[go: up one dir, main page]

JP2008306562A - Operation amplifier - Google Patents

Operation amplifier Download PDF

Info

Publication number
JP2008306562A
JP2008306562A JP2007152878A JP2007152878A JP2008306562A JP 2008306562 A JP2008306562 A JP 2008306562A JP 2007152878 A JP2007152878 A JP 2007152878A JP 2007152878 A JP2007152878 A JP 2007152878A JP 2008306562 A JP2008306562 A JP 2008306562A
Authority
JP
Japan
Prior art keywords
circuit
phase compensation
power supply
current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007152878A
Other languages
Japanese (ja)
Other versions
JP4838760B2 (en
Inventor
Tetsuya Saito
徹也 齋藤
Nauta Bram
ナウタ ブラム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2007152878A priority Critical patent/JP4838760B2/en
Publication of JP2008306562A publication Critical patent/JP2008306562A/en
Application granted granted Critical
Publication of JP4838760B2 publication Critical patent/JP4838760B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. <P>SOLUTION: The operation amplifier comprises: a differential amplifier circuit 1; an output amplifier circuit 2 connected in series to the poststage of the differential amplifier circuit 1; a phase compensation circuit 3 for performing phase compensation of input/output characteristics; and a current supply circuit 5 for supplying an alternating current to this phase compensation circuit 3. Impedance of the current supply circuit 5 is equal to impedance of the phase compensation circuit 3. The phase compensation circuit 3 has a capacitor Cc1 and a resistor Rc1 connected in series. The current supply circuit 5 has a capacitor Cc2 and a resistor Rc2 connected in series. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、演算増幅器に関し、特に出力の電源電圧除去比を改善するようにした演算増幅器に関する。   The present invention relates to an operational amplifier, and more particularly to an operational amplifier that improves a power supply voltage rejection ratio of an output.

安定化電源回路などに用いられる演算増幅器は、電源電圧にノイズがのった場合でも出力電圧が変動せずに一定であることが理想となる。そのため、電源電圧のノイズの出力電圧での減衰量を表す電源電圧除去比(Power Supply Rejection
Ratio:PSRR)が高いことが望まれる。電源電圧のノイズは高い周波数成分を持つこともあるため、演算増幅器の電源電圧除去比が高域まで保たれていることが要求される。
Ideally, an operational amplifier used in a stabilized power supply circuit or the like has a constant output voltage without fluctuation even when noise is applied to the power supply voltage. Therefore, a power supply rejection ratio (Power Supply Rejection) that represents the attenuation amount of the power supply voltage noise in the output voltage.
It is desired that Ratio: PSRR) is high. Since the noise of the power supply voltage may have a high frequency component, it is required that the power supply voltage rejection ratio of the operational amplifier is maintained up to a high frequency.

図6は、従来から知られている抵抗Rc1とキャパシタCc1の直列接続で構成される位相補償回路を用いた2段接続の演算増幅器の回路例である。
この演算増幅器は、差動増幅回路1、出力増幅回路2、および位相補償回路3から構成される。差動増幅回路1は、差動信号NIN、PINが入力されるNMOSトランジスタM1、M2と、電流ミラー(能動負荷)を構成するPMOSトランジスタM3、M4と、電流源として機能するNMOSトランジスタM5と、を備えている。出力増幅回路2は、PMOSトランジスタM6およびNMOSトランジスタM7からなる。差動増幅回路1の出力端は、出力増幅回路2の入力端に接続されている。位相補償回路3は、直列接続された抵抗Rc1とキャパシタCc1で構成され、その一端側がノードN1に接続され、その他端側が出力増幅回路2の出力端子4に接続されている。
FIG. 6 is a circuit example of an operational amplifier having a two-stage connection using a phase compensation circuit configured by connecting a resistor Rc1 and a capacitor Cc1 that are conventionally known.
This operational amplifier includes a differential amplifier circuit 1, an output amplifier circuit 2, and a phase compensation circuit 3. The differential amplifier circuit 1 includes NMOS transistors M1 and M2 to which differential signals NIN and PIN are input, PMOS transistors M3 and M4 forming a current mirror (active load), an NMOS transistor M5 functioning as a current source, It has. The output amplifier circuit 2 includes a PMOS transistor M6 and an NMOS transistor M7. The output terminal of the differential amplifier circuit 1 is connected to the input terminal of the output amplifier circuit 2. The phase compensation circuit 3 includes a resistor Rc1 and a capacitor Cc1 connected in series. One end of the phase compensation circuit 3 is connected to the node N1 and the other end is connected to the output terminal 4 of the output amplifier circuit 2.

図7は、図6の演算増幅器を用いた定電圧出力回路の例である。この回路は、入力電圧Vinを抵抗R1、R2の比率によって決まる増幅率で増幅し、この増幅した電圧を出力電圧Voutとして取り出すようになっている。ここで、RLは負荷抵抗である。
図8は、図7の定電圧出力回路の演算増幅器として図6の演算増幅器を適用した定電圧出力回路である。次に、この回路において、電源電圧VDDが変化したときの動作について説明する。
FIG. 7 is an example of a constant voltage output circuit using the operational amplifier of FIG. This circuit amplifies the input voltage Vin with an amplification factor determined by the ratio of the resistors R1 and R2, and extracts the amplified voltage as the output voltage Vout. Here, RL is a load resistance.
FIG. 8 is a constant voltage output circuit in which the operational amplifier of FIG. 6 is applied as the operational amplifier of the constant voltage output circuit of FIG. Next, the operation of the circuit when the power supply voltage VDD changes will be described.

まず、電源電圧VDDが上昇した場合、MOSトランジスタM6のゲート・ソース間電圧Vgsが大きくなりMOSトランジスタM6に流れる電流が増加するため、出力電圧Vout、帰還電圧Vfbも上昇する。帰還電圧Vfbが上昇すると、差動増幅回路1は電流I1をキャパシタCc1にチャージし、ノードN1の電位が上昇してMOSトランジスタM6のゲート・ソース間電圧Vgsが小さくなる。この結果、MOSトランジスタM1のゲート・ソース間電圧Vgsは電源電圧VDDが上昇する前の大きさとほぼ等しくなり、出力電圧Voutもほぼ一定に保たれる。   First, when the power supply voltage VDD increases, the gate-source voltage Vgs of the MOS transistor M6 increases and the current flowing through the MOS transistor M6 increases, so that the output voltage Vout and the feedback voltage Vfb also increase. When the feedback voltage Vfb rises, the differential amplifier circuit 1 charges the current I1 to the capacitor Cc1, the potential of the node N1 rises, and the gate-source voltage Vgs of the MOS transistor M6 decreases. As a result, the gate-source voltage Vgs of the MOS transistor M1 becomes substantially equal to the magnitude before the power supply voltage VDD rises, and the output voltage Vout is also kept substantially constant.

逆に、電源電圧VDDが下降(低下)してMOSトランジスタM6のゲート・ソース間電圧Vgsが小さくなった場合は帰還電圧Vfbが下降し、ノードN1の電位が下降する。この結果、MOSトランジスタM6のゲート・ソース間電圧Vgsが大きくなり、出力電圧Voutを一定に保つような制御が働く。
ここで、電源電圧VDDの変化量と定常状態での出力電圧Voutの変化量との比が直流での電源電圧除去比(PSRRdc)である。
Conversely, when the power supply voltage VDD decreases (decreases) and the gate-source voltage Vgs of the MOS transistor M6 decreases, the feedback voltage Vfb decreases and the potential of the node N1 decreases. As a result, the gate-source voltage Vgs of the MOS transistor M6 increases, and control is performed to keep the output voltage Vout constant.
Here, the ratio between the amount of change in the power supply voltage VDD and the amount of change in the output voltage Vout in the steady state is the power supply voltage rejection ratio (PSRRdc) at DC.

次に、図8の回路において、電源電圧VDDが交流的に変化した場合の電源電圧除去比(PSRRac)について説明する。
この場合には、電源電圧VDDの変動に応じて帰還電圧Vfbが変動し、差動増幅回路1が電流I1をキャパシタCc1に供給することにより、ノードN1が電源電圧VDDに追従し、MOSトランジスタM6のゲート・ソース間電圧Vgsを保つように制御が働く。ノードN1が電源電圧VDDに追従するために、キャパシタCc1に供給すべき電流I1は、電源電圧VDDの変動する周波数に比例しているため、電流I1を供給するために必要な帰還電圧Vfbすなわち出力電圧Voutの変動も周波数に比例することになる。従って、交流での電源電圧除去比(PSRRac)は周波数の増加につれて劣化する特性となる。
Next, the power supply voltage rejection ratio (PSRRac) when the power supply voltage VDD changes in an alternating manner in the circuit of FIG. 8 will be described.
In this case, the feedback voltage Vfb fluctuates according to the fluctuation of the power supply voltage VDD, and the differential amplifier circuit 1 supplies the current I1 to the capacitor Cc1, so that the node N1 follows the power supply voltage VDD and the MOS transistor M6 The control works so as to maintain the gate-source voltage Vgs. Since the node I1 follows the power supply voltage VDD, the current I1 to be supplied to the capacitor Cc1 is proportional to the fluctuating frequency of the power supply voltage VDD. Therefore, the feedback voltage Vfb necessary for supplying the current I1, that is, the output The fluctuation of the voltage Vout is also proportional to the frequency. Therefore, the AC power supply voltage rejection ratio (PSRRac) is a characteristic that deteriorates as the frequency increases.

図8の回路での出力電圧Voutの電源電圧除去比の周波数特性は、低い周波数ではキャパシタCc1に供給すべき電流が小さいため直流での電源電圧除去比PSRRdcとなり、高い周波数ではキャパシタCc1に供給すべき電流によって決まるため交流での電源電圧除去比PSRRacで決まる。従って、電源電圧除去比は,図9に示すような周波数特性となる。   The frequency characteristic of the power supply voltage rejection ratio of the output voltage Vout in the circuit of FIG. 8 is the DC power supply voltage rejection ratio PSRRdc at a low frequency because the current to be supplied to the capacitor Cc1 is small, and is supplied to the capacitor Cc1 at a high frequency. Since it is determined by the power current, it is determined by the power supply voltage rejection ratio PSRRac at AC. Therefore, the power supply voltage rejection ratio has frequency characteristics as shown in FIG.

図9の特性は、図10に示す図8の回路の小信号等価回路を解くことで求められる。図10では、簡単化するために、Rc1=0 Ω、RLはなく、電源電圧VDDの変動の影響を受けるのは出力増幅回路2の出力インピーダンスのみとする。また、出力電圧OUTの変動は、ノードN1の変動に対して十分小さいので、キャパシタCc1が接続される出力端子4をACグランド(交流グランド)とみなす近似を用いている。gm1、gm2は、それぞれ差動増幅回路1、出力増幅回路2の伝達コンダクタンス、Ro1、Ro2はそれぞれ差動増幅回路1、出力増幅回路2の出力インピーダンスである。   The characteristics of FIG. 9 can be obtained by solving the small signal equivalent circuit of the circuit of FIG. 8 shown in FIG. In FIG. 10, for simplification, there is no Rc1 = 0 Ω and RL, and only the output impedance of the output amplifier circuit 2 is affected by fluctuations in the power supply voltage VDD. Further, since the fluctuation of the output voltage OUT is sufficiently small with respect to the fluctuation of the node N1, an approximation is used in which the output terminal 4 to which the capacitor Cc1 is connected is regarded as AC ground (AC ground). gm1 and gm2 are transfer conductances of the differential amplifier circuit 1 and the output amplifier circuit 2, respectively, and Ro1 and Ro2 are output impedances of the differential amplifier circuit 1 and the output amplifier circuit 2, respectively.

図10の小信号等価回路において、出力端子4ではキルヒホッフの電流則により(1)式が、ノードN1では(2)式が成り立つ。
gm2×(VDD−Vn1)=(1/Ro2)×(VDD−Vout)−{1/(R1+R2)}×Vout・・・(1)
Vn1={Ro1/(Ro1×Cc1×s+1)}×gm1×{R1/(R1+R2)}×Vout・・・(2)
(2)式を(1)式に代入して、gmが1/Roに対して十分に大きいとする近似を用いると電源電圧除去比は(3)式となり、図9の周波数特性を示すことが分かる。
VDD/Vout≒{R1/(R1+R2)}×{(Ro1×gm1)/(Ro1×Cc1×s+1)}・・・(3)
In the small signal equivalent circuit of FIG. 10, the expression (1) is established at the output terminal 4 by Kirchhoff's current law, and the expression (2) is established at the node N1.
gm2 × (VDD−Vn1) = (1 / Ro2) × (VDD−Vout) − {1 / (R1 + R2)} × Vout (1)
Vn1 = {Ro1 / (Ro1 × Cc1 × s + 1)} × gm1 × {R1 / (R1 + R2)} × Vout (2)
By substituting equation (2) into equation (1) and using an approximation that gm is sufficiently large with respect to 1 / Ro, the power supply voltage rejection ratio becomes equation (3), which shows the frequency characteristics of FIG. I understand.
VDD / Vout≈ {R1 / (R1 + R2)} × {(Ro1 × gm1) / (Ro1 × Cc1 × s + 1)} (3)

ところで、高域周波数での電源電圧除去比を改善する従来技術として、後述の特許文献1に記載の安定化電源回路が知られている(図11参照)。
この安定化電源回路は、図11に示すように、基準電圧発生回路11、2つの差動増幅器12、13、電源変動検出部14、出力電圧検出部15、およびPMOSトランジスタM30により構成され、出力端子16と電源電圧VSSの間には負荷17が接続されている。PMOSトランジスタM30は、ゲートが差動増幅器13の出力端子と接続され、ソースが電源電圧VDDと接続され、ドレインが出力端子16に接続されている。
Incidentally, as a conventional technique for improving the power supply voltage rejection ratio at a high frequency, a stabilized power supply circuit described in Patent Document 1 described below is known (see FIG. 11).
As shown in FIG. 11, the stabilized power supply circuit includes a reference voltage generation circuit 11, two differential amplifiers 12, 13, a power supply fluctuation detection unit 14, an output voltage detection unit 15, and a PMOS transistor M30. A load 17 is connected between the terminal 16 and the power supply voltage VSS. The PMOS transistor M30 has a gate connected to the output terminal of the differential amplifier 13, a source connected to the power supply voltage VDD, and a drain connected to the output terminal 16.

このような安定化電源回路では、出力電圧検出部15が、出力電圧Voutを抵抗で分圧し、この分圧電圧を差動増幅器12に出力する。差動増幅器12は、その差動電圧と基準電圧発生器11からの基準電圧との誤差を増幅して出力する。差動増幅器12の出力は、差動増幅器13の反転入力端子へ供給される。電源変動検出部14では、電源電圧VDDへのノイズ混入によるPMOSトランジスタM30のゲート・ソース間電圧(Vgs)の変動電圧を検出する。差動増幅器2では、差動増幅器1で増幅された誤差信号と電源変動検出部14で検出された信号が加算され、PMOSトランジスタM30のゲート信号として出力される。   In such a stabilized power supply circuit, the output voltage detector 15 divides the output voltage Vout by a resistor and outputs the divided voltage to the differential amplifier 12. The differential amplifier 12 amplifies and outputs an error between the differential voltage and the reference voltage from the reference voltage generator 11. The output of the differential amplifier 12 is supplied to the inverting input terminal of the differential amplifier 13. The power supply fluctuation detecting unit 14 detects a fluctuation voltage of the gate-source voltage (Vgs) of the PMOS transistor M30 due to noise mixing in the power supply voltage VDD. In the differential amplifier 2, the error signal amplified by the differential amplifier 1 and the signal detected by the power supply fluctuation detector 14 are added and output as a gate signal of the PMOS transistor M30.

図12は、図11に示す安定化電源回路の具体的な回路構成を示す。
電源変動検出部14は、図12に示すように、PMOSトランジスタM31と抵抗R13からなるソース接地増幅器で構成される。図12において、ダイオード接続されたNMOSトランジスタM32は、図11の定電圧電源DCVを構成する。PMOSトランジスタM30とPMOSトランジスタM31はカレントミラーを構成し、PMOSトランジスタM30に流れる電流に比例した電流がPMOSトランジスタ31にも流れる。出力電圧検出部15、分圧用の抵抗R11、R12から構成される。
FIG. 12 shows a specific circuit configuration of the stabilized power supply circuit shown in FIG.
As shown in FIG. 12, the power supply fluctuation detection unit 14 includes a common source amplifier including a PMOS transistor M31 and a resistor R13. In FIG. 12, a diode-connected NMOS transistor M32 constitutes the constant voltage power source DCV of FIG. The PMOS transistor M30 and the PMOS transistor M31 constitute a current mirror, and a current proportional to the current flowing through the PMOS transistor M30 also flows through the PMOS transistor 31. The output voltage detection unit 15 and voltage dividing resistors R11 and R12 are included.

このように構成される安定化電源回路では、電源電圧VDDが上昇してPMOSトランジスタM31のゲート・ソース間電圧Vgsが大きくなった場合、PMOSトランジスタM31の電流が増加するため、PMOSトランジスタM31などからなるソース接地増幅器(電源変動検出部14)の出力電圧も上昇する。この結果、差動増幅器13の非反転入力端子の入力電圧が上昇し、差動増幅器13の出力に接続されたPMOSトランジスタM20のゲート・ソース間電圧Vgsも上昇する。   In the stabilized power supply circuit configured as described above, when the power supply voltage VDD rises and the gate-source voltage Vgs of the PMOS transistor M31 increases, the current of the PMOS transistor M31 increases. The output voltage of the common source amplifier (power fluctuation detector 14) increases. As a result, the input voltage at the non-inverting input terminal of the differential amplifier 13 increases, and the gate-source voltage Vgs of the PMOS transistor M20 connected to the output of the differential amplifier 13 also increases.

逆に、電源電圧VDDが下降してPMOSトランジスタM31のゲート・ソース間電圧Vgsが小さくなった場合には、PMOSトランジスタM31の電流は減少し、ソース接地増幅器の出力も下降する。従って、PMOSトランジスタM30のゲート・ソース間電圧Vgsも下降する。
その結果、上述した安定化電源回路では、PMOSトランジスタM30のゲート・ソース間電圧Vgsを一定に保つような制御が働き、高域周波数領域での電源電圧除去比を改善しようとしている。
特開2004−362250号公報
Conversely, when the power supply voltage VDD decreases and the gate-source voltage Vgs of the PMOS transistor M31 decreases, the current of the PMOS transistor M31 decreases and the output of the common source amplifier also decreases. Accordingly, the gate-source voltage Vgs of the PMOS transistor M30 also decreases.
As a result, in the above-described stabilized power supply circuit, control is performed to keep the gate-source voltage Vgs of the PMOS transistor M30 constant, and an attempt is made to improve the power supply voltage rejection ratio in the high frequency range.
JP 2004-362250 A

図6の従来の演算増幅器において、高域の周波数での電源電圧除去比が要求される場合は、交流での電源電圧除去比PSRRacを大きくする必要がある。この電源電圧除去比PSRRacは、差動増幅回路の伝達コンダクタンスを大きくするか位相補償回路のキャパシタを小さくすることで大きくすることができる。しかし、この電源電圧除去比PSRRacの改善策は、演算増幅器の周波数帯域を広げることで、安定性の確保により制限されてしまう。   In the conventional operational amplifier of FIG. 6, when the power supply voltage rejection ratio at a high frequency is required, it is necessary to increase the power supply voltage rejection ratio PSRRac at AC. This power supply voltage rejection ratio PSRRac can be increased by increasing the transfer conductance of the differential amplifier circuit or by decreasing the capacitor of the phase compensation circuit. However, the measure for improving the power supply voltage rejection ratio PSRRac is limited by ensuring the stability by widening the frequency band of the operational amplifier.

また、図11および図12の回路構成では、2つの差動増幅器を必要とすることで回路規模が大きくなってしまう。さらに、ある程度のゲインを持つ差動増幅器13がループ内に存在することで極が形成されるため、位相補償特性を劣化させるおそれがある。
そこで、本発明の目的は、上述の点に鑑み、位相補償特性を確保しつつ電源電圧除去比を改善でき、そのための回路は規模が小さく、低消費電流のもので実現できるようにした演算増幅器を提供することにある。
In addition, in the circuit configurations of FIGS. 11 and 12, the circuit scale is increased by requiring two differential amplifiers. Further, since the pole is formed by the presence of the differential amplifier 13 having a certain gain in the loop, the phase compensation characteristic may be deteriorated.
In view of the above, an object of the present invention is to improve the power supply voltage rejection ratio while ensuring the phase compensation characteristic, and the operational amplifier is small in scale and can be realized with a low current consumption. Is to provide.

上記の課題を解決し本発明の目的を達成するために、各発明は以下のような構成からなる。
請求項1に係る発明は、差動増幅回路と、この差動増幅回路の後段に直列に接続される出力増幅回路と、前記差動増幅器および前記出力増幅回路の接続点と前記出力増幅回路の出力端との間に接続され入出力特性の位相補償を行う位相補償手段と、を備えた演算増幅器であって、前記接続点と電源電圧端子との間に接続され、前記位相補償手段に交流電流を供給する電流供給手段を備えている。
In order to solve the above-described problems and achieve the object of the present invention, each invention has the following configuration.
The invention according to claim 1 includes a differential amplifier circuit, an output amplifier circuit connected in series at a subsequent stage of the differential amplifier circuit, a connection point between the differential amplifier and the output amplifier circuit, and the output amplifier circuit. An operational amplifier including a phase compensation unit connected between the output terminal and performing phase compensation of input / output characteristics, connected between the connection point and a power supply voltage terminal, and connected to the phase compensation unit Current supply means for supplying current is provided.

請求項2に係る発明は、請求項1に係る発明において、前記電流供給手段のインピーダンスは、前記位相補償手段のインピーダンスと等しい。
請求項3に係る発明は、請求項1に係る発明において、前記電流供給手段を構成する回路は、前記位相補償手段を構成する回路と等価である。
請求項4に係る発明は、請求項1乃至請求項3に係る発明において、前記位相補償手段は、直列に接続されたキャパシタおよび抵抗手段を有し、前記電流供給手段は、直列に接続されたキャパシタおよび抵抗手段を有する。
The invention according to claim 2 is the invention according to claim 1, wherein the impedance of the current supply means is equal to the impedance of the phase compensation means.
According to a third aspect of the present invention, in the first aspect of the present invention, the circuit constituting the current supply means is equivalent to the circuit constituting the phase compensation means.
The invention according to claim 4 is the invention according to claims 1 to 3, wherein the phase compensation means includes a capacitor and a resistance means connected in series, and the current supply means is connected in series. It has a capacitor and a resistance means.

請求項5に係る発明は、請求項4に係る発明において、前記抵抗手段は、MOSトランジスタ、あるいはMOSトランジスタおよび抵抗器で構成される。
請求項6に係る発明は、請求項4または請求項5に係る発明において、前記電流供給手段は、前記直列接続されたキャパシタおよび抵抗器の他に、前記位相補償手段に交流電流を供給する経路を形成するためのMOSトランジスタを有する。
The invention according to claim 5 is the invention according to claim 4, wherein the resistance means is composed of a MOS transistor or a MOS transistor and a resistor.
According to a sixth aspect of the present invention, in the invention according to the fourth or fifth aspect, the current supply unit supplies an alternating current to the phase compensation unit in addition to the capacitor and the resistor connected in series. MOS transistors for forming are formed.

本発明によれば、位相補償特性を確保しつつ、低域周波数はもとより高域周波数での電源電圧除去比を改善でき、そのための回路は規模が小さく、低消費電流のもので実現することができる。   According to the present invention, it is possible to improve the power supply voltage rejection ratio at the high frequency as well as the low frequency while ensuring the phase compensation characteristics, and the circuit for that can be realized with a small scale and low current consumption. it can.

以下、本発明の実施形態について、図面を参照して説明する。
(第1実施形態)
本発明の演算増幅器に係る第1実施形態は、図1に示すように、差動増幅回路1と、この差動増幅回路1の後段に直列に接続される出力増幅回路2と、入出力特性の位相補償を行う位相補償回路3と、この位相補償回路3に交流電流を供給する電流供給回路5と、を備えている。
すなわち、この第1実施形態は、図6に示す演算増幅器に電流供給回路5を追加し、図6に示す演算増幅器と同様の位相補償特性を確保しつつ、さらに電源電圧除去比の改善を図るようにしたものである。そして、この改善を図るための電流供給回路5は、その回路規模が小さく、消費電流を抑制できるものとした。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
As shown in FIG. 1, the first embodiment of the operational amplifier according to the present invention includes a differential amplifier circuit 1, an output amplifier circuit 2 connected in series at the subsequent stage of the differential amplifier circuit 1, and input / output characteristics. And a current supply circuit 5 for supplying an alternating current to the phase compensation circuit 3.
That is, in the first embodiment, the current supply circuit 5 is added to the operational amplifier shown in FIG. 6, and the same phase compensation characteristic as that of the operational amplifier shown in FIG. 6 is secured, and the power supply voltage rejection ratio is further improved. It is what I did. The current supply circuit 5 for improving this circuit has a small circuit scale and can suppress current consumption.

このように、第1実施形態は、図6に示す演算増幅器の構成を基本とするので、その構成が共通する部分については同一符号を付し、説明はできるだけ省略する。
電流供給回路5は、図1に示すように、差動増幅器1および出力増幅回路2が接続される接続部の一部であるノード(接続点)N1と、電源電圧VDD、VSSの端子(電源ライン)との間に接続され、後述のように位相補償回路3に交流電流を供給するようになっている。具体的には、NMOSトランジスタM11、M12、PMOSトランジスタM13、キャパシタCc2、および抵抗Rc2から構成される。
As described above, the first embodiment is basically based on the configuration of the operational amplifier shown in FIG. 6, and therefore, parts having the same configuration are denoted by the same reference numerals and description thereof is omitted as much as possible.
As shown in FIG. 1, the current supply circuit 5 includes a node (connection point) N1, which is a part of a connection portion to which the differential amplifier 1 and the output amplifier circuit 2 are connected, and terminals (power supply voltages VDD and VSS). And an alternating current is supplied to the phase compensation circuit 3 as will be described later. Specifically, it includes NMOS transistors M11 and M12, a PMOS transistor M13, a capacitor Cc2, and a resistor Rc2.

NMOSトランジスタM11、M12はカスコード接続されてバイアス電流源を構成し、このバイアス電流源は上記のノードN1と電源電圧VSSの端子との間に接続される。PMOSトランジスタM13は、ノードN1と電源電圧VDDの端子との間に接続され、NMOSトランジスタM11、M12を流れるバイアス電流が差動増幅回路1から供給されることを防ぐ機能を有する。抵抗Rc2とキャパシタCc2は直列回路を構成し、この直列回路はNMOSトランジスタM11のソースと電源電圧VDDの端子との間に接続される。また、その直列回路は、位相補償回路3を構成する抵抗Rc1とキャパシタCc1の直列回路と等価な回路である。換言すると、両直列回路は、インピーダンスが等しい回路である。   The NMOS transistors M11 and M12 are cascode-connected to constitute a bias current source, and this bias current source is connected between the node N1 and the terminal of the power supply voltage VSS. The PMOS transistor M13 is connected between the node N1 and the terminal of the power supply voltage VDD, and has a function of preventing the bias current flowing through the NMOS transistors M11 and M12 from being supplied from the differential amplifier circuit 1. The resistor Rc2 and the capacitor Cc2 form a series circuit, which is connected between the source of the NMOS transistor M11 and the terminal of the power supply voltage VDD. The series circuit is an equivalent circuit to the series circuit of the resistor Rc1 and the capacitor Cc1 constituting the phase compensation circuit 3. In other words, both series circuits are circuits having the same impedance.

MOSトランジスタM11、M12、M13の各ゲートには、MOSトランジスタM11、M12がカスコード接続で構成される電流源、MOSトランジスタM13が電流源とみなせる適当なバイアス電圧が与えられる。
このような構成によれば、差動増幅回路1の出力からMOSトランジスタM11のドレイン、MOSトランジスタM13のドレインを見たインピーダンスは比較的高インピーダンスであるため、図1の第1実施形態の位相補償特性は図6の従来回路とほぼ等しくなっている。
The gates of the MOS transistors M11, M12, and M13 are supplied with a current source in which the MOS transistors M11 and M12 are configured by cascode connection and an appropriate bias voltage that allows the MOS transistor M13 to be regarded as a current source.
According to such a configuration, since the impedance when the drain of the MOS transistor M11 and the drain of the MOS transistor M13 are viewed from the output of the differential amplifier circuit 1 is relatively high, the phase compensation of the first embodiment of FIG. The characteristics are almost equal to those of the conventional circuit of FIG.

次に、このような構成からなる第1実施形態に係る演算増幅器を、図7に示す定電圧出力回路に適用した場合の電源電圧変動に対する回路動作を説明する。
この第1実施形態は、基本的には、電源電圧VDDの変動に応じてノードN1の電圧が変動してPMOSトランジスタM6のゲート・ソース間電圧Vgsを一定に保つためにキャパシタCc1に流れる電流I1を、電源電圧VDDの端子から抵抗Rc2とキャパシタCc2を通って流れる電流I2よって供給するようにした。これにより、第1実施形態では、差動増幅回路1が出力する電流Idiffを小さくして電源電圧除去比の改善を図ることができた。
Next, a circuit operation with respect to power supply voltage fluctuation when the operational amplifier according to the first embodiment having such a configuration is applied to the constant voltage output circuit shown in FIG. 7 will be described.
In the first embodiment, basically, the current I1 flowing in the capacitor Cc1 in order to keep the gate-source voltage Vgs of the PMOS transistor M6 constant by changing the voltage of the node N1 according to the change of the power supply voltage VDD. Is supplied from the terminal of the power supply voltage VDD by a current I2 flowing through the resistor Rc2 and the capacitor Cc2. As a result, in the first embodiment, the current Idiff output from the differential amplifier circuit 1 can be reduced to improve the power supply voltage rejection ratio.

電源電圧VDDの変動に応じてノードN1の電圧が変動している時、交流(AC)的にはノードN1の電圧は電源電圧VDDと等しい変動をしており、出力電圧Voutは一定でACグランドとみなせる。このため、電流I1は、電源電圧VDDとACグランドとの間に抵抗Rc1とキャパシタCc1を接続した時に流れる電流とほぼ等しい。
一方、カスコード接続されるNMOSトランジスタM11のソースは、インピーダンスが低く電源電圧VDDが変動した時に一定でACグランドとみなせる。このため、電流I2は、電源電圧VDDとACグランドとの間に抵抗Rc2とキャパシタCc2を接続した時に流れる電流とほぼ等しくなっている。
When the voltage at the node N1 fluctuates in accordance with the fluctuation in the power supply voltage VDD, the voltage at the node N1 fluctuates equal to the power supply voltage VDD in terms of alternating current (AC), the output voltage Vout is constant, and the AC ground. Can be considered. For this reason, the current I1 is substantially equal to the current that flows when the resistor Rc1 and the capacitor Cc1 are connected between the power supply voltage VDD and the AC ground.
On the other hand, the source of the cascode-connected NMOS transistor M11 can be regarded as a constant AC ground when the impedance is low and the power supply voltage VDD fluctuates. Therefore, the current I2 is substantially equal to the current that flows when the resistor Rc2 and the capacitor Cc2 are connected between the power supply voltage VDD and the AC ground.

従って、抵抗Rc1とキャパシタCc1の直列接続が抵抗Rc2とキャパシタCc2の直列接続と等価なインピーダンスであるとき、電流I1と電流I2はほぼ等しくなっている。電流I2は、NMOSトランジスタM11のソースに流れ込む経路と、NMOSトランジスタM12のドレインに流れ込む経路に分かれる。しかし、NMOSトランジスタM11のソースのインピーダンスはNMOSトランジスタM12のドレインのインピーダンスに比べて十分に小さいため、電流I2のほとんどはNMOSトランジスタM11のソース側に流れる。   Therefore, when the series connection of the resistor Rc1 and the capacitor Cc1 has an impedance equivalent to the series connection of the resistor Rc2 and the capacitor Cc2, the current I1 and the current I2 are substantially equal. The current I2 is divided into a path flowing into the source of the NMOS transistor M11 and a path flowing into the drain of the NMOS transistor M12. However, since the impedance of the source of the NMOS transistor M11 is sufficiently smaller than the impedance of the drain of the NMOS transistor M12, most of the current I2 flows to the source side of the NMOS transistor M11.

これより、電源電圧VDDの変動に応じてノードN1が変動するために差動増幅回路1がキャパシタCc1に供給すべき電流Idiffは、電流I1の電流経路と電流I2の電流経路とのインピーダンスのミスマッチを補償するだけの小量となり、電流Idiffを供給するための差動入力電圧変化、すなわち出力電圧変化も小さくて済むことになる。従って、電源電圧除去比は図2に示すように、図9のPSRRacを右にシフトしたグラフとなり、高域周波数でのPSRRを改善できる。   Accordingly, since the node N1 varies according to the variation of the power supply voltage VDD, the current Idiff to be supplied to the capacitor Cc1 by the differential amplifier circuit 1 is an impedance mismatch between the current path of the current I1 and the current path of the current I2. Therefore, the change in the differential input voltage for supplying the current Idiff, that is, the change in the output voltage can be reduced. Therefore, as shown in FIG. 2, the power supply voltage rejection ratio is a graph in which PSRRac in FIG. 9 is shifted to the right, and PSRR at a high frequency can be improved.

(第2実施形態)
本発明の演算増幅器に係る第2実施形態は、図3に示すように、差動増幅回路1と、出力増幅回路2と、位相補償回路3aと、電流供給回路5aと、を備えている。
すなわち、この第2実施形態は、図1に示す第1実施形態の構成を基本にし、図1の位相補償回路3を図3の位相補償回路3aに置き換えるとともに、図1の電流供給回路5を図3の電流供給回路5aに置き換えるようにした。
このように、第2実施形態は、図1に示す第1実施形態の構成を基本とするので、その構成が共通する部分については同一符号を付し、説明は省略する。
(Second Embodiment)
As shown in FIG. 3, the second embodiment according to the operational amplifier of the present invention includes a differential amplifier circuit 1, an output amplifier circuit 2, a phase compensation circuit 3a, and a current supply circuit 5a.
That is, the second embodiment is based on the configuration of the first embodiment shown in FIG. 1, and the phase compensation circuit 3 in FIG. 1 is replaced with the phase compensation circuit 3a in FIG. 3, and the current supply circuit 5 in FIG. Instead of the current supply circuit 5a of FIG.
Thus, since 2nd Embodiment is based on the structure of 1st Embodiment shown in FIG. 1, the same code | symbol is attached | subjected about the part which the structure is common, and description is abbreviate | omitted.

位相補償回路3aは、PMOSトランジスタM14、抵抗Rc1、およびキャパシタCc1を直列接続した直列回路で構成され、直列回路の一端側はノードN1に接続され、その他端側は出力増幅回路2の出力端子4に接続されている。すなわち、位相補償回路3aは、図1の位相補償回路3の抵抗Rc1を、PMOSトランジスタM14のオン抵抗と抵抗Rc1の直列接続に置き換え、位相補償回路3と同じ機能を達成するようにした。   The phase compensation circuit 3a is configured by a series circuit in which a PMOS transistor M14, a resistor Rc1, and a capacitor Cc1 are connected in series. One end of the series circuit is connected to the node N1, and the other end is the output terminal 4 of the output amplifier circuit 2. It is connected to the. That is, in the phase compensation circuit 3a, the resistor Rc1 of the phase compensation circuit 3 of FIG.

電流供給回路5aは、図1の電流供給回路5の構成を基本にし、図1の抵抗Rc2とキャパシタCc2からなる直列回路に、さらにPMOSトランジスタM15を直列に接続して新たな直列回路を構成し、この直列回路をNMOSトランジスタM11のソースと電源電圧VDDの端子との間に接続した。すなわち、電流供給回路5aは、図1の電流供給回路5の抵抗Rc2を、PMOSトランジスタM15のオン抵抗と抵抗Rc2の直列接続に置き換え、電流供給回路5と同じ機能を達成するようにした。
ここで、位相補償回路3aの直列回路と電流供給回路5aの直列回路とは等価であって、その両直列回路のインピーダンスは等しい。
このような構成からなる第2実施形態によれば、第1実施形態と同様の作用効果を実現できる。
The current supply circuit 5a is based on the configuration of the current supply circuit 5 of FIG. 1, and a PMOS transistor M15 is further connected in series to the series circuit composed of the resistor Rc2 and the capacitor Cc2 of FIG. 1 to form a new series circuit. The series circuit was connected between the source of the NMOS transistor M11 and the terminal of the power supply voltage VDD. That is, the current supply circuit 5a replaces the resistor Rc2 of the current supply circuit 5 of FIG. 1 with a series connection of the on-resistance of the PMOS transistor M15 and the resistor Rc2, and achieves the same function as the current supply circuit 5.
Here, the series circuit of the phase compensation circuit 3a and the series circuit of the current supply circuit 5a are equivalent, and the impedances of both the series circuits are equal.
According to 2nd Embodiment which consists of such a structure, the effect similar to 1st Embodiment is realizable.

(第3実施形態)
本発明の演算増幅器に係る第3実施形態は、図4に示すように、差動増幅回路1と、出力増幅回路2と、位相補償回路3と、電流供給回路5bと、を備えている。
すなわち、この第2実施形態は、図1に示す第1実施形態の構成を基本にし、図1の電流供給回路5を図4の電流供給回路5bに置き換えるようにした。
このように、第3実施形態は、図1に示す第1実施形態の構成を基本とするので、その構成が共通する部分については同一符号を付し、説明は省略する。
電流供給回路5bは、図1の電流供給回路5の構成を基本にし、演算増幅器AMP1を追加するようにした。そして、演算増幅器AMP1の出力端子をMOSトランジスタM11のゲートに接続し、MOSトランジスタM11のソースを演算増幅器AMP1の反転入力端子に接続した。演算増幅器AMP1の正転入力端子には、適当なバイアス電圧を供給するようにした。
(Third embodiment)
As shown in FIG. 4, the third embodiment according to the operational amplifier of the present invention includes a differential amplifier circuit 1, an output amplifier circuit 2, a phase compensation circuit 3, and a current supply circuit 5b.
That is, the second embodiment is based on the configuration of the first embodiment shown in FIG. 1, and the current supply circuit 5 in FIG. 1 is replaced with the current supply circuit 5b in FIG.
As described above, the third embodiment is based on the configuration of the first embodiment shown in FIG. 1, and therefore, parts having the same configuration are denoted by the same reference numerals and description thereof is omitted.
The current supply circuit 5b is based on the configuration of the current supply circuit 5 of FIG. 1, and an operational amplifier AMP1 is added. The output terminal of the operational amplifier AMP1 was connected to the gate of the MOS transistor M11, and the source of the MOS transistor M11 was connected to the inverting input terminal of the operational amplifier AMP1. An appropriate bias voltage is supplied to the normal input terminal of the operational amplifier AMP1.

このような構成により、電流I2の電流経路からMOSトランジスタM11のソースをみたインピーダンスは、演算増幅器AMP1のゲインがGの時、図1の第1実施形態の場合に比べて1/Gとなり、非常に小さくなる。これにより、MOSトランジスタM11のソースは理想のACグランドにより近づき、電流I1と電流I2との差を小さくでき、電源電圧除去比の改善を図ることができる。   With such a configuration, the impedance of the source of the MOS transistor M11 viewed from the current path of the current I2 is 1 / G when the gain of the operational amplifier AMP1 is G, compared to the case of the first embodiment of FIG. Becomes smaller. Thereby, the source of the MOS transistor M11 approaches the ideal AC ground, the difference between the current I1 and the current I2 can be reduced, and the power supply voltage rejection ratio can be improved.

(第4実施形態)
本発明の演算増幅器に係る第4実施形態は、図5に示すように、差動増幅回路1aと、出力増幅回路2と、位相補償回路3と、電流供給回路5と、を備えている。
すなわち、この第4実施形態は、図1に示す第1実施形態の構成を基本にし、図1の差動増幅回路1を図5の差動増幅回路1aに置き換えるようにした。
このように、第4実施形態は、図1に示す第1実施形態の構成を基本とするので、その構成が共通する部分については同一符号を付し、説明は省略する。
差動増幅回路1aは、図1の差動増幅回路1をフォールデッド・カスコード型に変更し、これに伴ってNMOS差動入力をPMOS差動入力にした。
具体的には、差動増幅回路1aは、図5に示すように、PMOSトランジスタM18〜M24およびNMOSトランジスタM25〜M28により構成される。
(Fourth embodiment)
As shown in FIG. 5, the fourth embodiment according to the operational amplifier of the present invention includes a differential amplifier circuit 1a, an output amplifier circuit 2, a phase compensation circuit 3, and a current supply circuit 5.
That is, the fourth embodiment is based on the configuration of the first embodiment shown in FIG. 1, and the differential amplifier circuit 1 in FIG. 1 is replaced with the differential amplifier circuit 1a in FIG.
As described above, the fourth embodiment is based on the configuration of the first embodiment shown in FIG. 1, and therefore, parts having the same configuration are denoted by the same reference numerals and description thereof is omitted.
In the differential amplifier circuit 1a, the differential amplifier circuit 1 of FIG. 1 is changed to a folded cascode type, and the NMOS differential input is changed to a PMOS differential input.
Specifically, the differential amplifier circuit 1a includes PMOS transistors M18 to M24 and NMOS transistors M25 to M28 as shown in FIG.

(その他)
図1の第1実施形態の構成を図6の従来回路と比較すると、電流供給回路5が追加され、これに伴って増加した素子は抵抗Rc2、キャパシタCc2、およびMOSトランジスタM11、M12、M13のみである。この回路規模の増加は、図11における従来技術での差動増幅器13などの増加に比べ、小さくなっている。消費電流に関しては、電源電圧VDDからMOSトランジスタM13、M11、およびM12を通って電源電圧VSSに流れるバイアス電流が増えたのみであり、差動増幅回路1などの電流は増加させる必要がない。
また、図3に示す第2実施形態のように、MOSトランジスタのオン抵抗も含めた抵抗と容量により位相補償を行っている、あらゆる演算増幅器のPSRRを容易に改善することが可能となる。
(Other)
When the configuration of the first embodiment of FIG. 1 is compared with the conventional circuit of FIG. 6, a current supply circuit 5 is added, and the only elements increased with this are a resistor Rc2, a capacitor Cc2, and MOS transistors M11, M12, and M13. It is. This increase in circuit scale is smaller than the increase in the differential amplifier 13 and the like in the prior art in FIG. Regarding the current consumption, only the bias current flowing from the power supply voltage VDD to the power supply voltage VSS through the MOS transistors M13, M11, and M12 has increased, and the current of the differential amplifier circuit 1 and the like need not be increased.
Further, as in the second embodiment shown in FIG. 3, it is possible to easily improve the PSRR of any operational amplifier in which phase compensation is performed by the resistance and capacitance including the ON resistance of the MOS transistor.

本発明の演算増幅器の第1実施形態の構成を示す回路図である。1 is a circuit diagram showing a configuration of a first embodiment of an operational amplifier according to the present invention. 図7の定電圧出力回路に第1実施形態を適用した場合の定電圧出力の電源電圧除去比の周波数特性を表す図である。It is a figure showing the frequency characteristic of the power supply voltage removal ratio of the constant voltage output at the time of applying 1st Embodiment to the constant voltage output circuit of FIG. 本発明の演算増幅器の第2実施形態の構成を示す回路図である。It is a circuit diagram which shows the structure of 2nd Embodiment of the operational amplifier of this invention. 本発明の演算増幅器の第3実施形態の構成を示す回路図である。It is a circuit diagram which shows the structure of 3rd Embodiment of the operational amplifier of this invention. 本発明の演算増幅器の第4実施形態の構成を示す回路図である。It is a circuit diagram which shows the structure of 4th Embodiment of the operational amplifier of this invention. 従来の演算増幅器の構成を示す回路図である。It is a circuit diagram which shows the structure of the conventional operational amplifier. 演算増幅器を用いた従来の定電圧出力回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the conventional constant voltage output circuit using an operational amplifier. 図7の回路に、図6の演算増幅器を適用した定電圧出力回路の構成を示す回路図である。FIG. 8 is a circuit diagram illustrating a configuration of a constant voltage output circuit in which the operational amplifier of FIG. 6 is applied to the circuit of FIG. 7. 図8の回路における定電圧出力の電源電圧除去比の周波数特性を表す図である。It is a figure showing the frequency characteristic of the power supply voltage removal ratio of the constant voltage output in the circuit of FIG. 図8の回路の小信号等価回路を表す図である。It is a figure showing the small signal equivalent circuit of the circuit of FIG. 従来の技術を用いた高域での電源電圧除去比を改善させる回路の構成図である。It is a block diagram of the circuit which improves the power supply voltage rejection ratio in the high region using the prior art. 図11の具体的な回路例である。12 is a specific circuit example of FIG. 11.

符号の説明Explanation of symbols

1、1a 差動増幅回路
2 出力増幅回路
3 位相補償回路
4 出力端子
5、5a、5b 電流供給回路
DESCRIPTION OF SYMBOLS 1, 1a Differential amplifier circuit 2 Output amplifier circuit 3 Phase compensation circuit 4 Output terminal 5, 5a, 5b Current supply circuit

Claims (6)

差動増幅回路と、この差動増幅回路の後段に直列に接続される出力増幅回路と、前記差動増幅器および前記出力増幅回路の接続点と前記出力増幅回路の出力端との間に接続され入出力特性の位相補償を行う位相補償手段と、を備えた演算増幅器であって、
前記接続点と電源電圧端子との間に接続され、前記位相補償手段に交流電流を供給する電流供給手段を備えたことを特徴とする演算増幅器。
A differential amplifier circuit; an output amplifier circuit connected in series at a subsequent stage of the differential amplifier circuit; and a connection point between the differential amplifier and the output amplifier circuit and an output terminal of the output amplifier circuit. An operational amplifier comprising phase compensation means for performing phase compensation of input / output characteristics,
An operational amplifier comprising current supply means connected between the connection point and a power supply voltage terminal for supplying an alternating current to the phase compensation means.
前記電流供給手段のインピーダンスは、前記位相補償手段のインピーダンスと等しいことを特徴とする請求項1に記載の演算増幅器。   2. The operational amplifier according to claim 1, wherein the impedance of the current supply means is equal to the impedance of the phase compensation means. 前記電流供給手段を構成する回路は、前記位相補償手段を構成する回路と等価であることを特徴とする請求項1または請求項2に記載の演算増幅器。   3. The operational amplifier according to claim 1, wherein the circuit constituting the current supply means is equivalent to the circuit constituting the phase compensation means. 前記位相補償手段は、直列に接続されたキャパシタおよび抵抗手段を有し、
前記電流供給手段は、直列に接続されたキャパシタおよび抵抗手段を有することを特徴とする請求項1乃至請求項3のうちの何れかに記載の演算増幅器。
The phase compensation means has a capacitor and a resistance means connected in series,
The operational amplifier according to claim 1, wherein the current supply unit includes a capacitor and a resistor unit connected in series.
前記抵抗手段は、MOSトランジスタ、あるいはMOSトランジスタおよび抵抗器で構成されることを特徴とする請求項4に記載の演算増幅器。   5. The operational amplifier according to claim 4, wherein the resistance means includes a MOS transistor or a MOS transistor and a resistor. 前記電流供給手段は、前記直列接続されたキャパシタおよび抵抗器の他に、前記位相補償手段に交流電流を供給する経路を形成するためのMOSトランジスタを有することを特徴とする請求項4または請求項5に記載の演算増幅器。   5. The current supply unit includes a MOS transistor for forming a path for supplying an alternating current to the phase compensation unit in addition to the capacitor and resistor connected in series. 5. The operational amplifier according to 5.
JP2007152878A 2007-06-08 2007-06-08 Operational amplifier Expired - Fee Related JP4838760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152878A JP4838760B2 (en) 2007-06-08 2007-06-08 Operational amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152878A JP4838760B2 (en) 2007-06-08 2007-06-08 Operational amplifier

Publications (2)

Publication Number Publication Date
JP2008306562A true JP2008306562A (en) 2008-12-18
JP4838760B2 JP4838760B2 (en) 2011-12-14

Family

ID=40234861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152878A Expired - Fee Related JP4838760B2 (en) 2007-06-08 2007-06-08 Operational amplifier

Country Status (1)

Country Link
JP (1) JP4838760B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203473A1 (en) * 2013-06-17 2014-12-24 株式会社デンソー Differential amplifier
CN114124016A (en) * 2020-08-28 2022-03-01 国网江苏省电力有限公司南京供电分公司 A frequency characteristic compensation method of shunt for reference standard

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023090478A (en) 2021-12-17 2023-06-29 キオクシア株式会社 Semiconductor circuit and power supply device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139107A (en) * 1984-12-11 1986-06-26 Nec Corp Operational amplifier
JPS6266708A (en) * 1985-09-18 1987-03-26 Nec Corp Operational amplifier
JPH0193207A (en) * 1987-10-02 1989-04-12 Nec Corp Operational amplifier
JPH06268457A (en) * 1993-03-12 1994-09-22 Hitachi Ltd Operational amplifier circuit
JPH08167817A (en) * 1994-12-13 1996-06-25 Toshiba Microelectron Corp Operational amplifier circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139107A (en) * 1984-12-11 1986-06-26 Nec Corp Operational amplifier
JPS6266708A (en) * 1985-09-18 1987-03-26 Nec Corp Operational amplifier
JPH0193207A (en) * 1987-10-02 1989-04-12 Nec Corp Operational amplifier
JPH06268457A (en) * 1993-03-12 1994-09-22 Hitachi Ltd Operational amplifier circuit
JPH08167817A (en) * 1994-12-13 1996-06-25 Toshiba Microelectron Corp Operational amplifier circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203473A1 (en) * 2013-06-17 2014-12-24 株式会社デンソー Differential amplifier
JP2015002457A (en) * 2013-06-17 2015-01-05 株式会社デンソー Differential amplifier
CN114124016A (en) * 2020-08-28 2022-03-01 国网江苏省电力有限公司南京供电分公司 A frequency characteristic compensation method of shunt for reference standard

Also Published As

Publication number Publication date
JP4838760B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5715525B2 (en) Voltage regulator
JP5690469B2 (en) Differential amplifier, reference voltage generation circuit, differential amplification method, and reference voltage generation method
US8854136B2 (en) Fully differential operational amplifier with common-mode feedback circuit
US20110115561A1 (en) Output common mode voltage stabilizer over large common mode input range in a high speed differential amplifier
US7633346B2 (en) Transconductance compensating bias circuit and amplifier
JP2009105810A (en) Amplifying device and bias circuit
JP6884472B2 (en) Voltage regulator
US7113044B2 (en) Precision current mirror and method for voltage to current conversion in low voltage applications
JP2008236339A (en) Semiconductor integrated circuit
JP6370126B2 (en) Voltage regulator
JP2011239154A (en) Operational amplifier circuit
US7420414B2 (en) Amplifier, and step-down regulator and operational amplifier using the amplifier
JP4838760B2 (en) Operational amplifier
US7859339B2 (en) Differential amplification circuit
US10720890B1 (en) High-speed high-accuracy amplifier and method thereof
JP5865815B2 (en) Operational amplifier
JP6132881B2 (en) Voltage variable gain amplification circuit and differential input voltage amplification method
US9450549B2 (en) Differential amplification circuit
JP7001468B2 (en) Op amp
US20080001592A1 (en) Method for generating a reference current and a related feedback generator
CN106484016B (en) Voltage turnover type zero compensation circuit
JP5788739B2 (en) Voltage variable gain amplifier circuit
JP2005080090A (en) Output voltage control circuit of differential amplifier circuit and voltage detector
JP7468889B2 (en) Fully Differential Amplifier
JP5936447B2 (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees