[go: up one dir, main page]

JP2005089788A - Aluminum alloy piping material for heat exchanger having excellent corrosion resistance, and its manufacturing method - Google Patents

Aluminum alloy piping material for heat exchanger having excellent corrosion resistance, and its manufacturing method Download PDF

Info

Publication number
JP2005089788A
JP2005089788A JP2003321997A JP2003321997A JP2005089788A JP 2005089788 A JP2005089788 A JP 2005089788A JP 2003321997 A JP2003321997 A JP 2003321997A JP 2003321997 A JP2003321997 A JP 2003321997A JP 2005089788 A JP2005089788 A JP 2005089788A
Authority
JP
Japan
Prior art keywords
corrosion resistance
piping material
alloy
heat exchanger
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003321997A
Other languages
Japanese (ja)
Inventor
Tokinori Onda
時伯 恩田
Yoshiaki Ogiwara
吉章 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2003321997A priority Critical patent/JP2005089788A/en
Publication of JP2005089788A publication Critical patent/JP2005089788A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al alloy piping material for a heat exchanger exhibiting sufficient corrosion resistance even in a severe corrosive environment and to provide a method of manufacturing the material. <P>SOLUTION: The aluminum alloy piping material for a heat exchanger consists, by mass%, of 0.05 to 0.6% Si, 0.05 to 0.7% Fe, 0.04 to 0.7% Cu, 0.6 to 1.0% Mn, 0.01 to 0.15% Mg, 0.1 to 3.0% Zn and the balance Al and inevitable impurities, and has 100 to 150 MPa tensile strength, ≥30% elongation and excellent corrosion resistance. The method for manufacturing the Al alloy piping material for a heat exchanger having excellent corrosion resistance comprises the steps of: subjecting an Al alloy ingot having the above alloy composition to hot extrusion and stretching in this order to obtain a raw pipe; and then subjecting the raw pipe to final annealing at 450 to 550°C for 1 to 10 hours. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車用熱交換器(ラジエーターなど)や各種産業機器用熱交換器に適した耐食性に優れるアルミニウム合金配管材およびその製造方法に関する。   The present invention relates to an aluminum alloy piping material excellent in corrosion resistance suitable for a heat exchanger for automobiles (such as a radiator) and various industrial equipment heat exchangers, and a method for producing the same.

従来から、この種の熱交換器用配管材には、JIS1000系、JIS3000系、JIS6000系などのアルミニウム(以下、適宜Alと記す)合金が使用されてきた。
例えば、特許文献1には、Mgを0.35〜1.5%、Siを0.2〜0.8%、Znを0.1〜0.3%含有し、さらにSnを0.02〜0.1%、Cuを0.15〜0.4%含有し、残部Alからなる耐粒界腐食性および耐孔食性を改善したJIS6000系Al合金が開示されている。
Conventionally, aluminum alloys such as JIS 1000 series, JIS 3000 series, and JIS 6000 series (hereinafter referred to as “Al” as appropriate) have been used for this type of heat exchanger piping material.
For example, Patent Document 1 contains 0.35 to 1.5% Mg, 0.2 to 0.8% Si, 0.1 to 0.3% Zn, and 0.02 to Sn. A JIS6000 series Al alloy containing 0.1% and 0.15 to 0.4% of Cu and having improved balance between intergranular corrosion resistance and pitting corrosion resistance is disclosed.

特公昭61−36577号公報Japanese Examined Patent Publication No. 61-36577

しかし、前記従来のAl合金では、耐食性が十分でなく、そのため過酷な腐食環境下では、強度、加工性に優れるJIS3003合金を芯材とし、その片面または両面に犠牲陽極効果を有するJIS7072合金を複合したクラッド材が使用されているが、クラッド材は製造コストが高いという問題があった。
そこで、クラッド材ではなく、単体で、過酷な腐食環境下にも十分に耐え得る熱交換器用Al合金配管材の開発が望まれていた。
However, the conventional Al alloy does not have sufficient corrosion resistance. Therefore, in a severe corrosive environment, a JIS3003 alloy having excellent strength and workability is used as a core, and a JIS7072 alloy having a sacrificial anode effect on one or both sides is combined. However, the clad material has a problem of high manufacturing cost.
Therefore, it has been desired to develop an Al alloy piping material for a heat exchanger that can sufficiently withstand a severe corrosive environment, not a clad material, alone.

本発明は、過酷な腐食環境下でも十分な耐食性を有する熱交換器用Al合金配管材およびその製造方法の提供を目的とする。   An object of this invention is to provide the Al alloy piping material for heat exchangers which has sufficient corrosion resistance also in a severe corrosive environment, and its manufacturing method.

請求項1記載発明は、Siを0.05〜0.6質量%(以下%と略記する)、Feを0.05〜0.7%、Cuを0.04〜0.2%、Mnを0.6〜1.0%、Mgを0.01〜0.15%、Znを0.1〜3.0%含有し残部がAlと不可避不純物からなるアルミニウム合金配管材であって、前記配管材の引張強さが100〜150MPa、伸びが30%以上であることを特徴とする耐食性に優れる熱交換器用アルミニウム合金配管材である。   In the first aspect of the present invention, Si is 0.05 to 0.6% by mass (hereinafter abbreviated as%), Fe is 0.05 to 0.7%, Cu is 0.04 to 0.2%, and Mn is An aluminum alloy piping material containing 0.6 to 1.0%, Mg of 0.01 to 0.15%, Zn of 0.1 to 3.0%, the balance being Al and inevitable impurities, wherein the piping An aluminum alloy piping material for heat exchangers having excellent corrosion resistance, characterized in that the tensile strength of the material is 100 to 150 MPa and the elongation is 30% or more.

請求項2記載発明は、Siを0.05〜0.6%、Feを0.05〜0.7%、Cuを0.04〜0.2%、Mnを0.6〜1.0%、Mgを0.01〜0.15%、Znを0.1〜3.0%含有し残部がAlと不可避不純物からなるAl合金鋳塊に熱間押出および抽伸加工をこの順に施して素管とし、次いで前記素管に450〜550℃で1〜10時間の最終焼鈍処理を施すことを特徴とする耐食性に優れる熱交換器用アルミニウム合金配管材の製造方法である。   The invention according to claim 2 is that 0.05 to 0.6% of Si, 0.05 to 0.7% of Fe, 0.04 to 0.2% of Cu, and 0.6 to 1.0% of Mn , Subjecting an Al alloy ingot containing 0.01 to 0.15% Mg and 0.1 to 3.0% Zn to the balance and Al and inevitable impurities to hot extrusion and drawing in this order And then subjecting the raw pipe to a final annealing treatment at 450 to 550 ° C. for 1 to 10 hours, which is a method for producing an aluminum alloy piping material for heat exchangers having excellent corrosion resistance.

本発明は以下のような効果がある。
本発明のAl合金配管材は、機械的性質、曲げ加工性、製造加工性、端末加工性に優れ、かつ過酷な腐食環境に耐え得る耐食性を有し、しかも単体のため安価であり、自動車用熱交換器などに有用である。また本発明のAl合金配管材は常法により製造される素管に最終焼鈍処理を所定条件で施すことにより容易に製造できる。
The present invention has the following effects.
The Al alloy piping material of the present invention is excellent in mechanical properties, bending workability, manufacturing workability, terminal workability, has corrosion resistance that can withstand severe corrosive environment, and is inexpensive because it is a simple substance. Useful for heat exchangers. Moreover, the Al alloy piping material of the present invention can be easily manufactured by subjecting a base pipe manufactured by a conventional method to a final annealing treatment under predetermined conditions.

以下、本発明を実施するための最良の実施形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

本発明はSi、Fe、Cu、Mn、Mg、Znを適量含有する熱交換器用Al合金配管材であり、前記Si、Fe、Cu、MnおよびMgの作用により機械的性質を向上させ、前記MnおよびZnの作用により耐食性を高めたものである。   The present invention is an Al alloy piping material for heat exchangers containing appropriate amounts of Si, Fe, Cu, Mn, Mg, Zn, and improves the mechanical properties by the action of the Si, Fe, Cu, Mn, and Mg. And corrosion resistance is enhanced by the action of Zn.

なお、特開昭63−79936号公報には、Cuを添加して自然電位を貴にし、以て鉄部材との間の電食を改善した高強度Al合金板が開示されているが、このAl合金板は本発明のように材料自体の耐食性を改善したものではなく、用途も包装用であって本発明とは異なるものである。   JP-A-63-79936 discloses a high-strength Al alloy plate in which Cu is added to make the natural potential noble and thus improve electrolytic corrosion with the iron member. The Al alloy plate does not improve the corrosion resistance of the material itself as in the present invention, and is used for packaging and is different from the present invention.

以下に本発明のAl合金配管材の合金元素について説明する。
SiはMgと金属間化合物を形成して強度向上に寄与する。
Siの含有量が0.05%未満ではその効果が十分に得られず、0.6%を超えると加工硬化が大きくなるため、抽伸加工中に多数回の中間焼鈍が必要となり、生産性が劣る。従って、Siの含有量は0.05〜0.6%に規定する。より好ましい含有量は0.1〜0.4%である。
The alloy elements of the Al alloy piping material of the present invention will be described below.
Si forms an intermetallic compound with Mg and contributes to strength improvement.
If the Si content is less than 0.05%, the effect cannot be obtained sufficiently, and if it exceeds 0.6%, work hardening becomes large, so many intermediate annealings are required during the drawing process, and productivity is reduced. Inferior. Therefore, the Si content is specified to be 0.05 to 0.6%. A more preferable content is 0.1 to 0.4%.

FeはAlマトリックスに固溶して、またはAl−Fe−Mn系金属間化合物を析出して強度向上に寄与する。
Feの含有量が0.05%未満ではその効果が十分に得られず、0.7%を超えるとAl−Fe系金属間化合物が増加して耐食性が低下し、また前記金属間化合物は成形加工時に割れの起点となり、端末加工性が低下するためである。従ってFeの含有量は0.05〜0.7%に規定する。より好ましい含有量は0.05〜0.4%である。
Fe contributes to improving the strength by dissolving in an Al matrix or by depositing an Al—Fe—Mn intermetallic compound.
If the Fe content is less than 0.05%, the effect cannot be sufficiently obtained. If the Fe content exceeds 0.7%, the Al-Fe intermetallic compound increases and the corrosion resistance decreases, and the intermetallic compound is molded. This is because it becomes a starting point of cracking during processing and terminal processability is lowered. Therefore, the Fe content is specified to be 0.05 to 0.7%. A more preferable content is 0.05 to 0.4%.

CuはAlマトリックスに固溶して強度向上に寄与し、また配管材を高温ろう付けする際の結晶粒の粗大化を抑制して端末加工性を高度に維持する。
Cuの含有量が0.04%未満ではその効果が十分に得られず、0.2%を超えると化合物が析出して耐食性が低下する。従って、その含有量は0.04〜0.2%に規定する。より好ましい含有量は0.05〜0.15%である。
Cu dissolves in the Al matrix and contributes to improving the strength, and also suppresses the coarsening of crystal grains when the pipe material is brazed at a high temperature to maintain the terminal processability at a high level.
If the Cu content is less than 0.04%, the effect cannot be sufficiently obtained, and if it exceeds 0.2%, the compound is precipitated and the corrosion resistance is lowered. Therefore, the content is specified to 0.04 to 0.2%. A more preferable content is 0.05 to 0.15%.

MnはAlマトリックスに固溶して強度および耐食性の向上に寄与する。
Mnの含有量が0.6%未満ではその効果が十分に得られず、1.0%を超えると、製造加工性および成形加工性が低下する。従って、Mnの含有量は0.6〜1.0%に規定する。より好ましい含有量は0.6〜0.8%である。
Mn dissolves in the Al matrix and contributes to improvement in strength and corrosion resistance.
If the Mn content is less than 0.6%, the effect cannot be sufficiently obtained, and if it exceeds 1.0%, the production processability and the moldability are deteriorated. Therefore, the Mn content is specified to be 0.6 to 1.0%. A more preferable content is 0.6 to 0.8%.

MgはAlマトリックスに固溶して、またSiと金属間化合物を形成して強度向上に寄与する。その含有量が0.01%未満ではその効果が十分に得られず、0.15%を超えると熱間押出性および端末加工性が低下するうえ、フッ素系非腐食性フラックスを用いたときのろう付け性が低下する。従ってMgの含有量は0.01〜0.15%に規定する。より好ましい含有量は0.02〜0.1%である。   Mg is dissolved in the Al matrix and forms an intermetallic compound with Si, thereby contributing to strength improvement. If the content is less than 0.01%, the effect cannot be sufficiently obtained. If the content exceeds 0.15%, hot extrudability and terminal processability are deteriorated, and when a fluorine-based non-corrosive flux is used. Brazing property decreases. Accordingly, the Mg content is specified to be 0.01 to 0.15%. A more preferable content is 0.02 to 0.1%.

ZnはAlマトリックスに固溶して結晶粒界と結晶粒内間の電位差を減少させ、以て粒界腐食を抑制する。その含有量が0.1%未満ではその効果が十分に得られず、3.0%を超えると耐食性が低下する。従ってZnの含有量は0.1〜3.0%に規定する。より好ましい含有量は0.2〜1.0%である。   Zn forms a solid solution in the Al matrix and reduces the potential difference between the crystal grain boundaries and the crystal grains, thereby suppressing intergranular corrosion. If the content is less than 0.1%, the effect cannot be sufficiently obtained, and if it exceeds 3.0%, the corrosion resistance is lowered. Therefore, the Zn content is specified to be 0.1 to 3.0%. A more preferable content is 0.2 to 1.0%.

本発明において、引張強さを100〜150MPa、伸びを30%以上に規定する理由は、引張強さが100MPa未満では端末加工性が低下するためであり、引張強さが150MPaを超え或いは伸びが30%未満では、曲げ加工性が低下してAl合金配管材の熱交換器への組付けが困難になるためである。   In the present invention, the reason that the tensile strength is 100 to 150 MPa and the elongation is 30% or more is that if the tensile strength is less than 100 MPa, the terminal processability is lowered, and the tensile strength exceeds 150 MPa or the elongation is increased. If it is less than 30%, the bending workability is lowered and it is difficult to assemble the Al alloy piping material to the heat exchanger.

本発明のAl合金配管材は任意の方法により加工した素管に所定の最終焼鈍処理を施して製造することができる。
本発明において、前記素管に最終焼鈍処理を施す理由は、最終焼鈍処理を施すことによりAl合金配管材の機械的性質を適正に制御して、その曲げ加工性および端末加工性を高め、以て熱交換器への組み付けを容易に行うためである。
The Al alloy piping material of the present invention can be manufactured by subjecting a raw pipe processed by an arbitrary method to a predetermined final annealing treatment.
In the present invention, the reason for performing the final annealing treatment on the raw pipe is to appropriately control the mechanical properties of the Al alloy piping material by performing the final annealing treatment, thereby improving the bending workability and the terminal workability. This is to facilitate the assembly to the heat exchanger.

前記最終焼鈍処理条件を450〜550℃で1〜10時間に規定する理由は、最終焼鈍処理温度が450℃未満でも、また焼鈍処理時間が1時間未満でも、引張強さが150MPaを超え、或いは伸びが30%未満となり、その結果、曲げ加工性が低下して、配管材を熱交換器に組付けるのが困難になるためである。またMnの固溶量が減少して耐食性が低下するためでもある。一方、熱処理温度が550℃を超えると強度が100MPa未満に低下して、端末加工時に割れが生じたり、エンジンやコンプレッサーなどの振動で疲労破壊が生じたりし、また焼鈍処理時間が10時間を超えるとその効果が飽和して不経済なためである。   The reason for prescribing the final annealing treatment condition at 450 to 550 ° C. for 1 to 10 hours is that even if the final annealing treatment temperature is less than 450 ° C. and the annealing treatment time is less than 1 hour, the tensile strength exceeds 150 MPa, or This is because the elongation is less than 30%, and as a result, the bending workability is lowered and it is difficult to assemble the piping material to the heat exchanger. Moreover, it is also because the amount of solid solution of Mn decreases and corrosion resistance falls. On the other hand, when the heat treatment temperature exceeds 550 ° C., the strength decreases to less than 100 MPa, cracking occurs during terminal processing, fatigue failure occurs due to vibration of the engine or compressor, and the annealing treatment time exceeds 10 hours. This is because the effect is saturated and uneconomical.

以下に本発明を実施例により詳細に説明する。
(実施例1)
表1に示す本発明規定組成のAl合金を溶解鋳造して断面円形の鋳塊とし、この鋳塊に610℃で4時間の均質化処理を施し、その後、長さ1000mmに切断して押出ビレットとし、これを510〜540℃に加熱して、外径47mmの中空材に熱間押出しし、次いで、前記中空材に連続抽伸加工を室温で複数回施して外形8.0mm、肉厚1.0mmの素管とし、この素管に500℃で2時間の最終焼鈍処理を施したのち、放冷してAl合金配管材を製造した。
Hereinafter, the present invention will be described in detail with reference to examples.
(Example 1)
An Al alloy having the composition specified in the present invention shown in Table 1 is melt cast to form an ingot having a circular cross section. The ingot is subjected to homogenization treatment at 610 ° C. for 4 hours, and then cut into a length of 1000 mm and extruded billet This was heated to 510 to 540 ° C. and hot-extruded into a hollow material having an outer diameter of 47 mm. Subsequently, the hollow material was subjected to continuous drawing multiple times at room temperature to give an outer shape of 8.0 mm and a thickness of 1. A 0 mm blank was made, and this blank was subjected to a final annealing treatment at 500 ° C. for 2 hours, and then allowed to cool to produce an Al alloy piping material.

得られたAl合金配管材について、(1)耐食性、(2)製造加工性、(3)機械的性質、(4)曲げ加工性、(5)端末加工性の諸特性を下記方法により調査し、評価した。
(1)耐食性:配管材を市販の循環試験装置に接続して、88℃の温度に8時間保持後、室温に16時間保持するサイクル試験を1年間行い、試験後、表面の腐食生成物を除去して孔食の深さを光学顕微鏡を用いた焦点深度法により測定した。
前記孔食の最大深さが0.5mm以下の場合は耐食性が良好、0.5mm以上(貫通含む)の場合は不良と評価した。
About the obtained Al alloy piping material, (1) corrosion resistance, (2) manufacturing workability, (3) mechanical properties, (4) bending workability, and (5) terminal workability were investigated by the following methods. ,evaluated.
(1) Corrosion resistance: Connect the piping material to a commercially available circulation test device, hold a temperature test at 88 ° C for 8 hours, and then hold a 16-hour cycle test at room temperature for 1 year. After removing, the depth of pitting was measured by the depth of focus method using an optical microscope.
When the maximum depth of the pitting corrosion was 0.5 mm or less, the corrosion resistance was good, and when it was 0.5 mm or more (including penetration), it was evaluated as defective.

(2)製造加工性:中空材を一定の押出圧力で熱間押出したときの最大押出速度を測定し、また抽伸加工での亀裂や破断の発生状況を観察した。
最大押出速度が規定値(60m/分)以上で、かつ抽伸加工で亀裂や破断が生じない場合は製造加工性が優れる、それ以外は製造加工性が劣ると評価した。
(3)機械的性質:JIS Z 2201に準じて、引張強さおよび伸びを測定した。引張強さ100〜150MPa、伸び30%以上を満足するものを良好、それ以外を不良と評価した。
(2) Manufacturing processability: The maximum extrusion speed when the hollow material was hot-extruded at a constant extrusion pressure was measured, and the occurrence of cracks and fractures in the drawing process was observed.
When the maximum extrusion speed was not less than the specified value (60 m / min) and no cracks or breaks occurred during drawing, it was evaluated that the manufacturing processability was excellent, and otherwise, the manufacturing processability was inferior.
(3) Mechanical properties: Tensile strength and elongation were measured according to JIS Z 2201. Those satisfying a tensile strength of 100 to 150 MPa and an elongation of 30% or more were evaluated as good, and the others were evaluated as defective.

(4)曲げ加工性:曲げ半径30mmφ、曲げ角度60度の条件で引張り曲げ(ストレッチベンド)試験を行い、曲げ部に異常がない場合は曲げ加工性が良好、折れたり肌荒れが生じた場合は不良と評価した。
(5)端末加工性:図1に示す軸シールビード加工部1を拡管、パンチング、転造加工を組合わせて成形加工し、前記軸シールビード加工部1に割れ、しわ、微小クラックなどが生じない場合は端末加工性が良好、発生した場合は不良と評価した。
(4) Bending workability: A tensile bending (stretch bend) test is performed under the conditions of a bending radius of 30 mmφ and a bending angle of 60 degrees. If there is no abnormality in the bent part, the bending workability is good. Rated as bad.
(5) Terminal processability: The shaft seal bead processing portion 1 shown in FIG. 1 is formed by combining tube expansion, punching and rolling, and the shaft seal bead processing portion 1 is cracked, wrinkled, or microcracked. If not, the terminal processability was good, and if it occurred, it was evaluated as bad.

(実施例2)
最終焼鈍処理条件を変えた他は実施例1と同じ方法によりAl合金配管材を製造し、実施例1と同じ方法により特性を調査し、評価を行った。
(Example 2)
An Al alloy pipe was manufactured by the same method as in Example 1 except that the final annealing treatment conditions were changed, and the characteristics were investigated and evaluated by the same method as in Example 1.

(比較例1)
表1に示す本発明規定外組成のAl合金を用いた他は、実施例1と同じ方法によりAl合金配管材を製造し、実施例1と同じ方法により特性を調査し、評価を行った。
(Comparative Example 1)
An Al alloy piping material was produced by the same method as in Example 1 except that an Al alloy having a composition outside the scope of the present invention shown in Table 1 was used, and the characteristics were investigated and evaluated by the same method as in Example 1.

(比較例2)
従来のAl合金を用いた他は、実施例1と同じ方法によりAl合金配管材を製造し、実施例1と同じ方法により特性を調査し、評価を行った。
(Comparative Example 2)
An Al alloy piping material was manufactured by the same method as in Example 1 except that a conventional Al alloy was used, and the characteristics were investigated and evaluated by the same method as in Example 1.

(比較例3)
JIS3003合金を用いた他は、実施例1と同じ方法によりAl合金配管材を製造し、実施例1と同じ方法により特性を調査し、評価を行った。
実施例1、2および比較例1〜3の結果を表1に併記する。
(Comparative Example 3)
An Al alloy pipe was manufactured by the same method as in Example 1 except that JIS 3003 alloy was used, and the characteristics were investigated and evaluated by the same method as in Example 1.
The results of Examples 1 and 2 and Comparative Examples 1 to 3 are also shown in Table 1.

Figure 2005089788
Figure 2005089788

表1から明らかなように、本発明の配管材は、耐食性(孔食)、製造加工性、機械的性質、曲げ加工性、端末加工性のすべてに優れた。
これに対し、比較例1のNo.13〜21は合金組成が本発明の規定値外のため前記特性のいずれかが劣った。
即ち、No.13はSiが多いため製造加工性および耐食性が劣った。No.14はFeが多いため耐食性および端末加工性が劣った。No.15はCuが少ないため引張強さおよび端末加工性が劣った。No.16はCuが多いため耐食性が劣った。No.17はMnが少ないため引張強さおよび耐食性が劣った。No.18はMnが多いため製造加工性および端末加工性が劣った。No.19はMgが多いため引張強さ、製造加工性および端末加工性が劣った。No.20はZnが少ないためNo.21はZnが多いためいづれも耐食性が劣った。
As is clear from Table 1, the piping material of the present invention was excellent in all of corrosion resistance (pitting corrosion), manufacturing processability, mechanical properties, bending workability, and end workability.
On the other hand, the comparative example 1 No. Nos. 13 to 21 were inferior in any of the above characteristics because the alloy composition was outside the specified value of the present invention.
That is, no. No. 13 was inferior in manufacturing processability and corrosion resistance due to a large amount of Si. No. No. 14 was inferior in corrosion resistance and terminal processability due to the large amount of Fe. No. No. 15 was inferior in tensile strength and terminal processability due to a small amount of Cu. No. No. 16 was inferior in corrosion resistance due to a large amount of Cu. No. No. 17 had poor tensile strength and corrosion resistance due to low Mn. No. No. 18 was inferior in manufacturing processability and terminal processability because of a large amount of Mn. No. No. 19 was inferior in tensile strength, manufacturing processability and terminal processability due to a large amount of Mg. No. No. 20 is low in Zn, so No. No. 21 was inferior in corrosion resistance because of the large amount of Zn.

比較例2のNo.22は最終焼鈍処理温度が低く、No.23は最終焼鈍処理時間が短かったため、いずれも曲げ加工性および耐食性が劣った。No.24は最終焼鈍処理温度が高かったため、機械的性質および端末加工性が劣った。
比較例3のNo.25(従来材)は耐食性が劣った。
No. of Comparative Example 2 No. 22 has a low final annealing temperature. No. 23 was inferior in bending workability and corrosion resistance because the final annealing treatment time was short. No. No. 24 was inferior in mechanical properties and terminal workability because the final annealing temperature was high.
No. of Comparative Example 3 25 (conventional material) was inferior in corrosion resistance.

端末加工性を評価するための軸シールビード加工部の説明図である。It is explanatory drawing of the shaft seal bead processing part for evaluating terminal workability.

符号の説明Explanation of symbols

1 軸シールビード加工部 1 shaft seal bead processing section

Claims (2)

Siを0.05〜0.6質量%(以下%と略記する)、Feを0.05〜0.7%、Cuを0.04〜0.2%、Mnを0.6〜1.0%、Mgを0.01〜0.15%、Znを0.1〜3.0%含有し残部がAlと不可避不純物からなるアルミニウム合金配管材であって、前記配管材の引張強さが100〜150MPa、伸びが30%以上であることを特徴とする耐食性に優れる熱交換器用アルミニウム合金配管材。   0.05 to 0.6% by mass of Si (hereinafter abbreviated as%), 0.05 to 0.7% of Fe, 0.04 to 0.2% of Cu, and 0.6 to 1.0 of Mn %, Mg is 0.01 to 0.15%, Zn is 0.1 to 3.0%, the balance is aluminum alloy piping material made of Al and inevitable impurities, and the tensile strength of the piping material is 100 An aluminum alloy piping material for heat exchangers having excellent corrosion resistance, characterized by being ~ 150 MPa and elongation of 30% or more. Siを0.05〜0.6%、Feを0.05〜0.7%、Cuを0.04〜0.2%、Mnを0.6〜1.0%、Mgを0.01〜0.15%、Znを0.1〜3.0%含有し残部がAlと不可避不純物からなるAl合金鋳塊に熱間押出および抽伸加工をこの順に施して素管とし、次いで前記素管に450〜550℃で1〜10時間の最終焼鈍処理を施すことを特徴とする耐食性に優れる熱交換器用アルミニウム合金配管材の製造方法。   0.05 to 0.6% Si, 0.05 to 0.7% Fe, 0.04 to 0.2% Cu, 0.6 to 1.0% Mn, 0.01 to Mg An aluminum alloy ingot containing 0.15% and Zn 0.1 to 3.0% and the balance being Al and inevitable impurities is subjected to hot extrusion and drawing in this order to form a raw pipe, The manufacturing method of the aluminum alloy piping material for heat exchangers which is excellent in corrosion resistance characterized by performing the final annealing process for 1 to 10 hours at 450-550 degreeC.
JP2003321997A 2003-09-12 2003-09-12 Aluminum alloy piping material for heat exchanger having excellent corrosion resistance, and its manufacturing method Pending JP2005089788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321997A JP2005089788A (en) 2003-09-12 2003-09-12 Aluminum alloy piping material for heat exchanger having excellent corrosion resistance, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321997A JP2005089788A (en) 2003-09-12 2003-09-12 Aluminum alloy piping material for heat exchanger having excellent corrosion resistance, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005089788A true JP2005089788A (en) 2005-04-07

Family

ID=34453502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321997A Pending JP2005089788A (en) 2003-09-12 2003-09-12 Aluminum alloy piping material for heat exchanger having excellent corrosion resistance, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005089788A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103343262A (en) * 2013-07-03 2013-10-09 银邦金属复合材料股份有限公司 3003 aluminum alloy for core material of aluminum-alloy radiator water tube
WO2020080676A1 (en) * 2018-10-18 2020-04-23 삼성전자 주식회사 Aluminum alloy
CN111128445A (en) * 2019-12-06 2020-05-08 远东电缆有限公司 Aluminum-manganese alloy steel-clad reinforced overhead conductor and preparation process thereof
JP7222046B1 (en) 2021-09-28 2023-02-14 株式会社Uacj Aluminum alloy extruded tube, manufacturing method thereof, and piping member for heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103343262A (en) * 2013-07-03 2013-10-09 银邦金属复合材料股份有限公司 3003 aluminum alloy for core material of aluminum-alloy radiator water tube
WO2020080676A1 (en) * 2018-10-18 2020-04-23 삼성전자 주식회사 Aluminum alloy
CN111128445A (en) * 2019-12-06 2020-05-08 远东电缆有限公司 Aluminum-manganese alloy steel-clad reinforced overhead conductor and preparation process thereof
JP7222046B1 (en) 2021-09-28 2023-02-14 株式会社Uacj Aluminum alloy extruded tube, manufacturing method thereof, and piping member for heat exchanger
WO2023054022A1 (en) * 2021-09-28 2023-04-06 株式会社Uacj Aluminum alloy extruded tube, manufacturing method thereof, and tube member for heat exchanger
JP2023048804A (en) * 2021-09-28 2023-04-07 株式会社Uacj Aluminum alloy extruded tube, manufacturing method thereof, and piping member for heat exchanger

Similar Documents

Publication Publication Date Title
JP5145331B2 (en) High strength and high thermal conductivity copper alloy tube and method for producing the same
CN1296500C (en) Heat-resisting copper alloy materials
JP4629080B2 (en) Copper alloy tube for heat exchanger
JP5049536B2 (en) Aluminum piping material for automotive heat exchangers
US10508325B2 (en) Corrosion-resistant aluminum alloy for heat exchanger
JPH11172388A (en) Aluminum alloy extruded pipe material for air conditioner piping and its production
JP5464659B2 (en) Copper tube for heat exchanger with excellent fracture strength and bending workability
CN102575319B (en) Copper alloy seamless pipe
JP2004124166A (en) Aluminum alloy pipe material for automobile piping having excellent corrosion resistance and workability, and production method therefor
JP2012149313A (en) Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing the same
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP2010196089A (en) Extruded pipe of aluminum alloy having high strength and superior stress corrosion cracking resistance for hydroforming process
JP2005089788A (en) Aluminum alloy piping material for heat exchanger having excellent corrosion resistance, and its manufacturing method
JP5960672B2 (en) High strength copper alloy tube
JP5451217B2 (en) Manufacturing method of internally grooved tube
JP5499300B2 (en) Copper alloy tube for heat exchanger
JP2001342532A (en) Aluminum alloy piping material and its production
JP5792696B2 (en) High strength copper alloy tube
JP5602707B2 (en) High strength copper tube with excellent strength after brazing
JP5638999B2 (en) Copper alloy tube
JP2001105173A (en) Aluminum alloy compound material for heat exchanger and its manufacturing method
JP7588979B2 (en) Manufacturing method of copper alloy tube
JP2013076123A (en) Copper alloy tube
JP2002038232A (en) Aluminum alloy piping material for heat exchanger
JPH04371541A (en) Aluminum alloy for heat exchanger piping