JP2011235216A - Method for decomposing and treating fluorine-based gas by means of zeolite - Google Patents
Method for decomposing and treating fluorine-based gas by means of zeolite Download PDFInfo
- Publication number
- JP2011235216A JP2011235216A JP2010107204A JP2010107204A JP2011235216A JP 2011235216 A JP2011235216 A JP 2011235216A JP 2010107204 A JP2010107204 A JP 2010107204A JP 2010107204 A JP2010107204 A JP 2010107204A JP 2011235216 A JP2011235216 A JP 2011235216A
- Authority
- JP
- Japan
- Prior art keywords
- zeolite
- gas
- fluorine
- decomposition
- based gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010457 zeolite Substances 0.000 title claims abstract description 103
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 96
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 94
- 229910052731 fluorine Inorganic materials 0.000 title claims abstract description 68
- 239000011737 fluorine Substances 0.000 title claims abstract description 67
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 77
- 239000011575 calcium Substances 0.000 claims abstract description 23
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 17
- 239000011148 porous material Substances 0.000 claims abstract description 17
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 8
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 8
- 125000002091 cationic group Chemical group 0.000 claims abstract description 7
- 239000012013 faujasite Substances 0.000 claims abstract description 7
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims abstract description 7
- 230000008569 process Effects 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000005336 cracking Methods 0.000 claims description 2
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 abstract description 8
- 238000001784 detoxification Methods 0.000 abstract description 3
- 238000004523 catalytic cracking Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 111
- 238000006243 chemical reaction Methods 0.000 description 39
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 28
- 150000001768 cations Chemical class 0.000 description 21
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 16
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 16
- 229910004298 SiO 2 Inorganic materials 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 238000001179 sorption measurement Methods 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 9
- 229910001873 dinitrogen Inorganic materials 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 150000002222 fluorine compounds Chemical class 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910004261 CaF 2 Inorganic materials 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 229910004018 SiF Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910003849 O-Si Inorganic materials 0.000 description 1
- 229910003872 O—Si Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- -1 alkali metal metal compound Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/30—Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Catalysts (AREA)
Abstract
【課題】従来の代替フロンガスの無害化方法であるロータリーキルン法や接触分解法では、分解した後の分解生成物の二次処理が別途必要であった。
【解決手段】高温下で、フッ素系ガスをカチオン種としてカルシウムを有するゼオライトに接触させて分解し、分解生成物をそのゼオライトに吸着させる。フッ素系ガスとしてはフッ化炭素ガス(CnFl)またはフッ化炭化水素ガス(CnHmFl)が適用できる。ゼオライトは細孔径が0.5nm以上であることが好ましく、特にフォージャサイト型ゼオライトが好ましい。
【選択図】 図1In a conventional rotary kiln method or catalytic cracking method, which is a detoxification method for alternative chlorofluorocarbon gas, a secondary treatment of the decomposed product after the decomposition is separately required.
At high temperature, a fluorine-containing gas is brought into contact with a zeolite having calcium as a cationic species to decompose, and the decomposition product is adsorbed on the zeolite. The fluorine-based gas can be applied fluorocarbon gas (C n F l) or fluorinated hydrocarbon gas (C n H m F l) is. The zeolite preferably has a pore diameter of 0.5 nm or more, and particularly preferably a faujasite type zeolite.
[Selection] Figure 1
Description
本発明は、フッ素系ガスをゼオライトに接触させて分解処理する方法に関する。 The present invention relates to a method for bringing a fluorine-based gas into contact with zeolite and performing a decomposition treatment.
地球温暖化の主な原因は、二酸化炭素、メタン系ガス、フロンガス等の温室効果ガスの大気中への放出である。これらの温室効果ガスの一つであるフロンガスは、炭素、フッ素、塩素からなる特定フロン(CFC)と、塩素を含まない代替フロン(HFC)とに大別される。特定フロンは分解によって放出される塩素原子がオゾン層を破壊することが解明され、先進国においては既に生産が中止されたため、現在では塩素を含まずオゾン層を破壊しない物質として代替フロンの使用量が増大している。 The main cause of global warming is the release of greenhouse gases such as carbon dioxide, methane-based gas, and chlorofluorocarbon into the atmosphere. Freon gas, which is one of these greenhouse gases, is roughly classified into specific chlorofluorocarbon (CFC) composed of carbon, fluorine, and chlorine and alternative chlorofluorocarbon (HFC) that does not contain chlorine. It has been elucidated that chlorine atoms released by decomposition destroy the ozone layer, and production has already been discontinued in developed countries. Therefore, the use of alternative chlorofluorocarbon as a substance that does not contain chlorine and does not destroy the ozone layer. Has increased.
しかしながら、代替フロンはそれ自身が二酸化炭素の数千倍から数万倍の地球温暖化係数(GWP)を有しているため、我が国では使用済み代替フロンを回収して無害な物質に変換して処理することが義務づけられている。 However, since substitute CFCs themselves have a global warming potential (GWP) that is several thousand to tens of thousands times that of carbon dioxide, in Japan, used CFCs are recovered and converted into harmless substances. It is obliged to process.
現在実用化されている代替フロンガスの無害化方法としては、焼成炉内で高温に加熱して熱分解するロータリーキルン法や、アルカリ土類金属またはアルカリ金属の金属化合物と代替フロンガスを接触させて反応させてフッ化金属に変換する方法が知られている(特許文献1、2参照)。
The detoxification methods of alternative chlorofluorocarbon gas that are currently in practical use include the rotary kiln method in which pyrolysis is performed by heating to a high temperature in a firing furnace, or an alkaline earth metal or alkali metal metal compound and the alternative chlorofluorocarbon gas are allowed to react with each other Thus, a method of converting to metal fluoride is known (see
従来の代替フロンガスの無害化方法であるロータリーキルン法は、フッ化水素等の腐食性ガスが発生するために二次処理が必要となり、接触分解反応による処理方法でも分解生成物の二次処理が必要であった。 The conventional rotary kiln method, which is a detoxification method for alternative chlorofluorocarbons, requires secondary treatment because of the generation of corrosive gases such as hydrogen fluoride, and secondary treatment of decomposition products is also required by the treatment method using catalytic cracking reaction. Met.
本発明は上述した技術背景に鑑み、特定のゼオライトがフッ素系ガスに対して高い分解特性を有することに着目したものであり、ゼオライトによるフッ素系ガスの分解処理方法の提供を目的とする。 In view of the technical background described above, the present invention focuses on the fact that a specific zeolite has a high decomposition characteristic with respect to a fluorine-based gas, and an object thereof is to provide a method for decomposing fluorine-based gas with zeolite.
即ち、本発明は下記[1]〜[6]に記載の構成を有する。 That is, this invention has the structure as described in following [1]-[6].
[1]高温下で、フッ素系ガスをカチオン種としてカルシウムを有するゼオライトに接触させて分解し、分解生成物を当該ゼオライトに吸着させることを特徴とするフッ素系ガスの分解処理方法。 [1] A method for decomposing a fluorine-containing gas, comprising decomposing the fluorine-containing gas by contacting it with zeolite having calcium as a cationic species at a high temperature and adsorbing the decomposition product to the zeolite.
[2]前記分解処理を水の存在下で行う前項1に記載のフッ素系ガスの分解処理方法。 [2] The method for decomposing a fluorine-based gas as described in 1 above, wherein the decomposing treatment is performed in the presence of water.
[3]前記フッ素系ガスはフッ化炭素ガス(CnFl)またはフッ化炭化水素ガス(CnHmFl)である前項1または2に記載のフッ素系ガスの分解処理方法。
[3] The fluorine-based gas cracking process of the fluorine-containing gas according to
[4]前記ゼオライトは細孔径が0.5nm以上である前項1乃至3のいずれかに記載のフッ素系ガスの分解処理方法。
[4] The method for decomposing a fluorine-based gas according to any one of
[5]前記ゼオライトはフォージャサイト型である前項1乃至4のいずれかに記載のフッ素系ガスの分解処理方法。
[5] The method for decomposing fluorine-containing gas according to any one of
[6]前項1乃至5のいずれかに記載の方法で用いたゼオライトを洗浄、焼成して再利用するフッ素系ガスの分解処理方法。
[6] A method for decomposing a fluorine-based gas, wherein the zeolite used in the method according to any one of
上記[1]に記載の本発明の方法では、高温下でフッ素系ガスをカチオン種としてカルシウムを有するゼオライトに接触させることによってフッ素系ガスを分解し、当該分解生成物をゼオライトに吸着することにより、分解生成物を散逸することなく処理を行うことができる。 In the method of the present invention described in [1] above, the fluorine-based gas is decomposed by contacting the zeolite containing calcium with the fluorine-based gas as a cationic species at a high temperature, and the decomposition product is adsorbed on the zeolite. The treatment can be performed without dissipating the decomposition products.
上記[2]に記載の発明によれば、主要なフッ素系ガスを分解処理できる。 According to the invention described in [2] above, the main fluorine-based gas can be decomposed.
上記[3]に記載の発明によれば、フッ化炭素ガス(CnFl)またはフッ化炭化水素ガス(CnHmFl)がHF、C、CO2、SiF4、H2Oに分解され、これらの分解生成物のうちのHF、C、SiF4がゼオライトに吸着される。 According to the embodiment described in the above [3], fluorocarbon gas (C n F l) or fluorinated hydrocarbon gas (C n H m F l) is HF, C, CO 2, SiF 4, H 2 O Of these decomposition products, HF, C, and SiF 4 are adsorbed on the zeolite.
上記[4]に記載の発明によれば、カチオン種としてカルシウムを有するゼオライトとして、細孔径が0.5nm以上であるゼオライトを用いることにより、フッ素系ガスに対して特に高い分解能を得ることができる。 According to the invention described in [4] above, by using a zeolite having a pore size of 0.5 nm or more as a zeolite having calcium as a cation species, particularly high resolution can be obtained for a fluorine-based gas. .
上記[5]に記載の発明によれば、カチオン種としてカルシウムを有するゼオライトとして、フォージャサイト型のゼオライトを用いることにより、フッ素系ガスに対して特に高い分解能を得ることができる。 According to the invention described in [5] above, by using a faujasite type zeolite as a zeolite having calcium as a cation species, particularly high resolution can be obtained for a fluorine-based gas.
上記[6]に記載の発明によれば、前項1〜5のいずれかの方法で用いたゼオライトを洗浄、焼成して再利用してフッ素系ガスを分解処理できる。
According to the invention described in [6] above, the fluorine-based gas can be decomposed by washing, firing and reusing the zeolite used in any of the
本発明は、カチオン種としてカルシウムを有するSiO2およびAl2O3が三次元構造を形成したゼオライトでは、高温下でフッ素系ガスを分解でき、なおかつ分解生成物を当該ゼオライトに吸着できることを見出し、本発明を完成したものである。 The present invention has found that in a zeolite in which SiO 2 and Al 2 O 3 having calcium as a cation species form a three-dimensional structure, a fluorine-based gas can be decomposed at a high temperature and a decomposition product can be adsorbed on the zeolite. The present invention has been completed.
以下に本発明の方法を詳細に説明する。 The method of the present invention will be described in detail below.
本発明の方法は、高温下で、フッ素系ガスをカチオン種としてカルシウムを有するゼオライトに接触させて分解し、分解生成物を当該ゼオライトに吸着させることを特徴とするフッ素系ガスの分解処理方法である。 The method of the present invention is a method for decomposing a fluorine-based gas, comprising decomposing a fluorine-based gas by contacting it with a zeolite having calcium as a cation species at a high temperature and adsorbing the decomposition product to the zeolite. is there.
ゼオライトとは、カチオン種としてアルカリ金属イオンまたはアルカリ土類金属等を含む結晶性含水アルミノケイ酸塩であり、化学組成の一般式は下記(A1)式で表されるものであるが、本発明のゼオライトはカチオン種としてカルシウムを有することが必須である。 Zeolite is a crystalline hydrous aluminosilicate containing an alkali metal ion or alkaline earth metal as a cation species, and the general formula of the chemical composition is represented by the following formula (A1). It is essential that zeolite has calcium as a cationic species.
(MI、MII 1/2)m〔AlmSi(m+n)O2(m+n)〕・xH2O …(A1)
ただし、n≧m
MI:Li+、Na+、K+等
MII:Ca2+、Mg2+、Ba2+、Sr2+等
(M I , M II 1/2 ) m [Al m Si (m + n) O 2 (m + n) ] · xH 2 O (A1)
However, n ≧ m
M I : Li + , Na + , K + etc.
M II : Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ etc.
フッ素系ガスに対する分解能はゼオライトのカチオン種によって異なるが、カチオン種としてカルシウムを有するゼオライトでは特に高い分解能を有する。 The resolution for the fluorine-based gas varies depending on the cation species of the zeolite, but the zeolite having calcium as the cation species has a particularly high resolution.
カチオン種としてのカルシウムは、イオン交換サイト中のカチオンの60%以上であることが好ましく、90%以上であることが特に好ましい。カルシウムが100%に近くなるほど分解能は高くなるが、95%を超えても分解能の大幅な改善は得られない。 Calcium as the cation species is preferably 60% or more of the cation in the ion exchange site, and particularly preferably 90% or more. The resolution increases as the calcium content approaches 100%. However, if the calcium content exceeds 95%, no significant improvement in resolution can be obtained.
ゼオライトの骨格はSi−O−Al−O−Siの構造が三次元的に組み合わされることによって細孔を有する形態に形成され、イオン交換サイトに負電荷を打ち消すためのカチオン(MI、MII)を有し、骨格の細孔内に結晶水を保有する。また、三次元的な組合せによってA型、フォージャサイト型等の多種形態の骨格が形成される。 The skeleton of the zeolite is formed in a form having pores by three-dimensionally combining the structures of Si—O—Al—O—Si, and cations (M I , M II) for canceling negative charges at the ion exchange site. And has crystal water in the pores of the skeleton. In addition, various types of skeletons such as A type and faujasite type are formed by a three-dimensional combination.
ゼオライトは細孔を構成する空間が極めて大きく比表面積が非常に大きいという特性を有し、さらにイオン交換サイトのカチオン(MI、MII)が他のカチオンと可逆的に交換できるイオン交換能、ゼオライト自身が触媒として作用する触媒能、細孔中に物質を吸着させる吸着能等の性質を有する。 Zeolite has the characteristic that the space constituting the pores is extremely large and the specific surface area is very large, and further, the ion exchange capacity that allows cations (M I , M II ) of the ion exchange sites to be reversibly exchanged with other cations, The zeolite itself has properties such as catalytic ability to act as a catalyst and adsorption ability to adsorb a substance in the pores.
ゼオライトは骨格の細孔内にフッ素系ガス分子を取り込むことによってフッ素系ガスを吸着し、吸着した分子を分解する。フッ素系ガス分子は細孔径が大きいほどが骨格内に取り込まれ易く、分解能も高くなる。かかる観点より、ゼオライトの細孔径は0.5nm以上であることが好ましく、特に0.7nm以上が好ましく、さらには0.9nm以上が好ましい。従って、骨格のタイプは細孔径の大きいタイプが好ましく、特にフォージャサイト型が好ましい。 Zeolite adsorbs fluorine-based gas by incorporating fluorine-based gas molecules into the pores of the framework, and decomposes the adsorbed molecules. The larger the pore diameter of the fluorine-based gas molecule, the easier it is to be taken into the skeleton and the higher the resolution. From this viewpoint, the pore diameter of the zeolite is preferably 0.5 nm or more, particularly preferably 0.7 nm or more, and more preferably 0.9 nm or more. Accordingly, the type of skeleton is preferably a type having a large pore diameter, and the faujasite type is particularly preferable.
本発明の方法で用いるゼオライトは、粉末状、成形体のいずれも使用することができる。成形体の形状は円柱状、球状、楕円状、リング状などが使用でき、その大きさは球体積に換算される直径として、0.1〜5mmのものを使用することが好ましい。また、成形体中には、シリカ、アルミナ、粘土鉱物などのバインダー成分を含んだものを使用してもよいが、フッ素系ガスの分解効率を高めるため、バインダー成分をゼオライト化したバインダーレス成形体を使用することが好ましい。 The zeolite used in the method of the present invention can be used in either a powder form or a molded body. As the shape of the molded body, a cylindrical shape, a spherical shape, an elliptical shape, a ring shape, or the like can be used, and the size is preferably 0.1 to 5 mm as a diameter converted into a spherical volume. In addition, the molded body may contain a binder component such as silica, alumina, clay mineral, etc., but in order to increase the decomposition efficiency of the fluorine-based gas, the binderless molded body in which the binder component is zeoliticized. Is preferably used.
本発明の方法では、フッ素系ガスをカチオン種としてカルシウムを有するゼオライトに高温下で接触させる。 In the method of the present invention, a fluorine-containing gas is brought into contact with zeolite having calcium as a cationic species at a high temperature.
常温下でフッ素系ガスを含有する混合流体をゼオライトに接触させた場合、ゼオライト骨格の細孔内にフッ素系ガスを吸着することはできる。しかしこの様な処理では、フッ素系ガスは混合流体からは除去されるが、ゼオライトの細孔内には吸着されたフッ素系ガスは分解することなく存在し、フッ素系ガスを分解するには二次処理が必要である。一方、高温下でフッ素系ガスを含有する混合流体を高温下でゼオライトに接触させた場合、ゼオライトに吸着されたフッ素系ガスはゼオライトの触媒能によって分解され、さらにその分解生成物がゼオライトに吸着され、フッ素原子を含む分解生成物を散逸させることなく処理を行うことができる。 When a mixed fluid containing a fluorinated gas is brought into contact with zeolite at room temperature, the fluorinated gas can be adsorbed in the pores of the zeolite skeleton. However, in such a treatment, the fluorine-based gas is removed from the mixed fluid, but the adsorbed fluorine-based gas exists in the pores of the zeolite without being decomposed. Next processing is required. On the other hand, when a mixed fluid containing a fluorine-based gas is brought into contact with zeolite at a high temperature, the fluorine-based gas adsorbed on the zeolite is decomposed by the catalytic ability of the zeolite, and the decomposition product is further adsorbed on the zeolite. Thus, the treatment can be performed without dissipating the decomposition products containing fluorine atoms.
本発明における高温下とは、温度が623〜1073Kが好ましく、特に623〜823Kが好ましい。623K未満では、ゼオライトに吸着されたフッ素系ガスの分解が不十分である。一方、823Kであればフッ素系ガスに対して十分な分解能が得られ、1073KであればCF4などの難分解性のフッ素系ガスに対して更に優れた分解能が得られる。一方、それを超える高温はエネルギーコストの点で不利であるだけでなく、ゼオライトの寿命が短くなる。特に好ましい反応温度は673〜823Kである。 In the present invention, under high temperature, the temperature is preferably 623 to 1073K, and particularly preferably 623 to 823K. If it is less than 623K, the decomposition of the fluorine-based gas adsorbed on the zeolite is insufficient. On the other hand, sufficient resolution is obtained for a fluorine-based gas as long as 823 K, better resolution for persistent fluorine-based gas such as CF 4 can be obtained if the 1073 K. On the other hand, a high temperature exceeding that is not only disadvantageous in terms of energy cost, but also shortens the lifetime of the zeolite. A particularly preferred reaction temperature is 673-823K.
本発明で分解されるフッ素系ガスとしては、例えばフッ化炭素ガス(CnFl)またはフッ化炭化水素ガス(CnHmFl)を例示でき、具体的にはCF4、C2F6、CH2F2、C2HF5、C2H2F4、C2H3F3、C2H4F2、C3H4F4等を例示できる。 The fluorine-based gas is decomposed in the present invention, for example, can be exemplified a fluorocarbon gas (C n F l) or fluorinated hydrocarbon gas (C n H m F l) , in particular CF 4, C 2 Examples thereof include F 6 , CH 2 F 2 , C 2 HF 5 , C 2 H 2 F 4 , C 2 H 3 F 3 , C 2 H 4 F 2 , and C 3 H 4 F 4 .
本発明の方法でフッ素系ガスの分解処理に使用したゼオライトは繰り返し再利用することができる。 The zeolite used for the decomposition treatment of the fluorine-based gas in the method of the present invention can be reused repeatedly.
本発明の方法でフッ素化合物を吸着したゼオライトは、焼成して炭素の除去を行うことで、フッ素系ガスの分解除去に再使用することができる。 The zeolite adsorbed with the fluorine compound by the method of the present invention can be reused for the decomposition and removal of the fluorine-based gas by calcination to remove carbon.
ゼオライトに吸着した分解生成物中の炭素は、CO2としてゼオライトから除去することができる。焼成温度は、C+O2→CO2なる反応が起こる温度であればよく、例えば973〜1273Kの範囲が好ましい。 Carbon in the decomposition product adsorbed on the zeolite can be removed from the zeolite as CO 2 . The baking temperature may be a temperature at which a reaction of C + O 2 → CO 2 occurs, and for example, a range of 973 to 1273K is preferable.
ゼオライトに吸着した分解生成物中のフッ素はフッ素化合物を溶解する洗浄液で使用後のゼオライトを洗浄し、ゼオライトに吸着しているフッ素化合物を溶出して回収することができる。洗浄液はフッ素化合物を溶解できるものであれば特に限定されるものではないが、アルカリまたは酸等を適宜使用することができ、例えばアンモニウム水、水酸化ナトリウム、塩酸、硫酸、硝酸などフッ素を含有しないアルカリまたは酸を挙げることができる。また、洗浄に際しては、短時間で溶出できる洗浄液が好ましく、特に洗浄液として酸を使用することが好ましい。 Fluorine in the decomposition product adsorbed on the zeolite can be recovered by washing the used zeolite with a cleaning solution that dissolves the fluorine compound, and eluting the fluorine compound adsorbed on the zeolite. The cleaning liquid is not particularly limited as long as it can dissolve the fluorine compound, but alkali or acid can be appropriately used. For example, it does not contain fluorine such as ammonium water, sodium hydroxide, hydrochloric acid, sulfuric acid, nitric acid. Mention may be made of alkalis or acids. In the cleaning, a cleaning solution that can be eluted in a short time is preferable, and it is particularly preferable to use an acid as the cleaning solution.
本発明の方法におけるフッ素系ガスとゼオライトの化学反応を、具体的なフッ素系ガス毎に説明する。 The chemical reaction between the fluorinated gas and the zeolite in the method of the present invention will be described for each specific fluorinated gas.
高温下で、フッ素系ガスとしてフッ化炭化水素ガス(CnHmFl)の一種であるHFC−134a(C2H2F4)をゼオライトに接触させた場合、下記(F1)(F2)および(F3)式の分解が進行すると考えられる。 When HFC-134a (C 2 H 2 F 4 ), which is a kind of fluorinated hydrocarbon gas (C n H m F l ), is brought into contact with zeolite under high temperature, the following (F1) (F2 ) And (F3) are considered to progress.
C2H2F4+H2O→4HF+3/2C+1/2CO2 …(F1)
4HF+SiO2→SiF4+2H2O …(F2)
6HF+Al2O3→2AlF3+3H2O …(F3)
C 2 H 2 F 4 + H 2 O → 4HF + 3 / 2C + 1 / 2CO 2 (F1)
4HF + SiO 2 → SiF 4 + 2H 2 O (F2)
6HF + Al 2 O 3 → 2AlF 3 + 3H 2 O (F3)
ここでHFC−134aガスの分解反応に関与するH2O、後述の他のフッ素系ガスの分解反応に関与するH2OおよびO2は、被処理ガス(分解すべきフッ素系ガス、キャリアガスとして使用する窒素ガス)に微量に含まれている成分、および昇温過程でゼオライトから脱水されることなく骨格内に残っている水分に起因するものである。 Here, H 2 O involved in the decomposition reaction of HFC-134a gas, and H 2 O and O 2 involved in the decomposition reaction of other fluorine-based gases described later are treated gases (fluorine-based gas to be decomposed, carrier gas). This is caused by the components contained in a trace amount in the nitrogen gas) and the water remaining in the framework without being dehydrated from the zeolite during the temperature rising process.
(F1)式に示すように、ゼオライトに接触したHFC−134aは、ゼオライトの触媒作用によってHF(フッ化水素)、C(炭素)、CO2(二酸化炭素)に分解する。そして、分解生成物であるHFの一部は、ゼオライトの骨格成分であるSiO2(酸化ケイ素)と(F2)式に示す反応を起こしてSiF4(フッ化ケイ素)およびH2Oを生成すると考えられる。なお、ゼオライトのもう一つの骨格成分であるAl2O3(酸化アルミニウム)とHFとの反応性はSiO2よりも低いため、(F3)式の反応は殆ど起こらないと考えられる。従って、高温下でHFC−134aをゼオライトに接触させると、(F1)式の反応が起こり、一部では(F2)式の反応が起こり、分解生成物としてHF、C、CO2、SiF4、H2Oが生成する。HF、SiF4、Cはゼオライトに吸着され、それ以外の分解生成物であるCO2およびH2Oは吸着されることなく排出される。 As shown in the formula (F1), HFC-134a in contact with the zeolite is decomposed into HF (hydrogen fluoride), C (carbon), and CO 2 (carbon dioxide) by the catalytic action of the zeolite. A portion of HF which is decomposition product, when generating a SiO 2 (silicon oxide) and (F2) SiF 4 (silicon tetrafluoride) causing the reaction shown in the formula and H 2 O is a skeleton component of the zeolite Conceivable. In addition, since the reactivity of Al 2 O 3 (aluminum oxide), which is another framework component of zeolite, and HF is lower than that of SiO 2 , it is considered that the reaction of the formula (F3) hardly occurs. Therefore, when HFC-134a is brought into contact with zeolite at a high temperature, a reaction of the formula (F1) occurs, and a part of the reaction of the formula (F2) occurs, and decomposition products such as HF, C, CO 2 , SiF 4 , H 2 O is produced. HF, SiF 4 , and C are adsorbed on the zeolite, and other decomposition products CO 2 and H 2 O are discharged without being adsorbed.
フッ化炭素ガス(CnF2n+2)、他のフッ化炭化水素ガス(CnHmFl)を分解した場合には、下記(F4)〜(F7)式に示すように、HFおよびCが生成し、あるいはさらにCO2またはH2Oが生成する。 When the fluorocarbon gas (C n F 2n + 2 ) and other fluorinated hydrocarbon gases (C n H m F l ) are decomposed, as shown in the following formulas (F4) to (F7), HF and C Or further CO 2 or H 2 O is formed.
フッ化炭素ガス(CnF2n+2)の分解は下記(F4)式に示すとおりである。 Decomposition of the fluorocarbon gas (C n F 2n + 2 ) is as shown in the following formula (F4).
CnF2n+2+2nH2O→(2n+2)HF+nCO2 …(F4) C n F 2n + 2 + 2nH 2 O → (2n + 2) HF + nCO 2 (F4)
フッ化炭化水素ガス(CnHmFl)の分解では、n、m、lの数によって下記の3通りの反応となる。 The decomposition of the fluorinated hydrocarbon gas (C n H m F l) , n, m, the reaction of the following three depending on the number of l.
(i) m<l(l=2n−m+2)のとき
CnHmFl+1/2(l−m)H2O
→lHF+1/4(4n−l+m)C+1/4(l−m)CO2 …(F5)
(ii) m>lのとき
CnHmFl+1/2(l−m)O2→lHF+nC+1/2(l−m)H2O …(F6)
(iii) m=lのとき
CnHmFl→lHF+nC …(F7)
(i) When m <l (l = 2n−m + 2), C n H m F l +1/2 (l−m) H 2 O
→ lHF + 1/4 (4n−1 + m) C + 1/4 (1−m) CO 2 (F5)
(ii) When m> l, C n H m F l +1/2 (l−m) O 2 → lHF + nC + 1/2 (l−m) H 2 O (F6)
(iii) When m = 1, C n H m F l → lHF + nC (F7)
上記の(F4)〜(F7)式で生成したHFは、主に(F2)式に示すSiO2との反応によって主にSiF4およびH2Oを生成すると考えられる。一方、特に高い温度では、生成したHFはゼオライト中のカルシウムと(F8)式の反応によってCaF2とH2Oを生成する。 It is considered that the HF produced by the above formulas (F4) to (F7) mainly produces SiF 4 and H 2 O by reaction with SiO 2 shown in the formula (F2). On the other hand, at a particularly high temperature, the produced HF produces CaF 2 and H 2 O by the reaction of calcium in the zeolite and the formula (F8).
2HF+Ca(OH)+ → CaF2+H2O+H+ … (F8) 2HF + Ca (OH) + → CaF 2 + H 2 O + H + (F8)
これらの場合も、HFC−134aの分解処理と同様に、生成したHF、SiF4、CaF2、Cはゼオライトに吸着され、CO2、H2Oは吸着されることなく排出される。 In these cases, as in the decomposition treatment of HFC-134a, the produced HF, SiF 4 , CaF 2 and C are adsorbed on the zeolite, and CO 2 and H 2 O are discharged without being adsorbed.
本発明のフッ素系ガスの分解処理方法を実施するための装置の一例である流通式分解処理装置の構成を図1に模式的に示す。 FIG. 1 schematically shows the configuration of a flow-type decomposition treatment apparatus which is an example of an apparatus for carrying out the fluorine-based gas decomposition treatment method of the present invention.
流通式分解処理装置(1)において、(10)は円筒型の反応容器であり、加熱器(11)内に配置されている。前記反応容器(10)内には粉末状の分解処理剤が気体流通可能な状態に充填され、充填された分解処理剤は、熱電対(図示省略)によって温度が監視されるとともに、温度制御装置(12)で加熱器(11)を制御することにより、設定された反応温度に加熱される。フッ素系ガスは、マスフローコントローラ(20)により窒素ガス(N2)とともに流量調節がなされ、混合された被処理ガスとして導入管(16)に送り込まれ、予備加熱器(13)を通過する間に設定された反応温度に予備加熱された後、前記反応容器(10)の下端の導入口(14)から反応容器(10)内に導入される。被処理ガスは反応容器(10)を通過する間に分解処理剤と接触し、フッ素系ガスが分解処理され、上端の送出口(15)から処理済みガスとして送り出される。前記反応容器(10)から送出管(17)に送出された処理済みガスは、送出管(17)の途中に設けられた採取口(18)から随時採取されてガスクロマトグラフ等により分析がなされ、フッ素系ガス濃度が監視される。(21)はフッ素系ガスの導入口、(22)は窒素ガスの導入口であり、これらのガス流量は独立して制御される。また、予備加熱器(13)は温度制御装置(12)によって温度制御がなされる。 In the flow-type decomposition treatment apparatus (1), (10) is a cylindrical reaction vessel and is disposed in the heater (11). The reaction vessel (10) is filled with a powdery decomposition treatment agent in a gas-flowable state, and the temperature of the filled decomposition treatment agent is monitored by a thermocouple (not shown) and a temperature control device. By controlling the heater (11) in (12), it is heated to the set reaction temperature. The flow rate of the fluorine-based gas is adjusted together with nitrogen gas (N 2 ) by the mass flow controller (20), and is fed into the introduction pipe (16) as a mixed gas to be processed, while passing through the preheater (13). After being preheated to the set reaction temperature, the reaction vessel (10) is introduced into the reaction vessel (10) through the inlet (14) at the lower end. The gas to be treated comes into contact with the decomposition treatment agent while passing through the reaction vessel (10), the fluorine-based gas is decomposed, and is sent out as a processed gas from the upper outlet (15). The treated gas sent from the reaction vessel (10) to the delivery pipe (17) is collected at any time from a sampling port (18) provided in the middle of the delivery pipe (17) and analyzed by a gas chromatograph or the like. Fluorine gas concentration is monitored. (21) is an inlet for fluorine gas, and (22) is an inlet for nitrogen gas, and the flow rates of these gases are independently controlled. The temperature of the preheater (13) is controlled by the temperature control device (12).
上述した流通式分解処理装置(1)において、フッ素系ガスを分解処理する方法について説明する。 A method for decomposing fluorine-based gas in the above-described flow-type decomposition apparatus (1) will be described.
まず、反応容器(10)に分解処理剤であるゼオライト(または対照する分解処理剤)を充填し、導入管(16)から窒素ガスを導入して系内を非酸化性雰囲気とし、温度制御装置(12)により加熱器(11)内を反応に適した温度に設定する。次に、被処理ガスとしてフッ素系ガスおよび窒素ガスを所定の流量で導入管(16)に導入し、予備加熱器(13)で反応温度に加熱して反応容器(10)に導入する。被処理ガスが反応容器(10)内を通過する間にフッ素系ガスと分解処理剤が接触し、上記(F1)(F2)式、あるいは後述する対照用分解処理剤の反応式に基づいてフッ素系ガスが分解される。処理済みの混合ガスは、送出管(17)上の採取口(18)から適宜採取され、ガスクロマトグラフ等により処理済みガスの定性分析および定量分析がなされる。 First, the reaction vessel (10) is filled with a decomposition treatment agent, zeolite (or a decomposition treatment agent to be compared), and nitrogen gas is introduced from the introduction pipe (16) to make the system a non-oxidizing atmosphere. Set the inside of the heater (11) to a temperature suitable for the reaction by (12). Next, fluorine gas and nitrogen gas are introduced into the introduction pipe (16) as predetermined gases at a predetermined flow rate, heated to the reaction temperature by the preheater (13), and introduced into the reaction vessel (10). While the gas to be treated passes through the reaction vessel (10), the fluorine-based gas and the decomposition treatment agent come into contact with each other. The system gas is decomposed. The treated mixed gas is appropriately collected from the collection port (18) on the delivery pipe (17), and the treated gas is subjected to qualitative analysis and quantitative analysis by a gas chromatograph or the like.
処理済みガスの分析結果により、未反応のフッ素系ガスが基準値以下まで分解されたことが確認されれば、処理済みガスは大気中に放出される。また、分析結果により、基準値を超えるフッ素系ガスが存在している場合は、未反応のフッ素系ガスを回収して再び分解処理を行う。 If the analysis result of the treated gas confirms that the unreacted fluorine-based gas has been decomposed to a reference value or less, the treated gas is released into the atmosphere. Moreover, when the fluorine-type gas exceeding a reference value exists according to the analysis result, unreacted fluorine-type gas is collect | recovered and it decomposes | disassembles again.
なお、本発明のフッ素系ガスの分解処理方法は、フッ素系ガスを反応容器内に流通させて連続的に接触反応を行う流通式に限定されない。密閉された反応容器内で反応剤とフッ素系ガスを接触させるバッチ式の分解処理によっても実施することができる。 Note that the fluorine-based gas decomposition treatment method of the present invention is not limited to a flow type in which a fluorine-based gas is circulated in a reaction vessel to continuously perform a catalytic reaction. It can also be carried out by a batch-type decomposition treatment in which a reactant and a fluorine-based gas are brought into contact in a sealed reaction vessel.
(実施例)
上述した流通式分解処理装置を用いてHFC−134aの分解実験を行った。
(Example)
A decomposition experiment of HFC-134a was performed using the above-described flow-type decomposition apparatus.
ゼオライトは骨格のタイプ、カチオン種、SiO2/Al2O3比、細孔径の異なる5種類のもの(東ソー株式会社製)を使用した。特性を表1に示す。各ゼオライトは550℃で脱水処理を行って活性化したものを使用した。 As the zeolite, five types (manufactured by Tosoh Corporation) having different skeleton types, cationic species, SiO 2 / Al 2 O 3 ratio, and pore diameters were used. The characteristics are shown in Table 1. Each zeolite used was activated by dehydration at 550 ° C.
また、対照用分解処理剤として、ゼオライトの骨格成分であるSiO2およびAl2O3を使用した。 Further, SiO 2 and Al 2 O 3 which are skeleton components of zeolite were used as a control decomposition agent for control.
図1の流通式分解処理装置(1)において、反応容器(10)は内直径50mm×高さ181mm、容量355.4mlの円筒体である。HFC−134aは窒素ガスとともに被処理ガスとして各々所定の流量で導入管(16)に導入し、反応容器(10)内に充填し所定温度に加熱した分解処理剤に連続的に接触させた。反応容器(10)を通過する間に分解処理がなされた処理済みガスは、送出管(17)上の採取口(18)から一定時間毎に採取してガスクロマトグラフで分析し、反応前後におけるHFC−134aのピーク面積から一点検量線法を用いてHFC−134a濃度を算出し、下記式により分解率を算出した。 1, the reaction vessel (10) is a cylindrical body having an inner diameter of 50 mm × height of 181 mm and a capacity of 355.4 ml. HFC-134a was introduced into the introduction pipe (16) as a gas to be treated together with nitrogen gas at a predetermined flow rate, and continuously brought into contact with the decomposition treatment agent filled in the reaction vessel (10) and heated to a predetermined temperature. The treated gas, which has been decomposed while passing through the reaction vessel (10), is collected from the collection port (18) on the delivery pipe (17) at regular intervals and analyzed by gas chromatography, and the HFC before and after the reaction is collected. The concentration of HFC-134a was calculated from the peak area of −134a using the one-inspection curve method, and the decomposition rate was calculated by the following formula.
分解率(%)=〔1−(CF/CI)〕×100
CF:処理済みガス中のHFC−134aの濃度
CI:被処理ガス中のHFC−134aの濃度
Decomposition rate (%) = [1- (C F / C I )] × 100
C F : concentration of HFC-134a in the treated gas C I : concentration of HFC-134a in the gas to be treated
処理条件は各分解処理剤で共通であり、前記反応容器(10)にそれぞれ20gの分解処理剤を充填し、HFC−134aの流量を10cm3/min、N2ガス流量を50cm3/minとし、反応温度:823Kで120分間あるいは分解率の低下が顕著になるまで分解処理を行った。 The treatment conditions are the same for each decomposition treatment agent. Each reaction vessel (10) is filled with 20 g of the decomposition treatment agent, the flow rate of HFC-134a is 10 cm 3 / min, and the N 2 gas flow rate is 50 cm 3 / min. The decomposition treatment was performed at a reaction temperature of 823 K for 120 minutes or until the decrease in the decomposition rate became significant.
HFC−134aと各ゼオライトとの接触による分解反応における分解生成物のうち、HF、C、SiF4はゼオライトに吸着した状態で反応容器(10)内に留まり、H2Oは処理済みガスとして窒素ガスとともに排出される。5種類のゼオライトによるHFC−134aの分解率と被処理ガスの流通時間と関係を図2に示す。 Of the decomposition products in the decomposition reaction due to the contact between HFC-134a and each zeolite, HF, C, and SiF 4 remain in the reaction vessel (10) while adsorbed on the zeolite, and H 2 O is nitrogen as a treated gas. It is discharged with gas. FIG. 2 shows the relationship between the decomposition rate of HFC-134a with five types of zeolite and the flow time of the gas to be treated.
また、表2にHFC−134aの分解反応および分解生成物を示す。 Table 2 shows the decomposition reaction and decomposition products of HFC-134a.
図2より、Caをカチオン種として有するゼオライト1〜3では、Liを主なカチオン種として有するゼオライト4やカチオン種がNaのみのゼオライト5よりも高分解率を持続し、高い分解能を有するものであった。
As shown in FIG. 2, in
3種類のCaカチオン型のゼオライト1〜3を相互に比較すると、骨格がフォージャサイト型で細孔径の大きいゼオライト2、3は、骨格がA型で細孔径の小さいゼオライト1よりも特に分解能が高かった。
Comparing the three types of Ca
また、ゼオライト2とゼオライト3とはSiO2/Al2O3比が異なるものであるが、同等の分解能を有するものであった。 Further, although the zeolite 2 and zeolite 3 in which SiO 2 / Al 2 O 3 ratios are different, had a comparable resolution.
分解処理後のゼオライトはいずれも黒色を帯び、分解生成物であるCの生成を確認することができた。特にCaカチオン型のゼオライト1〜3は、Liカチオン型のゼオライト4およびNaカチオン型のゼオライト5よりも濃い黒色を呈し、Cの生成量が多いことを示唆するものであり、図2に示した分解能の結果と一致するものであった。
All the zeolites after the decomposition treatment were blackish, and it was possible to confirm the formation of C as a decomposition product. In particular, the Ca
また、分解処理前および分解処理後の各ゼオライトを、蛍光X線分析装置によりSi、Al、F、Ca、K、Na、Mgの8元素を定量分析した。分析対象である分解処理後のゼオライトにはHFC−134aの分解生成物であるフッ素が含まれている。表3に8元素の合計を100%とするフッ素元素含有量をatom%で示す。 Further, each of the zeolites before and after the decomposition treatment was quantitatively analyzed for eight elements of Si, Al, F, Ca, K, Na, and Mg using a fluorescent X-ray analyzer. The decomposition-processed zeolite to be analyzed contains fluorine which is a decomposition product of HFC-134a. Table 3 shows the fluorine element content in terms of atom%, where the total of 8 elements is 100%.
表3より、分解処理前のゼオライトに含まれていなかったFが分解処理後のゼオライトに含まれており、ゼオライトがFを捕捉していることを裏付けられた。 From Table 3, it was confirmed that F that was not contained in the zeolite before the decomposition treatment was contained in the zeolite after the decomposition treatment, and that the zeolite had captured F.
表1に記載した5種類のゼオライトのうち、Caカチオン型のゼオライト1〜3について、前記流通式分解処理装置を用いて298Kにおける吸着率を調べた。前記反応容器(10)にはそれぞれ20gのゼオライトを充填し、HFC−134aの流量を10cm3/min、N2ガス流量を50cm3/min、吸着温度(ゼオライトの温度)を298Kに設定し、被処理ガスを120分間流通させて吸着処理を行った。吸着率の算出は、分解率と同じく、送出管(17)上の採取口(18)から一定時間毎に採取した処理済みガスをガスクロマトグラフで分析し、吸着前後におけるHFC−134aのピーク面積から一点検量線法を用いてHFC−134a濃度を算出したものである。
Among the five types of zeolites listed in Table 1, the adsorption rate at 298 K was examined for the Ca
吸着率(%)=〔1−(CF/CI)〕×100
CF:処理済みガス中のHFC−134aの濃度
CI:被処理ガス中のHFC−134aの濃度
Adsorption rate (%) = [1- (C F / C I )] × 100
C F : concentration of HFC-134a in the treated gas C I : concentration of HFC-134a in the gas to be treated
図4に吸着率の変化を示す。図4に示すように、ゼオライト2、3は高い吸着率を持続するが、カチオン種としてカルシウムを有しないゼオライト1は初期段階から低吸着率であった。
FIG. 4 shows the change in adsorption rate. As shown in FIG. 4, zeolites 2 and 3 maintained a high adsorption rate, but
(比較例)
分解処理剤としてSiO2を用いた場合、下記(F9)式に基づいた反応が進行し、分解生成物のうちの固体のCは反応容器(10)内に留まり、気体のSiF4、H2OおよびCO2は処理済みガスとして窒素ガスとともに排出された。
(Comparative example)
When SiO 2 is used as the decomposition treatment agent, a reaction based on the following formula (F9) proceeds, and solid C in the decomposition products remains in the reaction vessel (10), and gaseous SiF 4 , H 2 O and CO 2 were discharged together with nitrogen gas as a treated gas.
2C2H2F4+2SiO2→2SiF4+3C+2H2O+CO2 …(F9) 2C 2 H 2 F 4 + 2SiO 2 → 2SiF 4 + 3C + 2H 2 O + CO 2 (F9)
また、分解処理剤としてAl2O3を用いた場合、下記(F10)式に基づいて反応が進行し、固体のAlF3およびCは反応容器(10)内に留まり、気体のH2Oは処理済みガスとして窒素ガスとともに排出された。 When Al 2 O 3 is used as the decomposition treatment agent, the reaction proceeds based on the following formula (F10), solid AlF 3 and C remain in the reaction vessel (10), and gaseous H 2 O It was discharged with nitrogen gas as a treated gas.
3C2H2F4+4Al2O3→4AlF3+6C+2H2O …(F10) 3C 2 H 2 F 4 + 4Al 2 O 3 → 4AlF 3 + 6C + 2H 2 O (F10)
SiO2およびAl2O3によるHFC−134aの分解率と被処理ガスの流通時間と関係を図3に示す。 FIG. 3 shows the relationship between the decomposition rate of HFC-134a with SiO 2 and Al 2 O 3 and the flow time of the gas to be treated.
5種類のゼオライトによる分解率の時間経過(図2)とゼオライトの骨格成分であるSiO2およびAl2O3による分解率の時間経過(図3)とを比較すると、SiO2およびAl2O3はそれぞれ単独ではHFC−134aに対する分解能は極めて低いが、これらが三次元構造を形成するゼオライトはHFC−134aに対して高い分解能を示し、ゼオライトの有用性を裏付けている。 Comparing the time lapse of the decomposition rate with five types of zeolite (FIG. 2) and the time lapse of the decomposition rate with SiO 2 and Al 2 O 3 which are the framework components of the zeolite (FIG. 3), SiO 2 and Al 2 O 3 Each has a very low resolution with respect to HFC-134a, but the zeolite in which they form a three-dimensional structure shows a high resolution with respect to HFC-134a, confirming the usefulness of the zeolite.
本発明は地球温暖化ガスであるHFC−134a等のフッ素系ガスの分解処理に利用することができる。 The present invention can be used for the decomposition treatment of fluorine-based gas such as HFC-134a which is a global warming gas.
1…流通式分解処理装置
10…反応容器
11…加熱器
12…温度制御装置
13…予備加熱器
16…導入管
17…送出管
21…HFC−134aの導入口
22…窒素ガスの導入口
1 ... Distribution-type disassembly treatment device
10 ... Reaction vessel
11 ... Heater
12 ... Temperature control device
13… Preheater
16 ... Introduction pipe
17 ... Delivery pipe
21 ... HFC-134a inlet
22… Nitrogen gas inlet
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010107204A JP5626849B2 (en) | 2010-05-07 | 2010-05-07 | Method for decomposing fluorine gas with zeolite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010107204A JP5626849B2 (en) | 2010-05-07 | 2010-05-07 | Method for decomposing fluorine gas with zeolite |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011235216A true JP2011235216A (en) | 2011-11-24 |
JP5626849B2 JP5626849B2 (en) | 2014-11-19 |
Family
ID=45323788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010107204A Expired - Fee Related JP5626849B2 (en) | 2010-05-07 | 2010-05-07 | Method for decomposing fluorine gas with zeolite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5626849B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016155072A (en) * | 2015-02-24 | 2016-09-01 | 宇部興産株式会社 | Halogen-based gas treatment agent and halogen-based gas treatment method |
JP2016221428A (en) * | 2015-05-28 | 2016-12-28 | 宇部興産株式会社 | Gas processing apparatus and gas processing cartridge |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0663357A (en) * | 1990-10-26 | 1994-03-08 | Tosoh Corp | Exhaust gas treatment equipment containing organic halogen compounds |
JPH06304447A (en) * | 1993-02-24 | 1994-11-01 | Nippon Kayaku Co Ltd | Decomposition of organic compound containing halogen and catalyst therefor |
JP2002361041A (en) * | 2001-06-01 | 2002-12-17 | Research Institute Of Innovative Technology For The Earth | Pretreatment method for recovery of PFC mixed exhaust gas |
JP2004351364A (en) * | 2003-05-30 | 2004-12-16 | Ebara Corp | Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride |
JP2009226398A (en) * | 2008-02-26 | 2009-10-08 | Kyocera Corp | Decomposition agent |
-
2010
- 2010-05-07 JP JP2010107204A patent/JP5626849B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0663357A (en) * | 1990-10-26 | 1994-03-08 | Tosoh Corp | Exhaust gas treatment equipment containing organic halogen compounds |
JPH06304447A (en) * | 1993-02-24 | 1994-11-01 | Nippon Kayaku Co Ltd | Decomposition of organic compound containing halogen and catalyst therefor |
JP2002361041A (en) * | 2001-06-01 | 2002-12-17 | Research Institute Of Innovative Technology For The Earth | Pretreatment method for recovery of PFC mixed exhaust gas |
JP2004351364A (en) * | 2003-05-30 | 2004-12-16 | Ebara Corp | Method, agent and apparatus for treating exhaust gas containing halogenated inorganic gas containing chlorine trifluoride |
JP2009226398A (en) * | 2008-02-26 | 2009-10-08 | Kyocera Corp | Decomposition agent |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016155072A (en) * | 2015-02-24 | 2016-09-01 | 宇部興産株式会社 | Halogen-based gas treatment agent and halogen-based gas treatment method |
JP2016221428A (en) * | 2015-05-28 | 2016-12-28 | 宇部興産株式会社 | Gas processing apparatus and gas processing cartridge |
Also Published As
Publication number | Publication date |
---|---|
JP5626849B2 (en) | 2014-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109310949B (en) | Integrated treatment system for mixed exhaust gases including nitrogen oxides, chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, and perfluorochemicals | |
JP5145904B2 (en) | Halogen-based gas scavenger and halogen-based gas scavenging method using the same | |
JP3789277B2 (en) | Reagent for decomposing fluorine compounds, decomposing method and use thereof | |
KR101522277B1 (en) | Removal Method of Nitrous Oxide Gas from Semiconductor Exhausted Gas with Catalytic Reactior | |
JP5626849B2 (en) | Method for decomposing fluorine gas with zeolite | |
JP5309945B2 (en) | Halogen-based gas scavenger and halogen-based gas scavenging method using the same | |
JP6256938B2 (en) | Fluorocarbon decomposition method | |
JP5499816B2 (en) | Halogen gas removal method | |
JP2013095736A (en) | Method of decomposition-treating perfluorocarbon by zeolite | |
WO2018230121A1 (en) | Fluorine-containing gas decomposing/removing agent, method for producing same, and fluorine-containing gas removing method and fluorine resource recovery method each using same | |
JPH08187302A (en) | Fluorocarbon cracking | |
JP5423594B2 (en) | Method for removing fluorine-containing compound gas | |
JP4698201B2 (en) | Fluorine-containing gas decomposition treatment apparatus and fluorine compound recovery method using the same | |
KR101392805B1 (en) | Absorption material for removing PFC and acid gas | |
JP2008505750A (en) | Purification method of nitrogen trifluoride gas using zeolite ion exchanged with alkaline earth metal | |
JP4459648B2 (en) | Method and apparatus for treating gas containing fluorine-containing compound | |
JP2008136932A (en) | Selective removing method of fluorocarbon having unsaturated bond, treatment unit and sample treatment system using treatment unit | |
JP4454275B2 (en) | Fluorine compound decomposition treatment agent and decomposition treatment method | |
JP5405857B2 (en) | Calcium fluoride recovery method | |
JP4711831B2 (en) | Exhaust gas treatment agent, exhaust gas treatment method, and exhaust gas treatment apparatus | |
JP5328605B2 (en) | Fluorine compound decomposition treatment agent and decomposition treatment method | |
JP5342805B2 (en) | Method for detoxifying HFC-134a and method for producing calcium carbonate | |
JPH11276858A (en) | Decomposer for fluorine-containing compound gas and its manufacture | |
JP3570136B2 (en) | Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound | |
KR101448475B1 (en) | Absorption material for removing PFC and acid gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130403 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131022 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140902 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140925 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5626849 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |