JP4694527B2 - Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same - Google Patents
Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same Download PDFInfo
- Publication number
- JP4694527B2 JP4694527B2 JP2007095763A JP2007095763A JP4694527B2 JP 4694527 B2 JP4694527 B2 JP 4694527B2 JP 2007095763 A JP2007095763 A JP 2007095763A JP 2007095763 A JP2007095763 A JP 2007095763A JP 4694527 B2 JP4694527 B2 JP 4694527B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- tube
- strength
- heat
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Metal Extraction Processes (AREA)
Description
本発明は、耐圧破壊強度及び生産性が優れた耐熱高強度熱交換器用銅合金管に関する。 The present invention relates to a copper alloy tube for a heat-resistant and high-strength heat exchanger having excellent pressure fracture strength and productivity.
例えば、エアコンの熱交換器は、ヘアピン状に曲げ加工したU字形銅管(以下、銅管という場合は銅合金管も含む)をアルミニウムフィンの貫通孔に通し、前記銅管を治具により拡管することにより銅管とアルミニウムフィンとを密着させ、更に、銅管の開放端を拡管し、この拡管部にU字形に曲げ加工した銅管(リターンベンド)を挿入し、りん銅ろう等のろう材により銅管(リターンベンド)をヘアピン状銅管の拡管部にろう付けすることにより、複数個のヘアピン状銅管がリターンベンド銅管により連結された熱交換器が製造されている。 For example, a heat exchanger of an air conditioner passes a U-shaped copper tube bent into a hairpin shape (hereinafter referred to as a copper tube also includes a copper alloy tube) through an aluminum fin through-hole and expands the copper tube with a jig. Then, the copper tube and aluminum fin are brought into close contact with each other, and the open end of the copper tube is expanded, and a copper tube (return bend) bent into a U-shape is inserted into the expanded portion, and a solder such as phosphor copper braze A heat exchanger in which a plurality of hairpin-shaped copper tubes are connected by a return bend copper tube is manufactured by brazing the copper tube (return bend) to the expanded portion of the hairpin-shaped copper tube with a material.
このため、熱交換器に使用される銅管には、熱伝導率、曲げ加工性及びろう付け性が良好であることが要求される。従って、これらの特性が良好であり、適切な強度を有するりん脱酸銅が広く使用されている。 For this reason, it is requested | required that the copper tube used for a heat exchanger should have favorable heat conductivity, bending workability, and brazing property. Therefore, phosphorus deoxidized copper having good characteristics and appropriate strength is widely used.
エアコン等の熱交換器に使用する冷媒には、HCFC(ハイドロクロロフルオロカーボン)系フロンが広く使用されてきたが、HCFCはオゾン破壊係数が大きいことから、地球環境保護の点より、その値が小さいHFC(ハイドロフルオロカーボン)系フロンが使用されるようになってきた。また、給湯器、自動車用空調機器、自動販売機等に使用する熱交換器等に自然冷媒であるCO2が用いられるようになってきた。熱交換器において、これらの冷媒が使用される圧力(熱交換器の伝熱管内を流れる圧力)は凝縮器(CO2においてはガスクーラー)において最大となり、例えば、HCFC系フロンのR22では2.8MPa、HFC系フロンのR410Aでは4MPa、またCO2冷媒では7乃至14MPa(超臨界状態)程度であり、新たに採用された冷媒の運転圧力は従来冷媒R22の1.4乃至5倍程度に増大している。 HCFC (hydrochlorofluorocarbon) fluorocarbons have been widely used as refrigerants for heat exchangers such as air conditioners. However, HCFC has a low ozone depletion coefficient, so its value is small in terms of protecting the global environment. HFC (hydrofluorocarbon) -based fluorocarbons have been used. Further, CO 2 that is a natural refrigerant has come to be used in heat exchangers used in water heaters, automotive air conditioners, vending machines, and the like. In the heat exchanger, the pressure at which these refrigerants are used (pressure flowing through the heat transfer tubes of the heat exchanger) is maximized in the condenser (gas cooler in CO 2 ). 8 MPa, the R410A of HFC-based fluorocarbons 4 MPa, also in CO 2 refrigerant is about 7 to 14 MPa (supercritical state), the operating pressure of the newly adopted refrigerant is increased to 1.4 to 5 times that of the conventional refrigerant R22 is doing.
伝熱管の破壊圧力をP、伝熱管の外径をD、伝熱管の引張強さをσ、伝熱管の肉厚をt(内面溝付管の場合は底肉厚)とすると、これらの間には、P=2×σ×t/(D−0.8t)の関係がある。前記式を肉厚tに関して整理すると、t=(D×P)/(2×σ+0.8P)となり、伝熱管の引張強さが大きいほど肉厚を薄くできることがわかる。実際に、伝熱管を選定する場合、前記のPに更に安全率S(通常2.5乃至5程度)をかけた圧力に対して算出される引張強さ及び肉厚の伝熱管を用いる。 When the burst pressure of the heat transfer tube is P, the outer diameter of the heat transfer tube is D, the tensile strength of the heat transfer tube is σ, and the wall thickness of the heat transfer tube is t (in the case of an internally grooved tube), Has a relationship of P = 2 × σ × t / (D−0.8t). When the above formula is arranged with respect to the wall thickness t, t = (D × P) / (2 × σ + 0.8P), and it can be seen that the wall thickness can be reduced as the tensile strength of the heat transfer tube is increased. Actually, when selecting a heat transfer tube, a heat transfer tube having a tensile strength and a thickness calculated with respect to the pressure obtained by multiplying the above P by a safety factor S (usually about 2.5 to 5) is used.
りん脱酸銅製伝熱管の場合、引張強さが小さいことから、冷媒の運転圧力の増大に対応するには管の肉厚を厚くする必要がある。また、熱交換器の組立の際、ろう付け部は800℃以上の温度に数秒乃至数十秒間加熱されるため、ろう付け部及びその近傍ではその他の部分に比べて結晶粒が粗大化し、軟化により強度が低下した状態となってしまうことから、肉厚をより厚くする必要がある。このように、伝熱管としてりん脱酸銅を用いると、熱交換器の質量増大、及び価格増大を招くことから、引張強さが大きく、加工性に優れ、且つ良好な熱伝導率を有する伝熱管が強く要求されるようになってきた。 In the case of a phosphorous deoxidized copper heat transfer tube, since the tensile strength is small, it is necessary to increase the thickness of the tube in order to cope with an increase in the operating pressure of the refrigerant. In addition, when assembling the heat exchanger, the brazed part is heated to a temperature of 800 ° C. or higher for several seconds to several tens of seconds. Therefore, it is necessary to make the wall thickness thicker. Thus, when phosphorous deoxidized copper is used as the heat transfer tube, the mass of the heat exchanger is increased and the price is increased. There has been a strong demand for heat tubes.
このような要求に応えるべく、0.2%耐力と疲れ強さが優れた銅合金管として、例えば、Co:0.02乃至0.2質量%、P:0.01乃至0.05質量%、C:1乃至20ppmを含有し、残部がCu及び不可避的不純物からなり、不純物の酸素が50ppm以下である熱交換器用継目無銅合金管(特許文献1)が提案されている。また、Sn:0.1乃至1.0質量%、P:0.005乃至0.1質量%、O:0.005質量%以下及びH:0.0002質量%以下を含有し、残部がCu及び不可避的不純物からなる組成を有し、平均結晶粒径が30μm以下であることを特徴とする熱交換器用銅合金管(特許文献2)が提案されている。 In order to meet such demands, for example, Co: 0.02 to 0.2 mass%, P: 0.01 to 0.05 mass%, as a copper alloy tube having excellent 0.2% proof stress and fatigue strength , C: 1 to 20 ppm, the remainder being made of Cu and inevitable impurities, and oxygen of impurities is 50 ppm or less, and a seamless copper alloy tube for a heat exchanger (Patent Document 1) has been proposed. Also, Sn: 0.1 to 1.0 mass%, P: 0.005 to 0.1 mass%, O: 0.005 mass% or less and H: 0.0002 mass% or less, with the balance being Cu In addition, a copper alloy tube for heat exchanger (Patent Document 2) is proposed, which has a composition comprising unavoidable impurities and an average crystal grain size of 30 μm or less.
しかしながら、特許文献1の銅合金は、Coの燐化物による析出強化によって0.2%耐力及び疲労強度をさせているが、強度を重視したため、0.2%耐力値が高く、熱交換器の組み立て加工時にヘアピン管に曲げるときに割れが発生しやすく、歩留が低下する原因となっていた。また、りん銅ろうのろう付け以上の温度で加熱したり、加熱温度がりん銅ろうのろう付け温度程度であっても、長時間加熱したりすると、析出強化の強化機構であるCoの燐化物が固溶してしまい、加熱後の引張強さ、耐力、及び破壊圧力等の強度が低下するという問題点があった。 However, the copper alloy of Patent Document 1 has 0.2% proof stress and fatigue strength by precipitation strengthening with Co phosphide, but because the emphasis is on strength, the 0.2% proof stress value is high, and the heat exchanger When bending into a hairpin tube during assembly processing, cracks are likely to occur, causing a decrease in yield. In addition, Co phosphide, which is a strengthening mechanism of precipitation strengthening, is heated at a temperature higher than that of phosphor copper brazing, or even if the heating temperature is about the brazing temperature of phosphor copper brazing. There is a problem that the strength such as tensile strength, proof stress and breaking pressure after heating is reduced.
また、特許文献2の銅合金は、Snの固溶強化により強度が向上し、ろう付け後の軟化も特許文献1の銅合金より小さく、伝熱管に用いると管の肉厚を薄くすることが可能になるが、所定の強度を満足するまでSnを含有させると、熱間変形抵抗が増加して、押出し時の生産性の低下を招くという問題点があった。 Moreover, the copper alloy of Patent Document 2 has improved strength due to solid solution strengthening of Sn, and the softening after brazing is also smaller than that of Patent Document 1, and when used in a heat transfer tube, the thickness of the tube can be reduced. Although it becomes possible, when Sn is contained until a predetermined strength is satisfied, there is a problem that hot deformation resistance is increased and productivity is lowered during extrusion.
ところで、引張り強さσの銅管の管内に静水圧を作用させ、この管が破壊したときの破壊圧力をPFとすると、通常、PFとσは比例関係にあり、PF/σ=α(αは比例定数)となる。軟質りん脱酸銅管の引張り強さをσd、その破壊圧力をPFdとすると、PFd/σd=αdである。前記軟質りん脱酸銅管に軽い抽伸加工を加えると、引張り強さが増大し、σd´(σd´>σd)となり、それに伴い破壊圧力も増大し、PFd´(PFd´>PFd)となる。そして、PFとσの比PFd/σd及びPFd´/σd´は共にαdであり、りん脱酸銅管の引張り強さσdを向上させることにより、耐圧強度PFdを向上させることは可能である。しかしながら、引張り強さを向上させると、延性が急激に低下し、伝熱管の曲げ部で割れ及びしわが起こりやすくなり、その部分が基点となって所定破壊圧力より低圧で破壊してしまうという難点がある。 By the way, when hydrostatic pressure is applied to a copper pipe having a tensile strength σ and the breaking pressure when the pipe breaks is PF, PF and σ are normally in a proportional relationship, and PF / σ = α (α Is a proportionality constant). PFd / σd = αd, where σd is the tensile strength of the soft phosphorous deoxidized copper tube and PFd is its breaking pressure. When a light drawing process is applied to the soft phosphorus-deoxidized copper pipe, the tensile strength increases, σd ′ (σd ′> σd), and the rupture pressure increases accordingly, resulting in PFd ′ (PFd ′> PFd). . The ratios PFd / σd and PFd ′ / σd ′ of PF and σ are both αd, and the pressure strength PFd can be improved by improving the tensile strength σd of the phosphorous deoxidized copper pipe. However, when the tensile strength is improved, the ductility is drastically reduced, and cracks and wrinkles are likely to occur at the bent part of the heat transfer tube, and the part becomes the base point and breaks at a pressure lower than the predetermined breaking pressure. There is.
本発明はかかる問題点に鑑みてなされたものであって、りん脱酸銅管に対する破壊圧力/引張り強さの比を上回る破壊圧力/引張り強さの比を有し、且つ押出性、曲げ加工性及び耐熱性に優れた耐熱高強度熱交換器用銅合金管を提供することを目的とする。 The present invention has been made in view of such a problem, and has a ratio of fracture pressure / tensile strength exceeding the ratio of fracture pressure / tensile strength to a phosphorous deoxidized copper pipe, and has extrudability and bending. It aims at providing the copper alloy tube for heat-resistant high-strength heat exchangers which was excellent in heat resistance and heat resistance.
本発明に係る耐熱高強度熱交換器用銅合金管は、Zr:0.005乃至0.2重量%、Sn:0.01乃至2.0重量%、S:0.005重量%以下、O:0.005重量%以下、及びH:0.0002重量%以下を含有し、残部がCu及び不可避的不純物からなる組成を有し、焼鈍によるZrの析出により焼鈍後の引張強さが250N/mm2以上、伸びが40%以上であり、平均結晶粒径が30μm以下であることを特徴とする。
また、本発明に係る耐熱高強度熱交換器用銅合金管の製造方法は、Zr:0.005乃至0.2重量%、Sn:0.01乃至2.0重量%、S:0.005重量%以下、O:0.005重量%以下、及びH:0.0002重量%以下を含有し、残部がCu及び不可避的不純物からなる組成を有するビレットを、加熱後、穿孔加工し、その後、750乃至950℃で熱間押出し、熱間押出後、押出素管の表面温度が300℃になるまでの冷却速度が10℃/秒以上となるように急冷し、その後、押出素管を圧延及び抽伸し、その後、焼鈍することにより、焼鈍することにより、Zrを析出させて、焼鈍後の引張強さが250N/mm2以上、伸びが40%以上であり、平均結晶粒径が30μm以下である銅合金管を得ることを特徴とする。
The copper alloy tube for heat-resistant and high-strength heat exchanger according to the present invention has a Zr of 0.005 to 0.2% by weight, Sn: 0.01 to 2.0% by weight, S: 0.005% by weight or less, O: 0.005 wt% or less, and H: 0.0002 wt% or less, with the balance being composed of Cu and inevitable impurities, the tensile strength after annealing is 250 N / mm due to precipitation of Zr by annealing 2 or more, the elongation is 40% or more, and the average crystal grain size is 30 μm or less.
Moreover, the manufacturing method of the copper alloy tube for heat-resistant high-strength heat exchangers according to the present invention is as follows: Zr: 0.005 to 0.2% by weight, Sn: 0.01 to 2.0% by weight, S: 0.005% by weight %, O: 0.005% by weight or less, and H: 0.0002% by weight or less, and the billet having the composition consisting of Cu and unavoidable impurities in the remainder is punched after heating, and then 750 Hot extrusion at 950 ° C., after hot extrusion, quenching is performed so that the cooling rate until the surface temperature of the extruded tube reaches 300 ° C. is 10 ° C./second or more, and then the extruded tube is rolled and drawn Then, by annealing, Zr is precipitated by annealing, the tensile strength after annealing is 250 N / mm 2 or more, the elongation is 40% or more, and the average crystal grain size is 30 μm or less. A copper alloy tube is obtained.
この耐熱高強度熱交換器用銅合金管において、更に、P:0.005乃至0.1重量%を含有することが好ましい。 This copper alloy tube for heat-resistant and high-strength heat exchangers preferably further contains P: 0.005 to 0.1% by weight.
また、Zn:0.01乃至1.0重量%を含有することが好ましい。 Further, it is preferable to contain Zn: 0.01 to 1.0% by weight.
更に、Fe、Ni、Mn、Mg、Cr、Ti及びAgからなる群から選択された1種以上の元素を合計で0.07質量%未満含有することが好ましい。 Furthermore, it is preferable to contain a total of less than 0.07% by mass of one or more elements selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti and Ag.
本発明に係る耐熱高強度熱交換器用銅合金管は、前記銅合金管の引張り強さをσa1、破壊圧力をPFa1、前記銅合金管と同一外径及び肉厚のりん脱酸銅管の引張り強さをσd1、破壊圧力をPFd1としたとき、PFa1/σa1>PFd1/σd1であることが好ましい。 The copper alloy tube for a heat-resistant and high-strength heat exchanger according to the present invention has a tensile strength of the copper alloy tube of σa1, a breaking pressure of PFa1, and a tensile strength of a phosphorous deoxidized copper tube having the same outer diameter and thickness as the copper alloy tube. When the strength is σd1 and the breaking pressure is PFd1, it is preferable that PFa1 / σa1> PFd1 / σd1.
また、800℃、15秒間加熱した後の引張強さが235N/mm2以上であり、平均結晶粒径が100μm以下であって、引張強さをσa2、破壊圧力をPFa2、同一外径及び肉厚のりん脱酸銅管の引張強さをσd2、破壊圧力をPFd2としたとき、PFa2/σa2>PFd2/σd2であることが好ましい。 Further, the tensile strength after heating at 800 ° C. for 15 seconds is 235 N / mm 2 or more, the average crystal grain size is 100 μm or less, the tensile strength is σa 2, the breaking pressure is PFa 2, the same outer diameter and meat It is preferable that PFa2 / σa2> PFd2 / σd2 when the tensile strength of the thick phosphorous deoxidized copper pipe is σd2 and the breaking pressure is PFd2.
更に、前記銅合金管は内面溝付管として有用である。
てもよい。
Furthermore, the copper alloy tube is useful as an internally grooved tube.
May be.
なお、平均結晶粒径は、管の軸方向に平行の断面において、JISH0501に定められた切断法により肉厚方向の結晶粒径を測定し、これを管軸方向に任意の10箇所で測定し、前記測定値の平均値とした。 The average crystal grain size is measured at 10 arbitrary locations in the tube axis direction by measuring the crystal grain size in the thickness direction by the cutting method defined in JISH0501 in a cross section parallel to the axis direction of the tube. The average value of the measured values was used.
本発明の熱交換器用銅合金管は、所定の組成を有することにより、りん脱酸銅における破壊圧力と引張り強さとの比αd(=PFd1/σd1)を上回る比α=PFa1/σa1をもつので、銅合金管の引張り強さσa1を大きくしなくても、耐圧強度(破壊圧力PFa1)を高くすることができるので、破壊圧力を高くしても、同時に高延性も確保することができる。このため、銅合金管の加工に際し、その割れ及びしわの発生を防止することができる。また、本発明は、比α=PFa1/σa1が高いので、銅合金管の肉厚を薄くしても、引張強さはその分低下するものの、所定の耐圧強度を確保することが可能になる。 Since the copper alloy tube for a heat exchanger of the present invention has a predetermined composition, it has a ratio α = PFa1 / σa1 which exceeds the ratio αd (= PFd1 / σd1) between the fracture pressure and the tensile strength in phosphorous deoxidized copper. Since the pressure strength (breaking pressure PFa1) can be increased without increasing the tensile strength σa1 of the copper alloy tube, high ductility can be ensured at the same time even if the breaking pressure is increased. For this reason, when processing a copper alloy tube, the generation of cracks and wrinkles can be prevented. In the present invention, since the ratio α = PFa1 / σa1 is high, even if the thickness of the copper alloy tube is reduced, the tensile strength is reduced by that amount, but a predetermined pressure resistance can be ensured. .
以下、本発明について詳細に説明する。本発明者等が種々実験研究した結果、Zr含有量、Sn含有量、S含有量、引張強さなどを適切に規定することにより、本発明の課題を解決できる銅合金管を得ることができることを見出した。 Hereinafter, the present invention will be described in detail. As a result of various experimental studies by the present inventors, a copper alloy tube capable of solving the problems of the present invention can be obtained by appropriately specifying the Zr content, Sn content, S content, tensile strength, etc. I found.
「Zr:0.005乃至0.2質量%」
Zrは本発明の銅合金中において、Zrの析出物を形成して、引張強さを向上させたり、強度を向上させることができる成分である。Zrの含有量が0.2質量%を超えると強度が高くなりすぎて伸びが低下してしまい、押出性及び加工性に悪影響を及ぼすことになる。また、本発明の合金へのZr含有量が0.005質量%未満だと、所定の強度を得ることができない。従って、Zrの含有量を0.005乃至0.2質量%とすることが必要である。
“Zr: 0.005 to 0.2 mass%”
Zr is a component capable of improving the tensile strength and the strength by forming a precipitate of Zr in the copper alloy of the present invention. If the content of Zr exceeds 0.2% by mass, the strength becomes too high and the elongation is lowered, which adversely affects extrudability and workability. Further, when the Zr content in the alloy of the present invention is less than 0.005% by mass, a predetermined strength cannot be obtained. Therefore, the Zr content needs to be 0.005 to 0.2% by mass.
「Sn:0.01乃至2.0質量%」
Snは固溶硬化によって、引張強さを向上させたり、りん銅ろうなどのろう付けによる熱影響に対して結晶粒度の粗大化が抑制されて耐熱性が向上する。Snの含有量が2.0質量%を超えると、鋳塊における凝固偏析が激しくなり、通常の熱間押出及び/又は加工熱処理により、偏析が完全に解消しないことがあり、銅合金管の組織、機械的性質、曲げ加工性、ろう付け後の組織及び機械的性質の不均一をもたらす。また、押出圧力が高くなり、Sn≦2.0質量%の合金と同一押出圧力とするには、押出温度を上げることが必要になり、それにより押出材の表面酸化が増加し、生産性が低下し、銅合金管の表面欠陥が増加する。また、本発明の合金へのSn含有量が0.01質量%未満であると、焼鈍後及びろう付け加熱後に十分な引張強さ及び細かい結晶粒径を得ることができなくなり、更にりん銅ろう等によるろう付け加熱時の強度低下抑制効果及び結晶粒粗大化防止効果が、不十分なものとなってしまう。従って、Snの含有量を0.01乃至2.0質量%とすることが必要である。
“Sn: 0.01 to 2.0 mass%”
Sn improves the tensile strength by solid solution hardening and suppresses the coarsening of the crystal grain size against the heat effect of brazing such as phosphor copper brazing, thereby improving the heat resistance. When the Sn content exceeds 2.0% by mass, solidification segregation in the ingot becomes severe, and segregation may not be completely eliminated by normal hot extrusion and / or thermomechanical treatment. , Mechanical properties, bendability, texture after brazing and non-uniformity of mechanical properties. Moreover, in order to increase the extrusion pressure and make the extrusion pressure the same as that of the Sn ≦ 2.0 mass% alloy, it is necessary to increase the extrusion temperature, thereby increasing the surface oxidation of the extruded material and increasing the productivity. And the surface defects of the copper alloy tube increase. Further, when the Sn content in the alloy of the present invention is less than 0.01% by mass, it becomes impossible to obtain sufficient tensile strength and fine crystal grain size after annealing and after brazing heating. The effect of suppressing the decrease in strength during brazing heating due to the above and the like and the effect of preventing the coarsening of the crystal grains become insufficient. Therefore, it is necessary that the Sn content be 0.01 to 2.0 mass%.
「S:0.005質量%以下」
Sは本発明の合金中において、Cuと化合物を形成して母相中に存在する。Sの含有量が増えると、鋳塊時の鋳塊割れ、熱間押出割れが増加する。また、熱間押出割れが発生しなくても、押出材を冷間圧延、抽伸すると材料内部のCu−S化合物は管の軸方向に伸張し、Cu−S化合物界面で割れが発生しやすく、製品加工中や製品において表面疵、割れ等になり、製品の歩留りを低下させる。また、Cu−S化合物界面で割れが発生しない場合でも、本発明の合金管に曲げ加工を行う際、割れ発生の起点となり、曲げ部で割れが発生する頻度が高くなる。このような問題を改善するために、本発明の合金へのS含有量は0.005%以下、望ましくは0.003%以下、更に望ましくは0.0015%以下にする必要がある。Sは、銅地金、スクラップなどの原料、スクラップに付着する油、溶解鋳造雰囲気(溶湯を被覆する木炭/フラックス、溶湯と接触する雰囲気中のSOxガス、炉材等)より比較的簡単に溶湯中に取り込まれるため、S含有量を0.005質量%以下とするには、低品位のCu地金及びスクラップの使用量低減、溶解雰囲気のSOxガス低減、適正な炉材の選定、Mg、Ca等Sと親和性の強い元素を溶湯に微量添加等の対策が有効である。
“S: 0.005 mass% or less”
S is present in the matrix by forming a compound with Cu in the alloy of the present invention. When the S content increases, ingot cracking and hot extrusion cracking during ingot increase. Moreover, even if hot extrusion cracking does not occur, when the extruded material is cold-rolled and drawn, the Cu-S compound inside the material stretches in the axial direction of the tube, and cracking is likely to occur at the Cu-S compound interface, It may cause surface flaws, cracks, etc. during product processing and in products, reducing product yield. Even when cracks do not occur at the Cu-S compound interface, when bending the alloy pipe of the present invention, it becomes a starting point of crack generation, and the frequency of occurrence of cracks at the bent portion increases. In order to improve such problems, the S content in the alloy of the present invention needs to be 0.005% or less, desirably 0.003% or less, and more desirably 0.0015% or less. S is relatively simpler than copper metal, raw materials such as scrap, oil adhering to scrap, melting casting atmosphere (charcoal / flux covering molten metal, SOx gas in furnace atmosphere, furnace material, etc.) In order to reduce the S content to 0.005% by mass or less because of being incorporated into the steel, the amount of low-grade Cu ingots and scrap used is reduced, the SOx gas in the melting atmosphere is reduced, the selection of appropriate furnace materials, Mg, Measures such as addition of trace amounts of elements such as Ca, which have a strong affinity for S, to the molten metal are effective.
「その他不純物」
なお、S以外の不純物元素As、Bi、Sb、Pb、Se、Teについても同様に、鋳塊、熱間押出材、冷間加工材の健全性を低下させ、また管の曲げ加工性を損なうことから、これらの元素の合計含有量は0.0015%以下、望ましくは0.0010%以下、更に望ましくは0.0005%以下とすることが好ましい。
"Other impurities"
In addition, the impurity elements As, Bi, Sb, Pb, Se, and Te other than S similarly decrease the soundness of the ingot, the hot extruded material, and the cold work material, and impair the bending workability of the pipe. Therefore, the total content of these elements is preferably 0.0015% or less, desirably 0.0010% or less, and more desirably 0.0005% or less.
「O:0.005質量%以下」
本発明の銅合金管において、Oの含有量が0.005質量%を超えると、Cu及びSnの酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下するとともに、製造された管の曲げ加工性が低下しやすくなる。このため、Oの含有量を0.005質量%以下とする必要がある。曲げ加工性をより改善するには、Oの含有量を0.003質量%以下とすることが望ましく、0.0015%以下とすることが更に望ましい。
“O: 0.005 mass% or less”
In the copper alloy pipe of the present invention, when the O content exceeds 0.005 mass%, the oxides of Cu and Sn are entrained in the ingot, the soundness of the ingot is lowered, and the manufactured pipe Bending workability tends to decrease. For this reason, it is necessary to make content of O 0.005 mass% or less. In order to further improve the bending workability, the O content is desirably 0.003% by mass or less, and more desirably 0.0015% or less.
「H:0.0002質量%以下」
溶解鋳造時に溶湯に取り込まれる水素が多くなると、ピンホール、粒界に濃化等の状態で鋳塊中に存在し、熱間押出時の割れを発生させる。また、押出後も焼鈍時粒界にHの膨れが発生しやすくなり、製品歩留が低下する。このため、本発明の銅合金管においてはHの含有量を0.0002質量%以下とすることが必要である。製品歩留りをより向上させるにはHの含有量を0.0001質量%以下とすることが望ましい。
“H: 0.0002 mass% or less”
When more hydrogen is taken into the molten metal during melt casting, it is present in the ingot in a state of pinhole and grain boundary enrichment, and cracks are generated during hot extrusion. Further, even after the extrusion, blistering of H is likely to occur at the grain boundaries during annealing, and the product yield decreases. For this reason, in the copper alloy pipe | tube of this invention, it is necessary to make content of H 0.0002 mass% or less. In order to further improve the product yield, the H content is desirably 0.0001% by mass or less.
なお、Hの含有量を0.0002質量%以下とするためには、溶解鋳造時の原料の乾燥、溶湯被覆木炭の赤熱、溶湯と接触する雰囲気の露点の低下、りん添加前の溶湯を酸化気味にする等の対策が有効である。 In addition, in order to make the H content 0.0002% by mass or less, drying of the raw material at the time of melting and casting, red hotness of the melt-coated charcoal, reduction of the dew point of the atmosphere in contact with the molten metal, oxidation of the molten metal before adding phosphorus Measures such as making a little difference are effective.
「引張強さ:250N/mm2以上」
引張強さが250N/mm2未満であると、エアコン等の熱交換器に組み込んだときの強度が不十分であり、またろう付け後の強度を十分に維持できない。従って、管の引張強さを250N/mm2以上とする必要がある。なお、ここでいう引張強さは焼鈍して軟質材とした本発明の銅合金管の管軸方向の引張強さである。
“Tensile strength: 250 N / mm 2 or more”
When the tensile strength is less than 250 N / mm 2 , the strength when incorporated in a heat exchanger such as an air conditioner is insufficient, and the strength after brazing cannot be sufficiently maintained. Therefore, the tensile strength of the tube needs to be 250 N / mm 2 or more. Here, the tensile strength is the tensile strength in the tube axis direction of the copper alloy tube of the present invention that has been annealed to be a soft material.
「伸び:40%以上」
伸びは管の加工性を示している。伸びが40%未満であると、ヘアピン曲げ加工時に管が十分に伸びずに曲げ部に割れが発生したり、機内配管の加工時に不都合が生じる。従って、伸びは40%以上である必要がある。
“Elongation: 40% or more”
Elongation indicates the workability of the tube. If the elongation is less than 40%, the tube does not sufficiently extend during the hairpin bending process, cracking occurs in the bent portion, and inconvenience occurs during the processing of the in-machine piping. Therefore, the elongation needs to be 40% or more.
「結晶粒度:平均結晶粒径が30μm以下」
結晶粒度は、素材の強度と加工性に重要な役割を果たしている。一般に結晶粒度が小さければ強度は高いが加工性が低下し、結晶粒度が大きいと強度が低くなり加工性は向上する。結晶粒度が30μmを超えると、強度が低下して、エアコン等の熱交換器に組み込んだときの耐圧が不十分となり、またろう付け後の強度を十分に維持できない。平均結晶粒径は、銅合金管の軸方向に平行の断面について、JISH0501に定めらた切断法により、肉厚方向の平均結晶粒径を測定し、これを管軸方向に任意の10箇所で測定して、それらの平均値を平均結晶粒径とした。
“Crystal grain size: average grain size is 30 μm or less”
The grain size plays an important role in the strength and workability of the material. In general, if the crystal grain size is small, the strength is high but the workability is lowered. If the crystal grain size is large, the strength is lowered and the workability is improved. When the crystal grain size exceeds 30 μm, the strength decreases, the pressure resistance when incorporated in a heat exchanger such as an air conditioner becomes insufficient, and the strength after brazing cannot be sufficiently maintained. For the average crystal grain size, the average crystal grain size in the thickness direction was measured for the cross section parallel to the axial direction of the copper alloy tube by the cutting method defined in JISH0501, and this was measured at any 10 locations in the pipe axis direction. The average value was measured as the average grain size.
「P:0.005乃至0.1質量%」
Pは本発明の銅合金中において、前記したようにZrとの化合物により析出物を形成して、引張強さを向上させたり、強度を向上させることができる成分である。本発明の銅合金へのP含有量が0.1質量%を超えると、導電率が低下したり、熱間加工性及び冷間加工性が阻害されることになる。一方、P含有量が0.005質量%未満であると、所定の強度を得ることができず、また脱酸が不十分となり、酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下するとともに、製造された管の曲げ加工性が低下しやすくなる。従って、Pの含有量を0.005乃至0.1質量%にすることが必要である。
“P: 0.005 to 0.1 mass%”
In the copper alloy of the present invention, P is a component that can form precipitates with a compound with Zr as described above to improve the tensile strength or improve the strength. When the P content in the copper alloy of the present invention exceeds 0.1% by mass, the electrical conductivity is lowered, and hot workability and cold workability are inhibited. On the other hand, if the P content is less than 0.005% by mass, the predetermined strength cannot be obtained, and deoxidation becomes insufficient, the oxide is caught in the ingot, and the soundness of the ingot is reduced. At the same time, the bending workability of the manufactured pipe is likely to deteriorate. Therefore, it is necessary to make the P content 0.005 to 0.1% by mass.
「Zn:0.01乃至1.0質量%」
Znを添加することにより、銅合金管の熱伝導率を大きく低下させることなく、強度、耐熱性及び疲れ強さを向上させることができる。またZnの添加により、冷間圧延、抽伸及び転造等に用いる工具の磨耗を低減させることができ、抽伸プラグ、溝付プラグ等の寿命を延命させる効果があり、生産コストの低減に寄与する。また、熱交換器の組み立て工程においても、ヘアピン曲げ時のマンドレルやアルミフィンへ伝熱管を密着させるときの拡管加工時の拡管ビュレットの磨耗も低減させることができる。
“Zn: 0.01 to 1.0 mass%”
By adding Zn, the strength, heat resistance and fatigue strength can be improved without greatly reducing the thermal conductivity of the copper alloy tube. In addition, the addition of Zn can reduce the wear of tools used for cold rolling, drawing, rolling, etc., and has the effect of extending the life of drawing plugs, grooved plugs, etc., contributing to the reduction of production costs. . Also, in the heat exchanger assembly process, wear of the expanded burette during tube expansion when the heat transfer tube is brought into close contact with the mandrel or aluminum fin during bending of the hairpin can also be reduced.
Znの含有量が1.0wt%を超えると応力腐食割れ感受性が高くなる。また、Znの含有量が0.01質量%未満であると上述の効果が十分でなくなる。従って、Znの含有量を0.01乃至1.0質量%とすることが必要である。 When the Zn content exceeds 1.0 wt%, the stress corrosion cracking sensitivity becomes high. Further, when the Zn content is less than 0.01% by mass, the above-described effects are not sufficient. Therefore, the Zn content needs to be 0.01 to 1.0 mass%.
「Fe、Ni、Mn、Mg、Cr、Ti及びAgの群より選択する1種以上の元素を合計0.07質量%未満」
Fe、Ni、Mn、Mg、Cr、Ti及びAgはいずれも本発明の銅合金の強度、耐圧破壊強度、耐熱性を向上させ、結晶粒を微細化して曲げ加工性を改善する。前記元素の含有量の合計が0.07質量%を超えると、押出圧力が上昇するため、これらの元素を添加しないものと同一の押出力で押出を行おうとすると、熱間押出温度を上げることが必要になる。それにより、押出材の表面酸化が多くなるため、本発明の銅合金管において、表面欠陥が多発し、製品歩留りが低下する。そのため、Fe、Ni、Mn、Mg、Cr、Ti及びAgの群より選択する1種以上の元素を合計0.07質量%未満とすることが望ましい。前記含有量は、0.05%未満とすることがより望ましく、0.03質量%未満とすることが更に望ましい。
“Total of less than 0.07 mass% of one or more elements selected from the group of Fe, Ni, Mn, Mg, Cr, Ti and Ag”
Fe, Ni, Mn, Mg, Cr, Ti, and Ag all improve the strength, pressure breakdown strength, and heat resistance of the copper alloy of the present invention, refine crystal grains, and improve bending workability. When the total content of the elements exceeds 0.07% by mass, the extrusion pressure increases. Therefore, when extrusion is performed with the same pressing force as that without adding these elements, the hot extrusion temperature is increased. Is required. Thereby, since the surface oxidation of the extruded material increases, surface defects frequently occur in the copper alloy tube of the present invention, and the product yield decreases. Therefore, it is desirable that the total of one or more elements selected from the group of Fe, Ni, Mn, Mg, Cr, Ti, and Ag is less than 0.07% by mass. The content is more preferably less than 0.05%, and still more preferably less than 0.03% by mass.
「銅合金管の引張り強さをσa1、耐圧破壊圧力をPfa1、銅合金管と同一外径及び肉厚のりん脱酸銅管の引張り強さをσd1、耐圧破壊圧力をPFd1としたとき、Pfa1/σa1> PFd1/σd1」
本発明の銅合金管は、その耐圧破壊圧力Pfa1と引張り強さσa1との比Pfa1/σa1が、りん脱酸銅管の耐圧破壊圧力PFd1と引張り強さσd1とのPFd1/σd1より大きいので、例えば同一引張強さ、同一肉厚の管を用いた場合も、本発明の銅合金管はより大きい耐圧強度を保証することができる。また、りん脱酸銅管と本発明の銅合金管の引張強さが同一であれば、本発明の銅合金管のほうが伸びが大きいことから、管の曲げ加工による割れがおきにくく、より厳しい曲げ(曲げ半径の小さい曲げ)を行うことができる。
“When the tensile strength of the copper alloy pipe is σa1, the pressure breaking pressure is Pfa1, the tensile strength of the phosphorous deoxidized copper pipe having the same outer diameter and thickness as the copper alloy pipe is σd1, and the pressure breaking pressure is PFd1, Pfa1 / Σa1> PFd1 / σd1 ”
In the copper alloy pipe of the present invention, the ratio Pfa1 / σa1 between the pressure breaking pressure Pfa1 and the tensile strength σa1 is larger than the PFd1 / σd1 between the pressure breaking pressure PFd1 and the tensile strength σd1 of the phosphorous deoxidized copper pipe. For example, even when pipes having the same tensile strength and the same wall thickness are used, the copper alloy pipe of the present invention can guarantee a higher pressure strength. Further, if the tensile strength of the phosphorus-deoxidized copper pipe and the copper alloy pipe of the present invention are the same, the copper alloy pipe of the present invention has a larger elongation, so that cracking due to bending of the pipe is less likely to occur, and it is more severe. Bending (bending with a small bending radius) can be performed.
なお、耐圧破壊圧力と引張強さの比は、同じ合金であれば、調質が変わってもほぼ同じ値を示すので、ここでは例えば焼鈍上がりのりん脱酸銅管及び本発明の銅合金管について引張強さと耐圧破壊強度を測定して求めることができる。 In addition, since the ratio between the pressure breaking pressure and the tensile strength is the same alloy, even if the tempering is changed, the ratio is almost the same, so here, for example, the annealed phosphorus deoxidized copper pipe and the copper alloy pipe of the present invention Can be determined by measuring the tensile strength and pressure fracture strength.
「800℃、15秒間加熱した後の引張強さ:235N/mm2以上」
熱交換器に加工されたとき、ろう付けによる熱影響による800℃、15秒間加熱した後の引張強さが235N/mm2未満であると、運転圧力が高いHFC系フロン冷媒及び炭酸ガス冷媒のときに、疲労破壊が起こりやすくなる。
“Tensile strength after heating at 800 ° C. for 15 seconds: 235 N / mm 2 or more”
When processed into a heat exchanger, if the tensile strength after heating for 15 seconds at 800 ° C. due to the heat effect of brazing is less than 235 N / mm 2 , the operating pressure of the HFC-based CFC refrigerant and carbon dioxide refrigerant is high. Sometimes fatigue failure tends to occur.
「800℃、15秒間加熱した後の平均結晶粒径:100μm以下」
熱交換器に加工されたとき、ろう付けによる熱影響による800℃、15秒間加熱した後に結晶粒径が粗大化するが、その値が100μmを超えると、ろう付け部において耐圧強度の低下が大きく、運転圧力が高いHFC系フロン冷媒及び炭酸ガス冷媒用の熱交換器に用いたとき信頼性が低下する。従って、平均結晶粒径が100μm以下、更には60μm以下が望ましい。
“Average crystal grain size after heating at 800 ° C. for 15 seconds: 100 μm or less”
When processed into a heat exchanger, the crystal grain size becomes coarse after heating at 800 ° C. for 15 seconds due to the heat effect of brazing, but when the value exceeds 100 μm, the pressure strength is greatly reduced at the brazed part. When used in a heat exchanger for HFC-based chlorofluorocarbon refrigerant and carbon dioxide refrigerant having a high operating pressure, the reliability decreases. Therefore, the average crystal grain size is preferably 100 μm or less, and more preferably 60 μm or less.
「800℃、15秒間加熱した後の銅合金管の引張り強さをσa2、耐圧破壊圧力をPFa2、銅合金管と同一外径及び肉厚のりん脱酸銅管の引張り強さをσd2、耐圧破壊圧力をPFd2としたとき、PFa2/σa2>PFd2/σd2」
本発明の銅合金管は、800℃に15秒間加熱した後、その耐圧破壊圧力PFa2と引張り強さσa2との比PFa2/σa2が、りん脱酸銅管の耐圧破壊圧力PFd2と引張り強さσd2とのPFd2/σd2より大きいので、例えば同一引張り強さ、同一肉厚の管を用いた場合も、本発明の銅合金管はより大きい耐圧強度を保証することができる。
“The tensile strength of the copper alloy tube after heating at 800 ° C. for 15 seconds is σa2, the pressure breaking pressure is PFa2, the tensile strength of the phosphorus deoxidized copper tube having the same outer diameter and thickness as the copper alloy tube is σd2, the pressure resistance PFa2 / σa2> PFd2 / σd2 when the burst pressure is PFd2 "
After the copper alloy tube of the present invention is heated to 800 ° C. for 15 seconds, the ratio PFa2 / σa2 between the pressure breaking pressure PFa2 and the tensile strength σa2 is equal to the pressure breaking pressure PFd2 and the tensile strength σd2 of the phosphorous deoxidized copper tube. Therefore, even when pipes having the same tensile strength and the same wall thickness are used, for example, the copper alloy pipe of the present invention can guarantee a higher pressure strength.
なお、調質が異なっても耐圧破壊圧力PFa2と引張り強さσa2との比PFa2/σa2比はほぼ同じ値であるので、請求項1乃至4の関係が満足されれば、請求項5の熱処理後の比の関係も同様の関係が維持される。 Note that the ratio PFa2 / σa2 between the pressure breaking pressure PFa2 and the tensile strength σa2 is almost the same value even if the tempering is different, so if the relationship of claims 1 to 4 is satisfied, the heat treatment of claim 5 The same relationship is maintained for later ratio relationships.
「銅合金管が内面溝付管である」
本発明の銅合金管は、りん脱酸銅管に比べて引張強さを大きく、且つ結晶粒径を小さくすることができるので、転造加工による内面溝付管の製造に好適である。特に、引張強さが大きいことから、転造加工時に引抜き方向に伸びにくいので、溝付プラグの溝部への合金管の肉の充填が円滑であり、良好なフィン形状を有する内面溝付管を高速で加工することが可能になる。
“The copper alloy tube is an internally grooved tube”
Since the copper alloy tube of the present invention can have a higher tensile strength and a smaller crystal grain size than a phosphorous deoxidized copper tube, it is suitable for the production of an internally grooved tube by rolling. In particular, since the tensile strength is large, it is difficult to stretch in the drawing direction during rolling, so that the groove of the grooved plug is smoothly filled with the alloy tube meat, and the inner surface grooved tube having a good fin shape is provided. It becomes possible to process at high speed.
次に、本発明の銅合金管の製造方法について、平滑管または内面溝付管の場合を例として以下に説明する。 Next, the method for producing a copper alloy tube of the present invention will be described below by taking the case of a smooth tube or an internally grooved tube as an example.
先ず、原料の電気銅を還元性雰囲気中で溶解し、銅が溶解した後、Zrを及びSnを所定量添加し、更に必要に応じてCu−15質量%P中間合金の投入によりPを添加する。溶湯組成を所定組成に調整後、所定寸法のビレットに鋳造する。その後、ビレットを750乃至950℃に加熱する。 First, the raw electrolytic copper is dissolved in a reducing atmosphere. After the copper is dissolved, a predetermined amount of Zr and Sn are added, and further, P is added by adding Cu-15 mass% P intermediate alloy as required. To do. The molten metal composition is adjusted to a predetermined composition, and then cast into billets having a predetermined dimension. Thereafter, the billet is heated to 750 to 950 ° C.
そして、加熱ビレットに穿孔加工を行い、750乃至950℃で熱間押出する。熱間押出の加工率([穿孔されたビレットの断面積−熱間押出後の素管の断面積]/[穿孔されたビレットの断面積]×100%)は80%以上とすることが望ましく、90%以上とすることが更に望ましい。 The heated billet is then perforated and hot extruded at 750 to 950 ° C. The processing rate of hot extrusion ([cross-sectional area of the perforated billet−cross-sectional area of the raw tube after hot extrusion] / [cross-sectional area of the perforated billet] × 100%) is desirably 80% or more. , More preferably 90% or more.
その後、急冷処理する。本発明の銅合金管に所定の特性を発揮させるには、押出後に、Coを固溶させること及び再結晶による結晶粒の粗大化を防止することが必要であり、そのために、例えば水冷等の方法により熱間押出材を急冷する。熱間押出後、押出素管の表面温度が300℃になるまでの冷却速度が10℃/秒以上、望ましくは15℃/秒以上、更に望ましくは20℃/秒以上となるように冷却することが好ましい。 Thereafter, rapid cooling is performed. In order for the copper alloy tube of the present invention to exhibit predetermined characteristics, it is necessary to dissolve Co after extrusion and to prevent the crystal grains from becoming coarse due to recrystallization. The hot extruded material is quenched by the method. After hot extrusion, cooling is performed so that the cooling rate until the surface temperature of the extruded tube reaches 300 ° C. is 10 ° C./second or more, preferably 15 ° C./second or more, more preferably 20 ° C./second or more. Is preferred.
そして、押出素管に圧延加工を行なう。圧延加工率は断面減少率で95%以下、望ましくは90%以下とすることにより製品不良を低減できる。 Then, the extrusion element tube is rolled. By reducing the rolling processing rate to 95% or less, preferably 90% or less in terms of cross-sectional reduction, product defects can be reduced.
その後、圧延素管に抽伸加工を行なって、所定の寸法の素管を製造する。通常、抽伸加工は何台かの抽伸機を用いて行うが、各抽伸機による加工率(断面減少率)は40%以下にすることにより、表面欠陥及び内部割れを低減できる。 Thereafter, the rolling raw tube is subjected to a drawing process to manufacture a raw tube having a predetermined size. Usually, drawing is performed using several drawing machines, but surface defects and internal cracks can be reduced by setting the processing rate (cross-sectional reduction rate) by each drawing machine to 40% or less.
更に、抽伸加工後の銅合金管を焼鈍する。このとき、再結晶及びZrの析出が発生する条件で抽伸管を焼鈍する。再結晶により伸びが回復して管の加工性が向上し、またZr物の析出により目的とする引張強さと耐力を保持させることが可能になる。本発明の銅合金管を製造するには、抽伸管の実体温度:400乃至700℃で、5分乃至120分間程度保持することが望ましい。また、室温から所定温度までの平均昇温速度を5℃/分以上、望ましくは10℃/分以上とすることが望ましい。なお、通常、ローラーハース炉による連続焼鈍が行われるが、高周波誘導加熱炉を用い、高速昇温、短時間加熱、高速冷却、短時間加熱の焼鈍を行ってもよい。これにより、平滑管が製造される。 Furthermore, the copper alloy tube after the drawing process is annealed. At this time, the drawing tube is annealed under conditions where recrystallization and Zr precipitation occur. Elongation is restored by recrystallization, the workability of the tube is improved, and the intended tensile strength and proof stress can be maintained by the precipitation of Zr. In order to produce the copper alloy tube of the present invention, it is desirable to hold the drawing tube at a substantial temperature of 400 to 700 ° C. for about 5 to 120 minutes. The average rate of temperature increase from room temperature to a predetermined temperature is 5 ° C./min or more, preferably 10 ° C./min or more. Normally, continuous annealing with a roller hearth furnace is performed, but high-frequency heating, short-time heating, high-speed cooling, and short-time heating annealing may be performed using a high-frequency induction heating furnace. Thereby, a smooth tube is manufactured.
次に、内面溝付管を製造する場合には、上述のようにして製造した平滑管を素管として、その内面に溝付加工をする。即ち、焼鈍した平滑管に溝付転造加工を行って内面溝付管を製作する。次いで、溝付加工した内面溝付管に必要に応じて焼鈍処理する。焼鈍条件は前述と同様である。これにより、内面溝付管が製造される。 Next, when manufacturing an inner surface grooved tube, the smooth tube manufactured as described above is used as a base tube, and the inner surface is grooved. That is, a grooved rolling process is performed on the annealed smooth tube to produce an internally grooved tube. Next, the grooved inner grooved tube is annealed as necessary. The annealing conditions are the same as described above. Thereby, an internally grooved tube is manufactured.
次に、本発明の実施例について、本発明の範囲から外れる比較例と比較して説明する。 Next, examples of the present invention will be described in comparison with comparative examples that are out of the scope of the present invention.
(第1実施例)
第1実施例は、平滑管についてのものである。電気銅を溶解した溶湯に、Zn及びSnを添加した後、Cu−P母合金を添加することにより、所定組成の溶湯を作製し、直径300mmのビレットに鋳造した。次に、前記ビレットを850乃至950℃に加熱した後、ビレット中心をピアシング加工し、熱間押出により外径100mm、肉厚10mmの押出素管を作製した。この断面減少率は90%以上であった。押出後の素管は急冷され、押出直後から水冷までの時間及び水冷後の押出素管の表面温度等より、300℃までの平均冷却速度は20℃/秒以上と見積られた。押出素管を圧延及び抽伸して、外径9.52mm、肉厚0.80mmの素管を製作した。なお、圧延における断面減少率は90%以下、抽伸における1パスあたりの加工率を40%以下とした。還元性ガス雰囲気にしたローラーハース炉で、前記抽伸管を550乃至650℃(実体温度)に加熱し(平均昇温速度10乃至25℃/分)、その温度で30乃至80分保持した後、室温まで冷却して供試材とした。
(First embodiment)
The first embodiment is for a smooth tube. After adding Zn and Sn to the molten metal in which electrolytic copper was dissolved, a Cu-P master alloy was added to prepare a molten metal having a predetermined composition and cast into a billet having a diameter of 300 mm. Next, after the billet was heated to 850 to 950 ° C., the billet center was pierced, and an extruded element tube having an outer diameter of 100 mm and a wall thickness of 10 mm was produced by hot extrusion. This cross-sectional reduction rate was 90% or more. The raw tube after extrusion was rapidly cooled, and the average cooling rate up to 300 ° C. was estimated to be 20 ° C./second or more from the time from immediately after extrusion to water cooling and the surface temperature of the extruded raw tube after water cooling. The extruded element tube was rolled and drawn to produce an element tube having an outer diameter of 9.52 mm and a wall thickness of 0.80 mm. The cross-sectional reduction rate in rolling was 90% or less, and the processing rate per pass in drawing was 40% or less. In a roller hearth furnace in a reducing gas atmosphere, the drawing tube was heated to 550 to 650 ° C. (substance temperature) (average heating rate of 10 to 25 ° C./min) and held at that temperature for 30 to 80 minutes. The specimen was cooled to room temperature.
(第2実施例)
第2実施例は、内面溝付管についてのものである。第1実施例(平滑管)の押出後の圧延管を内面溝付加工用の素管とした。
(Second embodiment)
The second embodiment is for an internally grooved tube. The rolled tube after the extrusion of the first example (smooth tube) was used as a raw tube for inner surface grooving.
この圧延素管を抽伸加工して、溝付転造用の素管を製作した。溝付転造用の素管をインダクションヒーターにより中間焼鈍した。次に、中間焼鈍した溝付転造用素管に溝付転造加工を行い、外径7mm、底肉厚0.23mmの内面溝付管を製作した。この内面溝はフィン高さ0.16mm、リード角35°、山数55である。その後、内面溝付管を焼鈍炉にて、還元性ガス雰囲気中で、雰囲気温度600℃で120分間で加熱帯を通過させ、その後冷却帯を通過させて室温まで徐冷した。 This rolled blank was drawn to produce a rolled rolled blank. The base tube for grooved rolling was subjected to intermediate annealing with an induction heater. Next, the grooved rolling element tube subjected to intermediate annealing was subjected to grooved rolling to produce an internally grooved tube having an outer diameter of 7 mm and a bottom wall thickness of 0.23 mm. This inner surface groove has a fin height of 0.16 mm, a lead angle of 35 °, and a number of peaks of 55. Thereafter, the inner grooved tube was passed through a heating zone in an reducing furnace in a reducing gas atmosphere at an ambient temperature of 600 ° C. for 120 minutes and then gradually cooled to room temperature through a cooling zone.
(試験方法)
上述の実施例及び比較例について、以下に示す試験を実施した。なお、従来品とはJISH3300C1220T、りん脱酸銅管を示す。破壊圧力は、300mmの長さに切断した供試材の片端を封じ、もう片端から水圧を負荷して供試材が破裂したときの圧力を計測した。
(Test method)
The test shown below was implemented about the above-mentioned Example and comparative example. The conventional product is JISH3300C1220T, a phosphorous deoxidized copper tube. The breaking pressure was measured by sealing one end of the specimen cut to a length of 300 mm and applying the water pressure from the other end to burst the specimen.
押出性は、外径8mm、長さ12mmの鋳塊を歪速度0.1/Sで潰したときの割れの有無を目視で判断して、割れが生じなかったものを○、割れが発生したものを×とした。 Extrudability was determined by visual inspection of the presence or absence of cracks when an ingot having an outer diameter of 8 mm and a length of 12 mm was crushed at a strain rate of 0.1 / S. The thing was set as x.
応力腐食割れ試験は以下の方法で実施した。管から長さ75mmの試験片を切り取り、脱脂、乾燥した後、JISK8085に規定するアンモニア水を等量の純水で薄めた11.8%以上のアンモニア水を入れたデシケーターに液面から50mm離して入れ、このアンモニア雰囲気中に常温で2時間保持する。その後、試験片を元の外径の50%まで押しつぶして割れの判定を目視で行った。割れなしを○、割れありを×で示した。 The stress corrosion cracking test was carried out by the following method. A 75 mm long test piece was cut from the tube, degreased and dried, and then separated from the liquid surface by a desiccator containing 11.8% or more of ammonia water diluted with an equal amount of pure water as specified in JIS K8085. And hold in this ammonia atmosphere at room temperature for 2 hours. Thereafter, the test piece was crushed to 50% of the original outer diameter, and cracking was visually determined. No cracking was indicated by ○, and cracking was indicated by ×.
水素脆化試験は、試験片を水素気流中において850℃で30分間加熱した後、研磨エッチングして、顕微鏡で100倍に拡大して脆化の有無を確認した。脆化なしを○、脆化ありを×で示す。 In the hydrogen embrittlement test, the test piece was heated at 850 ° C. for 30 minutes in a hydrogen stream, then polished and etched, and magnified 100 times with a microscope to confirm the presence or absence of embrittlement. No embrittlement is indicated by ○, and embrittlement is indicated by ×.
これらの試験結果を下記表1乃至表4に示す。 These test results are shown in Tables 1 to 4 below.
表1は、第1実施例の平滑管(焼鈍材)についてのものである。この表1に示すように、本発明の実施例1乃至10は、PFa1/σa1が比較例1乃至13及び従来例より高く、応力腐食割れ試験及び水素脆化試験の結果も優れたものであった。これに対し、比較例1乃至9の場合は、PFa1/σa1が低いか、応力腐食割れが発生したか、又は水素脆化が生じた。また、従来例はPFa1/σa1が低いものであった。 Table 1 relates to the smooth tube (annealed material) of the first embodiment. As shown in Table 1, in Examples 1 to 10 of the present invention, PFa1 / σa1 was higher than those of Comparative Examples 1 to 13 and the conventional example, and the results of the stress corrosion cracking test and the hydrogen embrittlement test were also excellent. It was. On the other hand, in Comparative Examples 1 to 9, PFa1 / σa1 was low, stress corrosion cracking occurred, or hydrogen embrittlement occurred. Further, the conventional example has a low PFa1 / σa1.
表2は、第1実施例の平滑管(焼鈍材)を、800℃で15秒間加熱した後の特性を示す。この表2に示すように、焼鈍材を、800℃で15秒間加熱した後においても、本発明の実施例1乃至10は十分に高いPFa2/σa2値を有し、引張強さ及び破壊圧力も高いものであった。 Table 2 shows the characteristics after the smooth tube (annealed material) of the first example was heated at 800 ° C. for 15 seconds. As shown in Table 2, even after the annealed material was heated at 800 ° C. for 15 seconds, Examples 1 to 10 of the present invention had a sufficiently high PFa2 / σa2 value, and the tensile strength and breaking pressure were also high. It was expensive.
表3は、第2実施例の内面溝付管(焼鈍材)に関するものであり、本発明の実施例11,12,13,14はPFa1/σa1が比較例10及び従来例より高く、応力腐食割れ試験及び水素脆化試験の結果も優れたものであった。これに対し、比較例1及び従来例の場合は、PFa1/σa1が低く、引張強さ及び破壊圧力が低いものであった。 Table 3 relates to the internally grooved tube (annealed material) of the second example, and Examples 11, 12, 13, and 14 of the present invention have higher PFa1 / σa1 than Comparative Example 10 and the conventional example, and stress corrosion. The results of the cracking test and hydrogen embrittlement test were also excellent. On the other hand, in the case of the comparative example 1 and the conventional example, PFa1 / σa1 was low, and the tensile strength and the fracture pressure were low.
表4は、第2実施例の内面溝付管(焼鈍材)を、800℃で15秒間加熱した後の特性を示す。表4に示すように、本発明の実施例15,16,17,18は、800℃で15秒間加熱した後においても、十分に高いPFa2/σa2値を有し、引張強さ及び破壊圧力も高いものであった。 Table 4 shows the characteristics after heating the internally grooved tube (annealed material) of the second example at 800 ° C. for 15 seconds. As shown in Table 4, Examples 15, 16, 17, and 18 of the present invention have a sufficiently high PFa2 / σa2 value even after heating at 800 ° C. for 15 seconds, and the tensile strength and breaking pressure are also high. It was expensive.
本発明の銅合金管は耐圧破壊強度に優れるため、二酸化炭素、フロン等の冷媒を用いる熱交換器の伝熱管(平滑管及び内面溝付管)、前記熱交換器の蒸発器と凝縮器を繋ぐ冷媒配管や機内配管、前記熱交換器の部品として四方弁やアキュームレーターなどに用いることができる。また、本発明の銅合金管はろう付け加熱後も優れた耐圧破壊強度を備えるため、ろう付け部を有する伝熱管、機内配管、冷媒配管、熱交換器部材、水配管、灯油配管、ヒートパイプ、四方弁、コントロール銅管等に用いることができる。 Since the copper alloy tube of the present invention is excellent in pressure breakdown strength, a heat transfer tube (smooth tube and internally grooved tube) of a heat exchanger using a refrigerant such as carbon dioxide and chlorofluorocarbon, an evaporator and a condenser of the heat exchanger are provided. It can be used as a refrigerant pipe, an in-machine pipe to be connected, a part of the heat exchanger, a four-way valve, an accumulator or the like. In addition, since the copper alloy pipe of the present invention has an excellent pressure fracture strength even after brazing heating, a heat transfer pipe having a brazed portion, an in-machine pipe, a refrigerant pipe, a heat exchanger member, a water pipe, a kerosene pipe, and a heat pipe , Four-way valve, control copper pipe, etc.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007095763A JP4694527B2 (en) | 2007-03-30 | 2007-03-30 | Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007095763A JP4694527B2 (en) | 2007-03-30 | 2007-03-30 | Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008255381A JP2008255381A (en) | 2008-10-23 |
JP4694527B2 true JP4694527B2 (en) | 2011-06-08 |
Family
ID=39979258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007095763A Active JP4694527B2 (en) | 2007-03-30 | 2007-03-30 | Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4694527B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5208562B2 (en) * | 2008-04-04 | 2013-06-12 | 住友軽金属工業株式会社 | Seamless pipe |
JP2010156002A (en) * | 2008-12-26 | 2010-07-15 | Kobe Steel Ltd | Copper alloy tube, method for manufacturing the same, and heat pump water heater |
JP5451217B2 (en) * | 2009-07-01 | 2014-03-26 | 株式会社Uacj | Manufacturing method of internally grooved tube |
JP5534777B2 (en) * | 2009-10-28 | 2014-07-02 | 株式会社Uacj | Copper alloy seamless pipe |
MY162510A (en) * | 2009-11-25 | 2017-06-15 | Luvata Franklin Inc | Copper alloys and heat exchanger tubes |
JP5464659B2 (en) * | 2010-02-19 | 2014-04-09 | 株式会社神戸製鋼所 | Copper tube for heat exchanger with excellent fracture strength and bending workability |
JP5639025B2 (en) * | 2011-09-30 | 2014-12-10 | 株式会社コベルコ マテリアル銅管 | Copper alloy tube |
JP5792088B2 (en) * | 2012-02-02 | 2015-10-07 | 株式会社コベルコ マテリアル銅管 | Copper alloy tube |
JP2013189664A (en) * | 2012-03-12 | 2013-09-26 | Kobelco & Materials Copper Tube Inc | Copper alloy tube |
CN104428430A (en) * | 2012-04-16 | 2015-03-18 | 株式会社Uacj | Level wound coil, method for manufacturing level wound coil, cross fin tube type heat exchanger, and method for manufacturing cross fin tube type heat exchanger |
JP6101969B2 (en) * | 2012-04-16 | 2017-03-29 | 株式会社Uacj | Level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger |
JP6244588B2 (en) * | 2013-03-11 | 2017-12-13 | 株式会社Uacj | Copper alloy seamless pipe for heat transfer tubes |
JP6238274B2 (en) * | 2013-03-11 | 2017-11-29 | 株式会社Uacj | Copper alloy seamless pipe for hot and cold water supply |
CN110229973B (en) * | 2019-06-20 | 2020-12-01 | 秦皇岛瀚丰长白结晶器有限责任公司 | Production process of H-shaped chromium-zirconium-copper crystallizer copper pipe |
KR102214230B1 (en) * | 2020-08-07 | 2021-02-08 | 엘에스메탈 주식회사 | Copper Alloy Tube For Heat Exchanger Excellent in Thermal Conductivity Fracture Strength and Method for Manufacturing the Same |
CN112296122B (en) * | 2020-10-14 | 2023-06-30 | 江苏隆达超合金股份有限公司 | High-efficiency tube manufacturing process for high-fin white copper alloy |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003268467A (en) * | 2002-03-18 | 2003-09-25 | Kobe Steel Ltd | Copper alloy tube for heat exchanger |
JP2004292917A (en) * | 2003-03-27 | 2004-10-21 | Kobe Steel Ltd | Method of producing copper alloy smooth tube for heat exchanger, and method of producing copper alloy internally grooved tube for heat exchanger |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5521530A (en) * | 1978-08-01 | 1980-02-15 | Onahama Smelt & Refining Co Ltd | High tensile copper alloy with superior heat resistance and conductivity |
-
2007
- 2007-03-30 JP JP2007095763A patent/JP4694527B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003268467A (en) * | 2002-03-18 | 2003-09-25 | Kobe Steel Ltd | Copper alloy tube for heat exchanger |
JP2004292917A (en) * | 2003-03-27 | 2004-10-21 | Kobe Steel Ltd | Method of producing copper alloy smooth tube for heat exchanger, and method of producing copper alloy internally grooved tube for heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JP2008255381A (en) | 2008-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4694527B2 (en) | Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same | |
JP4629080B2 (en) | Copper alloy tube for heat exchanger | |
JP4630323B2 (en) | Copper alloy tube for heat exchangers with excellent fracture strength | |
CN101568658B (en) | High-strength highly heat-conductive copper alloy pipe and process for producing the same | |
JP3794971B2 (en) | Copper alloy tube for heat exchanger | |
JP5464659B2 (en) | Copper tube for heat exchanger with excellent fracture strength and bending workability | |
JP5111922B2 (en) | Copper alloy tube for heat exchanger | |
JP4818179B2 (en) | Copper alloy tube | |
JP4817693B2 (en) | Copper alloy tube for heat exchanger and manufacturing method thereof | |
JP5078368B2 (en) | Method for producing copper alloy tube for heat exchanger | |
JP5078410B2 (en) | Copper alloy tube | |
JP5107841B2 (en) | Copper alloy tube for heat exchangers with excellent bending workability | |
JP6244213B2 (en) | Copper tube for heat exchanger | |
JP6034727B2 (en) | High strength copper alloy tube | |
JP5499300B2 (en) | Copper alloy tube for heat exchanger | |
JP5638999B2 (en) | Copper alloy tube | |
JP5639025B2 (en) | Copper alloy tube | |
WO2014142049A1 (en) | Copper alloy seamless tube for heat transfer tube | |
JP5990496B2 (en) | Phosphorus deoxidized copper pipe for heat exchanger | |
JP5602707B2 (en) | High strength copper tube with excellent strength after brazing | |
JP5033051B2 (en) | Copper alloy tube for heat exchangers with excellent softening resistance | |
JP5336296B2 (en) | Copper alloy tube for heat exchangers with excellent workability | |
JP2013189664A (en) | Copper alloy tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091016 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20100906 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20100927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101005 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110222 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110223 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140304 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4694527 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |