JP5544591B2 - Copper alloy tube - Google Patents
Copper alloy tube Download PDFInfo
- Publication number
- JP5544591B2 JP5544591B2 JP2011009889A JP2011009889A JP5544591B2 JP 5544591 B2 JP5544591 B2 JP 5544591B2 JP 2011009889 A JP2011009889 A JP 2011009889A JP 2011009889 A JP2011009889 A JP 2011009889A JP 5544591 B2 JP5544591 B2 JP 5544591B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- mass
- copper
- copper alloy
- crystal grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 83
- 239000010949 copper Substances 0.000 claims description 99
- 229910052802 copper Inorganic materials 0.000 claims description 94
- 239000013078 crystal Substances 0.000 claims description 76
- 239000000203 mixture Substances 0.000 claims description 24
- 238000009864 tensile test Methods 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 93
- 239000011777 magnesium Substances 0.000 description 52
- 238000000137 annealing Methods 0.000 description 47
- 229910009038 Sn—P Inorganic materials 0.000 description 40
- 238000005452 bending Methods 0.000 description 33
- 238000000034 method Methods 0.000 description 27
- 230000000052 comparative effect Effects 0.000 description 23
- 238000005219 brazing Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 21
- 230000000694 effects Effects 0.000 description 19
- 229910052749 magnesium Inorganic materials 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 16
- 229910052796 boron Inorganic materials 0.000 description 14
- 230000009467 reduction Effects 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 229910052718 tin Inorganic materials 0.000 description 14
- 230000003647 oxidation Effects 0.000 description 13
- 238000007254 oxidation reaction Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 11
- 229910052698 phosphorus Inorganic materials 0.000 description 11
- 239000006104 solid solution Substances 0.000 description 11
- 238000005336 cracking Methods 0.000 description 10
- 238000001125 extrusion Methods 0.000 description 10
- 238000005728 strengthening Methods 0.000 description 10
- 238000001192 hot extrusion Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 7
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 6
- 239000003507 refrigerant Substances 0.000 description 6
- 238000005204 segregation Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910017888 Cu—P Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 235000012489 doughnuts Nutrition 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Metal Extraction Processes (AREA)
Description
本発明はSn−P系の銅合金管(銅管)に関するものである。以下の記載では、この「銅合金管」を略して「銅管」ともいう。 The present invention relates to a Sn-P-based copper alloy tube (copper tube). In the following description, this “copper alloy tube” is also abbreviated as “copper tube”.
エアコンなどの熱交換器に使用される銅管には、加工性(曲げ、拡管・フレア、縮管・絞りなど)及びろう付け性が良好であることが要求される。従って、これらの特性が良好であり、更に熱伝導率が良く、適切な強度を有するりん脱酸銅が広く使用されている。 Copper pipes used in heat exchangers such as air conditioners are required to have good workability (bending, pipe expansion / flare, contraction / drawing, etc.) and brazing. Accordingly, phosphorous deoxidized copper having good characteristics, good thermal conductivity, and appropriate strength is widely used.
近年、熱交換器に使用する冷媒が、地球環境保護の点より、オゾン破壊係数が小さいものに大きく変化してきた。ただ、新たに採用された冷媒の運転圧力は、従来の冷媒R22の1.6乃至6倍程度に増大している。また、一方では、銅地金高騰に伴う銅管コスト増大を抑制すべく、銅使用量低減のための銅管薄肉化の要求も強くなっている。 In recent years, refrigerants used in heat exchangers have greatly changed to those having a small ozone depletion coefficient from the viewpoint of protecting the global environment. However, the operating pressure of the newly adopted refrigerant has increased to about 1.6 to 6 times that of the conventional refrigerant R22. On the other hand, in order to suppress the increase in the cost of copper pipes due to soaring copper bullion, there is an increasing demand for thinner copper pipes for reducing the amount of copper used.
これに対しては、使用される銅管の引張り強さが大きいほど、肉厚を薄くできる。しかし、従来のりん脱酸銅管では、引張り強さが小さいことから、前記運転圧力の増大に対応するには、管の肉厚を逆に厚くする必要があり、0.5mm以下などに、肉厚を薄くできない。 In contrast, the greater the tensile strength of the copper tube used, the thinner the wall thickness. However, in the conventional phosphorous-deoxidized copper pipe, since the tensile strength is small, in order to cope with the increase in the operating pressure, it is necessary to increase the thickness of the pipe on the contrary, such as 0.5 mm or less, The wall thickness cannot be reduced.
また、熱交換器の組立の際にろう付け処理される銅管のろう付け部は、必然的に800℃以上の温度に数秒乃至数十秒間加熱される。このため、ろう付け部及びその近傍では、その他の部分に比べて、銅管組織の結晶粒が粗大化し、軟化により強度が低下する、という大きな問題もある。 In addition, the brazed portion of the copper tube that is brazed when the heat exchanger is assembled is inevitably heated to a temperature of 800 ° C. or higher for several seconds to several tens of seconds. For this reason, in the brazed portion and the vicinity thereof, there is a big problem that the crystal grains of the copper tube structure become coarser and the strength decreases due to softening as compared with other portions.
これらの事情から、従来のりん脱酸銅管では、肉厚をより厚くする必要があり、前記した運転圧力が増大したもとでの銅管薄肉化の要求に、とても対応できない。このため、このりん脱酸銅に代わって、これらの要求に対応できる銅管が強く要望されることになる。 Under these circumstances, it is necessary to increase the thickness of the conventional phosphorous deoxidized copper pipe, and it is not possible to meet the demand for thinning the copper pipe under the increased operating pressure. For this reason, instead of this phosphorous deoxidized copper, there is a strong demand for a copper tube that can meet these requirements.
このような要望に応えて、従来のりん脱酸銅に替えて、より強度が高いSn−P系銅合金からなる銅管(以下、Sn−P系銅管あるいはSn−P系銅合金管と言う)が従来から種々提案されている。このSn−P系銅管は、基本的に、Sn:0.1〜1.0%、P:0.005〜0.1%を含有し、OやHなどの不純物を規制し、Znを選択的に添加した銅合金組成からなる。また、その銅管組織として、例えば平均結晶粒径を30μm以下とした微細な結晶粒径からなることが基本である(特許文献1、2、3、4参照)。 In response to such a demand, instead of the conventional phosphorous deoxidized copper, a copper pipe made of Sn-P copper alloy (hereinafter referred to as Sn-P copper pipe or Sn-P copper alloy pipe) having higher strength is used. Have been proposed in the past. This Sn-P-based copper tube basically contains Sn: 0.1 to 1.0%, P: 0.005 to 0.1%, regulates impurities such as O and H, and contains Zn. It consists of a copper alloy composition added selectively. The copper tube structure is basically composed of a fine crystal grain size having an average crystal grain size of 30 μm or less, for example (see Patent Documents 1, 2, 3, and 4).
また、このSn−P系銅管において、Goss方位の集積率などの集合組織を制御して、破壊圧力を向上させる方法も開示されている(特許文献5参照)。更に、破壊強度と引張強さ(破壊強度/引張強さ)の比を、りん脱酸銅よりも大きくすることで、高い破壊圧力と良好な曲げ加工性を兼備した銅管も提案されている(特許文献6参照)。 In addition, a method for improving the fracture pressure by controlling the texture such as the Goss orientation accumulation rate in the Sn-P-based copper pipe is also disclosed (see Patent Document 5). Furthermore, a copper tube that combines high fracture pressure and good bending workability by increasing the ratio of fracture strength and tensile strength (fracture strength / tensile strength) to that of phosphorous deoxidized copper has also been proposed. (See Patent Document 6).
また、Sn−P系銅管の破壊強度および曲げ加工性ともに優れさせるために、平均結晶粒径の2倍以上の粗大な結晶粒の数を規制することも、特許文献7で提案されている。この特許文献7では、Sn−P系銅合金管を0.5mm以下に薄肉化した場合の、曲げ半径が小さい厳しいU字曲げ加工における割れの原因となる、前記粗大な結晶粒を規制している。 Further, in order to improve both the fracture strength and the bending workability of the Sn-P-based copper tube, Patent Document 7 proposes to regulate the number of coarse crystal grains that are twice or more the average crystal grain size. . In this patent document 7, when the Sn-P-based copper alloy tube is thinned to 0.5 mm or less, the coarse crystal grains that cause cracks in severe U-shaped bending with a small bending radius are regulated. Yes.
ただ、強度が高く、前記薄肉化の要望に応えたSn−P系銅管であっても、前記熱交換器組立の際のろう付けで、800℃以上の高温にさらされ、結晶粒が粗大化して、軟化や強度低下が起こる問題は、りん脱酸銅と同様に、やはり避けがたい。したがって、例えSn−P系銅管であっても、このろう付けによる軟化の問題については、なお改善の余地があった。 However, even Sn-P copper pipes that have high strength and respond to the demand for thinning are exposed to high temperatures of 800 ° C. or higher by brazing during assembly of the heat exchanger, and the crystal grains are coarse. The problem of softening and lowering the strength is also unavoidable like phosphorous deoxidized copper. Therefore, even with the Sn-P copper pipe, there is still room for improvement with respect to the problem of softening due to brazing.
このため、この軟化抑制を課題としたSn−P系銅管も従来から提案されており、特許文献8などでは、Pを銅合金管マトリックス中に一定量固溶させ、ろう付けによって結晶粒が粗大化しても、Pの固溶強化によって伝熱管の強度低下を抑制している。 For this reason, Sn-P-based copper pipes that are subject to this softening suppression have also been proposed. In Patent Document 8 and the like, a fixed amount of P is dissolved in a copper alloy pipe matrix, and crystal grains are formed by brazing. Even if it becomes coarse, the strength reduction of the heat transfer tube is suppressed by the solid solution strengthening of P.
このように連綿と特性が改善されてきたSn−P系銅合金管ではあるが、前記ろう付け処理の際の高温での脆化割れの問題に、いまだ改善の余地を残している。すなわち、Sn−P系銅合金管のろう付け処理の際に、800℃以上の高温に曝されるとともに、銅管にひずみが加わった場合、1mm以下程度に薄肉化された銅合金管では、脆化割れが起こる場合がある。したがって、Sn−P系銅合金管には、1mm以下程度に薄肉化された場合に、前記ろう付け処理の際に脆化割れを生じない、という技術的な課題が依然としてある。 As described above, the Sn-P-based copper alloy pipe has been improved in properties and has been left with room for improvement in the problem of embrittlement cracking at a high temperature during the brazing process. That is, in the case of the brazing treatment of the Sn-P-based copper alloy tube, when the copper tube is exposed to a high temperature of 800 ° C. or higher and strain is applied to the copper tube, Brittle cracks may occur. Accordingly, the Sn-P-based copper alloy tube still has a technical problem that when it is thinned to about 1 mm or less, it does not cause embrittlement cracking during the brazing process.
本発明はかかる問題点に鑑みてなされたものであって、前記ろう付け処理の際の脆化割れの発生が無い、耐高温脆化特性に優れたSn−P系銅合金管を提供することを目的とする。 The present invention has been made in view of such a problem, and provides an Sn-P-based copper alloy tube excellent in high-temperature embrittlement resistance and free from the occurrence of embrittlement cracks during the brazing treatment. With the goal.
上記目的のための、本発明の銅合金管の最も重要な要旨は、Sn:0.3〜2.0質量%、P:0.005〜0.1質量%、Mg:0.005〜0.5質量%を各々含有するとともに、0.5%≦2.5×「Mg質量%」+「Sn質量%」≦2.0%を満たし、残部がCu及び不可避的不純物からなる組成を有する銅合金からなり、管の軸方向に平行な断面における平均結晶粒径が20μm以下である組織を有することである。 For the above purpose, the most important gist of the copper alloy tube of the present invention is Sn: 0.3 to 2.0 mass%, P: 0.005 to 0.1 mass%, Mg: 0.005 to 0 0.5% ≦ 2.5 × “Mg mass%” + “Sn mass%” ≦ 2.0%, and the balance is composed of Cu and inevitable impurities. It consists of a copper alloy and has a structure in which the average crystal grain size in a cross section parallel to the axial direction of the tube is 20 μm or less.
上記目的のための、本発明の銅合金管の次に重要な要旨は、Sn:0.4〜2.0質量%、P:0.005〜0.1質量%、B:0.001〜0.06質量%を各々含有し、残部がCu及び不可避的不純物からなる組成を有する銅合金からなり、管の軸方向に平行な断面における平均結晶粒径が20μm以下である組織を有することである。 For the above purpose, the next important points of the copper alloy tube of the present invention are Sn: 0.4-2.0 mass%, P: 0.005-0.1 mass%, B: 0.001- It has a structure in which 0.06% by mass is contained and the balance is made of a copper alloy having a composition composed of Cu and inevitable impurities, and the average crystal grain size in a cross section parallel to the axial direction of the tube is 20 μm or less. is there.
本発明者らは、Sn−P系銅合金管の前記ろう付け処理の際の脆化割れの発生の機構について改めて検討した。この結果、高温における機械的特性を調査したところ、ろう付け相当温度である800℃以上の高温では、Sn−P系銅合金管の伸びが、室温における伸びの半分以下のレベルにまで低下することを知見した。また、脆化割れが生じた破断部を観察すると、粒界脆化割れしていることを知見した。 The present inventors have reexamined the mechanism of the occurrence of embrittlement cracks during the brazing treatment of Sn—P based copper alloy tubes. As a result, as a result of investigating the mechanical properties at high temperature, the elongation of the Sn-P-based copper alloy tube decreases to a level less than half of the elongation at room temperature at a high temperature of 800 ° C. or higher, which is a brazing equivalent temperature. I found out. Moreover, when the fracture | rupture part which the embrittlement crack produced was observed, it discovered that it was a grain boundary embrittlement crack.
このため、Sn−P系銅合金管のろう付け時に脆化割れが生じる原因は、高温で結晶粒の粒界が優先的に酸化されることによって、粒界が脆化することに起因すると推測される。特に、従来の肉厚が厚い銅管と比べて、薄肉化された銅管では、肉厚に対する脆い酸化層(粒界が酸化された結晶粒層)の厚さが大きく、その影響が大きくなるため、銅管にひずみが加わった場合には、脆化割れの原因となりやすい。 For this reason, it is assumed that the cause of embrittlement cracking during brazing of the Sn-P-based copper alloy tube is that the grain boundaries become brittle due to preferential oxidation of the grain boundaries at high temperatures. Is done. In particular, compared to conventional thick copper pipes, thinned copper pipes have a large thickness of brittle oxide layers (grain layers with grain boundaries oxidized) with respect to the thickness, which increases the effect. For this reason, when a strain is applied to the copper tube, it tends to cause embrittlement cracking.
これに対して、本発明者らは、微量のMgやBを添加することで、Sn−P系銅合金管の高温での伸びが改善することを見出した。すなわち、MgやBは、SnやPよりも、酸化傾向の強い元素であり、これらの元素が添加されると、これらの元素の酸化が優先的に生じて、前記粒界の側の酸化が大きく抑制されるものと考えられる。 On the other hand, the present inventors have found that the addition of a trace amount of Mg or B improves the elongation at high temperatures of the Sn—P based copper alloy tube. That is, Mg and B are elements that have a stronger tendency to oxidize than Sn and P. When these elements are added, oxidation of these elements occurs preferentially, and oxidation on the grain boundary side is caused. It is thought to be greatly suppressed.
したがって、本発明によれば、薄肉化されたSn−P系銅合金管であっても、ろう付け時に、肉厚に対する脆い酸化層の厚さが大きくならずに抑制される。このため、1.0mm以下に薄肉化された銅管にひずみが加わった場合でも、高温での脆化割れを抑制でき、耐高温脆化特性に優れたSn−P系銅合金管を提供することができる。 Therefore, according to this invention, even if it is a thin Sn-P type copper alloy pipe | tube, the thickness of the brittle oxide layer with respect to thickness is suppressed without becoming large at the time of brazing. For this reason, even when a strain is applied to a copper tube thinned to 1.0 mm or less, an embrittlement crack at a high temperature can be suppressed, and an Sn-P-based copper alloy tube excellent in high temperature embrittlement resistance is provided. be able to.
以下に、本発明の実施の形態につき、要件ごとに順に具体的に説明する。 Hereinafter, the embodiments of the present invention will be specifically described in order for each requirement.
銅合金組成:
本発明における銅管の銅合金組成は、銅合金管に要求される、耐軟化性、破壊強度および曲げ加工性などの諸特性に優れさせ、また、製造のしやすさからしても、最も重要な組成として、Sn:0.3〜2.0質量%、P:0.005〜0.1質量%、Mg:0.005〜0.5質量%を各々含有するとともに、0.5%≦2.5×「Mg質量%」+「Sn質量%」≦2.0%を満たし、残部がCu及び不可避的不純物からなる組成とする。
Copper alloy composition:
The copper alloy composition of the copper tube in the present invention is excellent in various properties such as softening resistance, fracture strength and bending workability required for the copper alloy tube, As important compositions, Sn: 0.3-2.0% by mass, P: 0.005-0.1% by mass, Mg: 0.005-0.5% by mass, and 0.5% ≦ 2.5 × “Mg mass%” + “Sn mass%” ≦ 2.0% is satisfied, and the balance is Cu and inevitable impurities.
次に、製造のしやすさやコスト的にはMgに劣るものの、銅合金管に要求される、耐軟化性、破壊強度および曲げ加工性などの諸特性に優れさせるために、次に重要な組成として、Sn:0.4〜2.0質量%、P:0.005〜0.1質量%、B:0.001〜0.06質量%を各々含有し、残部がCu及び不可避的不純物からなる組成とする。 Next, although it is inferior to Mg in terms of ease of manufacture and cost, it is the next most important composition in order to have excellent properties such as softening resistance, fracture strength and bending workability required for copper alloy pipes. As follows: Sn: 0.4-2.0% by mass, P: 0.005-0.1% by mass, B: 0.001-0.06% by mass, and the remainder from Cu and inevitable impurities The composition is as follows.
ここで、本発明と従来技術との銅合金の組成の違いについて説明しておく。前記特許文献1はMgやBを含んでいないし、前記特許文献2〜8もBを含んでいない。また、前記特許文献2〜4は、MgをFe、Ni、Co、Mn、Mg、Cr、Ti、Zr及びAg等と同じ不純物として扱い、これらの元素の合計量で0.03質量%以下に規制している。これに対して、前記特許文献5〜7は、MgをFe、Ni、Mn、Mg、Cr、Ti、Zr及びAgと同じく、銅合金の強度、耐軟化性や耐圧破壊強度、及び耐熱性を向上させ、結晶粒を微細化して曲げ加工性を改善する元素として扱っている。但し、Mgの含有量は、Fe、Ni、Mn、Mg、Cr、Ti及びAgからなる群から選択された1種または2種以上の元素の合計で0.07質量%未満としている。そして、これら特許文献の実施例表1でのMgの含有量は、共通して、最大でも0.02%程度である。また、これらMgを0.02質量%含有する実施例表1では、共通してSnの含有量が0.4質量%であり、2.5×「Mg質量%」+「Sn質量%」が0.45となって、本発明で必須とする0.5%≦2.5×「Mg質量%」+「Sn質量%」≦2.0%の関係から低めに外れる(後述する表1の比較例3に相当する)。 Here, the difference in the composition of the copper alloy between the present invention and the prior art will be described. Patent Document 1 does not contain Mg or B, and Patent Documents 2 to 8 do not contain B. In Patent Documents 2 to 4, Mg is treated as the same impurity as Fe, Ni, Co, Mn, Mg, Cr, Ti, Zr, Ag, and the like, and the total amount of these elements is 0.03% by mass or less. It is regulated. On the other hand, in Patent Documents 5 to 7, Mg, like Fe, Ni, Mn, Mg, Cr, Ti, Zr, and Ag, has the strength, softening resistance, pressure breakdown strength, and heat resistance of the copper alloy. It is treated as an element that improves and refines crystal grains to improve bending workability. However, the Mg content is less than 0.07% by mass in total of one or more elements selected from the group consisting of Fe, Ni, Mn, Mg, Cr, Ti, and Ag. And the content of Mg in the Example Table 1 of these patent documents is about 0.02% at the maximum in common. Moreover, in Example Table 1 containing 0.02% by mass of Mg, the Sn content is 0.4% by mass in common, and 2.5 × “Mg mass%” + “Sn mass%” 0.45, which deviates slightly from the relationship of 0.5% ≦ 2.5 × “Mg mass%” + “Sn mass%” ≦ 2.0%, which is essential in the present invention (see Table 1 described later). Corresponds to Comparative Example 3).
次に、各元素の添加(含有)理由及び組成限定理由などについて説明するが、記載含有量は全て質量%である。 Next, the reason for adding (containing) each element and the reason for limiting the composition will be described.
Sn:0.3〜2.0質量%
Sn(すず、錫)は、室温における伸びを低下させることなく、固溶強化により銅管の引張強さを向上させ、結晶粒の粗大化を抑制させる効果を有する。このため、種々の冷媒を使用する伝熱管の銅合金中に含有させた場合、りん脱酸銅管に比べて管の肉厚を薄くすることが可能になる。
Sn: 0.3-2.0 mass%
Sn (tin, tin) has the effect of improving the tensile strength of the copper tube by solid solution strengthening and reducing the coarsening of crystal grains without reducing the elongation at room temperature. For this reason, when it contains in the copper alloy of the heat exchanger tube which uses a various refrigerant | coolant, it becomes possible to make the wall thickness of a pipe | tube thin compared with a phosphorus deoxidation copper pipe.
ただ、銅合金管のSn含有量が2.0質量%を超えると、鋳塊における凝固偏析が激しくなり、通常の熱間押出及び/又は加工熱処理により偏析が完全に解消しないことがあり、銅合金管の金属組織、機械的性質、曲げ加工性、ろう付け後の組織及び機械的性質が不均一となる。また、押出圧力が高くなり、Sn含有量が2.0質量%以下の銅合金と同一の押出圧力で押出成形するためには、押出温度を上げることが必要になり、それにより押出材の表面酸化が増加し、生産性の低下及び銅合金管の表面欠陥が増加する。このためSn含有量は2.0質量%以下、好ましくは1.20質量%以下とする。 However, if the Sn content of the copper alloy tube exceeds 2.0% by mass, solidification segregation in the ingot becomes severe and segregation may not be completely eliminated by normal hot extrusion and / or processing heat treatment. The metal structure, mechanical properties, bending workability, structure after brazing, and mechanical properties of the alloy pipe become non-uniform. Further, in order to perform extrusion molding at the same extrusion pressure as that of a copper alloy having a Sn content of 2.0% by mass or less, the extrusion temperature needs to be raised, thereby increasing the surface of the extruded material. Oxidation increases, resulting in decreased productivity and increased surface defects in copper alloy tubes. For this reason, Sn content shall be 2.0 mass% or less, Preferably it is 1.20 mass% or less.
一方、Sn含有量が少な過ぎると、固溶強化により銅管の引張強さを向上させることや、前記した十分な強度及び細かい結晶粒径を得ることができなくなる。このため、後述するBを含有する場合は、Snの含有量の下限を0.4質量%以上とする。一方、後述するMgは、Snと同様に、固溶強化能が高く、引張強さを向上させる効果が高い。このため、Mgを含有する場合は、Snの含有量を少なくすることができるため、Snの含有量の下限を0.3質量%以上とする。したがって、Mgを含有する場合は、Sn含有量の範囲は0.3〜2.0質量%の範囲とし、Bを含有する場合は0.4〜2.0質量%の範囲とすることが好ましい。 On the other hand, if the Sn content is too small, the tensile strength of the copper tube cannot be improved by solid solution strengthening, and the above-described sufficient strength and fine crystal grain size cannot be obtained. For this reason, when it contains B mentioned later, the minimum of content of Sn shall be 0.4 mass% or more. On the other hand, Mg, which will be described later, has a high solid-solution strengthening ability and a high effect of improving the tensile strength, similarly to Sn. For this reason, when it contains Mg, since content of Sn can be decreased, the minimum of content of Sn shall be 0.3 mass% or more. Therefore, when Mg is contained, the Sn content range is preferably in the range of 0.3 to 2.0 mass%, and when B is contained, it is preferably in the range of 0.4 to 2.0 mass%. .
P:0.005〜0.1質量%
P(リン、燐)はSnと同様、銅合金管の引張り強さを向上させ、結晶粒の粗大化を抑制させる効果を有する。銅管のP含有量が0.1質量%を超えると、熱間押出時に割れが生じやすくなり、応力腐食割れ感受性が高くなると共に、熱伝導率の低下が大きくなる。一方、P含有量が0.005質量%未満であると、脱酸不足により酸素量が増加してSnの酸化物が発生し、鋳塊の健全性が低下し、銅管として曲げ加工性が低下する。したがって、P含有量の範囲は0.005〜0.1質量%の範囲とする。
P: 0.005 to 0.1% by mass
P (phosphorus), like Sn, has the effect of improving the tensile strength of the copper alloy tube and suppressing the coarsening of crystal grains. If the P content of the copper tube exceeds 0.1% by mass, cracking is likely to occur during hot extrusion, the stress corrosion cracking susceptibility increases, and the thermal conductivity decreases greatly. On the other hand, if the P content is less than 0.005% by mass, the amount of oxygen is increased due to insufficient deoxidation, Sn oxide is generated, the soundness of the ingot is lowered, and bending workability as a copper pipe is reduced. descend. Therefore, the range of P content shall be 0.005-0.1 mass%.
本発明では、これらに加えて、更に、Mg:0.005〜0.5質量%、B:0.001〜0.06質量%のいずれか1種を含有させる。ただ、本発明ではMgとBとを同時には含有させない。すなわち、MgとBとを各々の下限量以上では同時には含有させない。但し、MgとBとを(各々の下限量以上)いずれか含有させる場合には、他方の元素の下限量未満や不純物レベルでの含有は許容し、また、他方の元素の含有量が0質量%であっても良い。これは、MgとBとがともに、Sn、Pと同様に、固溶強化の効果があり、同時の積極的添加や含有では、固溶の限界から、お互いの含有効果が相殺されるからである。 In the present invention, in addition to these, any one of Mg: 0.005 to 0.5 mass% and B: 0.001 to 0.06 mass% is further contained. However, in the present invention, Mg and B are not contained simultaneously. That is, Mg and B are not contained at the same time when the amount is not less than the respective lower limit amounts. However, when containing either Mg or B (more than the respective lower limit amounts), the content of the other element is allowed to be less than the lower limit amount or at the impurity level, and the content of the other element is 0 mass. % May be sufficient. This is because both Mg and B have the effect of solid solution strengthening, like Sn and P, and the simultaneous positive addition and inclusion offset each other's inclusion effect from the limit of solid solution. is there.
Mg:0.005〜0.5質量%
Mg(マグネシウム)は、SnやPよりも酸化傾向の強い元素であり、前記ろう付け処理時の高温での優先的な粒界酸化を抑制する効果を有する。これによって、薄肉化されたSn−P系銅合金管であっても、前記ろう付け処理時に、肉厚に対する脆い酸化層の厚さが大きくならずに抑制され、銅管にひずみが加わった場合でも、脆化割れを抑制でき1.0mm以下に薄肉化されても、耐高温脆化特性に優れたSn−P系銅合金管とすることができる。
Mg: 0.005 to 0.5 mass%
Mg (magnesium) is an element having a stronger oxidation tendency than Sn and P, and has an effect of suppressing preferential grain boundary oxidation at a high temperature during the brazing treatment. As a result, even when the Sn-P-based copper alloy tube is thinned, the thickness of the brittle oxide layer with respect to the wall thickness is not increased during the brazing process, and the copper tube is strained. However, even if embrittlement cracking can be suppressed and the thickness is reduced to 1.0 mm or less, a Sn-P-based copper alloy tube excellent in high temperature embrittlement resistance can be obtained.
Mg含有量が0.005質量%未満の場合、前記粒界酸化の抑制効果が小さく、高温での伸びが小さくなってしまい、銅合金管の800℃の高温引張試験における伸びが25%未満となる。一方、Mg含有量が0.5質量%を超える場合は、粗大なMgリン化物が多数生成し、室温での伸びの方を低下させてしまう。したがって、Mgの含有量は0.005〜0.5質量%の範囲、好ましくは0.02質量%を超え、0.1質量%以下、より好ましくは0.03質量%を超え、0.1質量%以下の範囲とする。 When the Mg content is less than 0.005 mass%, the effect of suppressing the grain boundary oxidation is small, the elongation at high temperature is small, and the elongation in a high temperature tensile test at 800 ° C. of the copper alloy tube is less than 25%. Become. On the other hand, when the Mg content exceeds 0.5% by mass, a large amount of coarse Mg phosphide is generated, and the elongation at room temperature is reduced. Therefore, the Mg content is in the range of 0.005 to 0.5% by mass, preferably more than 0.02% by mass, less than 0.1% by mass, more preferably more than 0.03% by mass, and 0.1%. The range is not more than mass%.
また、Mgは、Snと同様に、固溶強化能が高く、銅合金管の引張り強さを向上させ、結晶粒の粗大化を抑制させる効果も有する。このため、Mgを含有する場合は、Sn含有量との関係で、0.5%≦2.5×「Mg質量%」+「Sn質量%」≦2.0%の関係を満たすものとする。2.5×「Mg質量%」+「Sn質量%」が0.5%よりも小さくなると、MgやSnの固溶強化量が少なすぎるため、十分な強度を得ることができなくなってしまう。また、銅合金管の800℃の高温引張試験における伸びが低くなる。一方、2.5×「Mg質量%」+「Sn質量%」が2.0%よりも大きくなると、MgやSnの固溶強化量が多すぎるために、強度が高くなりすぎ、却って曲げ加工性が低下してしまう。 Mg, like Sn, has a high solid solution strengthening ability, and has the effect of improving the tensile strength of the copper alloy tube and suppressing the coarsening of crystal grains. For this reason, when Mg is contained, the relationship of 0.5% ≦ 2.5 × “Mg mass%” + “Sn mass%” ≦ 2.0% is satisfied in relation to the Sn content. . When 2.5 × “Mg mass%” + “Sn mass%” is smaller than 0.5%, the solid solution strengthening amount of Mg or Sn is too small, and sufficient strength cannot be obtained. Moreover, the elongation in the 800 degreeC high temperature tensile test of a copper alloy pipe | tube becomes low. On the other hand, when 2.5 × “Mg mass%” + “Sn mass%” is greater than 2.0%, the amount of Mg / Sn solid solution strengthening is too large, so that the strength becomes too high and bending is performed instead. The nature will decline.
B:0.001〜0.06質量%
B(ボロン、ホウ素)は、Mg同様、SnやPよりも酸化傾向の強い元素であり、Mgと同じく、前記ろう付け処理時の高温での優先的な粒界酸化を抑制する効果を有する。これによって、薄肉化されたSn−P系銅合金管であっても、前記ろう付け処理時に、肉厚に対する脆い酸化層の厚さが大きくならずに抑制され、銅管にひずみが加わった場合でも、脆化割れを抑制でき1.0mm以下に薄肉化されても、耐高温脆化特性に優れたSn−P系銅合金管とすることができる。
B: 0.001 to 0.06% by mass
B (boron, boron) is an element having a stronger oxidation tendency than Sn and P like Mg, and has the effect of suppressing preferential grain boundary oxidation at a high temperature during the brazing treatment, similarly to Mg. As a result, even when the Sn-P-based copper alloy tube is thinned, the thickness of the brittle oxide layer with respect to the wall thickness is not increased during the brazing process, and the copper tube is strained. However, even if embrittlement cracking can be suppressed and the thickness is reduced to 1.0 mm or less, a Sn-P-based copper alloy tube excellent in high temperature embrittlement resistance can be obtained.
B含有量が0.001質量%未満の場合、粒界酸化の抑制効果が小さく、前記高温での伸びが小さくなってしまい、銅合金管の800℃の高温引張試験における伸びが25%未満となる。またB含有量が0.06質量%を超えると、鋳塊における凝固偏析が激しくなり、通常の熱間押出及び/又は加工熱処理により偏析が完全に解消しないことが起こる。このため、銅合金管の金属組織、機械的性質、曲げ加工性、ろう付け後の組織及び機械的性質が、部位によって不均一となる問題が生じる。 When the B content is less than 0.001% by mass, the effect of suppressing grain boundary oxidation is small, the elongation at the high temperature is small, and the elongation in a high-temperature tensile test at 800 ° C. of the copper alloy tube is less than 25%. Become. On the other hand, if the B content exceeds 0.06% by mass, solidification segregation in the ingot becomes violent, and segregation may not be completely eliminated by normal hot extrusion and / or processing heat treatment. For this reason, there arises a problem that the metal structure, mechanical properties, bending workability, structure after brazing, and mechanical properties of the copper alloy tube are not uniform depending on the part.
また、BはSn、Mg、Pと同様、銅合金管の引張り強さを向上させ、結晶粒の粗大化を抑制させる効果を有する。この効果を発揮させるためには、Bを含有する場合に、Sn含有量との関係で、0.5%≦「B質量%」+「Sn質量%」≦2.0%を満たすよう制御することが好ましい。「B質量%」+「Sn質量%」が0.5%よりも小さくなると、BやSnの固溶強化量が少なすぎるため、十分な強度を得ることができなくなってしまう。一方、「B質量%」+「Sn質量%」が2.0%よりも大きくなると、BやSnの固溶強化量が多すぎるために、強度が高くなりすぎ、却って曲げ加工性が低下してしまう。 B, like Sn, Mg and P, has the effect of improving the tensile strength of the copper alloy tube and suppressing the coarsening of the crystal grains. In order to exert this effect, when B is contained, control is performed so as to satisfy 0.5% ≦ “B mass%” + “Sn mass%” ≦ 2.0% in relation to the Sn content. It is preferable. When “B mass%” + “Sn mass%” is smaller than 0.5%, the amount of solid solution strengthening of B or Sn is too small, and sufficient strength cannot be obtained. On the other hand, when “B mass%” + “Sn mass%” is larger than 2.0%, the amount of solid solution strengthening of B and Sn is too large, so that the strength becomes too high, and the bending workability decreases. End up.
その他の元素:
その他の元素は不純物であり、特に薄肉化されたSn−P系銅管の破壊強度を向上させるために、含有量は極力少ない方が好ましい。ただ、これら不純物を低減するための、地金溶解原料使用のコストや、溶解、鋳造での精錬コストとの兼ね合いもあり、以下に、現実的な許容量(上限量)を示す。Zn、Fe、Ni、Mn、Cr、Ti、Zr及びAgなどは合計で1.0質量%までの含有は許容する。Sは0.005質量%までの含有は許容する。As、Bi、Sb、Pb、Se、Te等は合計で0.0015質量%までの含有は許容する。Oは0.005質量%までの含有は許容する。Hは0.0002質量%までの含有は許容する。
Other elements:
Other elements are impurities, and the content is preferably as small as possible in order to improve the breaking strength of the thin Sn-P copper pipe. However, in order to reduce these impurities, there is a trade-off between the cost of using a raw metal melting raw material and the refining cost in melting and casting, and the practical allowable amount (upper limit amount) is shown below. Zn, Fe, Ni, Mn, Cr, Ti, Zr, Ag, etc. are allowed to contain up to 1.0% by mass in total. S is allowed to contain up to 0.005% by mass. As, Bi, Sb, Pb, Se, Te and the like are allowed to contain up to 0.0015% by mass in total. O is allowed to be contained up to 0.005% by mass. H is allowed to contain up to 0.0002% by mass.
銅管結晶粒組織:
銅管組織において結晶粒径が小さいほど、破壊強度と曲げ加工性バランスが向上することが知られている。本発明でも、この機構を利用して、銅合金管の平均結晶粒径を微細化する。すなわち、後述するSEM−EBSP法による測定結果で、Sn−P系銅合金管の軸方向に平行な断面における前記平均結晶粒径を20μm以下に微細化し、破壊強度と曲げ加工性とのバランスを向上させる。
Copper tube grain structure:
It is known that the smaller the crystal grain size in the copper tube structure, the better the fracture strength and the bending workability balance. Also in the present invention, this mechanism is utilized to refine the average crystal grain size of the copper alloy tube. That is, in the measurement result by the SEM-EBSP method described later, the average crystal grain size in the cross section parallel to the axial direction of the Sn-P-based copper alloy tube is refined to 20 μm or less, and the balance between fracture strength and bending workability is achieved. Improve.
因みに、銅管の厚みが比較的厚い場合には、平均結晶粒径は、破壊強度と曲げ加工性バランスにあまり影響ない。しかし、軽量化、薄肉化の要求により、伝熱管の厚みが特に1.0mm以下に薄肉化された場合には、この結晶粒径の大きさの破壊強度と曲げ加工性バランスへの影響が著しく大きくなる。平均結晶粒径が前記上限を超えて大き過ぎると、伝熱管に加わる引張力によって亀裂が発生する際の「ひずみの集中」を避けることができず、伝熱管に亀裂が生じやすくなる。このため、前記した運転圧力が高い代替冷媒を用いた熱交換器用銅管を使用したときの信頼性が低下する。また、結晶粒径が粗大化すると、銅管を曲げ加工したときに、曲げ部に割れが発生しやすくなる問題も生じる。なお、結晶粒微細化の効果の点からは、前記平均結晶粒径は小さい程良いが、製造上の条件等にもよるが2〜3μm程度までの微細化も考えられる。 Incidentally, when the thickness of the copper tube is relatively thick, the average crystal grain size has little influence on the fracture strength and the bending workability balance. However, when the thickness of the heat transfer tube is reduced to 1.0 mm or less due to demands for weight reduction and thinning, the influence of the crystal grain size on the fracture strength and bending workability balance is significant. growing. When the average crystal grain size is too large exceeding the upper limit, “strain concentration” when cracks are generated by the tensile force applied to the heat transfer tubes cannot be avoided, and cracks tend to occur in the heat transfer tubes. For this reason, the reliability when the copper tube for heat exchangers using the above-described alternative refrigerant having a high operating pressure is lowered. Moreover, when the crystal grain size becomes coarse, there is a problem that cracks are likely to occur in the bent portion when the copper tube is bent. In addition, from the viewpoint of the effect of crystal grain refinement, the average crystal grain size is preferably as small as possible. However, depending on manufacturing conditions, etc., refinement to about 2 to 3 μm is also conceivable.
更に、銅管が熱交換器に加工されたとき、800℃以上の高温にさらされる、ろう付けによる熱影響を受けて、伝熱管の加熱された部分の結晶粒径は必ず粗大化する。これに対して、予め銅管の平均結晶粒径を前記した範囲に微細化させていないと、粗大化によって平均結晶粒径が100μmを超える可能性が高くなるり、ろう付け部において耐圧強度の低下が大きくなり、耐軟化性が低下する。 Furthermore, when the copper tube is processed into a heat exchanger, the crystal grain size of the heated portion of the heat transfer tube is necessarily coarsened due to the heat effect of brazing exposed to a high temperature of 800 ° C. or higher. On the other hand, if the average crystal grain size of the copper tube is not refined in the above-mentioned range in advance, the average crystal grain size is likely to exceed 100 μm due to coarsening, or the pressure strength at the brazed portion is high. Decrease increases and softening resistance decreases.
結晶粒の制御方法:
本発明で規定するように銅管組織の結晶粒を制御するためには、押出素管の抽伸加工途中で、通常は行わない、中間焼鈍を入れて、この中間焼鈍により一度再結晶させ、結晶粒径を小さくしてから、最終焼鈍すれば良い。一般に、熱間押出後の結晶粒径は数10〜100μmと大きい。このため最終焼鈍時の核生成サイトとなる結晶粒界が少なく、結晶粒径が大きくなってしまう。これに対して、本発明のように、抽伸の途中で中間焼鈍を行い再結晶することで、最終焼鈍時の核生成サイトとなる結晶粒界が増加し、その結果、最終焼鈍後の結晶粒径を小さくできる。本発明によれば、このように、1.0mm以下に薄肉化されても、耐高温脆化特性を向上させたSn−P系銅合金管を製造しやすい利点もある。
Grain control method:
In order to control the crystal grain of the copper pipe structure as defined in the present invention, in the middle of the drawing process of the extruded element pipe, it is not usually performed, and intermediate annealing is performed, and recrystallization is performed once by this intermediate annealing. The final annealing may be performed after reducing the particle size. Generally, the crystal grain size after hot extrusion is as large as several tens to 100 μm. For this reason, there are few crystal grain boundaries used as the nucleation site at the time of final annealing, and the crystal grain size becomes large. On the other hand, as in the present invention, by performing intermediate annealing in the middle of drawing and recrystallizing, the grain boundaries that become nucleation sites during final annealing increase, and as a result, the crystal grains after final annealing The diameter can be reduced. According to the present invention, even if the thickness is reduced to 1.0 mm or less as described above, there is an advantage that it is easy to manufacture an Sn-P-based copper alloy tube with improved high temperature embrittlement resistance.
平均結晶粒径の測定方法:
前記平均結晶粒径は、電界放出型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FESEM)に、後方散乱電子回折像[EBSP: Electron Back Scattering(Scattered) Pattern]システムを搭載した結晶方位解析法を用いて、各々測定する。これらの測定位置は、銅管の長手方向での銅管の材質は均一であるのでいずれの部位の測定でも差し支えない。ただ、製造される銅管の長手方向の両端部だけは避けることが好ましい。
Method for measuring average grain size:
The average crystal grain size is determined using a crystal orientation analysis method in which a field emission scanning electron microscope (FESEM) is equipped with an EBSP (Electron Back Scattering (Scattered) Pattern) system. And measure each. Since the material of the copper tube in the longitudinal direction of the copper tube is uniform, these measurement positions may be measured at any part. However, it is preferable to avoid only both ends in the longitudinal direction of the copper pipe to be manufactured.
上記EBSP法は、FESEM の鏡筒内にセットした試料に電子線を照射してスクリーン上にEBSPを投影する。これを高感度カメラで撮影して、コンピュータに画像として取り込む。コンピュータでは、この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は3次元オイラー角として、位置座標(x、y)などとともに記録される。このプロセスが全測定点に対して自動的に行なわれるので、測定終了時には数万〜数十万点の結晶方位データが得られる。 In the EBSP method, an electron beam is irradiated onto a sample set in a FESEM column and the EBSP is projected onto a screen. This is taken with a high-sensitivity camera and captured as an image on a computer. In the computer, the orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. The calculated crystal orientation is recorded as a three-dimensional Euler angle together with position coordinates (x, y) and the like. Since this process is automatically performed for all measurement points, tens of thousands to hundreds of thousands of crystal orientation data can be obtained at the end of measurement.
ここで、通常の銅合金の圧延板の場合、主に、Cube方位、Goss方位、Brass方位、Copper方位、S方位等と呼ばれる多くの方位因子からなる集合組織を形成し、それらに応じた結晶面が存在する。これらの事実は、例えば、長島晋一編著、「集合組織」(丸善株式会社刊)や軽金属学会「軽金属」解説Vol.43、1993、P285-293などの記載されている。本発明銅管は押出・圧延・抽伸によって製造されるが、この場合も、前記圧延板の集合組織と同様に、押出素管の押出面と押出方向(押出素管を圧延加工する場合は圧延面と圧延方向)で表され、押出面は{ABC}で表現され、押出方向は<DEF>で表現される。 Here, in the case of a normal rolled sheet of copper alloy, a texture composed mainly of many orientation factors called Cube orientation, Goss orientation, Brass orientation, Copper orientation, S orientation, etc. is formed, and crystals corresponding to them are formed. There are faces. These facts are described in, for example, edited by Shinichi Nagashima, “Aggregate” (published by Maruzen Co., Ltd.) and “Light Metal”, Vol. 43, 1993, P285-293, published by the Japan Institute of Light Metals. The copper pipe of the present invention is manufactured by extrusion / rolling / drawing. In this case as well, the extrusion surface and the extrusion direction of the extruded element pipe (in the case of rolling the extruded element pipe, rolling is performed) as in the texture of the rolled plate. The extrusion surface is represented by {ABC}, and the extrusion direction is represented by <DEF>.
本発明においては、基本的に、これらの結晶面から±15°以内の方位のずれのものは同一の結晶面(方位因子)に属するものとし、また、隣り合う結晶粒の方位差が5°以上の結晶粒の境界を結晶粒界と定義する。 その上で、本発明においては、測定エリア、管軸方向1000μm×管周方向800μmに対して1.0μmのピッチで電子線を照射して、この広範な測定範囲(領域) を各々測定する。その上で、上記結晶方位解析法により測定した結晶粒の数をn、それぞれの測定した結晶粒径をxとした時、上記平均結晶粒径を(Σx)/nで算出する。 In the present invention, basically, those whose orientations deviate within ± 15 ° from these crystal planes belong to the same crystal plane (orientation factor), and the orientation difference between adjacent crystal grains is 5 °. The above crystal grain boundary is defined as a crystal grain boundary. In addition, in the present invention, an electron beam is irradiated at a pitch of 1.0 μm with respect to a measurement area, tube axis direction 1000 μm × tube circumferential direction 800 μm, and each of these wide measurement ranges (regions) is measured. Then, when the number of crystal grains measured by the crystal orientation analysis method is n and each measured crystal grain size is x, the average crystal grain size is calculated as (Σx) / n.
銅管の製造方法:
本発明銅管の製造方法について、平滑管の場合を例として以下に説明する。本発明のSn−P系銅管は、基本的な工程自体は常法により製造可能であるが、銅管の結晶粒組織を微細化するためには、抽伸工程において中間焼鈍を特に施す必要がある。以下に、各工程を具体的に説明する。
Copper tube manufacturing method:
The method for producing a copper tube of the present invention will be described below by taking the case of a smooth tube as an example. The Sn-P-based copper pipe of the present invention can be manufactured by a conventional method in the basic process itself, but in order to refine the crystal grain structure of the copper pipe, it is necessary to perform intermediate annealing particularly in the drawing process. is there. Below, each process is demonstrated concretely.
先ず、原料の電気銅を木炭被覆の状態で溶解し、銅が溶解した後、所定のSn−P系銅合金組成となるように、Sn、Mg、Bなどの合金元素を所定量添加する。この際、脱酸を兼ねてCu−15質量%P中間合金としてPを添加することが好ましい。また、Sn及びCu−P母合金の替わりに、Cu−Sn−Pの母合金を使用することもできる。これらの成分調整が終了した後、半連続鋳造により所定の寸法のビレットを作製する。得られたビレットを加熱炉で加熱し、均質化処理を行なう。なお、熱間押出前に、ビレットを750乃至950℃に1分乃至2時間程度保持して均質化による偏析改善を行うことが望ましい。 First, raw electrolytic copper is dissolved in a charcoal-coated state, and after the copper is dissolved, a predetermined amount of an alloying element such as Sn, Mg, or B is added so that a predetermined Sn-P-based copper alloy composition is obtained. At this time, it is preferable to add P as a Cu-15 mass% P intermediate alloy also for deoxidation. Further, instead of Sn and Cu—P master alloy, a Cu—Sn—P master alloy can also be used. After these component adjustments are completed, billets having predetermined dimensions are produced by semi-continuous casting. The obtained billet is heated in a heating furnace and homogenized. Before hot extrusion, it is desirable to improve segregation by homogenization by holding the billet at 750 to 950 ° C. for about 1 minute to 2 hours.
その後、ビレットにピアシングによる穿孔加工を行い、750乃至950℃で熱間押出を行う。この際、Sn−P系銅管のSnの偏析解消や製品管における組織の微細化の達成が必要である。そのために、Sn−P系銅管の熱間押出による断面減少率([穿孔されたビレットのドーナツ状の面積−熱間押出後の素管の断面積]/[穿孔されたビレットのドーナツ状の面積]×100%)を88%以上、望ましくは93%以上とする。 Thereafter, the billet is perforated by piercing and hot extruded at 750 to 950 ° C. At this time, it is necessary to eliminate Sn segregation in the Sn—P based copper pipe and to refine the structure of the product pipe. For this purpose, the reduction rate of the cross-section of the Sn-P-based copper tube by hot extrusion ([perforated billet donut area-cross-sectional area of the base tube after hot extrusion] / [perforated billet donut shape] Area] × 100%) is 88% or more, desirably 93% or more.
更に熱間押出後の素管を水冷等の方法により、表面温度が300℃になるまでの冷却速度が10℃/秒以上、望ましくは15℃/秒以上、更に望ましくは20℃/秒以上となるように冷却することが好ましい。 Furthermore, the cooling rate until the surface temperature reaches 300 ° C. is 10 ° C./second or more, preferably 15 ° C./second or more, more preferably 20 ° C./second or more, by a method such as water cooling. It is preferable to cool so that.
次に、押出素管に圧延加工を行ない、外径と肉厚を低減させる。このときの加工率を断面減少率で92%以下とすることにより、圧延時の製品不良を低減できる。この圧延素管に抽伸加工を行なって所定の寸法および肉厚の素管を製造する。この抽伸加工の際に、肉厚を1.0mm以下に薄肉化する場合には、合計加工率を、断面減少率で95%以上とする。この際、抽伸加工は通常複数台の抽伸機を用いて行うが、各抽伸機による加工率(断面減少率)を35%以下とすることにより、素管における表面欠陥及び内部割れを低減できる。 Next, the extruded element tube is rolled to reduce the outer diameter and thickness. By setting the processing rate at this time to 92% or less in terms of the cross-sectional reduction rate, product defects during rolling can be reduced. The rolling blank is subjected to drawing to produce a blank having a predetermined size and thickness. When the thickness is reduced to 1.0 mm or less during the drawing process, the total processing rate is set to 95% or more in terms of the cross-sectional reduction rate. At this time, the drawing process is usually performed using a plurality of drawing machines. By setting the processing rate (cross-sectional reduction rate) by each drawing machine to 35% or less, surface defects and internal cracks in the raw pipe can be reduced.
この抽伸加工の途中あるいは後で、中間焼鈍を400℃以上、700℃以下の温度範囲で2分〜1時間行う。中間焼鈍温度が400℃よりも低いと、中間焼鈍工程で再結晶が生じず、結晶粒径が大きいまま最終焼鈍工程に持ち越される。このため、従来のSn−P系銅合金管同様に、平均結晶粒径が20μm以上となりやすく、破壊圧力が低くなる。 During or after the drawing process, intermediate annealing is performed at a temperature range of 400 ° C. to 700 ° C. for 2 minutes to 1 hour. When the intermediate annealing temperature is lower than 400 ° C., recrystallization does not occur in the intermediate annealing step, and the final annealing step is carried over with the crystal grain size being large. For this reason, like the conventional Sn-P-based copper alloy tube, the average crystal grain size tends to be 20 μm or more, and the fracture pressure is lowered.
一方、中間焼鈍温度が700℃よりも高いと、中間焼鈍後の結晶粒径が大きくなってしまい、結晶粒径が大きいまま最終焼鈍工程に持ち越される。このため、従来のSn−P系銅合金管同様に、最終焼鈍工程で生成する結晶粒は、比較的大きくなりやすく、破壊圧力が低くなる。 On the other hand, if the intermediate annealing temperature is higher than 700 ° C., the crystal grain size after the intermediate annealing becomes large, and it is carried over to the final annealing process while the crystal grain size remains large. For this reason, like the conventional Sn-P system copper alloy pipe, the crystal grain produced | generated at the last annealing process becomes comparatively large easily, and a fracture pressure becomes low.
この中間焼鈍後、更に、抽伸加工を行って平滑管を製作するが、この中間焼鈍後の断面減面率は35%以上80%以下とする。減面率が35%よりも低いと、蓄積ひずみ量が小さすぎ、再結晶核の生成に必要な駆動力を高められない。このため、その後の最終焼鈍で、再結晶核の生成によるひずみのない等軸な結晶粒が生成しにくくなり、伸長粒となりやく、耐軟化性が劣ることとなる。一方、減面率が80%を超えて高すぎると、最終の銅管の外径が小さくなりすぎ、また銅管の肉厚が薄くなりすぎてしまい、冷媒の内圧に耐えられなくなってしまう。 After this intermediate annealing, drawing is further performed to manufacture a smooth tube. The cross-sectional area reduction ratio after this intermediate annealing is set to 35% or more and 80% or less. If the area reduction is lower than 35%, the amount of accumulated strain is too small to increase the driving force necessary for generating recrystallized nuclei. For this reason, in the subsequent final annealing, equiaxed crystal grains free from distortion due to the formation of recrystallized nuclei are hardly generated, tend to be elongated grains, and softening resistance is inferior. On the other hand, if the area reduction rate exceeds 80% and is too high, the outer diameter of the final copper tube becomes too small, and the thickness of the copper tube becomes too thin, so that it cannot withstand the internal pressure of the refrigerant.
また、この中間焼鈍の昇温の際に、300〜400℃の範囲の昇温速度は150℃/分以上に速めることが好ましい。この温度範囲では、回復による転位密度の減少が顕著であり、昇温速度を大きくして、なるべく回復を生じさせないことが好ましい。一方、400℃以上では再結晶核の生成が生じ始めるため、この温度以上では、昇温速度が結晶粒のバラツキに与える影響は小さく、速める必要はない。中間焼鈍の使用加熱炉はインダクションヒーターを用い、設定温度を高温にし、保持時間を短時間とすることで、前記300〜400℃の範囲の昇温速度を大きくできる。 Moreover, it is preferable that the temperature increase rate in the range of 300 to 400 ° C. is increased to 150 ° C./min or more during the temperature increase of the intermediate annealing. In this temperature range, the decrease in dislocation density due to recovery is remarkable, and it is preferable to increase the rate of temperature rise so that recovery does not occur as much as possible. On the other hand, since recrystallization nuclei start to be generated at temperatures higher than 400 ° C., the temperature increase rate has little influence on the variation of crystal grains at temperatures higher than this, and it is not necessary to increase the temperature. The heating furnace used for the intermediate annealing can use an induction heater, increase the set temperature to a high temperature, and shorten the holding time to increase the heating rate in the range of 300 to 400 ° C.
この抽伸工程の後、抽伸素管に最終の焼鈍処理を行う。銅管を連続的に焼鈍するには、銅管コイル等の焼鈍に通常使用されるローラーハース炉、又は高周波誘導コイルに通電しながら、抽伸素管を前記コイル内に通す、高周波誘導コイルによる加熱を利用することができる。 After this drawing process, a final annealing process is performed on the drawing element tube. In order to continuously anneal a copper pipe, heating by a high-frequency induction coil is performed by passing a drawing element pipe through the coil while energizing a roller hearth furnace or a high-frequency induction coil normally used for annealing a copper pipe coil or the like. Can be used.
この最終焼鈍では、抽伸素管の実体温度が350乃至700℃となり、その温度で抽伸素管が1分乃至120分間程度加熱されるように焼鈍することが望ましい。抽伸素管の実体温度が350℃より低いと完全な再結晶組織にならず、繊維状の加工組織が残存し、需要家における曲げ加工が困難になる。また、700℃を超える温度では、結晶粒が粗大化し、管の曲げ加工性が却って低下してしまう。したがって、抽伸管の実体温度が350乃至700℃の範囲で焼鈍することが望ましい。 In this final annealing, it is desirable that the drawing element tube has an actual temperature of 350 to 700 ° C., and the drawing element tube is preferably annealed at that temperature to be heated for about 1 to 120 minutes. When the body temperature of the drawn element tube is lower than 350 ° C., a complete recrystallized structure is not formed, and a fibrous processed structure remains, which makes it difficult for a customer to perform bending. Moreover, when the temperature exceeds 700 ° C., the crystal grains become coarse, and the bending workability of the tube is lowered. Therefore, it is desirable to anneal the drawing tube at a solid temperature of 350 to 700 ° C.
また、この温度範囲における加熱時間が1分より短いと、完全な再結晶組織にならないため、前記した問題が発生する。また、120分を超えて焼鈍を行っても、結晶粒径に変化がなく、焼鈍の効果は飽和してしまうため、効率が悪い。このため、前記温度範囲における加熱時間は1分乃至120分が適当である。 In addition, when the heating time in this temperature range is shorter than 1 minute, a complete recrystallized structure is not obtained, and thus the above-described problem occurs. Further, even if annealing is performed for more than 120 minutes, the crystal grain size does not change, and the effect of annealing is saturated. For this reason, the heating time in the temperature range is suitably 1 minute to 120 minutes.
以上が平滑管の製造方法であるが、このように最終焼鈍した平滑管に、必要に応じて各種加工率の抽伸加工を行い、引張り強さを向上させた加工管としてもよい。内面溝付管の場合は平滑管に溝付転造加工を行い、内面溝付管を製造した後、更に最終の焼鈍を行う。また、このように焼鈍した内面溝付管に、必要に応じて軽加工率の抽伸加工を行い、引張り強さを向上させてもよい。 The smooth tube manufacturing method has been described above. However, the smooth annealed smooth tube may be subjected to drawing processing at various processing rates as necessary to obtain a processed tube with improved tensile strength. In the case of an internally grooved tube, the smooth tube is subjected to grooved rolling to produce an internally grooved tube, followed by final annealing. Further, the annealed inner surface grooved tube may be subjected to a drawing process at a light processing rate as necessary to improve the tensile strength.
以下、本発明の実施例について説明する。表1に示す種々の化学組成や、表2に示す製造条件(抽伸における中間焼鈍の有無)とし、結晶粒組織を異なせた種々のSn−P系銅管を、平滑管として製造した。 Examples of the present invention will be described below. Various Sn-P-based copper tubes with different crystal grain structures were manufactured as smooth tubes with various chemical compositions shown in Table 1 and production conditions shown in Table 2 (whether or not intermediate annealing in drawing).
これらの銅合金管の軸方向に平行な断面における平均結晶粒径、引張強さ、破壊強度、曲げ加工性、高温脆化特性について測定、評価した。これらの結果も表1に示す。これらSn−P系銅管(平滑管)の具体的な製造方法や測定、評価方法は以下の通りである。 The average crystal grain size, tensile strength, fracture strength, bending workability, and high temperature embrittlement characteristics in the cross section parallel to the axial direction of these copper alloy tubes were measured and evaluated. These results are also shown in Table 1. Specific manufacturing methods, measurements, and evaluation methods for these Sn-P-based copper tubes (smooth tubes) are as follows.
(平滑管の製造条件)
溶解:
(a)電気銅を原料として、Sn−P系銅管は溶湯中に所定のSnを添加し、更に必要に応じて選択的な添加元素を添加した後、Cu−P母合金を添加することにより、所定組成の溶湯を作製した。これら溶製した銅合金の成分組成を、表1に示す銅管の成分組成とした。なお、表1において、発明例、比較例の各例ともに、共通して、銅管のZn、Fe、Ni、Mn、Cr、Ti、Zr及びAgの含有量は合計でも0質量%、S含有量は0.005質量%未満、As、Bi、Sb、Pb、Se、Teの合計含有量(総量)は0質量%、Oの含有量は0.003質量%未満、Hの含有量は0.0001質量%未満であった。
(Smooth tube manufacturing conditions)
Dissolution:
(A) Using electrolytic copper as a raw material, Sn—P-based copper pipe is to add a predetermined Sn to the molten metal, and optionally add additional additive elements, and then add a Cu—P master alloy. Thus, a molten metal having a predetermined composition was produced. The component compositions of these melted copper alloys were the component compositions of the copper pipe shown in Table 1. In Table 1, the contents of Zn, Fe, Ni, Mn, Cr, Ti, Zr, and Ag in the copper tube are 0% by mass and S is contained in common in both the inventive examples and the comparative examples. The amount is less than 0.005% by mass, the total content (total amount) of As, Bi, Sb, Pb, Se, Te is 0% by mass, the O content is less than 0.003% by mass, and the H content is 0. It was less than 0.0001% by mass.
鋳造:
(b)鋳造温度1200℃で、直径300mm×長さ6500mmの鋳塊を半連続鋳造し、得られた鋳塊から、長さ450mmのビレットを切り出した。
casting:
(B) An ingot having a diameter of 300 mm and a length of 6500 mm was semi-continuously cast at a casting temperature of 1200 ° C., and a billet having a length of 450 mm was cut out from the obtained ingot.
熱間押出:
(c)このビレットをビレットヒーターで650℃に加熱した後、加熱炉(インダクションヒーター)で950℃に加熱し、950℃に到達した後2分経過後、加熱炉から取り出し、熱間押出機で、ビレット中心に直径80mmのピアシング加工を施した後、直ちに(遅滞なく)、同じ熱間押出機で、外径96mm、肉厚9.5mmの押出素管を作製した(断面減少率:96.6%)。熱間押出後の押出素管を水冷して300℃まで平均冷却速度を40℃/秒とした。
Hot extrusion:
(C) This billet is heated to 650 ° C. with a billet heater, then heated to 950 ° C. with a heating furnace (induction heater), and after reaching 950 ° C., 2 minutes have passed and removed from the heating furnace, with a hot extruder After the piercing process with a diameter of 80 mm at the center of the billet, immediately (without delay), an extruded element tube having an outer diameter of 96 mm and a wall thickness of 9.5 mm was produced with the same hot extruder (cross-sectional reduction rate: 96. 6%). The extruded tube after hot extrusion was water-cooled to an average cooling rate of 40 ° C./second up to 300 ° C.
圧延、抽伸(前半):
(d)押出素管を圧延して、外径35mm、肉厚2.3mmの圧延素管を作製し、圧延素管を、1回の抽伸工程における断面減少率が35%以下になるように、引き抜き抽伸加工を行い、外径22mm、肉厚1.2mm〜外径10mm、肉厚0.91mmとした。これに続く中間焼鈍までの減面率は80〜97%である。
Rolling, drawing (first half):
(D) The extruded element tube is rolled to produce a rolled element tube having an outer diameter of 35 mm and a wall thickness of 2.3 mm, and the rolling element tube has a cross-sectional reduction rate of 35% or less in one drawing process. Then, drawing and drawing were performed to obtain an outer diameter of 22 mm, a wall thickness of 1.2 mm to an outer diameter of 10 mm, and a wall thickness of 0.91 mm. The area reduction rate until the subsequent intermediate annealing is 80 to 97%.
中間焼鈍:
(e)その後、中間焼鈍として、加熱炉(インダクションヒーター)で、300〜400℃の範囲の昇温速度を150℃/分以上として、表1に各々示す温度に加熱し、この各温度にて、共通して30分保持し、冷却帯を通過させて室温まで徐冷し、供試材とした。
Intermediate annealing:
(E) Thereafter, as intermediate annealing, heating was performed at a temperature shown in Table 1 at a temperature rising rate in the range of 300 to 400 ° C. at 150 ° C./min or more in a heating furnace (induction heater). The sample was held in common for 30 minutes, passed through a cooling zone and gradually cooled to room temperature, and used as a test material.
抽伸(後半):
(f)この中間焼鈍の後、引き続いて、引き抜き抽伸加工を行い、外径9.52mm、肉厚0.80mmとし、この後半の抽伸加工における断面減面率を種々変更した銅管を作成した。このときの断面減面率(%)を表1に示す。
Drawing (second half):
(F) After this intermediate annealing, the drawing drawing process was subsequently performed to obtain an outer diameter of 9.52 mm and a wall thickness of 0.80 mm, and copper pipes with various changes in the cross-sectional area reduction ratio in the latter drawing process were created. . Table 1 shows the cross-sectional area reduction ratio (%).
最終焼鈍:
(g)最終焼鈍として、前記ローラーハース炉によって、還元性ガス雰囲気中で、前記抽伸管を500℃×60分(平均昇温速度は共通して12℃/分)にて焼鈍し、その後水冷して供試材とした。
Final annealing:
(G) As the final annealing, the drawing tube was annealed in a reducing gas atmosphere by the roller hearth furnace at 500 ° C. for 60 minutes (the average heating rate was 12 ° C./minute in common), and then water-cooled Thus, a test material was obtained.
(h)これら製造した銅管(外径9.52mm、肉厚0.80mm)の平均結晶粒径、引張強さ、破壊強度、曲げ加工性、耐高温脆化特性などの銅管特性を測定した。 (H) Measure copper tube properties such as average crystal grain size, tensile strength, fracture strength, bending workability, and high temperature embrittlement resistance of these manufactured copper tubes (outer diameter 9.52 mm, wall thickness 0.80 mm) did.
(結晶粒組織)
前記製造した銅管中央部の軸方向に平行な断面組織における平均結晶粒径を、SEMにEBSPシステムを搭載した前記結晶方位解析法により測定した。測定範囲は、銅管肉厚方向0.80mm×管の軸方向1.5mmの矩形領域とした。
(Grain structure)
The average crystal grain size in the cross-sectional structure parallel to the axial direction of the central part of the manufactured copper tube was measured by the crystal orientation analysis method in which an EBSP system was mounted on an SEM. The measurement range was a rectangular region of 0.80 mm in the copper tube thickness direction × 1.5 mm in the axial direction of the tube.
(引張試験)
前記供試材の引張試験は、JIS11号試験片を用いて、5882型インストロン社製万能試験機により、室温、試験速度10.0mm/min、GL=50mmの条件で、引張強さ(MPa)を測定した。同一条件の試験片を3本試験し、それらの平均値を採用した。
(Tensile test)
A tensile test (MPa) was performed on the specimen under the conditions of room temperature, test speed 10.0 mm / min, GL = 50 mm, using a JIS No. 11 test piece and a 5882 type Instron universal testing machine. ) Was measured. Three test pieces under the same conditions were tested, and the average value thereof was adopted.
(破壊強度)
前記製造した銅管から500mmの長さの銅管を試験用に採取して、銅管の一方の端部を金属製治具(ボルト)にて耐圧的に閉塞した。そして、もう一方の開放側端部から、ポンプにて管内に負荷される水圧を徐々に高めていき(昇圧速度:1.5MPa/秒程度)、完全に管が破裂する際の水圧(MPa)を、ブルドン管式圧力計で読み取り、伝熱管の破壊強度(耐圧強度、耐圧性能、破壊圧力)とした。この試験を同一銅管に対して5回(試験管5個に対して)行い、各水圧(MPa)の平均値を室温での破壊強度とした。また破壊強度から銅管の肉厚や外径の影響を取り除いた換算応力を、破壊圧力として求めた。ここで換算応力σは、破壊強度をP、銅管の外径をD、銅管の肉厚をtとしたとき下記の式から求めた。
σ=P×(D−0.8t)/(2×t)
(destruction strength)
A copper tube having a length of 500 mm was taken from the manufactured copper tube for testing, and one end of the copper tube was closed in a pressure-resistant manner with a metal jig (bolt). Then, from the other open side end, the water pressure loaded into the pipe by the pump is gradually increased (pressure increase rate: about 1.5 MPa / second), and the water pressure (MPa) when the pipe completely ruptures. Was read with a Bourdon tube pressure gauge and used as the breaking strength (pressure resistance, pressure resistance, breaking pressure) of the heat transfer tube. This test was performed five times on the same copper tube (for five test tubes), and the average value of each water pressure (MPa) was defined as the fracture strength at room temperature. Moreover, the conversion stress which remove | eliminated the influence of the thickness and outer diameter of a copper pipe from fracture strength was calculated | required as fracture pressure. Here, the converted stress σ was obtained from the following equation when the fracture strength was P, the outer diameter of the copper tube was D, and the thickness of the copper tube was t.
σ = P × (D−0.8t) / (2 × t)
(曲げ加工試験)
熱交換器の伝熱部を模擬して、前記製造した銅合金管を、各例について10本づつ、ピッチが30mmのU字形に曲げ加工した。この際、銅合金管の曲げ部における割れ、亀裂の発生を目視にて調査し、10本とも割れ、亀裂が全くなく曲げ加工できたものを、曲げ加工性が良好な○として評価した。また、10本とも割れ、亀裂は無いが、しわが発生しており、曲げ半径がより小さく、曲げ加工条件を厳しくした場合には、割れ、亀裂が発生する可能性があるものを、曲げ加工性が劣る△として評価した。更に、曲げ加工した10本の中に、割れ、亀裂が1本でも発生したものを曲げ加工性が不良な×として評価した。
(Bending test)
Simulating the heat transfer section of the heat exchanger, the manufactured copper alloy tubes were bent into 10 U-shapes with a pitch of 30 mm for each example. At this time, the occurrence of cracks and cracks in the bent portion of the copper alloy tube was visually examined, and all the ten pieces that could be bent without any cracks or cracks were evaluated as ◯ having good bending workability. In addition, there are no cracks or cracks in all of the ten pieces, but wrinkles are generated, the bending radius is smaller, and when bending conditions are strict, bending and cracking may occur. It evaluated as (triangle | delta) inferior in property. Furthermore, out of 10 bent pieces, those in which even one crack or crack occurred were evaluated as x with poor bending workability.
(耐軟化性)
前記製造した銅合金管を800℃の高温で引張試験して、破断伸び(%)を測定し、1mm以下に薄肉化された銅合金管の前記ろう付け処理の際に脆化割れを生じない、耐高温脆化特性に優れる尺度とした。具体的には、前記製造した銅合金管(長さ260mmL)の両端部を長さ80mmLづつ、つち打ちした試験片を用い、AG−G型オートグラフ引張試験機により、昇温速度50℃/minにて昇温して、800℃に到達後15分の保持を行った。その後、この高温の試験片の、試験速度10.0mm/min、GL=50mmの条件での、破断伸び(%)を測定した。同一条件の試験片を3本試験し、それらの平均値を採用した。
(Softening resistance)
The produced copper alloy pipe is subjected to a tensile test at a high temperature of 800 ° C., and the elongation at break (%) is measured. The copper alloy pipe thinned to 1 mm or less does not cause embrittlement cracking during the brazing treatment. The scale is excellent in high temperature embrittlement resistance. Specifically, using a test piece in which both ends of the manufactured copper alloy tube (length: 260 mmL) are punched at a length of 80 mmL, using an AG-G type autograph tensile tester, the heating rate is 50 ° C. The temperature was raised at / min and held for 15 minutes after reaching 800 ° C. Thereafter, the elongation at break (%) of this high-temperature test piece was measured under the conditions of a test speed of 10.0 mm / min and GL = 50 mm. Three test pieces under the same conditions were tested, and the average value thereof was adopted.
(発明例)
表1に示すとおり、発明例1〜12は、銅合金組成が本発明範囲で、抽伸(中間焼鈍)条件が適正であるので、この銅合金管組織の、銅合金管軸方向に平行な断面における平均結晶粒径が20μm以下である。このため、引張強さや破壊圧力が高いにも関わらず、曲げ加工性がよい。しかも、ろう付けの加熱相当である、銅合金管の800℃の高温引張試験における伸びが25%以上であり、耐高温脆化特性が優れている。これは本発明銅合金組成による、粒界酸化の抑制効果が大きいものと推考される。
(Invention example)
As shown in Table 1, since Invention Examples 1 to 12 have a copper alloy composition within the scope of the present invention and the drawing (intermediate annealing) conditions are appropriate, the cross section of this copper alloy tube structure is parallel to the copper alloy tube axis direction. The average crystal grain size in is 20 μm or less. For this reason, bending workability is good in spite of high tensile strength and breaking pressure. Moreover, the elongation in a high temperature tensile test at 800 ° C. of the copper alloy tube, which is equivalent to brazing heating, is 25% or more, and the high temperature embrittlement resistance is excellent. This is presumed that the effect of suppressing grain boundary oxidation by the copper alloy composition of the present invention is large.
(比較例)
比較例1〜12は、表1に示すとおり、銅管の組成が本発明の範囲を外れている。
(Comparative example)
In Comparative Examples 1 to 12, as shown in Table 1, the composition of the copper tube is out of the scope of the present invention.
比較例1はMg、Bを含んでいない。このため、抽伸(中間焼鈍)条件は適切な範囲で、また、平均結晶粒径が20μm以下であるにも関わらず、銅合金管の800℃の高温引張試験における伸びが21%程度と低く、耐高温脆化特性が劣っている。これは、比較例1の銅合金組成に、粒界酸化の抑制効果がないものと推考される。 Comparative Example 1 does not contain Mg or B. For this reason, although the drawing (intermediate annealing) conditions are in an appropriate range and the average crystal grain size is 20 μm or less, the elongation in a high-temperature tensile test at 800 ° C. of the copper alloy tube is as low as about 21%, High temperature embrittlement resistance is poor. This is presumed that the copper alloy composition of Comparative Example 1 has no effect of suppressing grain boundary oxidation.
比較例2はSn含有量が少なすぎる。このため、抽伸(中間焼鈍)条件は適切な範囲で、平均結晶粒径が20μm以下であるにも関わらず、強度が低く、破壊圧力も低すぎる。 The comparative example 2 has too little Sn content. For this reason, although the drawing (intermediate annealing) conditions are in an appropriate range and the average crystal grain size is 20 μm or less, the strength is low and the breaking pressure is too low.
比較例3は、MgとSnの各含有量は各規定範囲内であるものの、2.5×「Mg質量%」+「Sn質量%」が0.5%以上を満たさない。このため銅合金管に必要な引張強さと破壊圧力が低すぎる。また、抽伸途中での中間焼鈍を施していない。このため、平均結晶粒径も大きくなりすぎ、銅合金管の800℃の高温引張試験における伸びも24%程度と低い。 In Comparative Example 3, although each content of Mg and Sn is within each specified range, 2.5 × “Mg mass%” + “Sn mass%” does not satisfy 0.5% or more. For this reason, the tensile strength and breaking pressure required for a copper alloy pipe are too low. Moreover, the intermediate annealing in the middle of drawing is not performed. For this reason, the average crystal grain size becomes too large, and the elongation in a high temperature tensile test at 800 ° C. of the copper alloy tube is as low as about 24%.
比較例4も、比較例3と同じ組成で、2.5×「Mg質量%」+「Sn質量%」が0.5%以上を満たさないが、比較例3と違い、抽伸途中での中間焼鈍を施している。このため、銅合金管組織の銅合金管軸方向に平行な断面における平均結晶粒径は20μm以下であり、曲げ加工性もよい。また、ろう付けの加熱相当である、銅合金管の800℃の高温引張試験における伸びが25%以上であり、耐高温脆化特性が優れている。しかし、銅合金管に必要な引張強さと破壊圧力が低すぎる。 Comparative Example 4 also has the same composition as Comparative Example 3, and 2.5 × “Mg mass%” + “Sn mass%” does not satisfy 0.5% or more, but unlike Comparative Example 3, it is an intermediate during drawing. Annealed. For this reason, the average crystal grain size in a cross section parallel to the copper alloy tube axis direction of the copper alloy tube structure is 20 μm or less, and the bending workability is also good. Moreover, the elongation in the 800 degreeC high temperature tensile test of the copper alloy pipe | tube equivalent to the heating of brazing is 25% or more, and the high temperature embrittlement resistance is excellent. However, the tensile strength and breaking pressure required for copper alloy tubes are too low.
比較例5は、Mg含有量が高すぎ、2.5×「Mg質量%」+「Sn質量%」が2.0%以下を満たさない。このため、強度が高すぎてしまい、曲げ加工性が劣化してしまう。また強度が高すぎるため、抽伸(中間焼鈍)条件は適切な範囲で、また、平均結晶粒径が20μm以下であるにも関わらず、銅合金管の800℃の高温引張試験における伸びも18%程度と低い。 In Comparative Example 5, the Mg content is too high, and 2.5 × “Mg mass%” + “Sn mass%” does not satisfy 2.0% or less. For this reason, intensity | strength becomes too high and bending workability will deteriorate. In addition, since the strength is too high, the drawing (intermediate annealing) conditions are in an appropriate range, and the elongation of the copper alloy tube in the high-temperature tensile test at 800 ° C. is 18% even though the average crystal grain size is 20 μm or less. About low.
比較例6は、MgとSnの各含有量は各規定範囲内であるものの、2.5×「Mg質量%」+「Sn質量%」が2.0%以下を満たさない。このため、強度が高すぎてしまい、曲げ加工性が劣化してしまう。また強度が高すぎるため、抽伸(中間焼鈍)条件は適切な範囲で、また、平均結晶粒径が20μm以下であるにも関わらず、銅合金管の800℃の高温引張試験における伸びが17%程度と低い。 In Comparative Example 6, although each content of Mg and Sn is within each specified range, 2.5 × “Mg mass%” + “Sn mass%” does not satisfy 2.0% or less. For this reason, intensity | strength becomes too high and bending workability will deteriorate. Further, since the strength is too high, the drawing (intermediate annealing) conditions are in an appropriate range, and the elongation of the copper alloy tube in the high-temperature tensile test at 800 ° C. is 17% despite the average grain size being 20 μm or less. About low.
比較例7〜10は、表1に示すとおり、銅管の組成は本発明の範囲内だが、抽伸(中間焼鈍)条件が適切な範囲を外れている。 As shown in Table 1, in Comparative Examples 7 to 10, the composition of the copper tube is within the range of the present invention, but the drawing (intermediate annealing) conditions are outside the appropriate range.
比較例7は抽伸途中での中間焼鈍を施しておらず、比較例8は抽伸途中での中間焼鈍温度が低く過ぎる。このため、比較例7、8は平均結晶粒径も大きくなりすぎ、銅合金管の800℃の高温引張試験における伸びも20%、19%程度と各々低く、耐高温脆化特性が劣っている。 In Comparative Example 7, intermediate annealing in the middle of drawing is not performed, and in Comparative Example 8, the intermediate annealing temperature in the middle of drawing is too low. For this reason, in Comparative Examples 7 and 8, the average crystal grain size is too large, the elongation of the copper alloy tube in the high temperature tensile test at 800 ° C. is as low as about 20% and 19%, respectively, and the high temperature embrittlement resistance is inferior. .
比較例9は抽伸途中での中間焼鈍温度が高過ぎる。このため、平均結晶粒径も大きくなりすぎ、銅合金管の800℃の高温引張試験における伸びも19%、20%程度と各々低く、耐高温脆化特性が劣っている。 In Comparative Example 9, the intermediate annealing temperature during drawing is too high. For this reason, the average crystal grain size becomes too large, the elongation of the copper alloy tube in the high temperature tensile test at 800 ° C. is as low as 19% and 20%, respectively, and the high temperature embrittlement resistance is inferior.
比較例10は中間焼鈍後の抽伸での減面率が小さすぎる。このため、蓄積ひずみ量が小さすぎて、再結晶核の生成に必要な駆動力を高められないので、その後の最終焼鈍で、平均結晶粒径も大きくなりすぎている。したがって、銅合金管の800℃の高温引張試験における伸びも17%程度と低く、耐高温脆化特性が劣っている。 In Comparative Example 10, the area reduction rate in the drawing after the intermediate annealing is too small. For this reason, the amount of accumulated strain is too small to increase the driving force necessary for the formation of recrystallized nuclei, so that the average crystal grain size becomes too large in the subsequent final annealing. Therefore, the elongation of the copper alloy tube in the high temperature tensile test at 800 ° C. is as low as about 17%, and the high temperature embrittlement resistance is inferior.
比較例11〜13も、表1に示すとおり、抽伸(中間焼鈍)条件は適切な範囲だが、銅管の組成が本発明の範囲を外れている。 In Comparative Examples 11 to 13, as shown in Table 1, the drawing (intermediate annealing) conditions are in an appropriate range, but the composition of the copper tube is outside the scope of the present invention.
比較例11はSn含有量が高すぎるため、押出加工できずに、銅管が製造できなかった。 Since the comparative example 11 had too high Sn content, it was not able to extrude and a copper pipe could not be manufactured.
比較例12はP含有量が高すぎるため、押出加工後に割れが生じ、やはり銅管が製造できなかった。 In Comparative Example 12, since the P content was too high, cracks occurred after extrusion, and a copper tube could not be produced.
比較例13はB含有量が高すぎるため、押出加工後に割れが生じ、やはり銅管が製造できなかった。 In Comparative Example 13, since the B content was too high, cracks occurred after extrusion, and a copper tube could not be produced.
以上の結果から、1.0mm以下に薄肉化されても、耐高温脆化特性が優れ、併せて破壊強度および曲げ加工性に優れたSn−P系銅合金管を得るための、本発明の成分組成、結晶粒組織の規定、更には、このような組織を得るための好ましい製造条件の意義が裏付けられる。また、耐高温脆化特性が優れるための、本発明銅合金組成による粒界酸化の抑制効果も裏付けられる。 From the above results, even when the thickness is reduced to 1.0 mm or less, the present invention for obtaining a Sn-P-based copper alloy tube having excellent high-temperature embrittlement resistance and excellent fracture strength and bending workability is provided. The definition of the component composition, the crystal grain structure, and the significance of preferable production conditions for obtaining such a structure are supported. Further, the effect of suppressing grain boundary oxidation by the copper alloy composition of the present invention due to excellent high temperature embrittlement resistance is also supported.
以上説明したように、本発明によれば、1.0mm以下に薄肉化されても、耐高温脆化特性が優れ、併せて破壊強度および曲げ加工性に優れたSn−P系銅合金管を提供できる。この結果、新たな代替冷媒による高い運転圧力に薄肉化されて用いられる熱交換器用伝熱管などに好適に適用することができる。 As described above, according to the present invention, even if the thickness is reduced to 1.0 mm or less, the Sn-P-based copper alloy tube having excellent high temperature embrittlement resistance and excellent fracture strength and bending workability is obtained. Can be provided. As a result, it can be suitably applied to a heat exchanger tube for a heat exchanger that is used after being thinned to a high operating pressure by a new alternative refrigerant.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011009889A JP5544591B2 (en) | 2011-01-20 | 2011-01-20 | Copper alloy tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011009889A JP5544591B2 (en) | 2011-01-20 | 2011-01-20 | Copper alloy tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012149315A JP2012149315A (en) | 2012-08-09 |
JP5544591B2 true JP5544591B2 (en) | 2014-07-09 |
Family
ID=46791837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011009889A Expired - Fee Related JP5544591B2 (en) | 2011-01-20 | 2011-01-20 | Copper alloy tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5544591B2 (en) |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52145327A (en) * | 1976-05-31 | 1977-12-03 | Furukawa Metals Co | Copper alloy with anti softening property |
JPH01316430A (en) * | 1988-06-15 | 1989-12-21 | Furukawa Electric Co Ltd:The | Corrosion-resistant copper alloy pipe for piping of refrigerant |
JPH04236734A (en) * | 1991-01-14 | 1992-08-25 | Sumitomo Metal Mining Co Ltd | Brass added with sn, mg and p and having excellent corrosion resistance |
JP2758536B2 (en) * | 1992-08-11 | 1998-05-28 | 三菱伸銅株式会社 | Welded copper alloy pipe with inner groove |
JPH07118865A (en) * | 1993-10-25 | 1995-05-09 | Kobe Steel Ltd | Copper alloy pipe with protected film on inner surface for supplying cold water and hot water and its manufacture |
JP2835271B2 (en) * | 1993-10-25 | 1998-12-14 | 株式会社神戸製鋼所 | Copper alloy tube with inner protective film for hot and cold water supply and method for producing the same |
JP4387027B2 (en) * | 2000-03-07 | 2009-12-16 | 三菱伸銅株式会社 | Pitting corrosion resistant copper base alloy tubing |
JP4756197B2 (en) * | 2005-08-23 | 2011-08-24 | Dowaメタルテック株式会社 | Cu-Mg-P-based copper alloy and method for producing the same |
JP4921410B2 (en) * | 2007-03-31 | 2012-04-25 | 株式会社コベルコ マテリアル銅管 | Copper alloy member and heat exchanger |
JP5156316B2 (en) * | 2007-09-26 | 2013-03-06 | Dowaメタルテック株式会社 | Cu-Sn-P copper alloy sheet, method for producing the same, and connector |
JP4630323B2 (en) * | 2007-10-23 | 2011-02-09 | 株式会社コベルコ マテリアル銅管 | Copper alloy tube for heat exchangers with excellent fracture strength |
JP5260992B2 (en) * | 2008-03-19 | 2013-08-14 | Dowaメタルテック株式会社 | Copper alloy sheet and manufacturing method thereof |
EP2258882B1 (en) * | 2008-03-28 | 2016-05-25 | Mitsubishi Shindoh Co., Ltd. | High-strength and high-electroconductivity copper alloy pipe, bar, and wire rod |
JP5107841B2 (en) * | 2008-09-10 | 2012-12-26 | 株式会社神戸製鋼所 | Copper alloy tube for heat exchangers with excellent bending workability |
JP2010156002A (en) * | 2008-12-26 | 2010-07-15 | Kobe Steel Ltd | Copper alloy tube, method for manufacturing the same, and heat pump water heater |
-
2011
- 2011-01-20 JP JP2011009889A patent/JP5544591B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012149315A (en) | 2012-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4629080B2 (en) | Copper alloy tube for heat exchanger | |
JP4630323B2 (en) | Copper alloy tube for heat exchangers with excellent fracture strength | |
JP6206322B2 (en) | Aluminum alloy fin material for heat exchanger excellent in brazing and sag resistance and method for producing the same | |
JP5464659B2 (en) | Copper tube for heat exchanger with excellent fracture strength and bending workability | |
JP5534777B2 (en) | Copper alloy seamless pipe | |
JP5078368B2 (en) | Method for producing copper alloy tube for heat exchanger | |
JP5499300B2 (en) | Copper alloy tube for heat exchanger | |
JP4228166B2 (en) | Seamless copper alloy tube with excellent fatigue strength | |
WO2018088351A1 (en) | Aluminum alloy extruded material | |
JP2012214844A (en) | Aluminum alloy fin material for heat exchanger, and method for manufacturing the same | |
JP5107841B2 (en) | Copper alloy tube for heat exchangers with excellent bending workability | |
JP6694265B2 (en) | Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector | |
JP5960672B2 (en) | High strength copper alloy tube | |
JP5968816B2 (en) | High strength copper alloy tube and manufacturing method thereof | |
JP6034727B2 (en) | High strength copper alloy tube | |
JP5544591B2 (en) | Copper alloy tube | |
JP5792696B2 (en) | High strength copper alloy tube | |
JP5602707B2 (en) | High strength copper tube with excellent strength after brazing | |
JP4667065B2 (en) | Brazing fin material and manufacturing method thereof | |
JP5639025B2 (en) | Copper alloy tube | |
JP5638999B2 (en) | Copper alloy tube | |
JP4669709B2 (en) | Brazing fin material and manufacturing method thereof | |
JP5336296B2 (en) | Copper alloy tube for heat exchangers with excellent workability | |
EP3018224B1 (en) | Aluminum alloy fin material for heat exchanger and method for producing same | |
JP5026686B2 (en) | Ni-base alloy material excellent in workability and high-temperature strength and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140415 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5544591 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |