[go: up one dir, main page]

JP5423594B2 - Method for removing fluorine-containing compound gas - Google Patents

Method for removing fluorine-containing compound gas Download PDF

Info

Publication number
JP5423594B2
JP5423594B2 JP2010142189A JP2010142189A JP5423594B2 JP 5423594 B2 JP5423594 B2 JP 5423594B2 JP 2010142189 A JP2010142189 A JP 2010142189A JP 2010142189 A JP2010142189 A JP 2010142189A JP 5423594 B2 JP5423594 B2 JP 5423594B2
Authority
JP
Japan
Prior art keywords
gas
fluorine
mixture
containing compound
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010142189A
Other languages
Japanese (ja)
Other versions
JP2012005929A (en
Inventor
広志 市丸
久治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2010142189A priority Critical patent/JP5423594B2/en
Publication of JP2012005929A publication Critical patent/JP2012005929A/en
Application granted granted Critical
Publication of JP5423594B2 publication Critical patent/JP5423594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、特に、半導体製造、液晶製造および太陽電池製造において、エッチングやクリーニングに使用され排出されるガス中のフッ素含有化合物ガスの除去剤による除去方法に関するものである。   In particular, the present invention relates to a method for removing a fluorine-containing compound gas in a gas used for etching or cleaning in a semiconductor manufacturing, a liquid crystal manufacturing, and a solar cell manufacturing, using a remover.

四フッ化炭素フッ素(CF)ガスや六フッ化硫黄(SF)ガスといったフッ素含有化合物ガスは、半導体製造、液晶製造および太陽電池製造において、珪素やタングステンを除去するためのエッチングガスやクリーニングガスとして使用されている。 Fluorine-containing compound gases such as carbon tetrafluoride fluorine (CF 4 ) gas and sulfur hexafluoride (SF 6 ) gas are used for etching gas and cleaning for removing silicon and tungsten in semiconductor manufacturing, liquid crystal manufacturing and solar cell manufacturing. Used as a gas.

これらフッ素含有化合物ガスには、オゾン破壊係数(ODP)や地球温暖化係数(GWP)が高いものが多く、近年国際的に大きな問題となっている。そのため、これらガスを使用する場合には、その残ガス等の排気の際にそれらを分解し除去することが常に必要となる。   Many of these fluorine-containing compound gases have high ozone depletion potential (ODP) and global warming potential (GWP), and have recently become a major problem internationally. Therefore, when these gases are used, it is always necessary to decompose and remove them when exhausting the residual gas.

フッ素含有化合物ガスの多くは、大気中で極めて安定であり、水にもわずかしか溶解しないため、アルカリ薬剤を用いた除去装置や湿式スクラバーといった従来の分解除去技術では除去ができない。また、燃焼ガスを利用した分解による除去技術があるが、ガス分解はするものの未分解成分が残留することや、分解除去後においてHFやSiFといったフッ化物ガスの生成があり、さらにそれらを除去しなければならないといった問題が生じる。 Many of the fluorine-containing compound gases are extremely stable in the atmosphere and are only slightly soluble in water, and therefore cannot be removed by conventional decomposition and removal techniques such as a removal device using an alkaline chemical or a wet scrubber. Also, there is a removal technology by decomposition using combustion gas, but there are undecomposed components remaining though gas decomposition, and generation of fluoride gas such as HF and SiF 4 after decomposition and removal The problem of having to do arises.

一方、フッ素含有化合物ガスは、除去剤を加熱して分解除去する方法が一部に採用されている。これら除去剤はCaO、CaCO、Ca(OH)等のカルシウム化合物を主成分としており、下記反応式(1)〜(3)式のようにフッ化カルシウム(CaF)として固定される。また、主成分以外にフッ素含有化合物ガスの分解を促進させるために触媒としてアルミナ(Al)を混合して用いる場合がある。この場合、カルシウム化合物がフッ化カルシウムとしてフッ素成分を固定すればアルミナの触媒としての活性は維持されるが、カルシウム化合物がフッ化カルシウムとなったあとは、アルミナ自体も、下記反応式(4)式のようにフッ素含有化合物ガスによりフッ化アルミニウム(AlF)が生成されたり、フッ素含有化合物ガスの分解によって生成されたフッ素成分と反応してもフッ化アルミニウム(AlF)を生成して被毒されて触媒としての効果は失われる。(特許文献1〜3)
CF+2CaO → 2CaF+CO(1)
CF+2CaCO→ 2CaF+3CO(2)
CF+2Ca(OH)→ 2CaF+CO+2H (3)
3CF+2Al → 4AlF+3CO(4)
これら除去剤を加熱して除去する方法においては、除去処理が進むにつれて、除去剤がフッ化カルシウム(CaF)やフッ化アルミニウム(AlF)に変換され、フッ素含有化合物ガスの除去能力が失われるため、定期的な除去剤の交換が必要となる。
On the other hand, for the fluorine-containing compound gas, a method in which the removing agent is decomposed and removed by heating is adopted in part. These removing agents are mainly composed of calcium compounds such as CaO, CaCO 3 , and Ca (OH) 2 and are fixed as calcium fluoride (CaF 2 ) as shown in the following reaction formulas (1) to (3). In addition to the main component, alumina (Al 2 O 3 ) may be mixed and used as a catalyst in order to promote decomposition of the fluorine-containing compound gas. In this case, if the calcium compound fixes the fluorine component as calcium fluoride, the activity of alumina as a catalyst is maintained. However, after the calcium compound becomes calcium fluoride, the alumina itself is also represented by the following reaction formula (4). As shown in the formula, aluminum fluoride (AlF 3 ) is generated by the fluorine-containing compound gas, or even if it reacts with the fluorine component generated by the decomposition of the fluorine-containing compound gas, aluminum fluoride (AlF 3 ) is generated and covered. Poisoned and loses its effectiveness as a catalyst. (Patent Documents 1 to 3)
CF 4 + 2CaO → 2CaF 2 + CO 2 (1)
CF 4 + 2CaCO 3 → 2CaF 2 + 3CO 2 (2)
CF 4 + 2Ca (OH) 2 → 2CaF 2 + CO 2 + 2H 2 O (3)
3CF 4 + 2Al 2 O 3 → 4AlF 3 + 3CO 2 (4)
In the method in which these removing agents are removed by heating, the removing agent is converted into calcium fluoride (CaF 2 ) or aluminum fluoride (AlF 3 ) as the removal process proceeds, and the ability to remove fluorine-containing compound gas is lost. Therefore, it is necessary to replace the remover periodically.

さらに、半導体製造、液晶製造、または太陽電池製造において、クリーニングやエッチングに使用されるフッ素含有化合物ガスは、ウエハーの大口径化や液晶サイズの大型化に伴い消費量が増大し、これらを含有する排出ガスも増大する。したがって、排出ガス中に含まれるフッ素含有化合物ガスの除去を、効率よく大量に行うことが必要になってきている。   Furthermore, fluorine-containing compound gases used for cleaning and etching in semiconductor manufacturing, liquid crystal manufacturing, or solar cell manufacturing increase in consumption with the increase in wafer diameter and liquid crystal size, and contain these. The exhaust gas also increases. Therefore, it is necessary to efficiently remove a large amount of the fluorine-containing compound gas contained in the exhaust gas.

しかし、一般的に使用されているフッ素含有化合物ガスの除去剤では、除去剤の単位質量あたりに除去できるフッ素含有化合物ガスの量(単位処理量)が小さく、頻繁に除去剤を交換しなければならないといった問題がある。フッ素含有物ガスの除去剤の交換は、除去剤が充填された充填筒を排ガス除去装置から取り外し、充填筒ごとに開封し使用済みの除去剤を取り出し、未使用の除去剤を再充填するため、時間と労力を要する。   However, generally used fluorine-containing compound gas removal agents have a small amount of fluorine-containing compound gas that can be removed per unit mass of the removal agent (unit treatment amount), and the removal agent must be replaced frequently. There is a problem of not becoming. Replacement of the fluorine-containing gas removal agent is performed by removing the filling cylinder filled with the removal agent from the exhaust gas removal device, opening each of the filling cylinders, taking out the used removal agent, and refilling the unused removal agent. , Takes time and effort.

これに対し、充填筒を大きくすることや、複数の充填筒を用いることで、除去剤の交換に要する時間、労力を軽減させることができる。しかしながら、これらの方法では、設備が大規模になることや複数の充填筒を要することで除去剤の使用量が増大する等、コスト増大の問題が発生する。すなわち充填筒を大きくした場合、それに伴い充填筒加熱ヒータも大型化し、消費電力も増大する。また複数の充填筒での除去では、複数に分離した充填筒およびそれに伴う複数の分離した充填筒加熱ヒータが必要となる。   On the other hand, the time and labor required to replace the removing agent can be reduced by enlarging the filling cylinder or using a plurality of filling cylinders. However, in these methods, there is a problem of an increase in cost, such as an increase in the amount of removal agent used due to the fact that the equipment is large-scale and a plurality of filling cylinders are required. That is, when the filling cylinder is made larger, the filling cylinder heater is also enlarged, and the power consumption is also increased. In addition, the removal with a plurality of filling cylinders requires a plurality of filling cylinders and a plurality of separate filling cylinder heaters associated therewith.

特許第3789277号公報Japanese Patent No. 3789277 特許第4156312号公報Japanese Patent No. 4156312 特許第4459648号公報Japanese Patent No. 4457648

上記のとおり、除去剤を加熱してフッ素含有化合物ガスを除去する方法において、従来は設備面での対応により充填筒の除去剤の交換かかる時間や労力を削減しているが、これに伴いコスト増大の問題が発生する。   As described above, in the method of removing the fluorine-containing compound gas by heating the removal agent, the time and labor required to replace the removal agent in the filling cylinder has been reduced by the response from the equipment side. An increase problem occurs.

そこでコスト増大を抑制できる時間や労力の削減のため、本発明は、除去剤を加熱してフッ素含有化合物ガスを除去する方法において、フッ素含有化合物ガスの単位処理量を高めたフッ素含有化合物ガスの除去方法を提供することを目的としている。   Therefore, in order to reduce the time and labor that can suppress the increase in cost, the present invention provides a method for removing the fluorine-containing compound gas by heating the removing agent, in the fluorine-containing compound gas having an increased unit treatment amount of the fluorine-containing compound gas. It aims to provide a removal method.

本発明者は、かかる課題を解決すべく鋭意検討の結果、カルシウム化合物とアルミナの混合物を成分とするフッ素含有化合物ガスの除去剤を、加熱してフッ素含有化合物ガスを除去する方法において、その成分の混合質量比と単位処理量が、処理流量(除去剤に流通させるガス流量)の違いにより異なることを発見し、異なる混合質量比の除去剤を用いることにより除去剤全体の単位処理量を高めることを見出し本発明に至った。   As a result of intensive studies to solve such problems, the present inventor, in a method for removing a fluorine-containing compound gas by heating a fluorine-containing compound gas remover comprising a mixture of a calcium compound and alumina as a component, Discovered that the mixing mass ratio and unit treatment amount differ depending on the treatment flow rate (gas flow rate passed through the removal agent), and the removal agent with a different mixing mass ratio is used to increase the unit treatment amount of the entire removal agent As a result, the present invention was reached.

より具体的には、処理流量が小さいときに単位処理量が最大となる混合質量比と処理流量が大きいときに単位処理量が最大となる混合質量比に違いのあることが分かり、さらには、フッ素含有化合物ガスを含有するガスを、処理流量が小さいときに単位処理量が最大となる混合質量比の除去剤に流通した後、処理流量が大きいときに単位処理量が最大となる混合質量比の除去剤に流通することにより、同一の混合質量比の除去剤に流通した場合に比べ、単位処理量が大きくなることを見出した。   More specifically, it can be seen that there is a difference between the mixing mass ratio at which the unit throughput is maximum when the processing flow rate is small and the mixing mass ratio at which the unit processing amount is maximum when the processing flow rate is large. After passing a gas containing a fluorine-containing compound gas through a removal agent having a mixture mass ratio that maximizes the unit throughput when the treatment flow rate is small, a mixture mass ratio that maximizes the unit throughput when the treatment flow rate is large It has been found that the amount of the unit treatment is increased by passing through the removing agent in comparison with the case of passing through the removing agent having the same mixing mass ratio.

すなわち本発明は、除去剤としてカルシウム化合物とアルミナとを含む混合物を用いてフッ素含有化合物ガスを除去する方法において、少なくとも、該混合物を除去剤として用いる第1除去工程と第2除去工程を有し、さらには、該混合物中のカルシウム原子とアルミニウム原子の和に対するアルミニウム原子の質量比(Al/(Al+Ca))が、第1除去工程の混合物(第1混合物)より第2除去工程の混合物(第2混合物)の方が大きく、フッ素含有化合物ガスを含有するガスを、第1除去工程で第1混合物と接触させ、次に第2除去工程で第2混合物と接触させることを特徴とする、フッ素含有化合物ガスの除去方法を提供するものである。   That is, the present invention has at least a first removal step and a second removal step in which a fluorine-containing compound gas is removed using a mixture containing a calcium compound and alumina as a removal agent, and the mixture is used as a removal agent. Furthermore, the mass ratio (Al / (Al + Ca)) of aluminum atoms to the sum of calcium atoms and aluminum atoms in the mixture (Al / (Al + Ca)) is greater than the mixture of the second removal step (first mixture) than the mixture of the first removal step (first mixture). Fluorine, characterized in that a gas containing a fluorine-containing compound gas is brought into contact with the first mixture in the first removal step and then brought into contact with the second mixture in the second removal step. A method for removing contained compound gas is provided.

さらには、第1混合物と第2混合物が共に、混合物中のカルシウム原子とアルミニウム原子の和に対するアルミニウム原子の質量比(Al/(Al+Ca))が、0.1以上、0.8以下の範囲内であることを特徴とするフッ素含有化合物ガスの除去方法を提供するものである。   Furthermore, in both the first mixture and the second mixture, the mass ratio of aluminum atoms to the sum of calcium atoms and aluminum atoms in the mixture (Al / (Al + Ca)) is in the range of 0.1 or more and 0.8 or less. Therefore, the present invention provides a method for removing a fluorine-containing compound gas.

本発明により、単一の充填筒において乾式除去剤を高温に加熱して除去する方法において、使用する除去剤の単位処理量を大きくでき、除去剤の交換頻度を減少させることが可能となる。   According to the present invention, in a method of removing a dry removal agent by heating to a high temperature in a single filling cylinder, the unit treatment amount of the removal agent to be used can be increased, and the replacement frequency of the removal agent can be reduced.

フッ素含有化合物ガスの除去の実験フローの概略図を示す。The schematic of the experimental flow of removal of fluorine-containing compound gas is shown.

以下、本発明の内容を詳細に述べる。   Hereinafter, the contents of the present invention will be described in detail.

除去対象となるフッ素含有化合物ガスは、CF、SF、C、C、C、C、C、C、CHF、CHF、またはCH等が挙げられる。 The fluorine-containing compound gas to be removed is CF 4 , SF 6 , C 4 F 8 , C 3 F 8 , C 5 F 8 , C 4 F 6 , C 2 F 6 , C 3 F 6 , CHF 3 , CH 3 F, CH 2 F 2 and the like can be mentioned.

カルシウム化合物としては、Ca(OH)、CaCO、またはCaO等が挙げられる。 Examples of the calcium compound include Ca (OH) 2 , CaCO 3 , and CaO.

アルミナ(Al)は、市販のものを用いることができ、または、ベーマイトAlO(OH)を500℃以上に加熱処理することにより(反応式:2AlO(OH)→2Al+HO)得られるものを用いることができる。 As alumina (Al 2 O 3 ), a commercially available product can be used, or boehmite AlO (OH) is heated to 500 ° C. or more (reaction formula: 2AlO (OH) → 2Al 2 O 3 + H 2 O) What can be obtained can be used.

本発明に用いられる第1および第2混合物は、カルシウム化合物とアルミナを混合するか、カルシウム化合物とアルミナに水分を加え混合し、造粒機で造粒後、乾燥して水分を除去することにより得ることができる。   The first and second mixtures used in the present invention are prepared by mixing calcium compound and alumina, adding water to calcium compound and alumina, mixing, granulating with a granulator, and drying to remove moisture. Can be obtained.

第1および第2混合物の平均粒径は、ガスの流通性と単位処理量の向上のため、φ2mm以上φ8mm以下のものが好ましく、より好ましくはφ4.5mm以上φ5.5mm以下である。φ2mm未満の場合は、圧力損失が大きくなりガスの通過が妨げられるおそれがある。φ8mmを超えると除去剤の内部まで反応が進行せず単位処理量が低下するおそれがある。   The average particle size of the first and second mixtures is preferably φ2 mm or more and φ8 mm or less, more preferably φ4.5 mm or more and φ5.5 mm or less in order to improve gas flowability and unit throughput. If the diameter is less than 2 mm, the pressure loss becomes large and the passage of gas may be hindered. If the diameter exceeds 8 mm, the reaction does not proceed to the inside of the remover and the unit throughput may be reduced.

第1および第2混合物の混合質量比Aは、カルシウム化合物中に含まれるカルシウム原子(Ca)の質量とアルミナ中に含まれるアルミニウム原子(Al)の質量を用いた式:A=Al/(Ca+Al)で求めた値を表す。混合質量比Aは、第1混合物より第2混合物のほうが大きい。さらには、混合質量比Aは0.1≦A≦0.8であることが好ましい。A<0.1ではフッ素含有化合物ガスとの反応速度が低くなりすぎるため単位処理量を高くすることができず、0.8<Aでは除去剤の成型品において粉化がおこりやすく、粉化によりガスの通過が妨げられるおそれがある。   The mixing mass ratio A of the first and second mixtures is a formula using the mass of calcium atoms (Ca) contained in the calcium compound and the mass of aluminum atoms (Al) contained in the alumina: A = Al / (Ca + Al ) Represents the value obtained. The mixing mass ratio A is larger in the second mixture than in the first mixture. Furthermore, the mixing mass ratio A is preferably 0.1 ≦ A ≦ 0.8. When A <0.1, the reaction rate with the fluorine-containing compound gas is too low to increase the unit treatment amount. When 0.8 <A, the removal agent is easily pulverized and pulverized. May prevent the passage of gas.

除去剤とフッ素含有化合物ガスを接触させるときの温度は、500℃以上900℃以下が好ましい。500℃未満では反応速度が充分得られず、その結果として未反応のフッ素含有化合物ガスが残留し出口ガスとして排出されるおそれがある。900℃を超えると充填筒の材質であるステンレスが、フッ素含有化合物ガスによる腐食のため、短期間でその強度が喪失するおそれがある。   The temperature when the removing agent and the fluorine-containing compound gas are brought into contact with each other is preferably 500 ° C. or higher and 900 ° C. or lower. If it is less than 500 ° C., a sufficient reaction rate cannot be obtained, and as a result, unreacted fluorine-containing compound gas may remain and be discharged as an outlet gas. If the temperature exceeds 900 ° C, the strength of the stainless steel, which is the material of the filling cylinder, may be lost in a short period of time due to corrosion by the fluorine-containing compound gas.

除去対象となるフッ素含有化合物ガスの濃度は限定されないが、フッ素含有化合物と除去剤の反応熱による、充填筒の材質や充填筒の温度制御への負荷を考慮すると、5vol%以下とするのが良く、好ましくは2vol%以下、さらに好ましくは1vol%以下になるように、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等の不活性ガスで希釈することがよい。   The concentration of the fluorine-containing compound gas to be removed is not limited, but in consideration of the load on the material of the filling cylinder and the temperature control of the filling cylinder due to the reaction heat of the fluorine-containing compound and the removing agent, it is 5 vol% or less. It is preferable to dilute with an inert gas such as helium gas, neon gas, argon gas, or nitrogen gas so that it is preferably 2 vol% or less, more preferably 1 vol% or less.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

図1に本例にもちいる実験フローの概略図を示す。除去対象ガスが充填されたボンベ1と窒素ガスが充填されたボンベ2(酸素濃度が1体積ppm未満の高純度窒素ガスである大陽日酸株式会社製のBグレード)より、それぞれの流量計(図中省略)により流量調整して所定の流量で窒素希釈ガスとして、充填筒加熱ヒータ4により600℃に加熱された充填剤の充填筒3(ステンレス製、内径30mm、長さ500mm、除去剤の全充填長さ300mm)の上部から導入して除去剤と接触させ、充填剤の充填筒3の下部より排出されるガスの一部をフーリエ変換式赤外線吸光分析計5(MIDAC社製(型式IGA−2000))にて、フッ素ガス含有化合物ガスを分析下限1ppmで分析する。この分析結果によりフッ素ガス含有化合物ガスの除去状態の確認が可能となる。式:(1−(排出ガス中の除去対象ガス濃度/導入した窒素希釈ガス中の除去対象ガス濃度))×100より求めた値を除去率(%)とし、除去率が99.9%以下となるまでに導入した除去対象ガスの全流量を、充填筒の処理量とした。   FIG. 1 shows a schematic diagram of an experimental flow used in this example. From the cylinder 1 filled with the gas to be removed and the cylinder 2 filled with nitrogen gas (B grade manufactured by Taiyo Nippon Sanso Co., Ltd., which is high-purity nitrogen gas with an oxygen concentration of less than 1 ppm by volume) Filler cylinder 3 (made of stainless steel, inner diameter 30 mm, length 500 mm, removal agent) heated to 600 ° C. by filling cylinder heater 4 as a nitrogen dilution gas at a predetermined flow rate by adjusting the flow rate (not shown in the figure) Is introduced from the upper part of the total filling length of 300 mm) and brought into contact with the removing agent, and a part of the gas discharged from the lower part of the filling cylinder 3 of the filler is converted into a Fourier transform infrared absorption spectrometer 5 (made by MIDAC (model) In IGA-2000)), the fluorine gas-containing compound gas is analyzed at an analysis lower limit of 1 ppm. Based on the analysis result, the removal state of the fluorine gas-containing compound gas can be confirmed. The value obtained from the formula: (1- (removal target gas concentration in exhaust gas / removal target gas concentration in introduced nitrogen dilution gas)) × 100 is defined as a removal rate (%), and the removal rate is 99.9% or less. The total flow rate of the gas to be removed that was introduced up to this time was taken as the processing amount of the filling cylinder.

除去対象ガスとなるフッ素含有化合物ガスは、CF、SF、C、C、C、C、C、C、CHF、CHF、またはCHを使用する(いずれのガスも大陽日酸株式会社製の純度99.9%以上のエッチング・クリーニング用半導体ガスを使用)。 The fluorine-containing compound gas to be removed is CF 4 , SF 6 , C 4 F 8 , C 3 F 8 , C 5 F 8 , C 4 F 6 , C 2 F 6 , C 3 F 6 , CHF 3 , CH 3 F or CH 2 F 2 is used (each gas uses a semiconductor gas for etching and cleaning having a purity of 99.9% or more manufactured by Taiyo Nippon Sanso Corporation).

除去剤のカルシウム化合物とアルミナの混合物について、カルシウム化合物は、Ca(OH)(新見化学工業製の工業用消石灰)、CaCO(白石カルシウム株式会社製のソルトン3200)、またはCaOを使用した。CaOは、Ca(OH)(新見化学工業製の工業用消石灰)とアルミナを混合した後に800℃にて1時間加熱することにより水分を放出させ、CaOとした(Ca(OH)→CaO+HO)。アルミナは株式会社デーケーファイン製のAA100を使用した。 The calcium compound and a mixture of alumina removers, calcium compound, Ca (OH) 2 (Niimi Chemical Industries Ltd. industrial slaked lime), CaCO 3 (Shiraishi Calcium Salton 3200 Co., Ltd.), or using CaO . CaO was mixed with Ca (OH) 2 (industrial slaked lime manufactured by Niimi Kagaku Kogyo Co., Ltd.) and alumina, and then heated at 800 ° C. for 1 hour to release moisture, thereby forming CaO (Ca (OH) 2 → CaO + H 2 O). AA100 manufactured by DK Fine Co., Ltd. was used as the alumina.

カルシウム化合物とアルミナの混合物は、所定の混合質量比に相当する量のカルシウム化合物とアルミナを用い、全質量の30%の水分を加え混合し、造粒機(兵庫・三木トレーディングセンター製電動ミンサーG−50)にて造粒後、150℃にて2時間乾燥し水分を除去して得る。カルシウム化合物としてCaOの混合物を得るには、カルシウム化合物の原料としてCa(OH)を用い、温度を800℃にする以外は前記と同様にして得る。 The mixture of calcium compound and alumina uses a calcium compound and alumina in an amount corresponding to a predetermined mixing mass ratio, and 30% of the total mass is added and mixed, and the granulator (Electric Mincer G manufactured by Hyogo / Miki Trading Center) is mixed. -50) and then dried at 150 ° C. for 2 hours to remove moisture. To obtain a mixture of CaO as the calcium compound, Ca (OH) 2 is used as the raw material of the calcium compound, and the mixture is obtained in the same manner as described above except that the temperature is set to 800 ° C.

乾燥後、篩い分けにより平均粒径4.5mm以上5.5mm以下の粒状の除去剤を得た。   After drying, a granular remover having an average particle size of 4.5 mm to 5.5 mm was obtained by sieving.

所定の混合質量比の除去剤を上部と下部の2層に分けて充填筒3に充填されており、充填筒3に導入される窒素希釈ガスは、上部の除去剤と接触した後、下部の除去剤と接触する。   A removal agent having a predetermined mixing mass ratio is divided into two layers, an upper part and a lower part, and filled in the filling cylinder 3, and the nitrogen dilution gas introduced into the filling cylinder 3 comes into contact with the upper removal agent, Contact with remover.

[実施例1〜3、比較例1、2]
上記の実験フローにおいて、除去対象ガスとしてCFを用い、流量を0.01L/minに、窒素ガスを1L/minに調整して、窒素希釈ガスを充填筒3に供給した。除去剤としてはCaOとアルミナの混合物を使用し、上部には混合質量比Aが0.3、下部には混合質量比Aが0.5のものを用いた。充填長さ300mmのうち、上部充填長さを240(実施例1)、270(実施例2)、285mm(実施例3)、300mm(比較例1)、0mm(比較例2)と変化させ、下部充填長さもそれに応じて調整し、それぞれについて実験を行った。
[Examples 1 to 3, Comparative Examples 1 and 2]
In the above experimental flow, CF 4 was used as the gas to be removed, the flow rate was adjusted to 0.01 L / min, the nitrogen gas was adjusted to 1 L / min, and the nitrogen dilution gas was supplied to the filling cylinder 3. As the remover, a mixture of CaO and alumina was used, and a mixture having a mixing mass ratio A of 0.3 at the top and a mixing mass ratio A of 0.5 at the bottom was used. Of the filling length of 300 mm, the upper filling length was changed to 240 (Example 1), 270 (Example 2), 285 mm (Example 3), 300 mm (Comparative Example 1), 0 mm (Comparative Example 2), The lower filling length was also adjusted accordingly and an experiment was conducted for each.

その結果を表1に示す。充填筒の処理量は、実施例1では5.70L、実施例2では5.95L、実施例3では5.55L、比較例1では4.95L、比較例1では4.30Lとなり、混合重量比A=0.3のみを充填した場合(比較例1)や混合重量比A=0.5のみを充填した場合(比較例2)と比べ、実施例1〜3の場合は充填筒1筒あたりの処理量が増大していることが確認できる。

Figure 0005423594
The results are shown in Table 1. The processing amount of the filling cylinder is 5.70 L in Example 1, 5.95 L in Example 2, 5.55 L in Example 3, 4.95 L in Comparative Example 1, 4.30 L in Comparative Example 1, and the mixed weight. Compared with the case where only the ratio A = 0.3 is filled (Comparative Example 1) and the case where only the mixing weight ratio A = 0.5 is filled (Comparative Example 2), in the case of Examples 1 to 3, one filled cylinder It can be confirmed that the per-process amount is increasing.
Figure 0005423594

[実施例4〜33]
上記の実験フローにおいて、除去対象ガスとして、CFの代わりにSF(実施例4〜6)、C(実施例7〜9)、C(実施例10〜12)、C(実施例13〜15)、C(実施例16〜18)、C(実施例19〜21)、C(実施例22〜24)、CHF(実施例25〜27)、CHF(実施例28〜30)、CH(実施例31〜33)をそれぞれ用いる以外は、実施例1〜3と同様に行った。
[Examples 4 to 33]
In the above experimental flow, instead of CF 4 , SF 6 (Examples 4 to 6), C 4 F 8 (Examples 7 to 9), C 3 F 8 (Examples 10 to 12), instead of CF 4 , C 5 F 8 (example 13~15), C 4 F 6 (example 16~18), C 2 F 6 (example 19~21), C 3 F 6 (example 22 to 24), CHF 3 (example 25-27), except using CH 3 F (example 28 to 30), CH 2 F 2 (example 31 to 33) respectively, it was performed in the same manner as in example 1-3.

その結果を表2に示す。種々のフッ素含有化合物ガスを除去可能であることが確認できる。

Figure 0005423594
The results are shown in Table 2. It can be confirmed that various fluorine-containing compound gases can be removed.
Figure 0005423594

[実施例34〜39]
上部と下部の除去剤のカルシウム化合物にCaOではなく、Ca(OH)(実施例34〜36)、CaCO(実施例37〜39)をそれぞれ使用する以外は、実施例1〜3と同様に行った。
[Examples 34 to 39]
Similar to Examples 1 to 3 except that Ca (OH) 2 (Examples 34 to 36) and CaCO 3 (Examples 37 to 39) are used instead of CaO for the calcium compounds of the upper and lower removers, respectively. Went to.

その結果を表3に示す。充填筒の処理量は、実施例34では5.75L、実施例35では5.90L、実施例36では5.55L、実施例37では5.50L、実施例38では5.94L、実施例39では5.54Lとなり、種々のカルシウム化合物について除去可能であることが確認でき、混合重量比A=0.3のみを充填した場合(比較例1)と比べ、実施例34〜39の場合は充填筒1筒あたりの処理量が増大していることが確認できる。   The results are shown in Table 3. The processing amount of the filling cylinder was 5.75 L in Example 34, 5.90 L in Example 35, 5.55 L in Example 36, 5.50 L in Example 37, 5.94 L in Example 38, and Example 39. It was 5.54 L, and it was confirmed that various calcium compounds could be removed. In the case of Examples 34 to 39, compared with the case where only the mixing weight ratio A = 0.3 was filled (Comparative Example 1). It can be confirmed that the processing amount per cylinder is increasing.

[実施例40〜42]
用いるカルシウム化合物の種類を、上部にCaOと下部にCaCO(実施例40)、上部にCaCOと下部にCaO(実施例41)、上部にCaOと下部にCa(OH)(実施例42)とする以外は、実施例2と同様に行った。
[Examples 40 to 42]
The type of calcium compound used, CaCO 3 (Example 40) into CaO and bottom to top, CaO (Example 41) CaCO 3 and lower in the upper, Ca (OH) into CaO and bottom to top 2 (Example 42 ) Was performed in the same manner as in Example 2 except that.

その結果を表3に示す。充填筒1筒あたりの処理量はそれぞれ、実施例40では5.93L、実施例41では5.90L、実施例42では5.92Lとなり、いずれもカルシウム化合物としてCaOだけを使用した実施例2の場合と同様な結果が得られた。上部と下部の除去剤において種類の異なるカルシウム化合物を使用しても、同様な効果が得られることが確認できる。

Figure 0005423594
The results are shown in Table 3. The processing amount per one filling cylinder was 5.93 L in Example 40, 5.90 L in Example 41, and 5.92 L in Example 42, both of which were obtained using Example 2 using only CaO as the calcium compound. Similar results were obtained. It can be confirmed that the same effect can be obtained even when different types of calcium compounds are used in the upper and lower removers.
Figure 0005423594

[実施例43、比較例3]
CFの流量を0.03L/min、窒素ガスの流量を3L/minとし、充填筒3中の全充填長さ300mmのうち、上部充填長さを180(実施例43)と300(比較例3)に変化させ、下部充填長さもそれに応じて調整する以外は実施例2と同様に行った。
[Example 43, Comparative Example 3]
The flow rate of CF 4 is 0.03 L / min, the flow rate of nitrogen gas is 3 L / min, and the upper filling length is 180 (Example 43) and 300 (Comparative Example) out of the total filling length 300 mm in the filling cylinder 3. The same procedure as in Example 2 was carried out except that the lower filling length was adjusted accordingly.

その結果を表4に示す。充填筒の処理量は、実施例43では3.70L、比較例3では3.45Lとなり、本例における流量においても、混合重量比A=0.3のみを充填した場合(比較例3)に比べ、実施例43の場合は充填筒1筒あたりの処理量が増大していることが確認できる。   The results are shown in Table 4. The processing amount of the filling cylinder is 3.70 L in Example 43 and 3.45 L in Comparative Example 3, and even when the flow rate in this example is filled with only the mixing weight ratio A = 0.3 (Comparative Example 3). In comparison, in the case of Example 43, it can be confirmed that the processing amount per one filling cylinder is increased.

[実施例44、比較例4]
CFの流量を0.10L/min、窒素ガスの流量を10L/minとし、充填筒3中の全充填長さ300mmのうち、上部充填長さを60(実施例44)と300(比較例4)に変化させ、下部充填長さもそれに応じて調整する以外は実施例2と同様に行った。
[Example 44, comparative example 4]
The flow rate of CF 4 is 0.10 L / min, the flow rate of nitrogen gas is 10 L / min, and the upper filling length is 60 (Example 44) and 300 (Comparative Example) out of the total filling length 300 mm in the filling cylinder 3. Example 4 was performed in the same manner as in Example 2 except that the lower filling length was adjusted accordingly.

その結果を表4に示す。充填筒の処理量は、実施例44では2.40L、比較例4では0.90Lとなり、本例における流量においても、混合重量比A=0.3のみを充填した場合(比較例4)に比べ、実施例44の場合は充填筒1筒あたりの処理量が増大していることが確認できる。

Figure 0005423594
The results are shown in Table 4. The processing amount of the filling cylinder is 2.40 L in Example 44 and 0.90 L in Comparative Example 4, and even when only the mixing weight ratio A = 0.3 is filled at the flow rate in this example (Comparative Example 4). In comparison, in the case of Example 44, it can be confirmed that the processing amount per one filling cylinder is increased.
Figure 0005423594

[実施例45〜47、比較例5、6]
CFの流量を0.005L/min、窒素ガスの流量を1L/minとし、充填筒3中の全充填長さ300mmのうち、上部充填長さを60(実施例45)、30(実施例46)、15(実施例47)、300(比較例5)、0mm(比較例6)と変化させ、下部充填長さもそれに応じて調整する以外は実施例2と同様に行った。
[Examples 45 to 47, Comparative Examples 5 and 6]
The flow rate of CF 4 is 0.005 L / min, the flow rate of nitrogen gas is 1 L / min, and the upper filling length of the total filling length 300 mm in the filling cylinder 3 is 60 (Example 45), 30 (Example) 46), 15 (Example 47), 300 (Comparative Example 5) and 0 mm (Comparative Example 6), and the same procedure as in Example 2 was performed except that the lower filling length was adjusted accordingly.

その結果を表5に示す。充填筒の処理量は、実施例45では5.71L、実施例46では5.94L、実施例47では5.55L、比較例5では4.95L、比較例6では4.29Lとなり、本例における流量においても、混合重量比A=0.3のみを充填した場合(比較例5)や混合重量比A=0.5のみを充填した場合(比較例6)と比べ、実施例45〜47の場合は充填筒1筒あたりの処理量が増大していることが確認できる。

Figure 0005423594
The results are shown in Table 5. The processing amount of the filling cylinder is 5.71 L in Example 45, 5.94 L in Example 46, 5.55 L in Example 47, 4.95 L in Comparative Example 5, and 4.29 L in Comparative Example 6, and this example Also in the flow rate in Example 4, compared with the case where only mixing weight ratio A = 0.3 is filled (Comparative Example 5) and the case where only mixing weight ratio A = 0.5 is filled (Comparative Example 6), Examples 45-47. In this case, it can be confirmed that the processing amount per one filling cylinder is increased.
Figure 0005423594

[実施例48〜50、比較例7、8]
CFの流量を0.015L/min、窒素ガスの流量を1L/minとし、充填筒3中の全充填長さ300mmのうち、上部充填長さを60(実施例48)、30(実施例49)、15(実施例50)、300(比較例7)、0mm(比較例8)と変化させ、下部充填長さもそれに応じて調整する以外は実施例2と同様に行った。
[Examples 48 to 50, Comparative Examples 7 and 8]
The flow rate of CF 4 is 0.015 L / min, the flow rate of nitrogen gas is 1 L / min, and the upper filling length is 60 (Example 48) and 30 (Example) among the total filling length 300 mm in the filling cylinder 3. 49), 15 (Example 50), 300 (Comparative Example 7), 0 mm (Comparative Example 8), and the same procedure as in Example 2 except that the lower filling length was adjusted accordingly.

その結果を表6に示す。充填筒の処理量は、実施例48では5.12L、実施例49では5.34L、実施例50では4.95L、比較例7では4.36L、比較例8では3.75Lとなり、本例における流量においても、混合重量比A=0.3のみを充填した場合(比較例7)や混合重量比A=0.5のみを充填した場合(比較例8)と比べ、実施例48〜50の場合は充填筒1筒あたりの処理量が増大していることが確認できる。

Figure 0005423594
The results are shown in Table 6. The processing amount of the filling cylinder is 5.12 L in Example 48, 5.34 L in Example 49, 4.95 L in Example 50, 4.36 L in Comparative Example 7, and 3.75 L in Comparative Example 8, and this example In comparison with the case where only the mixing weight ratio A = 0.3 is filled (Comparative Example 7) and the case where only the mixing weight ratio A = 0.5 is filled (Comparative Example 8), the flow rates in Examples 48 to 50 are also compared. In this case, it can be confirmed that the processing amount per one filling cylinder is increased.
Figure 0005423594

[比較例9〜11]
上部と下部の除去剤の混合重量比Aを逆に上部より下部の方が小さくなるようにして、それぞれ混合重量比Aを上部について0.5、下部について0.3とする以外は実施例1〜3と同様に行った。
[Comparative Examples 9 to 11]
Example 1 except that the mixing weight ratio A of the upper and lower removing agents is smaller in the lower part than in the upper part, and the mixing weight ratio A is set to 0.5 for the upper part and 0.3 for the lower part, respectively. Performed in the same manner as ˜3.

その結果を表7に示す。充填筒1筒あたりの処理量は、上部充填長さが240mmのとき(比較例9)に4.25L、上部充填長さが270mmのとき(比較例10)に4.26L、上部充填長さが285mmのとき(比較例11)に4.21Lとなり、実施例1〜3の上部と下部の除去剤の混合重量比Aがそれぞれ混合重量比Aが上部では0.3、下部では0.5の除去剤を充填した場合と比べ、充填筒1筒あたりの処理量が小さいことが確認できる。

Figure 0005423594
The results are shown in Table 7. The amount of processing per one filling cylinder is 4.25 L when the upper filling length is 240 mm (Comparative Example 9), 4.26 L when the upper filling length is 270 mm (Comparative Example 10), and the upper filling length. Is 4.21 L when 285 mm (Comparative Example 11), and the mixing weight ratio A of the upper and lower removing agents in Examples 1 to 3 is 0.3 when the mixing weight ratio A is 0.3 and 0.5 at the lower part, respectively. It can be confirmed that the processing amount per one filled cylinder is small compared to the case where the removing agent is filled.
Figure 0005423594

本発明は、特に、半導体製造、液晶製造および太陽電池製造において、エッチングやクリーニングに使用され排出されるガス中のフッ素含有化合物ガスの除去剤として有用である。   The present invention is particularly useful as a fluorine-containing compound gas remover in gases exhausted and used for etching and cleaning in semiconductor manufacturing, liquid crystal manufacturing, and solar cell manufacturing.

1・・・ボンベ(除去対象ガス)
2・・・ボンベ(窒素ガス)
3・・・除去剤の充填筒
4・・・充填筒加熱ヒータ
5・・・フーリエ変換式赤外線吸光分析計
1 ... cylinder (gas to be removed)
2 ... bomb (nitrogen gas)
3 ... remover filling cylinder 4 ... filling cylinder heater 5 ... Fourier transform infrared absorption spectrometer

Claims (2)

除去剤としてカルシウム化合物とアルミナとを含む混合物を用いてフッ素含有化合物ガスを除去する方法において、
少なくとも、該混合物を除去剤として用いる第1除去工程と第2除去工程を有し、
さらには、該混合物中のカルシウム原子とアルミニウム原子の和に対するアルミニウム原子の質量比(Al/(Al+Ca))が、第1除去工程の混合物(第1混合物)より第2除去工程の混合物(第2混合物)の方が大きく、
フッ素含有化合物ガスを含有するガスを、第1除去工程で第1混合物と接触させ、次に第2除去工程で第2混合物と接触させることを特徴とする、フッ素含有化合物ガスの除去方法。
In a method of removing fluorine-containing compound gas using a mixture containing a calcium compound and alumina as a remover,
At least a first removal step and a second removal step using the mixture as a removal agent;
Furthermore, the mass ratio (Al / (Al + Ca)) of aluminum atoms to the sum of calcium atoms and aluminum atoms in the mixture is greater than the mixture of the first removal step (first mixture) (second mixture). The mixture) is larger,
A method for removing a fluorine-containing compound gas, comprising bringing a gas containing a fluorine-containing compound gas into contact with a first mixture in a first removal step and then bringing the gas into contact with a second mixture in a second removal step.
第1混合物と第2混合物が共に、混合物中のカルシウム原子とアルミニウム原子の和に対するアルミニウム原子の質量比(Al/(Al+Ca))が、0.1以上、0.8以下の範囲内であることを特徴とする、請求項1に記載のフッ素含有化合物ガスの除去方法。 In both the first mixture and the second mixture, the mass ratio of aluminum atoms to the sum of calcium atoms and aluminum atoms in the mixture (Al / (Al + Ca)) is in the range of 0.1 or more and 0.8 or less. The method for removing a fluorine-containing compound gas according to claim 1.
JP2010142189A 2010-06-23 2010-06-23 Method for removing fluorine-containing compound gas Active JP5423594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142189A JP5423594B2 (en) 2010-06-23 2010-06-23 Method for removing fluorine-containing compound gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142189A JP5423594B2 (en) 2010-06-23 2010-06-23 Method for removing fluorine-containing compound gas

Publications (2)

Publication Number Publication Date
JP2012005929A JP2012005929A (en) 2012-01-12
JP5423594B2 true JP5423594B2 (en) 2014-02-19

Family

ID=45537124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142189A Active JP5423594B2 (en) 2010-06-23 2010-06-23 Method for removing fluorine-containing compound gas

Country Status (1)

Country Link
JP (1) JP5423594B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157230A (en) * 2012-06-06 2015-09-03 株式会社共立 Treatment apparatus and method
JP6588750B2 (en) * 2015-06-30 2019-10-09 株式会社トプコン Ophthalmic microscope system
JP6992772B2 (en) 2019-01-30 2022-01-13 大旺新洋株式会社 Fluorocarbon decomposition method and its equipment, hydrogen production method, calcium fluoride production method and fuel cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224565A (en) * 2000-12-01 2002-08-13 Japan Pionics Co Ltd Agent and method for decomposing fluorocarbon
JP5020136B2 (en) * 2007-07-10 2012-09-05 株式会社荏原製作所 Fluorine fixing agent, PFC decomposition treatment agent, and preparation method thereof
JP4887327B2 (en) * 2008-05-07 2012-02-29 日本パイオニクス株式会社 Fluorine compound decomposition treatment system
JP5328605B2 (en) * 2009-10-21 2013-10-30 京セラ株式会社 Fluorine compound decomposition treatment agent and decomposition treatment method

Also Published As

Publication number Publication date
JP2012005929A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5048208B2 (en) Method and apparatus for treating gas containing fluorine-containing compound
KR100860835B1 (en) Treatment of sulfur hexafluoride
JPH01261208A (en) Method for purifying nitrogen trifluoride gas
JP5423594B2 (en) Method for removing fluorine-containing compound gas
JP2001190959A (en) Reactant for decomposition of fluorine compound, decomposition method and its usage
US7691351B2 (en) Method for treatment of a gas stream containing silicon tetrafluoride and hydrogen chloride
JP4518460B2 (en) Method for selectively recovering fluorine components from exhaust gas
WO2017094417A1 (en) Method for treating exhaust gas containing elemental fluorine
KR101392805B1 (en) Absorption material for removing PFC and acid gas
JP5399051B2 (en) Selective immobilization of chlorine and fluorine in flon destruction gas or dry etching exhaust gas and recycling of recovered materials
JP2012055836A (en) Method of treating gas
JP4459648B2 (en) Method and apparatus for treating gas containing fluorine-containing compound
JP4454275B2 (en) Fluorine compound decomposition treatment agent and decomposition treatment method
JP2007176770A (en) Method of producing high purity fluorine gas and apparatus for producing high purity fluorine gas
JP3650588B2 (en) Perfluoro compound recycling method
JP2004255228A (en) Method for treating aqueous solution of halogen compound, acidic aqueous solution, or acidic gas, and its apparatus
JP5328605B2 (en) Fluorine compound decomposition treatment agent and decomposition treatment method
JP5651306B2 (en) Fluorine recovery method and apparatus
JP2010264427A (en) Halogen gas removal agent
JP2005185897A (en) Method for treating sulfur hexafluoride gas
JP2005187312A (en) Method for removing silicon tetrafluoride
KR101448475B1 (en) Absorption material for removing PFC and acid gas
JP2016019964A (en) Wet removal method for hypofluorite
JP5074439B2 (en) Halogen gas treating agent, method for producing the same, and detoxification method using the same
JP2008155070A (en) Method and apparatus for decomposing halogen compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5423594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250