JP2010165803A - 半導体記憶装置の製造方法及び半導体記憶装置 - Google Patents
半導体記憶装置の製造方法及び半導体記憶装置 Download PDFInfo
- Publication number
- JP2010165803A JP2010165803A JP2009006067A JP2009006067A JP2010165803A JP 2010165803 A JP2010165803 A JP 2010165803A JP 2009006067 A JP2009006067 A JP 2009006067A JP 2009006067 A JP2009006067 A JP 2009006067A JP 2010165803 A JP2010165803 A JP 2010165803A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- memory cell
- semiconductor memory
- interlayer film
- memory device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000010410 layer Substances 0.000 claims abstract description 113
- 239000011229 interlayer Substances 0.000 claims abstract description 55
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 65
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000005530 etching Methods 0.000 abstract description 13
- 230000008569 process Effects 0.000 description 57
- 230000015572 biosynthetic process Effects 0.000 description 31
- 230000008859 change Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 9
- 238000004380 ashing Methods 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 241000877463 Lanio Species 0.000 description 2
- 229910004121 SrRuO Inorganic materials 0.000 description 2
- 229910004491 TaAlN Inorganic materials 0.000 description 2
- 229910010037 TiAlN Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910019001 CoSi Inorganic materials 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910005883 NiSi Inorganic materials 0.000 description 1
- 241001656823 Ornithostaphylos Species 0.000 description 1
- 241000255969 Pieris brassicae Species 0.000 description 1
- 229910008812 WSi Inorganic materials 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- -1 chalcogenide compound Chemical class 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- ZXOKVTWPEIAYAB-UHFFFAOYSA-N dioxido(oxo)tungsten Chemical group [O-][W]([O-])=O ZXOKVTWPEIAYAB-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical group O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/061—Shaping switching materials
- H10N70/063—Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/20—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/20—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
- H10B63/22—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the metal-insulator-metal type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
- H10B63/84—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/231—Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/24—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
- H10N70/245—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/25—Multistable switching devices, e.g. memristors based on bulk electronic defects, e.g. trapping of electrons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8836—Complex metal oxides, e.g. perovskites, spinels
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Semiconductor Memories (AREA)
Abstract
【課題】隣接メモリセル間にショートの原因となる残渣が残らない半導体記憶装置の製造方法及び半導体記憶装置を提供する。
【解決手段】半導体基板上に第1の配線層を形成し、この上にメモリセル層を形成し、形成された第1の配線層及びメモリセル層に第1の方向に延びる複数の第1の溝を形成して第1の配線を形成すると共にメモリセル層を第1の溝で分離し、第1の溝に層間膜を埋め込んで積層体を形成し、積層体の上に第2の配線層を形成し、第2の配線層が形成された積層体に第1の方向と交差する第2の方向に延び、深さが層間膜の上面に達する複数の第2の溝を形成して第2の配線を形成し、層間膜を第2の溝に露出した部分から内部に向けて等方的に除去し、第2の溝を第1の配線の上面に達するまで異方性エッチングにより掘り下げて第1及び第2の配線の交差部に第1及び第2の溝で分離された柱状のメモリセルを形成する。
【選択図】図4
【解決手段】半導体基板上に第1の配線層を形成し、この上にメモリセル層を形成し、形成された第1の配線層及びメモリセル層に第1の方向に延びる複数の第1の溝を形成して第1の配線を形成すると共にメモリセル層を第1の溝で分離し、第1の溝に層間膜を埋め込んで積層体を形成し、積層体の上に第2の配線層を形成し、第2の配線層が形成された積層体に第1の方向と交差する第2の方向に延び、深さが層間膜の上面に達する複数の第2の溝を形成して第2の配線を形成し、層間膜を第2の溝に露出した部分から内部に向けて等方的に除去し、第2の溝を第1の配線の上面に達するまで異方性エッチングにより掘り下げて第1及び第2の配線の交差部に第1及び第2の溝で分離された柱状のメモリセルを形成する。
【選択図】図4
Description
本発明は、クロスポイント型メモリセルを用いる半導体記憶装置の製造方法及び半導体記憶装置に関する。
従来、電気的に書き換え可能な不揮発性メモリとしては、フローティングゲート構造を有するメモリセルをNAND接続又はNOR接続してメモリセルアレイを構成したフラッシュメモリが周知である。また、不揮発性で且つ高速なランダムアクセスが可能なメモリとして、強誘電体メモリも知られている。
一方、メモリセルの更なる微細化を図る技術として、可変抵抗素子をメモリセルに使用した抵抗変化型メモリが提案されている。具体的には、カルコゲナイド化合物の結晶/アモルファス化の状態変化によって抵抗値を変化させる相変化メモリ素子、トンネル磁気抵抗効果による抵抗変化を用いるMRAM素子、導電性ポリマーで抵抗素子が形成されるポリマー強誘電性RAM(PFRAM)のメモリ素子、電気パルス印加によって抵抗変化を起こすReRAM素子等が知られている(特許文献1)。
この抵抗変化型メモリは、トランジスタに変えてショットキーダイオードと可変抵抗素子の直列回路からなるクロスポイント型のメモリセルを構成することができるので、積層が容易で3次元構造化することにより更なる高集積化が図れるという利点がある(特許文献2)。
このようなクロスポイント型のメモリセルを配線パターンに整合させたセルフアライン方式によって製造する場合、下層配線層の上にメモリセル層を積層してなる積層体に対して、まず、第1の方向に延びる所定のライン・アンド・スペース(以下、「L/S」と呼ぶ。)の溝加工を施して複数の第1の溝を形成し、積層体を第1の溝によって分離した後に、第1の溝をSiO2からなる層間絶縁膜で埋め、その上に上層配線層を形成する。そして、上層配線層及び層間絶縁膜が埋められた積層体に対して、第1の方向と直交する第2の方向に延びる所定のL/Sの溝加工を施して、深さが下層配線層の上面に達する複数の第2の溝を形成する。これにより、互いに直交する配線間にクロスポイント型のメモリセルを形成する。
しかし、上述した製造方法では、メモリセル層を形成する材料と層間絶縁膜を形成するSiO2との選択比を1:1にすることが困難であるため、第2の溝形成時に、層間絶縁膜に対してメモリセル層のエッチングが先行し、残った層間絶縁膜がマスクになって、層間絶縁膜の側壁下部にメモリセル材料の残渣が残り、隣接メモリセル間でショートが発生するおそれが生じるという問題がある。
本発明は、上記問題に鑑み、隣接メモリセル間にショートの原因となる残渣が残らない半導体記憶装置の製造方法及びこの製造方法によって得ることが可能な半導体記憶装置を提供することを目的とする。
本発明の一態様に係る半導体記憶装置の製造方法は、半導体基板上に第1の配線層を形成する工程と、前記第1の配線層の上にメモリセルを構成するメモリセル層を形成する工程と、形成された前記第1の配線層及びメモリセル層に第1の方向に延びる複数の第1の溝を形成して前記第1の方向に延びる第1の配線を形成すると共に前記メモリセル層を前記第1の溝によって分離する工程と、前記第1の溝に層間膜を埋め込んで積層体を形成する工程と、前記積層体の上に第2の配線層を形成する工程と、前記第2の配線層が形成された積層体に前記第1の方向と交差する第2の方向に延び、深さが前記層間膜の上面に達する複数の第2の溝を形成して前記第2の方向に延びる第2の配線を形成する工程と、前記層間膜を前記第2の溝に露出した部分から内部に向けて等方的に除去する工程と、前記層間膜を等方的に除去する工程の後、前記第2の溝を前記第1の配線の上面に達するまで掘り下げて前記第1及び第2の配線の交差部に前記第1及び第2の溝で分離された柱状のメモリセルを形成する工程とを備えたことを特徴とする。
本発明の他の態様に係る半導体記憶装置は、第1の方向に延びる複数の第1の配線と、前記第1の方向と交差する第2の方向に延びる複数の第2の配線と、前記第1及び第2の配線の交差部で両配線間に接続された複数の柱状のメモリセルとを有し、隣接する前記メモリセル間は空隙であることを特徴とする。
本発明によれば、隣接メモリセル間にショートの原因となる残渣が残らない半導体記憶装置の製造方法及びこの製造方法によって得ることが可能な半導体記憶装置を提供することができる。
以下、図面を参照して、この発明の実施の形態を説明する。
[第1の実施形態]
図1は、本発明の第1の実施形態に係る半導体メモリのクロスポイント型セルアレイの一部を示す斜視図であり、図2(a)は、図1におけるI−I´線で切断して矢印方向に見たメモリセル1つ分の断面図、同図(b)は上記メモリセルの等価回路図である。
図1は、本発明の第1の実施形態に係る半導体メモリのクロスポイント型セルアレイの一部を示す斜視図であり、図2(a)は、図1におけるI−I´線で切断して矢印方向に見たメモリセル1つ分の断面図、同図(b)は上記メモリセルの等価回路図である。
クロスポイント型のメモリセルアレイでは、複数の第1の配線としてワード線WLが平行に配設され、これと交差して複数の第2の配線としてビット線BLが平行に配設され、これらの各交差部に両配線に挟まれるようにメモリセルMCが配置される。第1及び第2の配線は、熱に強く、且つ抵抗値の低い材料が望ましく、例えばW、WSi、NiSi、CoSi等を用いることができる。
メモリセルMCは、図2に示すように、可変抵抗素子VRと非オーミック素子NOの直列接続回路からなる。
可変抵抗素子VRとしては、電圧印加によって、電流、熱、化学エネルギ等を介して抵抗値を変化させることができるもので、上下にバリアメタル及び接着層として機能する電極EL2、EL3が配置される。電極材としては、Pt、Au、Ag、TiAlN、SrRuO、Ru、RuN、Ir、Co、Ti、TiN、TaN、LaNiO、Al、PtIrOx、PtRhOx、Rh/TaAlN等が用いられる。また、配向性を一様にするようなメタル膜の挿入も可能である。さらに、別途バッファ層、バリアメタル層、接着層等を挿入することも可能である。
可変抵抗素子VRは、カルコゲナイド等のように結晶状態と非晶質状態の相転移により抵抗値を変化させるもの(PCRAM)、金属陽イオンを析出させて電極間に架橋(コンダクティングブリッジ)を形成したり、析出した金属をイオン化したりして架橋を破壊することで抵抗値を変化させるもの(CBRAM)、一致した理論はない(抵抗変化の要因として、電極界面に存在する電荷トラップにトラップされた電荷の存在の有無により抵抗変化が起きるというもの、酸素欠損等に起因する伝導パスの存在の有無により抵抗変化が起きるというものとに、大きく2つに分かれている。)ものの電圧あるいは電流印加により抵抗値が変化するもの(ReRAM)、等を用いることができる。
図3は、ReRAMの例を示す図である。図3に示すReRAM素子は、電極層11、13の間に記録層12を配置してなる。記録層12は、少なくとも2種類の陽イオン元素を有する複合化合物から構成される。陽イオン元素の少なくとも1種類は電子が不完全に満たされたd軌道を有する遷移元素とし、且つ隣接する陽イオン元素間の最短距離は、0.32nm以下とする。具体的には、化学式AxMyXz(AとMは互いに異なる元素)で表され、例えばスピネル構造(AM2O4)、イルメナイト構造(AMO3)、デラフォサイト構造(AMO2)、LiMoN2構造(AMN2)、ウルフラマイト構造(AMO4)、オリビン構造(A2MO4)、ホランダイト構造(AxMO2)、ラムスデライト構造(AxMO2)、ペロブスカイト構造(AMO3)等の結晶構造を持つ材料により構成される。
図3の例では、AがZn、MがMn、XがOである。記録層12内の小さな白丸は拡散イオン(Zn)、大きな白丸は陰イオン(O)、小さな黒丸は遷移元素イオン(Mn)をそれぞれ表している。記録層12の初期状態は高抵抗状態であるが、電極層11を固定電位、電極層13側に負の電圧を印加すると、記録層12中の拡散イオンの一部が電極層13側に移動し、記録層12内の拡散イオンが陰イオンに対して相対的に減少する。電極層13側に移動した拡散イオンは、電極層13から電子を受け取り、メタルとして析出するため、メタル層14を形成する。記録層12の内部では、陰イオンが過剰となり、結果的に記録層12内の遷移元素イオンの価数を上昇させる。これにより、記録層12はキャリアの注入により電子伝導性を有するようになってセット動作が完了する。再生に関しては、記録層12を構成する材料が抵抗変化を起こさない程度の微小な電流値を流せば良い。プログラム状態(低抵抗状態)を初期状態(高抵抗状態)にリセットするには、例えば、記録層12に大電流を充分な時間流してジュール加熱して、記録層12の酸化還元反応を促進すれば良い。また、セット時と逆向きの電場を印加することによってもリセット動作が可能である。
非オーミック素子NOは、例えば、ショットキーダイオード、PN接合ダイオード、PINダイオード等の各種ダイオード、MIM(Metal-Insulator-Metal)構造、SIS構造(Silicon-Insulator-Silicon)等からなる。ここにもバリアメタル層、接着層を形成する電極EL1、EL2を挿入しても良い。電極材としては、Pt、Au、Ag、TiAlN、SrRuO、Ru、RuN、Ir、Co、Ti、TiN、TaN、LaNiO、Al、PtIrOx、PtRhOx、Rh/TaAlN等が用いられる。また、ダイオードを使用する場合はその特性上、ユニポーラ動作を行うことができ、また、MIM構造、SIS構造等の場合にはバイポーラ動作を行うことが可能である。なお、非オーミック素子NOと可変抵抗素子VRの配置は、図2と上下を逆にしても良いし、非オーミック素子NOの極性を上下反転させても良い。
本実施形態の半導体メモリでは、選択されたメモリセルMCには、セット時にはセット用電圧パルスが、リセット時にはリセット用電圧パルスが、データリード時には、リード用電圧がそれぞれ印加される。すなわち、選択メモリセルMCにつながるワード線WLに“H”レベル、選択メモリセルMCにつながるビット線BLに“L”レベルを与え、その他のワード線WLには“L”レベル、その他のビット線BLには“H”レベルを与える。これにより、選択メモリセルMCには、データのセット、リセット又はリードに必要な電圧が印加され、選択メモリセルMCに対するデータのセット、リセット又はリードが実行される。また、選択されたメモリセルMC以外のメモリセルMCには、逆バイアス電圧又は0Vが印加されるので、電流は流れない。
図4は、本実施形態に係る半導体メモリのメモリセルアレイの一部を示す斜視図である。
このメモリセルアレイは、シリコン基板101の上に積層されたセルアレイ層MA1、MA2を備えた2層構造のメモリセルアレイで、ビット線BL1が、その上下のセルアレイ層MA1、MA2で共有されたものである。
すなわち、シリコン基板101上には図示しない周辺回路を構成するトランジスタの不純物拡散層及びゲート電極が形成されている。その上にTEOS(Tetra Ethyl Ortho Silicate)膜102が積層されている。TEOS膜102の上には、第1の配線である第1の方向に延びる複数本のワード線WL1が形成されている。これらワード線WL1の上に、セルアレイ層MA1のメモリセルMCを構成する第1電極EL1、非オーミック素子NO、第2電極EL2、可変抵抗素子VR及び第3電極EL3がこの順に形成されている。更に、セルアレイ層MA1のメモリセルMCの上にワード線WL1と直交する第2の方向に延びる複数本のビット線BL1が形成されている。このビット線BL1の上には、セルアレイ層MA2のメモリセルMC´を構成する第4電極EL3´、可変抵抗素子VR´、第5電極EL2´、非オーミック素子NO´及び第6電極EL1´がこの順(セルアレイ層MA1とは逆の順)に形成されている。更に、セルアレイ層MA2のメモリセルMC´の上にワード線WL1と同方向に延びる複数本のワード線WL2が形成されている。メモリセルMC、MC´は、ワード線WL1とビット線BL1の間の交差部及びビット線BL1とワード線WL2の間の交差部に、それぞれ上下に延びる柱状に形成されている。なお、以下の製造方法の一態様によっては、結果的に隣接ワード線WL1間、ビット線BL1間、ワード線WL2間、メモリセルMC間及びメモリセルMC´間に、それぞれ空隙が形成されていることもある。この場合には、メモリセルMC間の容量を低減してメモリセルMC間の干渉を防止できるという効果がある。
ワード線WL2の上には、TEOS膜116が形成されている。
なお、図4で示したメモリセルアレイは、2層構造となっているが、ワード線WL2とTEOS膜116との間に、第1電極EL1からビット線BL1まで、及び第4電極EL3´からワード線WL2までを、交互に繰り返し積層させることで、任意の積層数のメモリセルアレイを構成することができる。
[メモリセルアレイの製造方法]
次に、図4に示した2層構造のメモリセルアレイの製造方法について説明する。
次に、図4に示した2層構造のメモリセルアレイの製造方法について説明する。
シリコン基板101上にまず必要な周辺回路を構成するトランジスタ等を形成するためのFEOL(Front End Of Line)プロセスを実行し、その上にTEOS膜102を堆積させる。ここで、図示しないビアも形成しておく。
続いて、ワード線WL1となる第1メタル103以降の上部が形成される。
図5A〜図17Bは、上部の形成工程を工程順に示した断面図である。図5A、図6A、・・・、図17Aは、ワード線WL方向を法線とする断面図であり、左図、右図は、それぞれ図4のII−II´(ビット線BL内)、III−III´(ビット線BL間)からみた断面図となる。また、図5B、図6B、・・・、図17Bは、ビット線BL方向を法線とする断面図であり、左図、右図は、それぞれ図4のIV−IV´(ワード線WL内)、V−V´(ワード線WL間)から見た断面図となる。これら図5A〜図17Bを適宜参照しながら、上部の形成プロセスを説明する。
上述したように、TEOS膜102及びビアが形成されたら、その上にワード線WL1となる層103を堆積する。さらにその上に、メモリセルMCの材料として第1電極EL1となる層104、非オーミック素子NOとなる層105、第2電極EL2となる層106、可変抵抗素子VRとなる層107、及び第3電極EL3となる層108を順次堆積する。以上の工程により、図5A、図5Bに示す積層体が形成される。
続いて、積層体の上面に図示しないTEOS等の所定のL/Sのハードマスクを形成し、これをマスクとしてRIE等の第1の異方性エッチングを行い、図6A、図6Bに示すように、ワード線WL1に沿った第1の溝141を形成して積層体の分離を行う。
続いて、図7A、図7Bに示すように、第1の溝141に対し塗布法等を用いて有機系層間膜である第1の層間絶縁膜161を埋め込む。この層間絶縁膜161として、有機膜、例えばカーボンを含む膜を使う。無機系の膜であると、メモリセル材料との選択比を十分にとることが困難であるが、有機膜を使用すると選択比を十分に大きくとれる。なお、カーボンを含む膜がポーラスでも良い。続いて、CMP等による平坦化処理を行い、余分な第1の層間絶縁膜161の除去と、第3電極EL3となる層108の露出を行い第1の層間絶縁膜161が埋め込まれた積層体を形成する。
続いて、図8A、図8Bに示すように、CMPにより平坦化された層108及び第1の層間絶縁膜161の上に、ビット線BL1となるタングステン等からなる層109、第4の電極EL3´となる層110、可変抵抗素子VRとなる層111、第5電極EL2´となる層112、非オーミック素子NOとなる層113、及び第6電極EL1´となる層114を順次堆積する。
続いて、図9A、図9Bに示すように、層114の上にTEOS等のハードマスクを形成し、第1の異方性エッチングの方向と直交する方向に所定のL/Sで、深さが第3電極EL3となる層108及び第1の層間絶縁膜161の上面に達するようRIE等による第2の異方性エッチングを行う。これにより、ビット線BL1に沿った第2の溝142が形成され、層114から層109がビット線BL方向に分離される。
続いて、図10A、図10Bに示すように、アッシング(アッシング条件:例えば、圧力 20mTorr、投入電力1200W、バイアス 0W、O2180sccm)により、第2の溝142に露出した下方の第1の層間絶縁膜161を、第2の溝142下で少なくともワード線WL1となる層103の上面に達するまで除去する。なお、第1の層間絶縁膜161の除去は、アッシングに代えて等方性のウェットエッチングにより行っても良いし、ウェットエッチングとアッシングとを組み合わせても良い。ウェットエッチングの場合、ウェット液には、シンナー有機溶剤又はTMAH(水酸化テトラメチルアンモニウム)水溶液等を用いることができる。ここでは、第1の層間絶縁膜161を高さがワード線WL1となる層103の上面以下程度になるように部分的に残して置く。これにより、後の工程におけるRIEによるシリコン基板101へのダメージを抑制することができる。また、第2の溝142間の下方に位置する第1の層間絶縁膜161については、ワード線WL1となる層103の上面を越える部分が残されても構わない。
続いて、図11A、図11Bに示すように、第2の溝142をさらに深さが層103の上面に達するまで第2の異方性エッチングと同方向の第3の異方性エッチングにより除去する。これにより、層104から層108に亘ってワード線WL1とビット線BL1のクロスポイントに柱状に分離された下層のメモリセルMCが自己整合的に形成される。
ここで、RIEに連続させて(in situ)アッシングを行って、第1の層間絶縁膜161の残渣を完全に取り除くようにしても良い。
続いて、図12A、図12Bに示すように、第2の溝142に対し塗布法等を用いて第1の層間絶縁膜161と同質の第2の層間絶縁膜162を埋め込む。ここでは、第2の溝142間に位置する第1の溝141の部分で、アッシング又はウェットエッチングにより第1の層間絶縁膜161が除去されて生じている空隙の少なくとも一部にも第2の層間絶縁膜162を埋め込んでも構わない。続いて、CMP等による平坦化処理を行い、余分な第2の層間絶縁膜162の除去と、第6電極EL1´となる層114の露出を行う。
続いて、図13A、図13Bに示すように、CMPにより平坦化された層114及び第2の層間絶縁膜162の上に、ワード線WL2となるタングステン等からなる層115及びTEOS膜116を堆積する。
続いて、図14A、図14Bに示すように、第1の異方性エッチングと同方向のL/Sで、深さが層114及び第2の層間絶縁膜162の上面に達するような第3の溝143を第4の異方性エッチングにより形成する。
続いて、図15A、図15Bに示すように、第1の層間絶縁膜161の除去と同様のアッシング又はウェットエッチングにより第3の溝143に露出した第2の層間絶縁膜162を第3の溝143下で少なくともビット線BL1となる層109の上面に達するまで除去する。ここでも、下地に対するダメージを抑制する観点から第2の層間絶縁膜162を一部残して置く。
続いて、図16A、図16Bに示すように、第3の溝143をさらに深さが層109の上面に達するまで第4の異方性エッチングと同方向の第5の異方性エッチングにより除去する。これにより、層110から層114に亘ってビット線BL1とワード線WL2のクロスポイントに柱状に分離された上層のメモリセルMC´が自己整合的に形成される。
最後に、図17A、図17Bに示すように、RIEに連続させて(in situ)アッシングにより第2の層間絶縁膜162の残渣を完全に除去しても良い。この場合には、上記の通り、メモリセルMC間の容量を低減して、メモリセルMC間の干渉を防止できるという効果がある。なお、下層のメモリセルMCを形成した後、アッシングにより第1の層間絶縁膜161の残渣を取り除かなくても、ここで第1の層間絶縁膜161及び第2の層間絶縁膜162の残渣を同時に除去すれば、同様にメモリセルMC間の干渉防止の効果を得ることができる。
以上のように、べた膜の積み重ねから互いに直交するL/Sのパターニングを行うことにより、自己整合的に配線とのずれの無いクロスポイントのメモリセルアレイが形成される。
ちなみに、図18に示すように、SiO2からなる層間絶縁膜171とメモリセル材料とを同時に異方性エッチングで除去すると、SiO2とメモリセル材料との選択比を1:1にすることが困難であるため、層間絶縁膜171が残って、その側壁下部にメモリセル材料の残渣172が残ってしまい、ワード線WLに沿った隣接メモリセル間でショートが発生する可能性がある。
この点、本実施形態によれば、柱状のメモリセルを形成する際に層間絶縁膜をワード線WLの上面以下になる程度に除去してから異方性エッチングを行うようにしているため、下層配線に沿ったメモリセル間ショートの原因となる残渣の発生を抑制することができ、メモリセル材料と層間絶縁膜との選択比を整合させる必要がなく加工することができる。
[その他の実施形態]
第1の実施形態では、2層構造のメモリセルアレイの製造方法を説明したが、以上の積層構造の形成を繰り返すことにより、任意の積層数を持つクロスポイント型のメモリセルアレイの形成が可能である。逆に、単層のメモリセルアレイを製造する場合には、上層のメモリセル材料の形成を省略すれば良い。
第1の実施形態では、2層構造のメモリセルアレイの製造方法を説明したが、以上の積層構造の形成を繰り返すことにより、任意の積層数を持つクロスポイント型のメモリセルアレイの形成が可能である。逆に、単層のメモリセルアレイを製造する場合には、上層のメモリセル材料の形成を省略すれば良い。
また、本発明は、メモリセルの構造に関し特に限定されるものではなく、相変化メモリ素子、MRAM素子、PFRAM、ReRAM等、種々のクロスポイント型の半導体記憶装置に適用可能である。
11、13・・・電極層、12・・・記録層、14・・・メタル層、101・・・シリコン基板、102・・・TEOS膜、103、115・・・ワード線の層、104、106、108、110、112、114・・・電極の層、105、113・・・可変抵抗素子の層、107、111・・・非オーミック素子の層、109・・・ビット線の層、141、142、143・・・溝、161、162・・・層間絶縁膜(有機系層間膜)、171・・・層間絶縁膜、172・・・メモリセル材料の残渣。
Claims (5)
- 半導体基板上に第1の配線層を形成する工程と、
前記第1の配線層の上にメモリセルを構成するメモリセル層を形成する工程と、
形成された前記第1の配線層及びメモリセル層に第1の方向に延びる複数の第1の溝を形成して前記第1の方向に延びる第1の配線を形成すると共に前記メモリセル層を前記第1の溝によって分離する工程と、
前記第1の溝に層間膜を埋め込んで積層体を形成する工程と、
前記積層体の上に第2の配線層を形成する工程と、
前記第2の配線層が形成された積層体に前記第1の方向と交差する第2の方向に延び、深さが前記層間膜の上面に達する複数の第2の溝を形成して前記第2の方向に延びる第2の配線を形成する工程と、
前記層間膜を前記第2の溝に露出した部分から内部に向けて等方的に除去する工程と、
前記層間膜を等方的に除去する工程の後、前記第2の溝を前記第1の配線の上面に達するまで掘り下げて前記第1及び第2の配線の交差部に前記第1及び第2の溝で分離された柱状のメモリセルを形成する工程と
を備えたことを特徴とする半導体記憶装置の製造方法。 - 前記層間膜を等方的に除去する工程は、
前記層間膜を深さが少なくとも前記第1の配線の上面に達するまで除去する工程である
ことを特徴とする請求項1記載の半導体記憶装置の製造方法。 - 前記層間膜を等方的に除去する工程は、
前記層間膜を前記第1の溝の底部に残しつつ、前記層間膜を深さが前記第1の配線の上面に達するまで除去する工程である
ことを特徴とする請求項1記載の半導体記憶装置の製造方法。 - 前記層間膜は、カーボンを含む膜からなることを特徴とする請求項1記載の半導体記憶装置の製造方法。
- 第1の方向に延びる複数の第1の配線と、
前記第1の方向と交差する第2の方向に延びる複数の第2の配線と、
前記第1及び第2の配線の交差部で両配線間に接続された複数の柱状のメモリセルと
を有し、
隣接する前記メモリセル間は空隙である
ことを特徴とする半導体記憶装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009006067A JP2010165803A (ja) | 2009-01-14 | 2009-01-14 | 半導体記憶装置の製造方法及び半導体記憶装置 |
US12/621,701 US8062940B2 (en) | 2009-01-14 | 2009-11-19 | Method of manufacturing semiconductor memory device, and semiconductor memory device |
KR1020100003127A KR101150578B1 (ko) | 2009-01-14 | 2010-01-13 | 반도체 메모리 장치를 제조하는 방법 및 반도체 메모리 장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009006067A JP2010165803A (ja) | 2009-01-14 | 2009-01-14 | 半導体記憶装置の製造方法及び半導体記憶装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010165803A true JP2010165803A (ja) | 2010-07-29 |
Family
ID=42318403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009006067A Withdrawn JP2010165803A (ja) | 2009-01-14 | 2009-01-14 | 半導体記憶装置の製造方法及び半導体記憶装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8062940B2 (ja) |
JP (1) | JP2010165803A (ja) |
KR (1) | KR101150578B1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010232228A (ja) * | 2009-03-25 | 2010-10-14 | Toshiba Corp | 不揮発性記憶装置及びその製造方法 |
JP2010232227A (ja) * | 2009-03-25 | 2010-10-14 | Toshiba Corp | 不揮発性記憶装置の製造方法 |
JP2011129737A (ja) * | 2009-12-18 | 2011-06-30 | Toshiba Corp | 半導体記憶装置の製造方法及び半導体記憶装置 |
JP2011198959A (ja) * | 2010-03-18 | 2011-10-06 | Toshiba Corp | 不揮発性記憶装置の製造方法 |
WO2012035786A1 (ja) * | 2010-09-17 | 2012-03-22 | パナソニック株式会社 | 電流制御素子及びこれを用いた不揮発性記憶素子 |
US8153488B2 (en) | 2009-03-24 | 2012-04-10 | Kabushiki Kaisha Toshiba | Method for manufacturing nonvolatile storage device |
JP2014508422A (ja) * | 2011-03-17 | 2014-04-03 | マイクロン テクノロジー, インク. | 少なくとも1つの導電性素子を形成する方法、半導体構造を形成する方法、メモリセルおよび関連する半導体構造を形成する方法 |
US10325920B2 (en) | 2016-05-13 | 2019-06-18 | Toshiba Memory Corporation | Method for manufacturing semiconductor device |
Families Citing this family (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7768812B2 (en) | 2008-01-15 | 2010-08-03 | Micron Technology, Inc. | Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices |
US8211743B2 (en) | 2008-05-02 | 2012-07-03 | Micron Technology, Inc. | Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes |
US8134137B2 (en) | 2008-06-18 | 2012-03-13 | Micron Technology, Inc. | Memory device constructions, memory cell forming methods, and semiconductor construction forming methods |
US9343665B2 (en) | 2008-07-02 | 2016-05-17 | Micron Technology, Inc. | Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array |
US8158967B2 (en) | 2009-11-23 | 2012-04-17 | Micron Technology, Inc. | Integrated memory arrays |
US8765581B2 (en) | 2009-11-30 | 2014-07-01 | Micron Technology, Inc. | Self-aligned cross-point phase change memory-switch array |
US8427859B2 (en) | 2010-04-22 | 2013-04-23 | Micron Technology, Inc. | Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells |
US8289763B2 (en) | 2010-06-07 | 2012-10-16 | Micron Technology, Inc. | Memory arrays |
US8946046B1 (en) | 2012-05-02 | 2015-02-03 | Crossbar, Inc. | Guided path for forming a conductive filament in RRAM |
US9012307B2 (en) | 2010-07-13 | 2015-04-21 | Crossbar, Inc. | Two terminal resistive switching device structure and method of fabricating |
US9570678B1 (en) | 2010-06-08 | 2017-02-14 | Crossbar, Inc. | Resistive RAM with preferental filament formation region and methods |
US9601692B1 (en) | 2010-07-13 | 2017-03-21 | Crossbar, Inc. | Hetero-switching layer in a RRAM device and method |
WO2011156787A2 (en) | 2010-06-11 | 2011-12-15 | Crossbar, Inc. | Pillar structure for memory device and method |
US8441835B2 (en) | 2010-06-11 | 2013-05-14 | Crossbar, Inc. | Interface control for improved switching in RRAM |
US8374018B2 (en) | 2010-07-09 | 2013-02-12 | Crossbar, Inc. | Resistive memory using SiGe material |
US8395140B2 (en) * | 2010-07-09 | 2013-03-12 | Micron Technology, Inc. | Cross-point memory utilizing Ru/Si diode |
US8884261B2 (en) | 2010-08-23 | 2014-11-11 | Crossbar, Inc. | Device switching using layered device structure |
US8168506B2 (en) | 2010-07-13 | 2012-05-01 | Crossbar, Inc. | On/off ratio for non-volatile memory device and method |
US8947908B2 (en) | 2010-11-04 | 2015-02-03 | Crossbar, Inc. | Hetero-switching layer in a RRAM device and method |
US8467227B1 (en) | 2010-11-04 | 2013-06-18 | Crossbar, Inc. | Hetero resistive switching material layer in RRAM device and method |
US8569172B1 (en) | 2012-08-14 | 2013-10-29 | Crossbar, Inc. | Noble metal/non-noble metal electrode for RRAM applications |
US8889521B1 (en) | 2012-09-14 | 2014-11-18 | Crossbar, Inc. | Method for silver deposition for a non-volatile memory device |
US8404553B2 (en) | 2010-08-23 | 2013-03-26 | Crossbar, Inc. | Disturb-resistant non-volatile memory device and method |
US9401475B1 (en) | 2010-08-23 | 2016-07-26 | Crossbar, Inc. | Method for silver deposition for a non-volatile memory device |
US8492195B2 (en) | 2010-08-23 | 2013-07-23 | Crossbar, Inc. | Method for forming stackable non-volatile resistive switching memory devices |
US8450789B2 (en) | 2010-08-24 | 2013-05-28 | Micron Technology, Inc. | Memory array with an air gap between memory cells and the formation thereof |
US8558212B2 (en) | 2010-09-29 | 2013-10-15 | Crossbar, Inc. | Conductive path in switching material in a resistive random access memory device and control |
US8391049B2 (en) | 2010-09-29 | 2013-03-05 | Crossbar, Inc. | Resistor structure for a non-volatile memory device and method |
US8759809B2 (en) | 2010-10-21 | 2014-06-24 | Micron Technology, Inc. | Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer |
US8796661B2 (en) | 2010-11-01 | 2014-08-05 | Micron Technology, Inc. | Nonvolatile memory cells and methods of forming nonvolatile memory cell |
US8526213B2 (en) | 2010-11-01 | 2013-09-03 | Micron Technology, Inc. | Memory cells, methods of programming memory cells, and methods of forming memory cells |
US8502185B2 (en) | 2011-05-31 | 2013-08-06 | Crossbar, Inc. | Switching device having a non-linear element |
USRE46335E1 (en) | 2010-11-04 | 2017-03-07 | Crossbar, Inc. | Switching device having a non-linear element |
US8088688B1 (en) | 2010-11-05 | 2012-01-03 | Crossbar, Inc. | p+ polysilicon material on aluminum for non-volatile memory device and method |
US9454997B2 (en) | 2010-12-02 | 2016-09-27 | Micron Technology, Inc. | Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells |
US8431458B2 (en) | 2010-12-27 | 2013-04-30 | Micron Technology, Inc. | Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells |
US8930174B2 (en) | 2010-12-28 | 2015-01-06 | Crossbar, Inc. | Modeling technique for resistive random access memory (RRAM) cells |
US9153623B1 (en) | 2010-12-31 | 2015-10-06 | Crossbar, Inc. | Thin film transistor steering element for a non-volatile memory device |
US8791010B1 (en) | 2010-12-31 | 2014-07-29 | Crossbar, Inc. | Silver interconnects for stacked non-volatile memory device and method |
US8815696B1 (en) | 2010-12-31 | 2014-08-26 | Crossbar, Inc. | Disturb-resistant non-volatile memory device using via-fill and etchback technique |
JP5426581B2 (ja) * | 2011-01-14 | 2014-02-26 | 株式会社東芝 | 半導体記憶装置 |
US8791447B2 (en) * | 2011-01-20 | 2014-07-29 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
US8488365B2 (en) | 2011-02-24 | 2013-07-16 | Micron Technology, Inc. | Memory cells |
US8486743B2 (en) | 2011-03-23 | 2013-07-16 | Micron Technology, Inc. | Methods of forming memory cells |
JP2012204652A (ja) * | 2011-03-25 | 2012-10-22 | Toshiba Corp | 半導体装置の製造方法 |
US8537592B2 (en) | 2011-04-15 | 2013-09-17 | Micron Technology, Inc. | Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells |
US8450710B2 (en) | 2011-05-27 | 2013-05-28 | Crossbar, Inc. | Low temperature p+ silicon junction material for a non-volatile memory device |
US9620206B2 (en) | 2011-05-31 | 2017-04-11 | Crossbar, Inc. | Memory array architecture with two-terminal memory cells |
US8394670B2 (en) | 2011-05-31 | 2013-03-12 | Crossbar, Inc. | Vertical diodes for non-volatile memory device |
JP2013004540A (ja) | 2011-06-10 | 2013-01-07 | Toshiba Corp | 半導体記憶装置及びその製造方法 |
US8619459B1 (en) | 2011-06-23 | 2013-12-31 | Crossbar, Inc. | High operating speed resistive random access memory |
US9564587B1 (en) | 2011-06-30 | 2017-02-07 | Crossbar, Inc. | Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects |
US9166163B2 (en) | 2011-06-30 | 2015-10-20 | Crossbar, Inc. | Sub-oxide interface layer for two-terminal memory |
US9627443B2 (en) | 2011-06-30 | 2017-04-18 | Crossbar, Inc. | Three-dimensional oblique two-terminal memory with enhanced electric field |
US8659929B2 (en) | 2011-06-30 | 2014-02-25 | Crossbar, Inc. | Amorphous silicon RRAM with non-linear device and operation |
US8946669B1 (en) | 2012-04-05 | 2015-02-03 | Crossbar, Inc. | Resistive memory device and fabrication methods |
EP2735028A4 (en) | 2011-07-22 | 2015-05-06 | Crossbar Inc | SEALING LAYER FOR SILICON-GERMANIUM P + MATERIAL FOR REMAINING MEMORY DEVICE AND ASSOCIATED METHOD |
US8569130B2 (en) | 2011-07-28 | 2013-10-29 | Micron Technology, Inc. | Forming air gaps in memory arrays and memory arrays with air gaps thus formed |
US8674724B2 (en) | 2011-07-29 | 2014-03-18 | Crossbar, Inc. | Field programmable gate array utilizing two-terminal non-volatile memory |
US9729155B2 (en) | 2011-07-29 | 2017-08-08 | Crossbar, Inc. | Field programmable gate array utilizing two-terminal non-volatile memory |
US10056907B1 (en) | 2011-07-29 | 2018-08-21 | Crossbar, Inc. | Field programmable gate array utilizing two-terminal non-volatile memory |
US9136128B2 (en) | 2011-08-31 | 2015-09-15 | Micron Technology, Inc. | Methods and apparatuses including memory cells with air gaps and other low dielectric constant materials |
US20130058158A1 (en) * | 2011-09-01 | 2013-03-07 | Micron Technology, Inc. | Method, system, and device for l-shaped memory component |
US8994489B2 (en) | 2011-10-19 | 2015-03-31 | Micron Technology, Inc. | Fuses, and methods of forming and using fuses |
US8723155B2 (en) | 2011-11-17 | 2014-05-13 | Micron Technology, Inc. | Memory cells and integrated devices |
US9252188B2 (en) * | 2011-11-17 | 2016-02-02 | Micron Technology, Inc. | Methods of forming memory cells |
KR20130056608A (ko) * | 2011-11-22 | 2013-05-30 | 에스케이하이닉스 주식회사 | 상변화 메모리 장치 및 그의 제조방법 |
US8895323B2 (en) * | 2011-12-19 | 2014-11-25 | Lam Research Corporation | Method of forming a magnetoresistive random-access memory device |
US9059390B2 (en) * | 2012-02-06 | 2015-06-16 | Imec | Self-isolated conductive bridge memory device |
US9312257B2 (en) | 2012-02-29 | 2016-04-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8716098B1 (en) | 2012-03-09 | 2014-05-06 | Crossbar, Inc. | Selective removal method and structure of silver in resistive switching device for a non-volatile memory device |
JP2013201247A (ja) * | 2012-03-23 | 2013-10-03 | Toshiba Corp | 半導体記憶装置及びその製造方法 |
US9087576B1 (en) | 2012-03-29 | 2015-07-21 | Crossbar, Inc. | Low temperature fabrication method for a three-dimensional memory device and structure |
US9685608B2 (en) | 2012-04-13 | 2017-06-20 | Crossbar, Inc. | Reduced diffusion in metal electrode for two-terminal memory |
US8658476B1 (en) | 2012-04-20 | 2014-02-25 | Crossbar, Inc. | Low temperature P+ polycrystalline silicon material for non-volatile memory device |
US9136467B2 (en) | 2012-04-30 | 2015-09-15 | Micron Technology, Inc. | Phase change memory cells and methods of forming phase change memory cells |
US8765555B2 (en) | 2012-04-30 | 2014-07-01 | Micron Technology, Inc. | Phase change memory cells and methods of forming phase change memory cells |
US8796658B1 (en) | 2012-05-07 | 2014-08-05 | Crossbar, Inc. | Filamentary based non-volatile resistive memory device and method |
US8765566B2 (en) | 2012-05-10 | 2014-07-01 | Crossbar, Inc. | Line and space architecture for a non-volatile memory device |
US9741765B1 (en) | 2012-08-14 | 2017-08-22 | Crossbar, Inc. | Monolithically integrated resistive memory using integrated-circuit foundry compatible processes |
US9583701B1 (en) | 2012-08-14 | 2017-02-28 | Crossbar, Inc. | Methods for fabricating resistive memory device switching material using ion implantation |
US8946673B1 (en) | 2012-08-24 | 2015-02-03 | Crossbar, Inc. | Resistive switching device structure with improved data retention for non-volatile memory device and method |
US9312483B2 (en) | 2012-09-24 | 2016-04-12 | Crossbar, Inc. | Electrode structure for a non-volatile memory device and method |
US9576616B2 (en) | 2012-10-10 | 2017-02-21 | Crossbar, Inc. | Non-volatile memory with overwrite capability and low write amplification |
US11068620B2 (en) | 2012-11-09 | 2021-07-20 | Crossbar, Inc. | Secure circuit integrated with memory layer |
US8982647B2 (en) | 2012-11-14 | 2015-03-17 | Crossbar, Inc. | Resistive random access memory equalization and sensing |
CN103840079B (zh) * | 2012-11-27 | 2016-06-29 | 中芯国际集成电路制造(上海)有限公司 | 相变存储器、其底部接触结构及其各自制作方法 |
US9412790B1 (en) | 2012-12-04 | 2016-08-09 | Crossbar, Inc. | Scalable RRAM device architecture for a non-volatile memory device and method |
US9406379B2 (en) | 2013-01-03 | 2016-08-02 | Crossbar, Inc. | Resistive random access memory with non-linear current-voltage relationship |
US9324942B1 (en) | 2013-01-31 | 2016-04-26 | Crossbar, Inc. | Resistive memory cell with solid state diode |
US9112145B1 (en) | 2013-01-31 | 2015-08-18 | Crossbar, Inc. | Rectified switching of two-terminal memory via real time filament formation |
US8934280B1 (en) | 2013-02-06 | 2015-01-13 | Crossbar, Inc. | Capacitive discharge programming for two-terminal memory cells |
US9553262B2 (en) | 2013-02-07 | 2017-01-24 | Micron Technology, Inc. | Arrays of memory cells and methods of forming an array of memory cells |
US9202846B2 (en) * | 2013-03-22 | 2015-12-01 | Kabushiki Kaisha Toshiba | Resistance random access memory device |
JP2014216553A (ja) * | 2013-04-26 | 2014-11-17 | 株式会社東芝 | 抵抗変化型記憶装置 |
US9190455B2 (en) * | 2013-05-03 | 2015-11-17 | Kabushiki Kaisha Toshiba | Semiconductor memory device and production method thereof |
US20140370664A1 (en) * | 2013-06-13 | 2014-12-18 | Kiran Pangal | Word line and bit line processing for cross-point memories |
KR102001466B1 (ko) * | 2013-09-25 | 2019-07-18 | 에스케이하이닉스 주식회사 | 전자 장치 |
US10290801B2 (en) | 2014-02-07 | 2019-05-14 | Crossbar, Inc. | Scalable silicon based resistive memory device |
US9881971B2 (en) | 2014-04-01 | 2018-01-30 | Micron Technology, Inc. | Memory arrays |
US9362494B2 (en) | 2014-06-02 | 2016-06-07 | Micron Technology, Inc. | Array of cross point memory cells and methods of forming an array of cross point memory cells |
US9343506B2 (en) | 2014-06-04 | 2016-05-17 | Micron Technology, Inc. | Memory arrays with polygonal memory cells having specific sidewall orientations |
JP2016192514A (ja) * | 2015-03-31 | 2016-11-10 | 株式会社東芝 | 記憶装置及びその製造方法 |
US9553132B1 (en) | 2015-09-09 | 2017-01-24 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
KR102307058B1 (ko) * | 2017-07-06 | 2021-10-01 | 삼성전자주식회사 | 분리 라인들 사이의 정보 저장 패턴을 포함하는 반도체 소자 |
KR102293121B1 (ko) | 2017-07-14 | 2021-08-26 | 삼성전자주식회사 | 반도체 소자 |
KR102368449B1 (ko) * | 2017-07-21 | 2022-03-02 | 삼성전자주식회사 | 반도체 소자 |
US10680006B2 (en) | 2017-08-11 | 2020-06-09 | Micron Technology, Inc. | Charge trap structure with barrier to blocking region |
US10446572B2 (en) | 2017-08-11 | 2019-10-15 | Micron Technology, Inc. | Void formation for charge trap structures |
US10164009B1 (en) | 2017-08-11 | 2018-12-25 | Micron Technology, Inc. | Memory device including voids between control gates |
US10453855B2 (en) | 2017-08-11 | 2019-10-22 | Micron Technology, Inc. | Void formation in charge trap structures |
US11011581B2 (en) * | 2019-06-10 | 2021-05-18 | Western Digital Technologies, Inc. | Multi-level loop cut process for a three-dimensional memory device using pitch-doubled metal lines |
CN111739904B (zh) * | 2020-08-13 | 2020-11-20 | 长江先进存储产业创新中心有限责任公司 | 三维相变存储器的制备方法及三维相变存储器 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3703885B2 (ja) | 1995-09-29 | 2005-10-05 | 株式会社東芝 | 半導体記憶装置とその製造方法 |
US7317208B2 (en) * | 2002-03-07 | 2008-01-08 | Samsung Electronics Co., Ltd. | Semiconductor device with contact structure and manufacturing method thereof |
US7989789B2 (en) | 2002-04-04 | 2011-08-02 | Kabushiki Kaisha Toshiba | Phase-change memory device that stores information in a non-volatile manner by changing states of a memory material |
KR100448855B1 (ko) | 2002-07-18 | 2004-09-18 | 주식회사 하이닉스반도체 | 반도체소자의 제조방법 |
JP4313372B2 (ja) | 2005-05-11 | 2009-08-12 | シャープ株式会社 | 不揮発性半導体記憶装置 |
JP5061469B2 (ja) | 2006-02-15 | 2012-10-31 | パナソニック株式会社 | 不揮発性記憶素子およびその製造方法 |
JP2007266277A (ja) * | 2006-03-28 | 2007-10-11 | Sanyo Electric Co Ltd | メモリ及びその製造方法 |
JP2009130139A (ja) | 2007-11-22 | 2009-06-11 | Toshiba Corp | 不揮発性半導体記憶装置の製造方法 |
-
2009
- 2009-01-14 JP JP2009006067A patent/JP2010165803A/ja not_active Withdrawn
- 2009-11-19 US US12/621,701 patent/US8062940B2/en active Active
-
2010
- 2010-01-13 KR KR1020100003127A patent/KR101150578B1/ko not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8153488B2 (en) | 2009-03-24 | 2012-04-10 | Kabushiki Kaisha Toshiba | Method for manufacturing nonvolatile storage device |
JP2010232228A (ja) * | 2009-03-25 | 2010-10-14 | Toshiba Corp | 不揮発性記憶装置及びその製造方法 |
JP2010232227A (ja) * | 2009-03-25 | 2010-10-14 | Toshiba Corp | 不揮発性記憶装置の製造方法 |
JP2011129737A (ja) * | 2009-12-18 | 2011-06-30 | Toshiba Corp | 半導体記憶装置の製造方法及び半導体記憶装置 |
JP2011198959A (ja) * | 2010-03-18 | 2011-10-06 | Toshiba Corp | 不揮発性記憶装置の製造方法 |
WO2012035786A1 (ja) * | 2010-09-17 | 2012-03-22 | パナソニック株式会社 | 電流制御素子及びこれを用いた不揮発性記憶素子 |
JP5313405B2 (ja) * | 2010-09-17 | 2013-10-09 | パナソニック株式会社 | 電流制御素子及びこれを用いた不揮発性記憶素子 |
JP2014508422A (ja) * | 2011-03-17 | 2014-04-03 | マイクロン テクノロジー, インク. | 少なくとも1つの導電性素子を形成する方法、半導体構造を形成する方法、メモリセルおよび関連する半導体構造を形成する方法 |
US10325920B2 (en) | 2016-05-13 | 2019-06-18 | Toshiba Memory Corporation | Method for manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
US20100176368A1 (en) | 2010-07-15 |
US8062940B2 (en) | 2011-11-22 |
KR20100083736A (ko) | 2010-07-22 |
KR101150578B1 (ko) | 2012-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010165803A (ja) | 半導体記憶装置の製造方法及び半導体記憶装置 | |
KR101164358B1 (ko) | 반도체 기억 장치의 제조 방법 및 반도체 기억 장치 | |
JP5159270B2 (ja) | 不揮発性半導体記憶装置及びその製造方法 | |
JP5175526B2 (ja) | 不揮発性半導体記憶装置及びその製造方法 | |
KR101128620B1 (ko) | 불휘발성 반도체 기억 장치 및 그 제조 방법 | |
USRE45480E1 (en) | Nonvolatile semiconductor memory device and producing method thereof | |
JP5422231B2 (ja) | 不揮発性半導体記憶装置及びその製造方法 | |
JP5329987B2 (ja) | 半導体記憶装置及びその製造方法 | |
US8115586B2 (en) | Variable resistance element, and its manufacturing method | |
US20090137112A1 (en) | Method of manufacturing nonvolatile semiconductor memory devices | |
US8792278B2 (en) | Non-volatile memory semiconductor storage including contact plug | |
JP2008277543A (ja) | 不揮発性半導体記憶装置 | |
JP5390918B2 (ja) | 不揮発性半導体記憶装置とその製造方法 | |
JP2010040977A (ja) | 半導体記憶装置及びその製造方法 | |
JP2014229896A (ja) | 不揮発性半導体記憶装置 | |
JP5279879B2 (ja) | 不揮発性半導体記憶装置 | |
US10741491B1 (en) | Electronic device and method of fabricating the same | |
JP2014220487A (ja) | 半導体記憶装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20120403 |