JP2008244210A - 電気化学キャパシタ - Google Patents
電気化学キャパシタ Download PDFInfo
- Publication number
- JP2008244210A JP2008244210A JP2007083723A JP2007083723A JP2008244210A JP 2008244210 A JP2008244210 A JP 2008244210A JP 2007083723 A JP2007083723 A JP 2007083723A JP 2007083723 A JP2007083723 A JP 2007083723A JP 2008244210 A JP2008244210 A JP 2008244210A
- Authority
- JP
- Japan
- Prior art keywords
- electrode layer
- negative electrode
- current collector
- electrode
- electrochemical capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】自動車用等に用いる電気化学キャパシタの低抵抗化を図ることを目的とする。
【解決手段】集電体5上に活性炭主体の分極性電極層6を形成した正極2と、集電体7上に炭素材料主体の電極層8を形成した負極を、その間にセパレータ4を介して巻回した素子1と、この素子1をリチウムイオンを含む有機系電解液12と共に収容した金属ケース10と、この金属ケース10の開口部を封止した封口ゴム11からなり、上記負極3の電極層8が活物質を95%以上含有し、かつ負極3の集電体7として多孔質ニッケルを用いた構成により、負極3の電極層8の密着強度が大幅に向上するために充放電サイクルによる特性変化の抑制を図ると共に抵抗値を低減できるようになり、これにより負極3の電極層8を形成する際に混合するアセチレンブラックやバインダ等を可能な限り削減して活物質量を多くし、更に容量拡大と抵抗値の低減ができる。
【選択図】図1
【解決手段】集電体5上に活性炭主体の分極性電極層6を形成した正極2と、集電体7上に炭素材料主体の電極層8を形成した負極を、その間にセパレータ4を介して巻回した素子1と、この素子1をリチウムイオンを含む有機系電解液12と共に収容した金属ケース10と、この金属ケース10の開口部を封止した封口ゴム11からなり、上記負極3の電極層8が活物質を95%以上含有し、かつ負極3の集電体7として多孔質ニッケルを用いた構成により、負極3の電極層8の密着強度が大幅に向上するために充放電サイクルによる特性変化の抑制を図ると共に抵抗値を低減できるようになり、これにより負極3の電極層8を形成する際に混合するアセチレンブラックやバインダ等を可能な限り削減して活物質量を多くし、更に容量拡大と抵抗値の低減ができる。
【選択図】図1
Description
本発明は各種電子機器、ハイブリッド自動車や燃料電池車のバックアップ電源用や回生用、あるいは電力貯蔵用等に使用される電気化学キャパシタに関するものである。
従来から、高耐電圧で大容量、しかも急速充放電の信頼性が高いということから電気二重層コンデンサが着目され、多くの分野で使用されている。このような電気二重層コンデンサは正極、負極共に活性炭を主体とする分極性電極を電極として用いたものであり、電気二重層コンデンサとしての耐電圧は、水系電解液を使用すると1.2V、有機系電解液を使用すると2.5〜3.3Vである。
電気二重層コンデンサのエネルギは耐電圧の2乗に比例するため、耐電圧の高い有機系電解液の方が水系電解液より高エネルギであるが、有機系電解液を使用した電気二重層コンデンサでも、そのエネルギ密度は鉛蓄電池等の二次電池の1/10以下であり、更なるエネルギ密度の向上が必要とされている。
このような背景から、活性炭を主体とする電極を正極とし、X線回折法による〔002〕面の面間隔が0.338〜0.356nmである炭素材料にあらかじめリチウムイオン(Li+)を吸蔵させた電極を負極とする上限電圧3Vの二次電池が提案されている(特許文献1)。
また、リチウムイオン(Li+)を吸蔵、脱離しうる炭素材料にあらかじめ化学的方法または電気化学的方法でリチウムイオン(Li+)を吸蔵させた炭素材料を負極に用いる二次電池が提案されている(特許文献2)。
さらに、リチウムイオン(Li+)を吸蔵、脱離しうる炭素材料をリチウムと合金を形成しない多孔質集電体に担持させる負極を有する上限電圧4Vの電気二重層キャパシタが提案されている(特許文献3)。
また、電気二重層コンデンサ以外に大電流充放電可能な電源としてリチウムイオン電池があり、リチウムイオン電池は電気二重層コンデンサに比べて高電圧かつ高容量という特徴を有するが、抵抗が高く、急速充放電サイクルによる寿命が電気二重層コンデンサに比べて著しく短いという問題があった。
なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1〜3が知られている。
特開昭64−14882号公報
特開平8−107048号公報
特開平9−55342号公報
しかしながら上記従来の電気二重層コンデンサの短所を改良する目的で提案された二次電池や電気二重層キャパシタでは、高耐電圧で大容量、しかも急速充放電が可能という長所は有するものの、抵抗値が高いため、例えば、ハイブリッド自動車や燃料電池車のバックアップ電源や回生用等に使用する場合には、多数個を直列接続して使用するために総抵抗値が大きくなりすぎて使用できないという課題があった。
また、負極に形成する電極層は集電体との密着強度の確保が難しいために剥離強度が低く、抵抗値が大きくなり易いという課題があり、このような負極をセパレータを介して正極と共に巻回して巻回型の素子を形成することは極めて困難であるという課題もあった。
また、低抵抗化を図る目的で、負極の電極層を形成する電極材料としての活物質に黒鉛を用いることが考えられるが、この黒鉛はそれ自体が有する抵抗値は低いものの、充放電サイクルによる寿命が短い、低温特性が悪いという短所があるために低抵抗化には適しておらず、そのために、炭素を構成する炭素六角網面間の層間を広げることによりリチウムイオン(Li+)の拡散抵抗を低減する方法が知られているが、このような炭素材料は結晶構造が成長途上にあるためにそれ自体の抵抗値が高く、抵抗値を低減させるために導電性付与剤であるアセチレンブラック等を混合して使用しなければならないという問題があった。
さらに、上記アセチレンブラックは、初回充電時にリチウムイオン(Li+)を取り込んでしまい、放電時にリチウムイオン(Li+)を脱離しないという性質(不可逆容量)を有するために、このようなリチウムイオン(Li+)を用いる電気二重層キャパシタの電極材料としてアセチレンブラックを使用することは好ましくないという問題もあった。
本発明はこのような従来の課題を解決し、高耐電圧で大容量、かつ、急速充放電サイクルの信頼性に優れ、しかも低抵抗化を実現することが可能な電気化学キャパシタを提供することを目的とするものである。
上記課題を解決するために本発明は、集電体上に活性炭を主体とした分極性電極層を形成した正極と、集電体に炭素材料を主体とした電極層を形成した負極とを、その間にセパレータを介在させて巻回することにより構成された素子と、この素子をリチウムイオン(Li+)を含む有機系電解液と共に収容した金属ケースと、この金属ケースの開口部を封止した封口部材からなり、上記負極の集電体としてリチウムと合金を形成しない発泡金属箔を用いると共に、この発泡金属箔の内部に電極層を形成した構成にしたものである。
以上のように本発明による電気化学キャパシタは、リチウムと合金を形成しない発泡金属箔を負極の集電体として用いることによって電極層の密着強度や保持性を大幅に向上させることが可能になるために抵抗値を低減することができるようになり、これにより負極の電極層を形成するために混合するアセチレンブラックやバインダ等を可能な限りゼロに近い量まで削減することによって活物質量を多くし、更なる容量値の向上と抵抗値の低減を図り、充放電サイクル時の容量/抵抗特性を安定化させることが可能になるという効果が得られるものである。
更に、負極の電極層の密着強度や保持性が向上することにより、負極の厚みを薄くして更なる低抵抗化を図ることができるようになるばかりでなく、巻回形の素子を作製することも容易になるという効果も得られるものである。
(実施の形態)
以下、実施の形態を用いて、本発明の特に全請求項に記載の発明について説明する。
以下、実施の形態を用いて、本発明の特に全請求項に記載の発明について説明する。
図1は本発明の一実施の形態による電気化学キャパシタの構成を示した一部切り欠き斜視図、図2(a)、(b)は同電気化学キャパシタを構成する負極の厚み方向から見た断面図と上面から見た断面図、図3(a)、(b)は同電気化学キャパシタの原理を説明するために示した放電状態と充電状態の概念図である。
図1において、1は素子であり、この素子1はアルミニウム箔からなる集電体5の表裏面に活性炭を主体とした分極性電極層6を形成した正極2と、リチウムと合金を形成しない発泡金属箔の一つである発泡ニッケル箔からなる多孔質の集電体7の内部に炭素材料の電極層8を形成した負極3とを2枚1組とし、その間に絶縁性のセパレータ4を介在させた状態で巻回することにより構成されているものである。
9a、9bは上記正極2、負極3に夫々接続されて引き出された正負一対の引き出し用のリード線、10は上記素子1を駆動用電解液(以下、電解液と呼ぶ)12と共に収容した有底円筒状の金属ケース、11は上記素子1から引き出された正負一対のリード線9a、9bが挿通する孔を有して上記金属ケース10の開口部に嵌め込まれ、金属ケース10の開口部近傍の外周を内側に円環状に絞り加工すると共に、金属ケース10の開口端をカーリング加工することにより封止を行う封口ゴムである。
図2は発泡ニッケル箔からなる多孔質の集電体7の内部に炭素材料の電極層8を形成した負極3の断面図である。従来の負極は、炭素材料と導電性付与剤とバインダを混合したスラリー等を非多孔質の銅箔等の集電体に塗布して電極層が形成されるが、長期的な使用や充放電を繰り返すことによる炭素材料の膨張収縮によってバインダの結着力が低下し、これにより、炭素粒子間の密着性の低下、電極層と集電体の密着性の低下、集電体からの電極層の剥離などを招き、電気化学キャパシタとしての容量の低下と抵抗の増加を招いてしまう。そのため、発泡ニッケル箔からなる多孔質の集電体7の外部に多くの電極層を形成してしまうと、上記と同様に、発泡ニッケル箔からなる多孔質の集電体7の外部の電極層が剥離し、容量の低下と抵抗の増加を招くため、本実施の形態では電極層8を極力、発泡ニッケル箔からなる多孔質の集電体7の内部に形成し、電極層8をバインダだけでなく、発泡ニッケル箔からなる多孔質の集電体7で機械的に保持することが望ましい。
そのため、発泡ニッケル箔からなる多孔質の集電体7の内部に電極層8を形成した時の負極3において、負極3の長さをLn、幅をWn、厚さをdn、発泡ニッケル箔からなる多孔質の集電体7の長さをLb、幅をWb、厚さをdb、炭素材料の平均粒径をDとしたとき、少なくとも
Ln<Lb+4D
Wn<Wb+4D
dn<db+4D
を満たし、好ましくは
Ln=Lb
Wn=Wb
dn=db
を満たすことが望ましい。
Ln<Lb+4D
Wn<Wb+4D
dn<db+4D
を満たし、好ましくは
Ln=Lb
Wn=Wb
dn=db
を満たすことが望ましい。
また、負極3を厚くしてしまうと、巻回時に負極が割れてしまい、これにより発泡ニッケル箔からなる多孔質の集電体7の一部が突出してセパレータを突き破り、正極と短絡してしまうため、プレス後の負極3の厚さは0.1mm未満が好ましく、そのためにはプレス後の発泡ニッケル箔からなる多孔質の集電体7の厚さが0.1mm未満となる発泡ニッケル箔からなる多孔質の集電体7を用いるのが好ましい。
また、このように構成された電気化学キャパシタは、図2に示すように、電解液12に含まれる電解質カチオンとしてのリチウムイオン(Li+)と、同じく電解質アニオンとしてのテトラフルオロホウ酸(BF4 -)が移動することによって充放電を行うものであるが、大きな容量を得るためには上記電解液12中のリチウムイオン(Li+)のみでは絶対量が足りず、従って、図3(a)の放電状態に示すように、あらかじめ負極の電極層にリチウムイオン(Li+)を吸蔵させておく(以下、プレドープと呼ぶ)ことが必要となるものである。
なお、上記負極3の電極層8を構成する活物質である炭素材料には、鉱物として得られる天然黒鉛や、コークス等を不活性雰囲気下中で2800℃以上の高温で黒鉛化して得られる人造黒鉛等の黒鉛系炭素材料が挙げられる。
また、ピッチコークスやメソフェーズピッチ炭素を1000℃以上の温度で焼成することにより黒鉛化が進行しやすい易黒鉛化性炭素材料を用いることができ、このうち、焼成温度が低すぎると不可逆容量が増加するため、少なくとも600℃以上、好ましくは800℃以上の温度領域で焼成した易黒鉛化性炭素材料が望ましい。
また、2800℃以上の温度で焼成することによっても黒鉛化が進行し難いフルフリルアルコール樹脂やフェノール樹脂等を焼成することによって得られる難黒鉛化性炭素材料を用いることができ、そのうち、焼成温度が低すぎると不可逆容量が増加するため、少なくとも600℃以上、好ましくは800℃以上の温度領域で焼成した難黒鉛化性炭素材料が望ましい。
なお、低抵抗化のためには結晶化度が低い炭素材料、具体的には結晶子サイズLcが2nm以下、または層間距離が0.38nm以上であることが好ましい。
以下に具体的な実施の形態について説明するが、本発明はこれに限定されるものではない。
まず、正極2として、厚さが22μmの高純度アルミニウム箔(Al:99.99%以上)を集電体5として用い、塩酸系のエッチング液中で電解エッチングして表面を粗面化した。
続いて、平均粒径5μmのフェノール樹脂系活性炭粉末と、導電性付与剤として平均粒径0.05μmのアセチレンブラック、カルボキシメチルセルロース(以下、CMCと呼ぶ)とポリテトラフルオロエチレン(以下、PTFEと呼ぶ)を溶解した水溶性バインダ溶液を10:2:1の重量比に混合して混練機で十分に混練した後、メタノールと水の分散溶媒を少しずつ加え、更に混練して所定の粘度のペーストを作製し、このペーストを上記集電体5の表裏面に塗布し、85℃の大気中で5分間乾燥することにより分極性電極層6を形成した後、所定の寸法に切断して正極2を得た。
次に、負極3として、気孔率60%、厚さが0.1mmの発泡ニッケル箔を集電体7として用い、この集電体7の内部に、難黒鉛化性炭素材料の一つとして、600〜1000℃の温度領域で焼成されたポリアセンと呼ばれる炭素材料を用いて電極層8を形成した。このポリアセンの電極層8は、ポリアセン:アセチレンブラック:バインダ=95:3:2とし、かつ、バインダとしては、PTFE(8):CMC(2)の割合で構成した。
また、製造方法としては、水にCMC→アセチレンブラック→ポリアセン→PTFEの順に添加し、撹拌して混練することによりペースト状にしたものを、コンマコータやダイコータ等を用いて上記集電体7内に充填し、これを85℃の温度で乾燥した後、線圧が2.5〜100kgf/cmでプレス加工することにより、電極密度が0.3〜1.0g/cm3、かつ、ポリアセンの含有率が95%の電極層8を作製すると共に、負極3としての厚さを0.06mmとしたものを所定の寸法に切断した。
次に、このようにして得られた正極2と負極3を2枚1組とし、その間にセパレータ4を介在させた状態で巻回することにより素子1を得た。そして、この素子1を、ステンレス製の金属ケース10内に電解液12と共に挿入することにより、素子1に電解液12を含浸させた。この電解液12としては、電解質カチオンとしてリチウムイオン(Li+)電解質アニオンとしてヘキサフルオロリン酸(PF6 -)を、溶媒として高誘電率のエチレンカーボネートとプロピレンカーボネートと低粘度のジエチルカーボネートを重量比で3:1:4に混合した混合溶媒を用いた。
次に、このようにして電解液12と共に金属ケース10内に挿入された素子1から引き出された正負一対のリード線9a、9bを封口ゴム11に設けられた孔を貫通させ、この封口ゴム11を金属ケース10の開口部に嵌め込んだ後、金属ケース10の開口部近傍の外周を内側に円環状に絞り加工すると共に、金属ケース10の開口端をカーリング加工することにより封止を行い、本実施の形態による電気化学キャパシタを組み立てた。
次に、このようにして組み立てを終えた電気化学キャパシタを用い、公知の方法でプレドープ作業を行う(プレドープ作業は本発明の要旨には関係がないものであり、どのような方法を用いても、本発明による効果に影響を及ぼすものではないため、ここでの説明は省略する)ことにより、上記素子1を構成する負極3の電極層8にリチウムイオンを吸蔵させた。
このようにして得られた本実施の形態による電気化学キャパシタの容量/抵抗特性の初期値を測定した結果を比較例としての従来品と比較して(表1)ならびに図4に示す。
なお、従来例としての電気化学キャパシタは負極のみが本実施の形態の電気化学キャパシタと異なり、負極以外の構成は本実施の形態と同様に構成したものである。
従来例としての負極は、炭素材料と導電性付与剤とバインダをペースト状にしたものを銅箔上に塗布するため、ポリアセン粒子間の電子抵抗の低減と電極層の安定性を考慮し、炭素材料であるポリアセンと導電性付与剤であるアセチレンブラックとバインダ(PTFE(2):CMC(8))の混合割合を重量比でポリアセン:アセチレンブラック:バインダ=80:10:10とした。
製造方法としては水にCMC→アセチレンブラック→ポリアセン→PTFEの順に添加し、撹拌して混練することによりペースト状にしたものを、コンマコータやダイコータ等を用いて15μmの銅箔上に塗布し、85℃の大気中で5分間乾燥することにより電極層を形成した後、所定の寸法に切断して負極を得た。
ここで、容量、抵抗特性は25℃の恒温槽中において、一定電流Iにて第1の所定電圧V1まで充電した後、30分間第1の所定電圧V1で定電圧充電を行い、その後、第2の所定電圧V2まで一定電流Iで放電し、測定した。ここでV1>V2>0の関係にある。
重量比容量SCは放電時の電荷量Q、放電開始直後に降下した電圧ΔV、また、第1の所
定電圧V1と第2の所定電圧V2より、
C=Q/(V1−V2−ΔV)
より容量Cを求め、正極の活性炭の重量Wacと負極のポリアセンの重量Wpasより
SC=C/(Wac+Wpas)
より算出した。
また、抵抗率ρは放電開始直後に降下した電圧ΔVと放電電流Iより、
R=ΔV/I
より抵抗Rを求め、電極面積Sと正極の電極厚さdpと負極の電極厚さdnおよびセパレータ厚さdsより、
ρ=R×S/(dp+dn+ds)
より算出した。
重量比容量SCは放電時の電荷量Q、放電開始直後に降下した電圧ΔV、また、第1の所
定電圧V1と第2の所定電圧V2より、
C=Q/(V1−V2−ΔV)
より容量Cを求め、正極の活性炭の重量Wacと負極のポリアセンの重量Wpasより
SC=C/(Wac+Wpas)
より算出した。
また、抵抗率ρは放電開始直後に降下した電圧ΔVと放電電流Iより、
R=ΔV/I
より抵抗Rを求め、電極面積Sと正極の電極厚さdpと負極の電極厚さdnおよびセパレータ厚さdsより、
ρ=R×S/(dp+dn+ds)
より算出した。
(表1)から明らかなように、本実施の形態による電気化学キャパシタは、従来品と比較して、初期の重量比容量は1.47倍に向上し、また、抵抗率は0.74倍に低減されていることが分かり、この大きな要因としては、以下のことが考えられる。
第1に、負極3の集電体7として多孔質の発泡ニッケル箔を用いたことにより、この集電体7上に形成される電極層8の密着強度や保持性が向上し、これにより抵抗値が大きく低減した。
第2に、上記負極3の電極層8の密着強度や保持性の向上により、負極3の厚みを従来品と比較して薄くできるようになり、これにより抵抗値が大きく低減した。
第3に、上記負極3の電極層8の密着強度や保持性の向上により、電極層8を形成するために混合するアセチレンブラックやバインダを可能な限り削減して活物質としてのポリアセンの量を多くすることができるようになり、これにより、容量が向上し、抵抗値が大きく低減した。
次に、充放電サイクルを行い、100サイクル、500サイクル、1000サイクル終了時に上記同様に測定した容量/抵抗特性の結果を初期特性と合わせて図5〜図7に示す。
ここで、重量比容量の変化率ΔSCは初期の重量比容量SC0と、100サイクル後、500サイクル後、1000サイクル後の重量比容量をそれぞれSC100、SC500、SC1000とすると、
ΔSC0=(SC0―SC0)/SC0×100
ΔSC100=(SC100−SC0)/SC0×100
ΔSC500=(SC500−SC0)/SC0×100
ΔSC1000=(SC1000−SC0)/SC0×100
より算出した。ここで上記式ΔSCの添え字はサイクル数を表す。
ΔSC0=(SC0―SC0)/SC0×100
ΔSC100=(SC100−SC0)/SC0×100
ΔSC500=(SC500−SC0)/SC0×100
ΔSC1000=(SC1000−SC0)/SC0×100
より算出した。ここで上記式ΔSCの添え字はサイクル数を表す。
また、抵抗率の変化率Δρは初期の抵抗率ρ0と、100サイクル後、500サイクル後、1000サイクル後の抵抗率をそれぞれρ100、ρ500、ρ1000とすると、
Δρ0=(ρ0―ρ0)/ρ0×100
Δρ100=(ρ100−ρ0)/ρ0×100
Δρ500=(ρ500−ρ0)/ρ0×100
Δρ1000=(ρ1000−ρ0)/ρ0×100
より算出した。ここで上記式Δρの添え字はサイクル数を表す。
Δρ0=(ρ0―ρ0)/ρ0×100
Δρ100=(ρ100−ρ0)/ρ0×100
Δρ500=(ρ500−ρ0)/ρ0×100
Δρ1000=(ρ1000−ρ0)/ρ0×100
より算出した。ここで上記式Δρの添え字はサイクル数を表す。
図5から、充放電サイクル数の増加に伴う重量比容量の変化率ΔSCが従来品より
も大きく改善されていることが分かる。
も大きく改善されていることが分かる。
また、図6、図7から、従来品の抵抗率は急激な減少をし、その後増加の傾向にあることが分かり、この抵抗率の減少はリチウムイオンの充放電によって、炭素粒子の結晶子の層間が拡大することによってイオン拡散の抵抗が低下することによるものと考えられる。
また、抵抗の増加はリチウムイオンの充放電時の炭素粒子の膨張収縮によって発生する応力が電極層全体に広がることにより、電極層が集電体から剥離することが原因と考えられる。
このように、従来品では充放電サイクルによる容量/抵抗特性の挙動が不安定であるのに対し、本発明では負極3の電極層8の密着強度や保持性の向上により、充放電サイクルによる電極層8の安定性が向上し、充放電サイクルによる容量/抵抗特性の変化の大幅な抑制を実現することができる。
このように、本発明による電気化学キャパシタは、負極3の集電体7に多孔質の発泡ニッケル箔を用いた構成により、電極層8の密着強度や保持性を向上させることができるようになるため、電極層8に含有されるポリアセンの含有量を高めたり、負極3の厚みを薄くしたりすることが容易になり、これにより初期の容量/抵抗特性を改善でき、充放電サイクルによる容量/抵抗特性の変化を抑制できるばかりでなく、巻回形の素子の作製も容易に行えるようになるという格別の効果を奏するものである。
なお、本実施の形態においては、負極3の集電体7に多孔質の発泡ニッケル箔を用いた例で説明したが、本発明はこれに限定されるものではなく、リチウムと合金を形成しない金属であれば何でも良いことから、安価な発泡銅箔を用いても同様の効果を得ることができるものである。
また、負極3の電極層8に含有される活物質の含有量は、特性面から判断すると100%が理想であるが、製造面や保持性等を含めて判断すると、従来品の活物質の含有量80%と比較して特性面にその効果が現れる95%以上とするのが良い。
また、負極3の厚さは、巻回形の素子1を用いて低抵抗化を図ることを前提に判断すると0.1mm未満が適しており、更に好ましくは0.75mm未満が望ましい。
また、負極3の電極層8に含有される活物質は、リチウムを吸蔵、脱離することが可能な材料であれば良く、本実施の形態で用いた炭素材料以外でも、例えば、シリコン材料を用いることができ、同様の効果が得られるものである。
本発明による電気化学キャパシタは、抵抗値を大きく低減することができるという効果を有し、特にハイブリッド自動車や燃料電池車のバックアップ電源や回生用等として有用である。
1 素子
2 正極
3 負極
4 セパレータ
5、7 集電体
6 分極性電極層
8 電極層
9a、9b リード線
10 金属ケース
11 封口ゴム
12 電解液
2 正極
3 負極
4 セパレータ
5、7 集電体
6 分極性電極層
8 電極層
9a、9b リード線
10 金属ケース
11 封口ゴム
12 電解液
Claims (5)
- 金属箔からなる集電体上に活性炭を主体とした分極性電極層を形成した正極と、金属箔からなる集電体に炭素材料またはシリコンを主体とした電極層を形成した負極とを、その間にセパレータを介在させて夫々の電極層が対向した状態で構成された素子と、この素子をリチウムイオン(Li+)を含む有機系電解液と共に収容した金属ケースと、この金属ケースの開口部を封止した封口部材からなる電気化学キャパシタにおいて、上記負極の集電体としてリチウムと合金を形成しない発泡金属箔を用いると共に、この発泡金属箔の内部に電極層を形成した電気化学キャパシタ。
- 発泡金属箔からなる負極の集電体の内部に形成した電極層が、活物質を95%以上含有したものである請求項1に記載の電気化学キャパシタ。
- 負極の電極層を形成する活物質として、黒鉛系炭素材料、600℃以上で焼成された易黒鉛化性炭素材料、600℃以上で焼成された難黒鉛化性炭素材料のいずれかを用いた請求項2に記載の電気化学キャパシタ。
- 素子として、巻回形の素子を用いた請求項1に記載の電気化学キャパシタ。
- 負極の厚さを0.1mm未満とした請求項1に記載の電気化学キャパシタ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007083723A JP2008244210A (ja) | 2007-03-28 | 2007-03-28 | 電気化学キャパシタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007083723A JP2008244210A (ja) | 2007-03-28 | 2007-03-28 | 電気化学キャパシタ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008244210A true JP2008244210A (ja) | 2008-10-09 |
Family
ID=39915170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007083723A Pending JP2008244210A (ja) | 2007-03-28 | 2007-03-28 | 電気化学キャパシタ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008244210A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010098020A (ja) * | 2008-10-15 | 2010-04-30 | Hitachi Powdered Metals Co Ltd | リチウムイオンキャパシターの負極被膜及び電極被膜形成用塗料組成物 |
JP2013114795A (ja) * | 2011-11-25 | 2013-06-10 | Sumitomo Electric Ind Ltd | アルミニウム多孔体を集電体として用いた電極及びその製造方法 |
US8927156B2 (en) | 2009-02-19 | 2015-01-06 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
US8986870B2 (en) | 2009-03-09 | 2015-03-24 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
CN112236893A (zh) * | 2018-04-23 | 2021-01-15 | 通用汽车环球科技运作有限责任公司 | 混杂电极和利用其的电化学电池和模块 |
CN112614704A (zh) * | 2020-11-26 | 2021-04-06 | 中国电子科技集团公司第十八研究所 | 一种超薄金属钠箔的电化学制备方法 |
-
2007
- 2007-03-28 JP JP2007083723A patent/JP2008244210A/ja active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010098020A (ja) * | 2008-10-15 | 2010-04-30 | Hitachi Powdered Metals Co Ltd | リチウムイオンキャパシターの負極被膜及び電極被膜形成用塗料組成物 |
US8927156B2 (en) | 2009-02-19 | 2015-01-06 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
US8986870B2 (en) | 2009-03-09 | 2015-03-24 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
US9406978B2 (en) | 2009-03-09 | 2016-08-02 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device |
JP2013114795A (ja) * | 2011-11-25 | 2013-06-10 | Sumitomo Electric Ind Ltd | アルミニウム多孔体を集電体として用いた電極及びその製造方法 |
CN112236893A (zh) * | 2018-04-23 | 2021-01-15 | 通用汽车环球科技运作有限责任公司 | 混杂电极和利用其的电化学电池和模块 |
US12014872B2 (en) | 2018-04-23 | 2024-06-18 | GM Global Technology Operations LLC | Hybrid electrodes and electrochemical cells and modules utilizing the same |
CN112614704A (zh) * | 2020-11-26 | 2021-04-06 | 中国电子科技集团公司第十八研究所 | 一种超薄金属钠箔的电化学制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5372318B2 (ja) | 電気化学キャパシタの製造方法 | |
JP4857073B2 (ja) | リチウムイオンキャパシタ | |
WO2013073526A1 (ja) | 蓄電デバイス用電極、蓄電デバイスおよび蓄電デバイス用電極の製造方法 | |
JP4924966B2 (ja) | リチウムイオンキャパシタ | |
JP2006286924A (ja) | リチウムイオンキャパシタ | |
JPWO2006070617A1 (ja) | 分極性電極体とその製造方法、及びこれを用いた電気化学キャパシタ | |
KR101038869B1 (ko) | 커패시터용 전극 및 이를 포함하는 전기 이중층 커패시터 | |
KR20080081297A (ko) | 리튬이온 커패시터 | |
JP2008244210A (ja) | 電気化学キャパシタ | |
JP2019144039A (ja) | 非水系リチウム型蓄電素子のsoc推定方法、推定装置、システム | |
KR101098240B1 (ko) | 슈퍼커패시터 셀의 제조방법 | |
JP5158839B2 (ja) | 非水電解液系電気化学デバイス | |
US10256049B2 (en) | Positive electrode for a lithium ion capacitor and lithium ion capacitor | |
JPH1154384A (ja) | 電気二重層キャパシタ | |
JP2007324271A (ja) | 電気化学キャパシタ及びその製造方法 | |
JP2006286926A (ja) | リチウムイオンキャパシタ | |
JP2007019108A (ja) | リチウムイオンキャパシタ | |
JP2006286923A (ja) | リチウムイオンキャパシタ | |
JP2007067088A (ja) | リチウムイオンキャパシタ | |
KR102379507B1 (ko) | 포스포린 기반 음극을 갖는 고밀도 하이브리드 슈퍼커패시터 및 그 제조 방법 | |
KR102188237B1 (ko) | 전해액 함침성이 우수한 전극을 제조할 수 있는 슈퍼커패시터 전극용 조성물, 이를 이용한 슈퍼커패시터 전극의 제조방법 및 상기 제조방법을 이용하여 제조된 슈퍼커패시터 | |
JP4731974B2 (ja) | リチウムイオンキャパシタ | |
JP4705404B2 (ja) | リチウムイオンキャパシタ | |
KR20180110335A (ko) | 울트라커패시터 전극용 조성물, 이를 이용한 울트라커패시터 전극의 제조방법 및 상기 제조방법을 이용하여 제조된 울트라커패시터 | |
KR102837698B1 (ko) | 전해질용 첨가제, 이를 포함하는 전해질 및 에너지 저장 디바이스 |