactured by Nippon Rover Co., Ltd.) for the precipitates observed in the range of 500 nm × 500 nm under a film thickness of 100 nm. And the average diameter of the deposit was computed as an average value of the diameter measured from each deposit.

(析出物数密度測定)
析出物の数密度は、以下の手順により算出した。
まず、透過型電子顕微鏡(TEM、JEOL社製)を用いて倍率10万倍で観察を行った。次に、膜厚100nmのもとで、500nm×500nmの範囲で観察される析出物について画像解析ソフトImage Pro plus(日本ローバー製)により直径が1nm以上10nm以下の析出物について個数を測定した。そして、直径が1nm以上10nm以下の析出物について計算により析出物数密度として、1μm当たりの析出物の個数を算出した。なお、算出した析出物の個数の十の位を四捨五入して表1に記載した。
(Precipitate number density measurement)
The number density of precipitates was calculated by the following procedure.
First, observation was performed at a magnification of 100,000 times using a transmission electron microscope (TEM, manufactured by JEOL). Next, the number of precipitates having a diameter of 1 nm or more and 10 nm or less was measured by image analysis software Image Pro plus (manufactured by Nippon Rover) for the precipitates observed in the range of 500 nm × 500 nm under a film thickness of 100 nm. Then, the number of precipitates per 1 μm 3 was calculated as the precipitate number density by calculation for the precipitates having a diameter of 1 nm to 10 nm. The ten decimal places of the calculated number of precipitates are rounded off and listed in Table 1.

なお、本願において、画像解析ソフト等により測定している析出物の直径とは、全て、円換算相当として算出したものである。即ち、析出物の断面形状は、きれいな円形は皆無であるため、析出物の断面形状がいびつな形の場合でも、析出物の直径を定義できるように、本願における析出物の直径とは、析出物を同じ面積で真円とした場合の直径に換算し、円換算相当の直径としている。   In the present application, the diameters of precipitates measured by image analysis software or the like are all calculated as equivalent to yen. In other words, since the cross-sectional shape of the precipitate is not a clean circle, the diameter of the precipitate in the present application is defined so that the diameter of the precipitate can be defined even when the cross-sectional shape of the precipitate is irregular. The diameter is equivalent to the equivalent of a circle when converted into a perfect circle with the same area.

(析出物体積分率)
析出物体積分率も析出物の平均直径及び析出物の数密度と同様、高強度及び優れた曲げ加工性をバランスよく備えた銅合金を得るための指標となり得る。
表1に記載の析出物体積分率Vfは、析出物の平均直径2r及び数密度Nを用いて、以下の式により求めた。
Vf=4/3πr×N
(Precipitation volume fraction)
As with the average diameter of precipitates and the number density of precipitates, the precipitate volume fraction can be an index for obtaining a copper alloy having a high balance of strength and excellent bending workability.
The precipitation volume fraction Vf described in Table 1 was determined by the following equation using the average diameter 2r and the number density N of the precipitates.
Vf = 4 / 3πr 3 × N

次に、供試材を用いて、引張強さ、曲げ加工性、及び、応力腐食割れを以下の手順で測定した。結果を表1に記載した。   Next, tensile strength, bending workability, and stress corrosion cracking were measured by the following procedures using the test materials. The results are shown in Table 1.

(引張強さの評価試験)
管の長手方向の引張強さは、前記製造した銅合金管を管長手方向に切れ目を入れて切り開き平らにした後に、長手方向から試験片を切り出し、長さ290mm、幅10mmの引張試験片を作成して、その試験片をインストロン社製5566型精密万能試験機にて管長手方向の引張強さσLと伸びとを測定した。引張強さσLが270MPa以上で合格とした。
又、この引張試験片の円周方向の引っ張り強さも測定したところ、同程度であった(表1に記載せず)。
(Tensile strength evaluation test)
The tensile strength in the longitudinal direction of the tube was determined by cutting the test piece from the longitudinal direction after cutting and flattening the copper alloy tube produced in the longitudinal direction by making a cut in the longitudinal direction of the tube, and removing a tensile test piece having a length of 290 mm and a width of 10 mm. The specimen was prepared, and the tensile strength σL and elongation in the longitudinal direction of the pipe were measured with an Instron 5566 type precision universal testing machine. The tensile strength σL was determined to be acceptable when it was 270 MPa or more.
Further, the tensile strength in the circumferential direction of this tensile test piece was also measured and found to be comparable (not shown in Table 1).

(曲げ加工性の評価試験)
熱交換器の伝熱部を模擬して、前記製造した供試材(平滑管)を、実施例及び比較例について10本ずつ、ピッチが40mmのU字形に曲げ及びピッチが30mmのU字曲げに加工した。この際、平滑管の曲げ部における割れ、亀裂の発生を目視にて調査し、10本とも割れ、亀裂が全くなく曲げ加工できたものを、曲げ加工性が良好(○)として評価した。又、10本とも割れ、亀裂は無いが、しわが発生しており、曲げ半径がより小さく、曲げ加工条件を厳しくした場合には、割れ、亀裂が発生する可能性があるものを、曲げ加工性が劣る(△)として評価した。更に、曲げ加工した10本の中に、割れ、亀裂が1本でも発生したものを曲げ加工性が不良(×)として評価した。
(Evaluation test for bending workability)
Simulating the heat transfer section of the heat exchanger, bending the specimens (smooth tubes) produced 10 times for each of the examples and comparative examples into a U shape with a pitch of 40 mm and a U shape with a pitch of 30 mm It was processed into. At this time, the occurrence of cracks and cracks in the bent portion of the smooth tube was visually inspected, and all the ten pieces that could be bent without cracks and cracks were evaluated as having good bending workability (◯). In addition, there are no cracks or cracks in all of the ten pieces, but wrinkles are generated, the bending radius is smaller, and if the bending conditions are strict, the bending and cracking may occur. The property was evaluated as being inferior (Δ). Furthermore, the bending workability was evaluated as poor (x) when even one crack or crack occurred among the 10 bent.

(応力腐食割れの評価試験)
前記供試材より試験片を切り出し、応力腐食割れ試験をトンプソンの方法(Materials Research & Standards(1961)1081)に準じて行った。すなわち、14質量%のアンモニア水を入れ、40℃の温度で飽和蒸気を充満させたデシケータ中に暴露し、試験片が破断するまでの時間を測定した。破損までの寿命が40時間以上であるものを良好(○)として評価した。
(Evaluation test for stress corrosion cracking)
A test piece was cut out from the specimen, and a stress corrosion cracking test was performed according to the Thompson method (Materials Research & Standards (1961) 1081). That is, 14% by mass of ammonia water was added and exposed to a desiccator filled with saturated vapor at a temperature of 40 ° C., and the time until the test piece broke was measured. A product having a life span of 40 hours or longer until breakage was evaluated as good (◯).

[実施例1]
表1の結果からNo.1ないしNo.4、No.17、及び、No.18は、No.19ないしNo.22及びNo.26ないしNo.32と対比して、引張強さ、曲げ加工性、応力腐食割れのいずれの測定項目においてもその物理的特性が優れていることが判明した。これらは、熱交換器など、小型で屈曲部分が多い装置に使用した場合、従来よりも優れる特性を示す。
又、表1のNo.1、No.17、No.18を対比すると、これらは溶体化処理が同一であるので平均結晶粒径は同程度である。しかし、これに続く焼鈍温度を高くすることで析出物の数密度が減少しており、平均結晶粒径と析出物の数密度を個別に制御できることが判明した。
[Example 1]
From the results shown in Table 1, No. 1 to No. 4, No. 17, and No. 18 are compared with No. 19 to No. 22 and No. 26 to No. 32 in terms of tensile strength and bending. It has been found that the physical properties are excellent in both measurement properties and stress corrosion cracking measurement items. These exhibit characteristics superior to those of the prior art when used in a small apparatus having many bent portions such as a heat exchanger.
Further, when No. 1, No. 17, and No. 18 in Table 1 are compared, since the solution treatment is the same, the average crystal grain size is about the same. However, it was found that the number density of precipitates was decreased by increasing the annealing temperature following this, and the average crystal grain size and the number density of precipitates could be individually controlled.

No.19はCoの含有量が下限値未満であり、No.21はPの含有量が下限値未満であるため、結晶の微細化の効果が小さく平均結晶粒径が上限値を超える50μmとなった。このため、これらは引張強さが劣っていた。   No. 19 has a Co content of less than the lower limit, and No. 21 has a P content of less than the lower limit, so that the effect of crystal refining is small and the average crystal grain size exceeds 50 μm. became. For this reason, these were inferior in tensile strength.

No.20はCoの含有量が上限値を超えており、No.22はPの含有量が上限値を超えるため、押出加工時に割れを生じてしまった。   In No. 20, the Co content exceeded the upper limit value, and in No. 22, the P content exceeded the upper limit value.

No.26は溶体化処理を行わず、又、焼鈍温度が550℃と比較的低かったため、再結晶が起こらなかった。この結果、曲げ加工性が劣っていた。
No.27は溶体化処理を行わず、又、焼鈍温度を650℃とNo.26と比べて高くしたため、再結晶は生じて平均結晶粒径は規定範囲内となった。しかし、再結晶と金属間化合物の析出が同時に生じるため、析出物の成長速度が大きくなる。その結果、析出物の平均直径が大きくなり、析出物の平均直径が本発明の上限値を超える。同時に、析出物の数密度は本発明の下限値を下回った。この結果、引張強さが劣っていた。
No. 26 was not subjected to a solution treatment, and the annealing temperature was relatively low at 550 ° C., so no recrystallization occurred. As a result, bending workability was inferior.
No. 27 was not subjected to solution treatment, and the annealing temperature was 650 ° C., which was higher than that of No. 26. Therefore, recrystallization occurred and the average crystal grain size was within the specified range. However, since recrystallization and precipitation of the intermetallic compound occur simultaneously, the growth rate of the precipitate increases. As a result, the average diameter of the precipitate increases, and the average diameter of the precipitate exceeds the upper limit of the present invention. At the same time, the number density of the precipitates was below the lower limit of the present invention. As a result, the tensile strength was inferior.

No.28は溶体化処理温度を700℃と低くしたため、平均結晶粒径は規定範囲内であった。しかし、析出物の平均直径が本発明の上限値を超えると共に、析出物の数密度は本発明の下限値を下回った。この結果、引張強さが劣っていた。
No.29は溶体化処理温度を600℃とNo.12より低くすると共に、溶体化処理時間を1800秒と長くしたため、平均結晶粒径は規定範囲内であった。しかし、析出物の平均直径が本発明の上限値を超えると共に、析出物の数密度は本発明の下限値を下回った。この結果、引張強さが劣っていた。
In No. 28, since the solution treatment temperature was lowered to 700 ° C., the average crystal grain size was within the specified range. However, as the average diameter of the precipitates exceeded the upper limit of the present invention, the number density of the precipitates fell below the lower limit of the present invention. As a result, the tensile strength was inferior.
In No. 29, the solution treatment temperature was 600 ° C. lower than that of No. 12, and the solution treatment time was increased to 1800 seconds, so the average crystal grain size was within the specified range. However, as the average diameter of the precipitates exceeded the upper limit of the present invention, the number density of the precipitates fell below the lower limit of the present invention. As a result, the tensile strength was inferior.

No.30は溶体化処理温度を950℃と高くしたため、平均結晶粒径が本発明の上限値を大きく上回った。この結果、曲げ加工性が劣っていた。   In No. 30, since the solution treatment temperature was as high as 950 ° C., the average crystal grain size greatly exceeded the upper limit of the present invention. As a result, bending workability was inferior.

No.31は焼鈍の温度を450℃と低くしたため、平均結晶粒径及び析出物の数密度は本発明の規定範囲内であった。しかし、析出物の平均直径が小さすぎるため、引張強さが劣っていた。
No.32は焼鈍の温度を700℃と高くしたため、析出物の平均直径は本発明の上限を超えると共に、析出物の数密度は本発明の下限値以下であった。この結果、引張強さが劣っていた。
In No. 31, since the annealing temperature was lowered to 450 ° C., the average crystal grain size and the number density of precipitates were within the specified range of the present invention. However, since the average diameter of the precipitate was too small, the tensile strength was inferior.
In No. 32, since the annealing temperature was increased to 700 ° C., the average diameter of the precipitate exceeded the upper limit of the present invention, and the number density of the precipitate was not more than the lower limit of the present invention. As a result, the tensile strength was inferior.

[実施例2]
表1に示すように、No.5ないしNo.10は、No.23、及び、No.24と対比して、引張強さ、曲げ加工性、応力腐食割れのいずれの測定項目においてもその物理的特性が優れていることが判明した。これらは、熱交換器など、小型で屈曲部分が多い装置に使用した場合、従来よりも優れる特性を示す。
又、No.5はNo.1とCo、Pの添加量がほぼ同程度であるが、Niを添加して析出強化量を大きくしたため、平均結晶粒径が小さくなった。この結果、No.5はNo.24と対比して引張強度が大きい。
[Example 2]
As shown in Table 1, No. 5 to No. 10 are compared with No. 23 and No. 24 in their physical properties in any measurement items of tensile strength, bending workability, and stress corrosion cracking. The mechanical properties were found to be excellent. These exhibit characteristics superior to those of the prior art when used in a small apparatus having many bent portions such as a heat exchanger.
No. 5 is No.5. The amount of addition of 1 and Co and P was almost the same, but the amount of precipitation strengthening was increased by adding Ni, so the average crystal grain size was reduced. As a result, no. 5 is No.5. Compared with 24, the tensile strength is large.

No.6はNo.1とCo、Pの添加量がほぼ同程度であり、Snの添加量が下限値に近いため、強度等の物性がNo.1と同様となった。
No.7はNo.6とCo、Pの添加量がほぼ同程度であるが、No.6よりもSnの添加量を増やしたため、No.6と対比して引張強度が優れている。
No. 6 is No.6. No. 1 and the addition amounts of Co and P are almost the same, and the addition amount of Sn is close to the lower limit value. Same as 1.
No. 7 is No. 7. No. 6 and the addition amounts of Co and P are almost the same. Since the addition amount of Sn was increased more than No. 6, Compared with 6, excellent tensile strength.

No.9はNo.1とCo、Pの添加量がほぼ同じであるが、SnやZnを添加して固溶強化を行っているため、平均結晶粒径が小さくなった。この結果、No.9はNo.1と対比して若干引張強度が優れている。
No.10は、No.9にNiを添加して析出強化量を大きくしたため、No.10はNo.9と対比して若干引張強度が優れている。
No. No. 9 is No.9. Although the amount of addition of 1 and Co and P was almost the same, the average crystal grain size was reduced because Sn and Zn were added to enhance the solid solution. As a result, no. No. 9 is No.9. Compared with 1, the tensile strength is slightly superior.
No. 10 is No. No. 9 was added to increase the precipitation strengthening amount. No. 10 is No. Compared to 9, the tensile strength is slightly superior.

No.23は、Snの含有量が1.51%と本願発明の上限値を超えるため、押出加工が不可能であり、生産性が劣っていた。   No. 23 had an Sn content of 1.51%, which exceeded the upper limit of the present invention, and therefore, extrusion was not possible and productivity was inferior.

No.24は、Znの含有量が2.51%と本願発明の上限値を大きく超えるため、平均結晶粒径、析出物の平均直径、及び、析出物の数密度は本願発明の規定範囲内であるものの、耐食性が劣っていた。   No. 24 has a Zn content of 2.51%, which greatly exceeds the upper limit of the present invention, so the average crystal grain size, the average diameter of the precipitates, and the number density of the precipitates are within the specified range of the present invention. However, the corrosion resistance was poor.

[実施例3]
表1に示すように、No.11ないしNo.16は、No.25と対比して、曲げ加工性、応力腐食割れにおいてその物理的特性が優れていることが判明した。又、No.11ないしNo.16は、引張強さについても本願発明の規定値を満たしてその物理的特性が優れていることが判明した。これらは、熱交換器など、小型で屈曲部分が多い装置に使用した場合、従来よりも優れる特性を示す。
[Example 3]
As shown in Table 1, it was found that No. 11 to No. 16 were superior in physical properties in bending workability and stress corrosion cracking compared with No. 25. It was also found that No. 11 to No. 16 satisfied the specified values of the present invention in terms of tensile strength and were excellent in physical properties. These exhibit characteristics superior to those of the prior art when used in a small apparatus having many bent portions such as a heat exchanger.

No.25は、Crの含有量が0.18%と上限値を超えるため、平均結晶粒径、析出物の平均直径、及び、析出物の数密度は本願発明の規定範囲内であるものの、曲げ加工性が劣っていた。   No. 25 has a Cr content of 0.18%, which exceeds the upper limit, so the average crystal grain size, the average diameter of the precipitates, and the number density of the precipitates are within the specified range of the present invention, but bending The sex was inferior.

Claims (3)

Co:0.16質量%以上0.30質量%以下、
P:0.02質量%以上0.1質量%以下を含有し、
残部がCuおよび不可避的不純物からなる合金成分を有し、
平均結晶粒径が5μm以上40μm以下であり、
析出物の平均直径が3nm以上10nm以下であり、かつ、
直径が1nm以上10nm以下である析出物の数密度が5000個/μm以上である
ことを特徴とする高強度銅合金管。
Co: 0.16% by mass or more and 0.30% by mass or less,
P: 0.02% by mass or more and 0.1% by mass or less,
The balance has an alloy component consisting of Cu and inevitable impurities,
The average crystal grain size is 5 μm or more and 40 μm or less,
The average diameter of the precipitate is 3 nm or more and 10 nm or less, and
A high-strength copper alloy tube, wherein the number density of precipitates having a diameter of 1 nm or more and 10 nm or less is 5000 pieces / μm 3 or more.
前記成分として、
Ni:0.005質量%以上0.10質量%以下、
Zn:0.005質量%以上1.0質量%以下、及び、
Sn:0.05質量%以上1.0質量%以下の少なくとも1種を更に含有する
ことを特徴とする請求項1に記載の高強度銅合金管。
As the component,
Ni: 0.005 mass% or more and 0.10 mass% or less,
Zn: 0.005 mass% or more and 1.0 mass% or less, and
The high-strength copper alloy tube according to claim 1, further comprising at least one of Sn: 0.05% by mass and 1.0% by mass.
前記成分として、
Fe、Mn、Mg、Cr、Ti、Zr、及び、Agの中から選択される1種以上を更に含有し、その合計量が0.10質量%未満である
ことを特徴とする請求項1又は請求項2に記載の高強度銅合金管。
As the component,
It further contains at least one selected from Fe, Mn, Mg, Cr, Ti, Zr, and Ag, and the total amount thereof is less than 0.10% by mass. The high-strength copper alloy pipe according to claim 2.
JP2012187610A 2012-08-28 2012-08-28 High strength copper alloy tube Expired - Fee Related JP5792696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012187610A JP5792696B2 (en) 2012-08-28 2012-08-28 High strength copper alloy tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012187610A JP5792696B2 (en) 2012-08-28 2012-08-28 High strength copper alloy tube

Publications (2)

Publication Number Publication Date
JP2014043622A true JP2014043622A (en) 2014-03-13
JP5792696B2 JP5792696B2 (en) 2015-10-14

Family

ID=50395097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012187610A Expired - Fee Related JP5792696B2 (en) 2012-08-28 2012-08-28 High strength copper alloy tube

Country Status (1)

Country Link
JP (1) JP5792696B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189804A (en) * 2013-03-26 2014-10-06 Kobe Steel Ltd High strength copper alloy tube and manufacturing method therefor
CN109971993A (en) * 2017-12-28 2019-07-05 北京有色金属研究总院 A kind of high Vulcan metal and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326319A (en) * 1986-07-18 1988-02-03 Furukawa Electric Co Ltd:The Copper alloy tube for refrigerant piping
JPH10130754A (en) * 1996-10-31 1998-05-19 Sanpo Shindo Kogyo Kk Heat resistant copper base alloy
JP2000001728A (en) * 1998-06-16 2000-01-07 Mitsubishi Materials Corp Seamless copper alloy tube for heat exchanger excellent in 0.2% proof stress and fatigue strength
JP2001247923A (en) * 2000-03-07 2001-09-14 Sanbo Copper Alloy Co Ltd Pitting corrosion resistant copper base alloy pipe material
JP2003301250A (en) * 2002-04-10 2003-10-24 Mitsubishi Shindoh Co Ltd Age-hardened welded pipe and method of manufacturing the same
WO2004079026A1 (en) * 2003-03-03 2004-09-16 Sambo Copper Alloy Co.,Ltd. Heat-resisting copper alloy materials
JP2010121166A (en) * 2008-11-19 2010-06-03 Kobe Steel Ltd Copper alloy having high strength and high electric conductivity
WO2010079707A1 (en) * 2009-01-09 2010-07-15 三菱伸銅株式会社 High-strength high-conductivity copper alloy rolled sheet and method for producing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326319A (en) * 1986-07-18 1988-02-03 Furukawa Electric Co Ltd:The Copper alloy tube for refrigerant piping
JPH10130754A (en) * 1996-10-31 1998-05-19 Sanpo Shindo Kogyo Kk Heat resistant copper base alloy
JP2000001728A (en) * 1998-06-16 2000-01-07 Mitsubishi Materials Corp Seamless copper alloy tube for heat exchanger excellent in 0.2% proof stress and fatigue strength
JP2001247923A (en) * 2000-03-07 2001-09-14 Sanbo Copper Alloy Co Ltd Pitting corrosion resistant copper base alloy pipe material
JP2003301250A (en) * 2002-04-10 2003-10-24 Mitsubishi Shindoh Co Ltd Age-hardened welded pipe and method of manufacturing the same
WO2004079026A1 (en) * 2003-03-03 2004-09-16 Sambo Copper Alloy Co.,Ltd. Heat-resisting copper alloy materials
JP2010121166A (en) * 2008-11-19 2010-06-03 Kobe Steel Ltd Copper alloy having high strength and high electric conductivity
WO2010079707A1 (en) * 2009-01-09 2010-07-15 三菱伸銅株式会社 High-strength high-conductivity copper alloy rolled sheet and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189804A (en) * 2013-03-26 2014-10-06 Kobe Steel Ltd High strength copper alloy tube and manufacturing method therefor
CN109971993A (en) * 2017-12-28 2019-07-05 北京有色金属研究总院 A kind of high Vulcan metal and preparation method thereof

Also Published As

Publication number Publication date
JP5792696B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP4629080B2 (en) Copper alloy tube for heat exchanger
JP5145331B2 (en) High strength and high thermal conductivity copper alloy tube and method for producing the same
JP4694527B2 (en) Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
JP3794971B2 (en) Copper alloy tube for heat exchanger
JP5464659B2 (en) Copper tube for heat exchanger with excellent fracture strength and bending workability
CN102575319B (en) Copper alloy seamless pipe
JP2018080355A (en) Aluminum alloy extrusion material
JP5792696B2 (en) High strength copper alloy tube
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP5960672B2 (en) High strength copper alloy tube
JP2010196089A (en) Extruded pipe of aluminum alloy having high strength and superior stress corrosion cracking resistance for hydroforming process
JP6034727B2 (en) High strength copper alloy tube
TWI608110B (en) Copper alloy seamless tube for heat exchanger tube
JP5499300B2 (en) Copper alloy tube for heat exchanger
JP5968816B2 (en) High strength copper alloy tube and manufacturing method thereof
JP6446124B2 (en) Method for producing aluminum alloy pipe excellent in corrosion resistance and workability
JP5602707B2 (en) High strength copper tube with excellent strength after brazing
JP2001342532A (en) Aluminum alloy piping material and its production
JP2011012299A (en) Method for producing inner grooved tube
JP7432315B2 (en) Method for manufacturing copper alloy seamless pipe and method for manufacturing heat exchanger
TW201441389A (en) Cold/hot water supply copper alloy seamless tube
WO2019021899A1 (en) Aluminum alloy plate and method for producing same
JP5544591B2 (en) Copper alloy tube
JP6402043B2 (en) High strength copper alloy tube
JP2005089788A (en) Aluminum alloy piping material for heat exchanger having excellent corrosion resistance, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150806

R150 Certificate of patent or registration of utility model

Ref document number: 5792696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees