JP2007173418A - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP2007173418A JP2007173418A JP2005367249A JP2005367249A JP2007173418A JP 2007173418 A JP2007173418 A JP 2007173418A JP 2005367249 A JP2005367249 A JP 2005367249A JP 2005367249 A JP2005367249 A JP 2005367249A JP 2007173418 A JP2007173418 A JP 2007173418A
- Authority
- JP
- Japan
- Prior art keywords
- region
- semiconductor
- pillar region
- type
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 327
- 239000012535 impurity Substances 0.000 claims abstract description 196
- 230000015556 catabolic process Effects 0.000 abstract description 57
- 239000010410 layer Substances 0.000 description 82
- 230000005684 electric field Effects 0.000 description 40
- 238000000034 method Methods 0.000 description 25
- 230000008859 change Effects 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 22
- 230000008569 process Effects 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 230000007423 decrease Effects 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 14
- 239000010703 silicon Substances 0.000 description 14
- 238000009826 distribution Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000005468 ion implantation Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0291—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/665—Vertical DMOS [VDMOS] FETs having edge termination structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/109—Reduced surface field [RESURF] PN junction structures
- H10D62/111—Multiple RESURF structures, e.g. double RESURF or 3D-RESURF structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/109—Reduced surface field [RESURF] PN junction structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/112—Constructional design considerations for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layers, e.g. by using channel stoppers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/126—Top-view geometrical layouts of the regions or the junctions
- H10D62/127—Top-view geometrical layouts of the regions or the junctions of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
- H10D62/156—Drain regions of DMOS transistors
- H10D62/157—Impurity concentrations or distributions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/393—Body regions of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
- H10D64/252—Source or drain electrodes for field-effect devices for vertical or pseudo-vertical devices
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
【課題】高耐圧かつ高アバランシェ耐量が得られる半導体装置を提供すること。
【解決手段】終端側におけるn+層2の主面上にn型領域10とp型領域11とが並列して設けられ、n型領域10及びp型領域11の上に高抵抗半導体層12が設けられ、高抵抗半導体層12の上にn型領域13とp型領域14とが並列して設けられ、第1の主電極7側ではn型ピラー領域3の不純物量がp型ピラー領域4の不純物量よりも少なく、第2の主電極1側ではn型ピラー領域3の不純物量がp型ピラー領域4の不純物量よりも多くなるように、n型ピラー領域3とp型ピラー領域4のうち少なくとも一方の不純物量が、第1の主電極7から第2の主電極1に向かう方向で徐々に変化している。
【選択図】図1
【解決手段】終端側におけるn+層2の主面上にn型領域10とp型領域11とが並列して設けられ、n型領域10及びp型領域11の上に高抵抗半導体層12が設けられ、高抵抗半導体層12の上にn型領域13とp型領域14とが並列して設けられ、第1の主電極7側ではn型ピラー領域3の不純物量がp型ピラー領域4の不純物量よりも少なく、第2の主電極1側ではn型ピラー領域3の不純物量がp型ピラー領域4の不純物量よりも多くなるように、n型ピラー領域3とp型ピラー領域4のうち少なくとも一方の不純物量が、第1の主電極7から第2の主電極1に向かう方向で徐々に変化している。
【選択図】図1
Description
本発明は、半導体装置に関し、特にスーパージャンクション構造を有する半導体装置に関する。
従来より、パワーエレクトロニクス用途に適した縦形MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)が知られている。そのMOSFETのオン抵抗は、伝導層(ドリフト層)の電気抵抗に大きく依存する。ドリフト層の不純物濃度を高くすれば低抵抗にできるが、所望の耐圧を確保するために、不純物濃度を高くすることには限界がある。すなわち、素子耐圧とオン抵抗にはトレードオフの関係がある。このトレードオフを改善することが低消費電力素子には重要となる。
そのトレードオフを改善するMOSFETの一例として、ドリフト層に、p型ピラー領域とn型ピラー領域とを並列して設けた「スーパージャンクション構造」と呼ばれる構造を有するものが知られている。これは、p型ピラー領域とn型ピラー領域に含まれる不純物量を同じにすることで、擬似的にノンドープ層を作り出し、高耐圧を保持しつつ、高濃度でドープされたn型ピラー領域を通して電流を流すことで、材料限界を越えた低オン抵抗の素子を実現する。
また、スーパージャンクション構造を有する半導体装置において、耐圧やアバランシェ耐量は、素子部の構造だけでなく、終端部の構造にも依存する。
例えば特許文献1には、終端部にも素子部と同様にスーパージャンクション構造を設けた半導体装置が開示されているが、この構造では不純物量ばらつきに対する終端部の耐圧低下の程度が大きくなってしまう。
また、終端部にスーパージャンクション構造を設けない場合、アバランシェ降伏が起こると、発生した電子と正孔により、終端部の上部と下部の電界が増大し、降伏電流が増加して素子が破壊に至りやすい。つまり、アバランシェ耐量が小さい。
特開2003−115589号公報
本発明は、高耐圧かつ高アバランシェ耐量が得られる半導体装置を提供する。
本発明の一態様によれば、
第1導電型の半導体層と、
前記半導体層の主面上に設けられた第1導電型の第1の半導体ピラー領域と、
前記第1の半導体ピラー領域に隣接して、前記半導体層の前記主面上に設けられた第2導電型の第2の半導体ピラー領域と、
前記第2の半導体ピラー領域の上に設けられた第2導電型の第1の半導体領域と、
前記第1の半導体領域の表面に選択的に設けられた第1導電型の第2の半導体領域と、
前記第1の半導体領域及び前記第2の半導体領域の上に設けられた第1の主電極と、
前記第1の半導体ピラー領域、前記第1の半導体領域及び前記第2の半導体領域の上に設けられた絶縁膜と、
前記絶縁膜の上に設けられた制御電極と、
前記半導体層の前記主面の反対側に設けられた第2の主電極と、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域よりも終端側における前記半導体層の前記主面上に設けられた第1導電型の第3の半導体領域と、
前記第3の半導体領域に隣接して、前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域よりも終端側における前記半導体層の前記主面上に設けられた第2導電型の第4の半導体領域と、
前記第3の半導体領域及び前記第4の半導体領域の上に設けられた高抵抗半導体層と、
前記高抵抗半導体層の上に設けられた第1導電型の第5の半導体領域と、
前記第5の半導体領域に隣接して、前記高抵抗半導体層の上に設けられた第2導電型の第6の半導体領域と、
を備え、
前記第1の主電極側では前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも少なく、前記第2の主電極側では前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも多くなるように、前記第1の半導体ピラー領域と前記第2の半導体ピラー領域のうち少なくとも一方の不純物量が、前記第1の主電極から前記第2の主電極に向かう方向で徐々に変化していることを特徴とする半導体装置が提供される。
第1導電型の半導体層と、
前記半導体層の主面上に設けられた第1導電型の第1の半導体ピラー領域と、
前記第1の半導体ピラー領域に隣接して、前記半導体層の前記主面上に設けられた第2導電型の第2の半導体ピラー領域と、
前記第2の半導体ピラー領域の上に設けられた第2導電型の第1の半導体領域と、
前記第1の半導体領域の表面に選択的に設けられた第1導電型の第2の半導体領域と、
前記第1の半導体領域及び前記第2の半導体領域の上に設けられた第1の主電極と、
前記第1の半導体ピラー領域、前記第1の半導体領域及び前記第2の半導体領域の上に設けられた絶縁膜と、
前記絶縁膜の上に設けられた制御電極と、
前記半導体層の前記主面の反対側に設けられた第2の主電極と、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域よりも終端側における前記半導体層の前記主面上に設けられた第1導電型の第3の半導体領域と、
前記第3の半導体領域に隣接して、前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域よりも終端側における前記半導体層の前記主面上に設けられた第2導電型の第4の半導体領域と、
前記第3の半導体領域及び前記第4の半導体領域の上に設けられた高抵抗半導体層と、
前記高抵抗半導体層の上に設けられた第1導電型の第5の半導体領域と、
前記第5の半導体領域に隣接して、前記高抵抗半導体層の上に設けられた第2導電型の第6の半導体領域と、
を備え、
前記第1の主電極側では前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも少なく、前記第2の主電極側では前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも多くなるように、前記第1の半導体ピラー領域と前記第2の半導体ピラー領域のうち少なくとも一方の不純物量が、前記第1の主電極から前記第2の主電極に向かう方向で徐々に変化していることを特徴とする半導体装置が提供される。
また、本発明の他の態様によれば、
第1導電型の半導体層と、
前記半導体層の主面上に設けられた第1導電型の第1の半導体ピラー領域と、
前記第1の半導体ピラー領域に隣接して、前記半導体層の前記主面上に設けられた第2導電型の第2の半導体ピラー領域と、
前記第2の半導体ピラー領域の上に設けられた第2導電型の第1の半導体領域と、
前記第1の半導体領域の表面に選択的に設けられた第1導電型の第2の半導体領域と、
前記第1の半導体領域及び前記第2の半導体領域の上に設けられた第1の主電極と、
前記第1の半導体ピラー領域、前記第1の半導体領域及び前記第2の半導体領域の上に設けられた絶縁膜と、
前記絶縁膜の上に設けられた制御電極と、
前記半導体層の前記主面の反対側に設けられた第2の主電極と、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域よりも終端側における前記半導体層の前記主面上に設けられた第1導電型の第3の半導体領域と、
前記第3の半導体領域の上に設けられた高抵抗半導体層と、
前記高抵抗半導体層の上に設けられた第2導電型の第4の半導体領域と、
を備え、
前記第1の主電極側では前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも少なく、前記第2の主電極側では前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも多くなるように、前記第1の半導体ピラー領域と前記第2の半導体ピラー領域のうち少なくとも一方の不純物量が、前記第1の主電極から前記第2の主電極に向かう方向で徐々に変化していることを特徴とする半導体装置が提供される。
第1導電型の半導体層と、
前記半導体層の主面上に設けられた第1導電型の第1の半導体ピラー領域と、
前記第1の半導体ピラー領域に隣接して、前記半導体層の前記主面上に設けられた第2導電型の第2の半導体ピラー領域と、
前記第2の半導体ピラー領域の上に設けられた第2導電型の第1の半導体領域と、
前記第1の半導体領域の表面に選択的に設けられた第1導電型の第2の半導体領域と、
前記第1の半導体領域及び前記第2の半導体領域の上に設けられた第1の主電極と、
前記第1の半導体ピラー領域、前記第1の半導体領域及び前記第2の半導体領域の上に設けられた絶縁膜と、
前記絶縁膜の上に設けられた制御電極と、
前記半導体層の前記主面の反対側に設けられた第2の主電極と、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域よりも終端側における前記半導体層の前記主面上に設けられた第1導電型の第3の半導体領域と、
前記第3の半導体領域の上に設けられた高抵抗半導体層と、
前記高抵抗半導体層の上に設けられた第2導電型の第4の半導体領域と、
を備え、
前記第1の主電極側では前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも少なく、前記第2の主電極側では前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも多くなるように、前記第1の半導体ピラー領域と前記第2の半導体ピラー領域のうち少なくとも一方の不純物量が、前記第1の主電極から前記第2の主電極に向かう方向で徐々に変化していることを特徴とする半導体装置が提供される。
また、本発明のさらに他の態様によれば、
第1導電型の半導体層と、
前記半導体層の主面上に設けられた第1導電型の第1の半導体ピラー領域と、
前記第1の半導体ピラー領域に隣接して、前記半導体層の前記主面上に設けられた第2導電型の第2の半導体ピラー領域と、
前記第2の半導体ピラー領域の上に設けられた第2導電型の第1の半導体領域と、
前記第1の半導体領域の表面に選択的に設けられた第1導電型の第2の半導体領域と、
前記第1の半導体領域及び前記第2の半導体領域の上に設けられた第1の主電極と、
前記第1の半導体ピラー領域、前記第1の半導体領域及び前記第2の半導体領域の上に設けられた絶縁膜と、
前記絶縁膜の上に設けられた制御電極と、
前記半導体層の前記主面の反対側に設けられた第2の主電極と、
を備え、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域における前記第1の主電極側の上部では、前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも少なく、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域における前記第2の主電極側の下部では、前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも多く、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域における前記上部と前記下部との間の部分では、前記第1の半導体ピラー領域の不純物量と前記第2の半導体ピラー領域の不純物量とが略等しいことを特徴とする半導体装置が提供される。
第1導電型の半導体層と、
前記半導体層の主面上に設けられた第1導電型の第1の半導体ピラー領域と、
前記第1の半導体ピラー領域に隣接して、前記半導体層の前記主面上に設けられた第2導電型の第2の半導体ピラー領域と、
前記第2の半導体ピラー領域の上に設けられた第2導電型の第1の半導体領域と、
前記第1の半導体領域の表面に選択的に設けられた第1導電型の第2の半導体領域と、
前記第1の半導体領域及び前記第2の半導体領域の上に設けられた第1の主電極と、
前記第1の半導体ピラー領域、前記第1の半導体領域及び前記第2の半導体領域の上に設けられた絶縁膜と、
前記絶縁膜の上に設けられた制御電極と、
前記半導体層の前記主面の反対側に設けられた第2の主電極と、
を備え、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域における前記第1の主電極側の上部では、前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも少なく、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域における前記第2の主電極側の下部では、前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも多く、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域における前記上部と前記下部との間の部分では、前記第1の半導体ピラー領域の不純物量と前記第2の半導体ピラー領域の不純物量とが略等しいことを特徴とする半導体装置が提供される。
本発明によれば、高耐圧かつ高アバランシェ耐量な半導体装置が提供される。
以下に、図面を参照しつつ、本発明の実施形態について説明する。なお、以下の実施形態では第1導電型をn型、第2導電型をp型として説明する。また、各図面中の同一部分には同一符号を付している。
[第1の実施形態]
図1は本発明の第1の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図2は、同半導体装置の要部平面構造を例示する模式平面図である。
図1は本発明の第1の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図2は、同半導体装置の要部平面構造を例示する模式平面図である。
高不純物濃度のn+型シリコンの半導体層2の主面上に、n型シリコンの第1のピラー領域3(以下、単に「n型ピラー領域」とも称する)と、p型シリコンの第2のピラー領域4(以下、単に「p型ピラー領域」とも称する)とが、ストライプ状に並列して設けられている。
n型ピラー領域3とp型ピラー領域4は、いわゆるスーパージャンクション構造を構成している。すなわち、n型ピラー領域3とp型ピラー領域4は互いに隣接してpn接合部を形成している。そのスーパージャンクション構造の最外部には、最外p型ピラー領域15が、n型ピラー領域3に隣接して設けられている。
p型ピラー領域4の上には、p型シリコンのベース領域(第1の半導体領域)5が、p型ピラー領域4に接して設けられている。ベース領域5も、p型ピラー領域4と同様に、n型ピラー領域3に隣接してpn接合部を形成している。ベース領域5の表面には、n+型シリコンのソース領域(第2の半導体領域)6が選択的に設けられている。
ソース領域6の一部、およびベース領域5におけるソース領域6間の部分の上には、第1の主電極としてソース電極7が設けられ、ソース領域6はそのソース電極7に電気的に接続されている。
n型ピラー領域3から、ベース領域5を経てソース領域6に至る部分の上には、絶縁膜8が設けられている。絶縁膜8は、例えば、シリコン酸化膜であり、膜厚は約0.1マイクロメータである。なお、絶縁膜8は、チャネル(n型ピラー領域3とソース領域6との間のベース領域5表面)の上に形成されるゲート絶縁膜と、ゲート電極-ソース電極間の層間絶縁膜と、をまとめて表したものである。
絶縁膜(ゲート絶縁膜)8の上には、制御電極(ゲート電極)9が設けられている。半導体層2の主面の反対側の面には、第2の主電極としてドレイン電極1が設けられている。
以上の構成要素は、半導体装置における素子部28の主要な要素を構成する。制御電極9に所定の制御電圧が印加されると、その直下のベース領域5の表面付近にチャネルが形成され、ソース領域6とn型ピラー領域3とが導通する。その結果、ソース領域6、n型ピラー領域3、半導体層2を介して、ソース電極7とドレイン電極1間に主電流経路が形成され、それら電極7、1間はオン状態とされる。
また、本実施形態では、n型ピラー領域3とp型ピラー領域4それぞれの不純物量が、ソース電極7からドレイン電極1に向かう方向(厚さ方向)で徐々に変化している。p型ピラー領域4の不純物量は、ソース電極9からドレイン電極1に向かって徐々に少なくなり、n型ピラー領域3の不純物量は、ソース電極9からドレイン電極1に向かって徐々に多くなっている。
すなわち、スーパージャンクション構造において、ソース電極7側の上部では、n型ピラー領域3の不純物量がp型ピラー領域4の不純物量よりも少なく、ドレイン電極1側の下部では、n型ピラー領域3の不純物量がp型ピラー領域4の不純物量よりも多い。これにより、スーパージャンクション構造の上部と下部における電界の増大を抑制でき、アバランシェ耐量を高めることができる。ピラー領域不純物量の厚さ方向の変化の程度は、例えば、p型ピラー領域4の上部の不純物量が、下部の不純物量に対して、1.1〜2.3倍程度あることが望ましい。
スーパージャンクション構造における電界分布を決めるのは、n型ピラー領域3の不純物量と、p型ピラー領域4の不純物量との差であるため、n型ピラー領域3及びp型ピラー領域4の両方の不純物量を厚さ方向で変化させても、どちらか一方のピラー領域の不純物量は厚さ方向で一様にし、他方のピラー領域のみの不純物量を厚さ方向で変化させてもよい。
なお、ここでの「不純物量」とは、ピラー領域中に含まれる不純物の量であり、不純物濃度[cm−3]とピラー領域断面積[cm−2]との積である。したがって、ピラー領域の不純物濃度と、ピラー領域断面積の少なくともどちらか一方を厚さ方向で変化させれば、ピラー領域の不純物量を厚さ方向で変化させることができる。
以上述べた素子部28よりも外側には終端部29が形成されている。その終端部29における半導体層2の主面上には、n型シリコンの終端下部n型領域(第3の半導体領域)10と、p型シリコンの終端下部p型領域(第4の半導体領域)11とが、ストライプ状に並列して設けられている。
終端下部n型領域10と終端下部p型領域11は互いに隣接してpn接合を形成している。また、終端下部n型領域10の不純物量の方が、終端下部p型領域11の不純物量よりも多い。
終端下部n型領域10及び終端下部p型領域11の上には、これらよりも高抵抗な高抵抗半導体層12が設けられている。高抵抗半導体層12の上には、n型シリコンの終端上部n型領域(第5の半導体領域)13と、p型シリコンの終端上部p型領域(第6の半導体領域)14とが、ストライプ状に並列して設けられている。
終端上部n型領域13と終端上部p型領域14は互いに隣接してpn接合を形成している。また、終端上部n型領域13の不純物量の方が、終端上部p型領域14の不純物量よりも少ない。
高抵抗半導体層12を介して、終端下部n型領域10の上に終端上部n型領域13が位置し、終端下部p型領域11の上に終端上部p型領域14が位置している。また、最も内側の終端上部n型領域13は、最も外側のベース領域5に接している。
高抵抗半導体層12は、n型ピラー領域3、p型ピラー領域4、15、終端下部n型領域10、終端下部p型領域11、終端上部n型領域13、終端上部p型領域14よりも高抵抗である。
終端上部n型領域13及び終端上部p型領域14の表面の一部には、高電圧が印加されたときに横方向に空乏層を伸ばし、高耐圧を実現するためのp型シリコンのリサーフ(Reduced Surface Field)領域17が形成されている。リサーフ領域17は、最外部のベース領域5に接している。
終端部29の最外部には、n型シリコンのフィールドストップ層16が形成されているため、チップのダイシングラインに空乏層が到達せず、リーク電流の発生や耐圧変化などの信頼性低下を防げる。このため、高抵抗半導体層12は、p型でもn型でも実施可能である。フィールドストップ層16は、n型ピラー領域3と同時に形成することが可能である。また、終端部29の上には絶縁膜18が設けられている。また、フィールドストップ層16の表面上にフィールドストップ電極を形成してもよい。
ここで、本発明者が本発明に至る過程で検討した比較例について説明する。
図3は、比較例1の半導体装置の要部断面構造を例示する模式断面図である。
図4は、比較例2の半導体装置の要部断面構造を例示する模式断面図である。
図3は、比較例1の半導体装置の要部断面構造を例示する模式断面図である。
図4は、比較例2の半導体装置の要部断面構造を例示する模式断面図である。
図3に表される比較例1では、終端部に、スーパージャンクション構造が設けられていない。
図4に表される比較例2では、終端部に、素子部と同様なスーパージャンクション構造が設けられている。すなわち、上部と下部との間にもスーパージャンクション構造が設けられている。
図4に表される比較例2では、終端部に、素子部と同様なスーパージャンクション構造が設けられている。すなわち、上部と下部との間にもスーパージャンクション構造が設けられている。
スーパージャンクション構造を構成するn型ピラー領域とp型ピラー領域との不純物量がばらつく(等しくなくなる)と、耐圧が低下してしまう。また、耐圧低下の程度は、素子部だけでなく、終端部の構造にも大きく依存する。
図5は、n型ピラー領域とp型ピラー領域との不純物量ばらつき(横軸)に対する、耐圧変化(縦軸)を表すグラフである。
図5は、n型ピラー領域とp型ピラー領域との不純物量ばらつき(横軸)に対する、耐圧変化(縦軸)を表すグラフである。
実線の細線は、本発明実施形態(図1)、比較例1(図3)および比較例2(図4)に共通な素子部の耐圧変化を表す。
終端部にスーパージャンクション構造を設けない比較例1では、素子部の不純物量がばらついても、2点鎖線で表されるように終端部の耐圧は殆ど変化しない。素子耐圧は、素子部と終端部のどちらか低い方の耐圧で決まり、比較例1では、必要耐圧を得るための不純物量ばらつきのマージンは、素子部の不純物量ばらつきのマージンaとなる。
終端部にスーパージャンクション構造を設けない比較例1では、素子部の不純物量がばらついても、2点鎖線で表されるように終端部の耐圧は殆ど変化しない。素子耐圧は、素子部と終端部のどちらか低い方の耐圧で決まり、比較例1では、必要耐圧を得るための不純物量ばらつきのマージンは、素子部の不純物量ばらつきのマージンaとなる。
終端部にも素子部と同様なスーパージャンクション構造を設ける比較例2では、1点鎖線で表されるように、不純物量ばらつきに対する終端部の耐圧低下の程度が大きい。しかも、終端部の耐圧変化のグラフは、素子部の耐圧変化のグラフに対してずれている。そして、素子耐圧は、素子部と終端部のどちらか低い方の耐圧で決まるため、比較例2では、必要耐圧を得るための不純物量ばらつきのマージンbが、比較例1に比べて狭くなってしまう。
図1に表される本実施形態では、終端部29において下部と上部のみにスーパージャンクション構造を設け、それら下部と上部との間には高抵抗半導体層12を設けているため、終端部29の耐圧はn型領域及びp型領域の不純物量ばらつきに対して低下し難く、実線の太線で表されるように、素子部28よりも高い耐圧を得ることができる。このため、本実施形態では、比較例1と同様に、必要耐圧を得るための不純物量ばらつきのマージンを比較的広く確保できる。この結果、高いプロセス精度を要求されず、低コスト化を図れる。
また、パワーMOSFETでは、高アバランシェ耐量も要求される。アバランシェ耐量は、素子を破壊せずに流すことができるアバランシェ降伏による電流の大きさで決まる。アバランシェ耐量も、素子部だけでなく終端部の構造にも依存する。
図6は、n型ピラー領域とp型ピラー領域との不純物量ばらつき(横軸)に対する、アバランシェ耐量変化(縦軸)を表すグラフである。
比較例1、比較例2、本発明実施形態のアバランシェ耐量変化は、それぞれ、1点鎖線、2点鎖線、実線で表される。
比較例1、比較例2、本発明実施形態のアバランシェ耐量変化は、それぞれ、1点鎖線、2点鎖線、実線で表される。
比較例2では、終端部にもスーパージャンクション構造が設けられていることで、上部と下部の電界が小さくなる。これにより、必要耐量よりも高いアバランシェ耐量を得ることができる。
比較例1では、終端部にスーパージャンクション構造を設けないため、アバランシェ降伏が起こると、発生した電子と正孔により、上部と下部の電界が高まり、降伏電流が増大し、素子が破壊に至りやすい。つまり、アバランシェ耐量が小さい。
本発明実施形態では、終端部29の下部に、n型ピラー領域10とp型ピラー領域11によるスーパージャンクション構造が設けられ、終端部29の上部に、n型ピラー領域13とp型ピラー領域14によるスーパージャンクション構造が設けられているため、終端部上部と下部における電界の増大を抑制でき、高アバランシェ耐量を得ることができる。
終端部上部と下部における電界増大の抑制効果をより高めるためには、素子部28のスーパージャンクション構造と同様に、終端下部スーパージャンクション構造では、n型ピラー領域10の不純物量がp型ピラー領域11の不純物量よりも多く、終端上部スーパージャンクション構造では、p型ピラー領域14の不純物量がn型ピラー領域13の不純物量よりも多いことが望ましい。
以上述べたように、本実施形態によれば、終端部のスーパージャンクション構造における不純物量ばらつきによる耐圧低下を抑制し、且つ、素子部と同様に上部と下部の電界強度を緩和することができ高アバランシェ耐量を実現できる。
また、終端上部に設けられるn型ピラー領域13及びp型ピラー領域14を、ベース領域5よりも深くすることで、ベース領域5の底部角部の電界が小さくなり、より高耐圧かつ高アバランシェ耐量を実現することができる。
本実施形態の構造は、例えば、イオン注入と埋め込みエピタキシャル成長とを複数回繰り返すプロセスによって得ることができる。
図7は、そのプロセスを模式的に表す図である。
図7は、そのプロセスを模式的に表す図である。
すなわち、n型ピラー領域3とp型ピラー領域4とをそれぞれ形成するための不純物イオンを、高抵抗半導体層表面に選択的に注入し、高抵抗半導体層で埋め込みエピタキシャル成長を行うプロセスを、イオン注入のドーズ量を変化させながら、複数回繰り返す。
終端下部n型領域10、終端下部p型領域11、終端上部n型領域13、終端上部p型領域14は、素子部のn型ピラー領域3、p型ピラー領域4と同時に形成することができる。
また、素子部スーパージャンクション構造の最外部にあたる最外p型ピラー領域15は、片側側面だけでn型ピラー領域4に接するため、スーパージャンクション構造を完全空乏化させるために、最外p型ピラー領域15の不純物量は、両側面でn型ピラー領域4に接する内側のp型ピラー領域4の不純物量の半分にする必要がある。このため、最外p型ピラー領域15を設ける部分には、2回の埋め込みプロセスにつき1回の頻度でp型領域を形成するようにすれば、最外p型ピラー領域15の不純物量を、p型ピラー領域4の不純物量の半分にすることができる。また、素子部スーパージャンクション構造の最外部が、p型ピラー領域で終わることに限らず、n型ピラー領域で終わってもかまわない。
素子部スーパージャンクション構造のその他の製造方法としては、n型半導体層中にトレンチを形成し、そのトレンチにp型半導体層の埋め込み成長を行う方法、トレンチを形成した後にトレンチ側壁にイオン注入を行う方法などが採用可能である。トレンチを形成した後、トレンチ内を結晶成長により埋め込むことでスーパージャンクション構造を形成する場合には、トレンチ形状をストレートにではなく、テーパー状にすることで、厚さ方向の不純物量を変化させることができる。
[第2の実施形態]
図8は、本発明の第2の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図8は、本発明の第2の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
この半導体装置では、第1の実施形態と同様に上部と下部にのみスーパージャンクション構造が設けられた終端部の上に、絶縁膜18を介して、ソース電極7に接続されたフィールドプレート電極19が設けられている。これにより、第1の実施形態のように、リサーフ領域17(図1参照)を設けなくても、終端部における横方向に速やかに空乏層を広げることができ、高耐圧を実現する。なお、フィールドプレート電極19は、制御電極9に接続してもよい。
[第3の実施形態]
図9は、本発明の第3の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図9は、本発明の第3の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
終端部における半導体層2の主面上には、n型シリコンの終端下部n型領域(第3の半導体領域)20が設けられている。終端下部n型領域20の上には、高抵抗半導体層12が設けられ、高抵抗半導体層12の上には、p型シリコンの終端上部p型領域(第4の半導体領域)21が設けられている。本実施形態では、第1の実施形態と異なり、終端部の上部と下部はスーパージャンクション構造となっていない。高抵抗半導体層12は、終端下部n型領域20及び終端上部p型領域21よりも高抵抗である。
本実施形態によれば、終端部下部に設けられた終端下部n型領域20と、終端部上部に設けられた終端上部p型領域21により、終端部下部と上部における電界の増大を抑制でき、高アバランシェ耐量を得ることができる。
また、本実施形態では、終端部にスーパージャンクション構造を形成しないことで、チャージアンバランスによる耐圧低下を抑えることができる。
また、終端上部p型領域21を、ベース領域5よりも深くすることで、ベース領域5の底部角部の電界が小さくなり、より高耐圧かつ高アバランシェ耐量を実現することができる。
本実施形態の構造は、例えば、イオン注入と埋め込みエピタキシャル成長とを複数回繰り返すプロセスによって得ることができる。
図10は、そのプロセスを模式的に表す図である。
図10は、そのプロセスを模式的に表す図である。
イオン注入と埋め込み成長を繰り返して素子部のスーパージャンクション構造を形成するプロセスにおいて、最底部のスーパージャンクション構造を形成するときに、終端下部n型領域20も同時に形成し、最上部のスーパージャンクション構造を形成するときに、終端上部p型領域21を同時に形成することができる。
また、第1の実施形態と同様、素子部スーパージャンクション構造を完全空乏化させるために、最外p型ピラー領域15の不純物量は、内側のp型ピラー領域4の不純物量の半分にする必要がある。このため、最外p型ピラー領域15を設ける部分には、2回の埋め込みプロセスにつき1回の頻度でp型領域を形成するようにすれば、最外p型ピラー領域15の不純物量を、p型ピラー領域4の不純物量の半分にすることができる。
[第4の実施形態]
図11は、本発明の第4の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図11は、本発明の第4の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
この半導体装置では、第3の実施形態と同様に、下部にn型領域20が、上部にp型領域21が設けられた終端部の上に、絶縁膜18を介して、ソース電極7に接続されたフィールドプレート電極19が設けられている。これにより、第3の実施形態のようにリサーフ領域17(図9参照)を設けなくても、終端部における横方向に速やかに空乏層を広げることができ、高耐圧を実現する。なお、フィールドプレート電極19は、制御電極9に接続してもよい。
[第5の実施形態]
図12(a)は、本発明の第5の実施形態に係る半導体装置の要部断面構造であり、図12(b)は、その半導体装置におけるピラー領域の深さ方向(厚さ方向)の電界変化を表す模式図である。
図12(a)は、本発明の第5の実施形態に係る半導体装置の要部断面構造であり、図12(b)は、その半導体装置におけるピラー領域の深さ方向(厚さ方向)の電界変化を表す模式図である。
本実施形態では、素子部スーパージャンクション構造において、n型ピラー領域33の不純物量は深さ方向で一様であり、p型ピラー領域34の不純物量は深さ方向で3段階に変化している。p型ピラー領域34の不純物量は、ベース領域5の直下で最も多く、底部(下部)で最も少なく、これらの中間部分では、ベース領域5の直下よりも少なく、底部よりも多く、かつ中間部分の不純物量は深さ方向で一様となっている。
すなわち、本実施形態では、素子部スーパージャンクション構造におけるソース電極7側の上部では、p型ピラー領域34の不純物量がn型ピラー領域33の不純物量よりも多く、ドレイン電極1側の下部では、n型ピラー領域33の不純物量がp型ピラー領域34の不純物量よりも多く、これら上部と下部との間の部分では、n型ピラー領域33の不純物量とp型ピラー領域34の不純物量とが略等しい。
スーパージャンクション構造における電界分布を決めるのは、n型ピラー領域33の不純物量と、p型ピラー領域34の不純物量との差であるため、n型ピラー領域33及びp型ピラー領域34の両方の不純物量を上部と下部で変化させても、どちらか一方のピラー領域の不純物量を厚さ方向で一様にし、他方のピラー領域の不純物量のみ上部と下部で変化させてもよい。また、ここでの不純物量は、ピラー領域中に含まれる不純物の量であり、不純物濃度[cm−3]とピラー領域断面積[cm−2]との積である。したがって、ピラー領域の不純物濃度と、ピラー領域断面積の少なくともどちらか一方を変化させれば、ピラー領域の不純物量を変化させることができる。
ここで、図13(a)は、素子部ピラー領域の不純物量を深さ方向で連続的に変化させた第1の実施形態と同様の構造の半導体装置の要部断面図であり、図13(b)は、その半導体装置におけるピラー領域の深さ方向の電界変化を表す模式図である。
素子部ピラー領域の不純物量を深さ方向で連続的に変化させると、高電圧印加時のドリフト部分の電界分布は、図13(b)において実線で表されるように鞍型(山型)の電界分布となる。深さ方向で一定の不純物量とした場合の電界分布は図13(b)において点線で表されるように矩形となるため、ピラー領域不純物量を深さ方向で連続的に変化させることに伴う耐圧低下分は、図13(b)中のハッチングした領域に相当し、ピラー領域深さ方向のほぼ全域にわたる。
これに対して、本実施形態のように、p型ピラー領域34の不純物量を階段状に変化させると、高電圧印加時のドリフト部分の電界分布は、図12(b)において実線で表されるように台形となり、深さ方向で一定の不純物量とした場合に対する耐圧低下分は、図12(b)中でハッチングで表された、スーパージャンクション構造の上部と下部のみの領域に相当し、ピラー領域の不純物量を深さ方向で連続的に変化させた構造に比べて耐圧低下分を小さくできる。すなわち、本実施形態の構造では、ピラー領域の不純物量を深さ方向で連続的に変化させた構造に比べて、最大耐圧を大きくすることができる。これにより、プロセスマージンを大きくすることができる。
また、図14(a)は、素子部におけるn型ピラー領域43及びp型ピラー領域44の不純物量が深さ方向で一様な半導体装置の要部断面構造であり、図14(b)は、その半導体装置におけるドリフト部(n型ピラー領域43)の深さ方向の電界変化を表す模式図である。
例えばパワーMOSFETでは、耐圧低下を抑え、かつ、高アバランシェ耐量を確保することが要求される。アバランシェ耐量は、高電圧印加時のドリフト部の電界分布で決まる。高電圧印加によりアバランシェ降伏が起きると、ドリフト部で電子と正孔が発生する。電子はドレイン側で多く、正孔はソース側で多くなる。キャリア量がある程度以上になると、電位分布を変化させる。これにより、ドリフト部の電界分布は、図14(b)に表されるように、ソース電極7側の上部と、ドレイン電極1側の下部でピーク(Emax)を持つようになる。
このようにアバランシェ降伏によって発生したキャリアで電界分布が変化するようになると、ドレイン側とソース側でのインパクトイオン化が更に促進され、より電界ピークが大きくなる。そして、ドリフト部の中央部分の電界は小さくなる。つまり、アバランシェにより流れる電流が増えるのに対して、保持電圧は小さくなるという負性抵抗が発生する。
このような負性抵抗が発生することで電流集中が起きやすくなり、破壊に至りやすくなる。このため、高アバランシェ耐量を実現するには、負性抵抗を発生し難くする必要があり、これには、ドレイン側とソース側での電界ピークを発生し難くすることが有効である。
ドレイン側とソース側の電界ピークは、ベース領域5とn+ドレイン層2の近傍に発生するため、この部分の電界を小さくすべく、図12に表される本実施形態のように、ソース電極7側の上部では、p型ピラー領域34の不純物量がn型ピラー領域33の不純物量よりも多く、ドレイン電極1側の下部では、n型ピラー領域33の不純物量がp型ピラー領域34の不純物量よりも多くなるようにすれば、アバランシェ耐量を高めることができる。
深さ方向で不純物量が一様なn型ピラー領域33に対して、p型ピラー領域34の上部と下部の不純物量を変化させても、逆に、深さ方向で不純物量が一様なp型ピラー領域34に対して、n型ピラー領域33の上部と下部の不純物量を変化させてもよい。あるいは、n型ピラー領域33及びp型ピラー領域34の両方の上部と下部の不純物量を変化させてもよい。
また、スーパージャンクション構造の上部と下部との間の部分では、n型ピラー領域33の不純物量とp型ピラー領域34の不純物量とが略等しくなるようにすることで、最大耐圧の低下を抑制し、高耐圧も実現することができる。
アバランシェ降伏により発生したキャリアで変化した電界は、図14(b)に表されるように、ベース領域5から下に3μm程度と、n+ドレイン層2から上に3μm程度で半分(Emax/2)になり、ベース領域5から下に10μm程度と、n+ドレイン層2から上に10μm程度で中央部と同程度となる。したがって、p型ピラー領域34の不純物量をn型ピラー領域33の不純物量より多くする上部については、ベース領域5から下方に3μm以上かつ10μm以下の部分とすることが望ましく、n型ピラー領域33の不純物量をp型ピラー領域34の不純物量より多くする下部については、n+ドレイン層2から上方に3μm以上かつ10μm以下の部分とすることが望ましい。
例えば、イオン注入と埋め込み結晶成長を繰り返してスーパージャンクション構造を形成する場合、最初と最後の埋め込み結晶成長層の不純物濃度を変化させることで、本実施形態の構造が得られる。不純物濃度の変化の程度は、中央部の不純物濃度に対して、上部と下部の不純物濃度を5〜40%程度増減させることが望ましい。
図15は、図12(a)に表される素子部に加えて終端部の構造まで含んだ断面構造の一例を表す。
この具体例では、終端部にスーパージャンクション構造を設けていないため、不純物量ばらつきによる終端部の耐圧低下を抑制することができる。また、第3の実施形態と同様に、終端部の上部にp型領域21を、終端部の下部にn型領域20を形成することで、終端部においても上下端に電界ピークが発生し難くなり、高アバランシェ耐量を得ることができる。
また、p型領域21がダイシングラインまで形成されていると、高電圧印加時の空乏層がダイシングラインに到達し、リーク電流の発生や耐圧変化などの信頼性低下などが起きてしまう可能性がある。このため、チップ終端にn型のフィールドストップ層16を設けて、それを防ぐようにしている。
[第6の実施形態]
図16は、本発明の第6の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図16は、本発明の第6の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
本実施形態では、図15に表される構造に加えて、フィールドストップ層16に接続されたフィールドストップ電極22を設けている。これにより、空乏層の、ダイシングラインへの到達を確実に防ぐようにしている。
[第7の実施形態]
図17は、本発明の第7の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図17は、本発明の第7の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
本実施形態では、ベース領域5と同時に形成されたp型のフィールドストップ領域23と、ソース領域6と同時に形成されたn型のフィールドストップ領域24が、フィールドストップ層16の上に設けられている。フィールドストップ領域23、24は、フィールドストップ電極22に接続されている。
[第8の実施形態]
図18は、本発明の第8の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図18は、本発明の第8の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
本実施形態では、終端部にも、素子部と同様に、上部ではp型ピラー領域34の不純物量がn型ピラー領域33の不純物量よりも多く、下部ではn型ピラー領域33の不純物量がp型ピラー領域34の不純物量よりも多く、上部と下部との間の部分ではp型ピラー領域34の不純物量とn型ピラー領域33の不純物量とが略等しくなっているスーパージャンクション構造を設けている。
終端部にスーパージャンクション構造を形成すると、終端部の耐圧が両ピラー領域33、34間の不純物量ばらつきで低下してしまうが、本実施形態のスーパージャンクション構造では図12を参照して前述したように、不純物量の深さ方向の変化を階段状にすることで最大耐圧の低下を抑制しているため、終端部スーパージャンクション構造の不純物量が深さ方向に連続的に変化している比較例2(図4)よりも高耐圧を得やすい。また、プロセスマージンの狭まりも抑制できる。
また、終端部にスーパージャンクション構造を形成することで、図15〜17に表される最外p型ピラー領域15の不純物量をp型ピラー領域34の半分にしなくとも高耐圧を実現することができる。また、終端部表面にリサーフ領域17を設ける場合、そのリサーフ領域17が設けられた部分の下に、スーパージャンクション構造が形成されていることが望ましい。
[第9の実施形態]
図19は、本発明の第9の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図19は、本発明の第9の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
本実施形態では、素子部には、第5の実施形態と同様に、n型ピラー領域33とp型ピラー領域34によるスーパージャンクション構造が設けられ、終端部には、第1の実施形態と同様に、終端下部n型領域10、終端下部p型領域11、高抵抗半導体層12、終端上部n型領域13、終端上部p型領域14が設けられている。
すなわち、終端部上部ではp型不純物量が多く、終端部下部ではn型不純物量が多くなっている。これにより、高電圧印加時に終端部上部と終端部下部での電界ピークを緩和でき、高アバランシェ耐量を得ることができる。また、終端部には厚さ方向全体にわたってスーパージャンクション構造を形成しないので、p型とn型の不純物量ばらつきによる終端部の耐圧低下を抑制できる。
[第10の実施形態]
図20は、本発明の第10の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図20は、本発明の第10の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
本実施形態が、図18に表される第8の実施形態と異なるのは、終端下部n型領域20と、終端上部p型領域21を設けていない点である。本実施形態でも、スーパージャンクション構造における不純物量の深さ方向の変化を階段状にすることで最大耐圧の低下を抑制しているため、終端部スーパージャンクション構造の不純物量が深さ方向に連続的に変化している比較例2(図4)よりも高耐圧を得やすい。また、プロセスマージンの狭まりも抑制できる。
不純物量が深さ方向で階段状に変化しているn型ピラー領域33とp型ピラー領域34によるスーパージャンクション構造は、例えば、イオン注入と埋め込み結晶成長を繰り返すプロセスにおいて、最初と最後のドーズ量を変化させて、成長層の不純物濃度を一定することで得ることができる。なお、ドーズ量や不純物濃度は、上記繰り返しプロセスの2回目まで、3回目まで変化させても実施可能であり、また繰り返しプロセスの回数も図示される回数に限定されるものではない。
また、図15〜20に表される構造では、リサーフ領域17を有する終端構造としたが、図8、11に表されるようなフィールドプレート電極19を有する終端構造としてもよい。
[第11の実施形態]
図21(a)は、本発明の第11の実施形態に係る半導体装置の要部断面構造であり、図21(b)は、その半導体装置におけるピラー領域の深さ方向(厚さ方向)の電界変化を表す模式図である。
図21(a)は、本発明の第11の実施形態に係る半導体装置の要部断面構造であり、図21(b)は、その半導体装置におけるピラー領域の深さ方向(厚さ方向)の電界変化を表す模式図である。
本実施形態では、第1の半導体層としてのn+型層2の主面上に、第2の半導体層としてn−型層25を設け、このn−型層25の上に、n型ピラー領域53とp型ピラー領域54によるスーパージャンクション構造を設けている。n−型層25の不純物量は、n+型層2、n型ピラー領域53及びp型ピラー領域54の不純物量よりも少なく、n−型層25は、n+型層2、n型ピラー領域53及びp型ピラー領域54よりも高抵抗である。
図21(b)に表されるように、n−型層25においてドレイン電極1側の電界は小さくなる。このため、スーパージャンクション構造下部の不純物量を変化させなくてもドレイン電極1側での電界を小さくできる。
よって、スーパージャンクション構造の上部の電界を小さくすべく、スーパージャンクション構造の上部のみ、p型ピラー領域54の不純物量がn型ピラー領域53の不純物量よりも多くなるようにすればよい。これより下の部分では、p型ピラー領域54とn型ピラー領域53の不純物量が等しいことが望ましい。
スーパージャンクション構造における電界分布を決めるのは、n型ピラー領域53の不純物量と、p型ピラー領域54の不純物量との差であるため、n型ピラー領域53及びp型ピラー領域54の両方の不純物量を上部で変化させても、どちらか一方のピラー領域の不純物量は厚さ方向で一様にし、他方のピラー領域のみの不純物量を上部で変化させてもよい。また、ここでの不純物量とは、ピラー領域中に含まれる不純物の量であり、不純物濃度[cm−3]とピラー領域断面積[cm−2]との積である。したがって、ピラー領域の不純物濃度と、ピラー領域断面積の少なくともどちらか一方を上部で変化させればよい。
例えば、p型ピラー領域54の上部のみ、n型ピラー領域53よりも不純物濃度を高くする場合、p型ピラー領域54上部の不純物濃度は、他の部分の不純物濃度に対して、5〜40%程度高いことが望ましい。
また、p型ピラー領域54の不純物量をn型ピラー領域53の不純物量より多くする上部については、第5の実施形態と同様に、ベース領域5から下方に3μm以上かつ10μm以下の部分とすることが望ましい。
[第12の実施形態]
図22は、本発明の第12の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図22は、本発明の第12の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図22は、図21(a)に表される前述の構造の素子部を有する半導体装置において、終端部の構造までを例示した図である。終端部におけるn−型層25上には高抵抗半導体層12が設けられ、高抵抗半導体層12の上には、終端上部p型領域21が設けられ、終端上部p型領域21の表面にはp型リサーフ領域17が設けられている。
本実施形態によれば、n−型層25と、終端上部p型領域21により、終端部下部と上部における電界の増大を抑制でき、高アバランシェ耐量を得ることができる。また、終端部にスーパージャンクション構造を形成しないことで、チャージアンバランスによる耐圧低下を抑えることができる。
[第13の実施形態]
図23は、本発明の第13の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
図23は、本発明の第13の実施形態に係る半導体装置の要部断面構造を例示する模式断面図である。
本実施形態が、図22に表される第12の実施形態と異なるのは、終端部にも、素子部と同様に、n型ピラー領域53とp型ピラー領域54によるスーパージャンクション構造を設けている点である。
本実施形態では、スーパージャンクション構造の上部のみ、不純物量を変化させているため、終端部のスーパージャンクション構造部における最大耐圧の低下を上部だけにすることができ、終端部スーパージャンクション構造の不純物量が深さ方向に連続的に変化している比較例2(図4)よりも高耐圧を得やすい。また、プロセスマージンの狭まりも抑制できる。
また、終端部にスーパージャンクション構造を形成することで、図15〜17に表される最外p型ピラー領域15の不純物量をp型ピラー領域54の半分にしなくとも高耐圧を実現することができる。また、終端部表面にリサーフ領域17を設ける場合、そのリサーフ領域17が設けられた部分の下に、スーパージャンクション構造が形成されていることが望ましい。
以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明は、それらに限定されるものではなく、本発明の技術的思想に基づいて種々の変形が可能である。
上述の具体例では、第1導電型をn型、第2導電型をp型として説明したが、第1導電型をp型、第2導電型をn型としても実施可能である。
また、MOSゲート構造やスーパージャンクション構造の平面パターンは、ストライプ状に限らず、格子状や千鳥状にしてもよい。
また、MOSゲート構造は、プレナーゲート構造に限らず、トレンチゲート構造を用いてもよい。
スーパージャンクション構造の形成方法としては、イオン注入と埋め込みエピタキシャル成長とを複数回繰り返す方法、トレンチを形成し、そのトレンチに埋め込み成長を行う方法、トレンチを形成した後にトレンチ側壁にイオン注入を行う方法などを用いることができる。
また、図16、17に表されるフィールドストップ電極22は、他の図面に表される構造の半導体装置に設けてもよい。
また、第1〜第4の実施形態にて示した構造においても、不純物量を変化させた終端部上部及び下部の厚さを3μm以上10μm以下とすることで、高耐圧を得ながら、高アバランシェ耐量を得ることができる。
また、第1〜第4の実施形態にて示した構造においても、不純物量を変化させた終端部上部及び下部の厚さを3μm以上10μm以下とすることで、高耐圧を得ながら、高アバランシェ耐量を得ることができる。
半導体としては、シリコンに限らず、例えば、化合物半導体(炭化シリコンや窒化ガリウムなど)、ダイヤモンドなどのワイドバンドギャップ半導体を用いることができる。
また、MOSFETに限らず、SBD(Schottky Barrier Diode)、MOSFETとSBDとの混載素子、SIT(Static Induction Transistor)、IGBT(Insulated Gate Bipolar Transistor)などの素子でも本発明は適用可能である。
1…ドレイン電極(第2の主電極)、2…ドレイン層、3…n型ピラー領域(第1の半導体ピラー領域)、4…p型ピラー領域(第2の半導体ピラー領域)、5…ベース領域(第1の半導体領域)、6…ソース領域(第2の半導体領域)、7…ソース電極(第1の主電極)、8…絶縁膜、9…制御電極、10…終端下部n型領域(第3の半導体領域)、11…終端下部p型領域(第4の半導体領域)、12…高抵抗半導体層、13…終端上部n型領域(第5の半導体領域)、14…終端上部p型領域(第6の半導体領域)、15…p型ピラー領域、16…フィールドストップ層、17…リサーフ領域、18…絶縁膜、19…フィールドプレート電極、20…終端下部n型領域(第3の半導体領域)、21…終端上部p型領域(第4の半導体領域)、22…フィールドストップ電極、23…p型領域、24…n型領域、25…n−型層(第2の半導体層)、28…素子部、29…終端部、33…n型ピラー領域(第1の半導体ピラー領域)、34…p型ピラー領域(第2の半導体ピラー領域)、53…n型ピラー領域(第1の半導体ピラー領域)、54…p型ピラー領域(第2の半導体ピラー領域)
Claims (5)
- 第1導電型の半導体層と、
前記半導体層の主面上に設けられた第1導電型の第1の半導体ピラー領域と、
前記第1の半導体ピラー領域に隣接して、前記半導体層の前記主面上に設けられた第2導電型の第2の半導体ピラー領域と、
前記第2の半導体ピラー領域の上に設けられた第2導電型の第1の半導体領域と、
前記第1の半導体領域の表面に選択的に設けられた第1導電型の第2の半導体領域と、
前記第1の半導体領域及び前記第2の半導体領域の上に設けられた第1の主電極と、
前記第1の半導体ピラー領域、前記第1の半導体領域及び前記第2の半導体領域の上に設けられた絶縁膜と、
前記絶縁膜の上に設けられた制御電極と、
前記半導体層の前記主面の反対側に設けられた第2の主電極と、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域よりも終端側における前記半導体層の前記主面上に設けられた第1導電型の第3の半導体領域と、
前記第3の半導体領域に隣接して、前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域よりも終端側における前記半導体層の前記主面上に設けられた第2導電型の第4の半導体領域と、
前記第3の半導体領域及び前記第4の半導体領域の上に設けられた高抵抗半導体層と、
前記高抵抗半導体層の上に設けられた第1導電型の第5の半導体領域と、
前記第5の半導体領域に隣接して、前記高抵抗半導体層の上に設けられた第2導電型の第6の半導体領域と、
を備え、
前記第1の主電極側では前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも少なく、前記第2の主電極側では前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも多くなるように、前記第1の半導体ピラー領域と前記第2の半導体ピラー領域のうち少なくとも一方の不純物量が、前記第1の主電極から前記第2の主電極に向かう方向で徐々に変化していることを特徴とする半導体装置。 - 前記第3の半導体領域の不純物量は、前記第4の半導体領域の不純物量よりも多く、
前記第5の半導体領域の不純物量は、前記第6の半導体領域の不純物量よりも少ないことを特徴とする請求項1記載の半導体装置。 - 第1導電型の半導体層と、
前記半導体層の主面上に設けられた第1導電型の第1の半導体ピラー領域と、
前記第1の半導体ピラー領域に隣接して、前記半導体層の前記主面上に設けられた第2導電型の第2の半導体ピラー領域と、
前記第2の半導体ピラー領域の上に設けられた第2導電型の第1の半導体領域と、
前記第1の半導体領域の表面に選択的に設けられた第1導電型の第2の半導体領域と、
前記第1の半導体領域及び前記第2の半導体領域の上に設けられた第1の主電極と、
前記第1の半導体ピラー領域、前記第1の半導体領域及び前記第2の半導体領域の上に設けられた絶縁膜と、
前記絶縁膜の上に設けられた制御電極と、
前記半導体層の前記主面の反対側に設けられた第2の主電極と、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域よりも終端側における前記半導体層の前記主面上に設けられた第1導電型の第3の半導体領域と、
前記第3の半導体領域の上に設けられた高抵抗半導体層と、
前記高抵抗半導体層の上に設けられた第2導電型の第4の半導体領域と、
を備え、
前記第1の主電極側では前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも少なく、前記第2の主電極側では前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも多くなるように、前記第1の半導体ピラー領域と前記第2の半導体ピラー領域のうち少なくとも一方の不純物量が、前記第1の主電極から前記第2の主電極に向かう方向で徐々に変化していることを特徴とする半導体装置。 - 第1導電型の半導体層と、
前記半導体層の主面上に設けられた第1導電型の第1の半導体ピラー領域と、
前記第1の半導体ピラー領域に隣接して、前記半導体層の前記主面上に設けられた第2導電型の第2の半導体ピラー領域と、
前記第2の半導体ピラー領域の上に設けられた第2導電型の第1の半導体領域と、
前記第1の半導体領域の表面に選択的に設けられた第1導電型の第2の半導体領域と、
前記第1の半導体領域及び前記第2の半導体領域の上に設けられた第1の主電極と、
前記第1の半導体ピラー領域、前記第1の半導体領域及び前記第2の半導体領域の上に設けられた絶縁膜と、
前記絶縁膜の上に設けられた制御電極と、
前記半導体層の前記主面の反対側に設けられた第2の主電極と、
を備え、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域における前記第1の主電極側の上部では、前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも少なく、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域における前記第2の主電極側の下部では、前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも多く、
前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域における前記上部と前記下部との間の部分では、前記第1の半導体ピラー領域の不純物量と前記第2の半導体ピラー領域の不純物量とが略等しいことを特徴とする半導体装置。 - 前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも少ない前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域における前記第1の主電極側の上部の厚さは、前記第1の半導体領域の底部から、3μm以上10μm以下であり、
前記第1の半導体ピラー領域の不純物量が前記第2の半導体ピラー領域の不純物量よりも多い前記第1の半導体ピラー領域及び前記第2の半導体ピラー領域における前記第2の主電極側の下部の厚さは、前記半導体層表面から、3μm以上10μm以下であることを特徴とする請求項4記載の半導体装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005367249A JP2007173418A (ja) | 2005-12-20 | 2005-12-20 | 半導体装置 |
US11/612,723 US7605423B2 (en) | 2005-12-20 | 2006-12-19 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005367249A JP2007173418A (ja) | 2005-12-20 | 2005-12-20 | 半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007173418A true JP2007173418A (ja) | 2007-07-05 |
Family
ID=38172463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005367249A Pending JP2007173418A (ja) | 2005-12-20 | 2005-12-20 | 半導体装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US7605423B2 (ja) |
JP (1) | JP2007173418A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011029233A (ja) * | 2009-07-21 | 2011-02-10 | Toshiba Corp | 電力用半導体素子およびその製造方法 |
US8395230B2 (en) | 2008-08-08 | 2013-03-12 | Sony Corporation | Semiconductor device and method of manufacturing the same |
US8404526B2 (en) | 2008-09-10 | 2013-03-26 | Sony Corporation | Semiconductor device and manufacturing method for the same |
JP2017098550A (ja) * | 2015-11-24 | 2017-06-01 | 聚積科技股▲ふん▼有限公司 | パワー半導体デバイス |
JP2018129532A (ja) * | 2018-04-11 | 2018-08-16 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
JP2021170625A (ja) * | 2020-04-13 | 2021-10-28 | 富士電機株式会社 | 超接合半導体装置および超接合半導体装置の製造方法 |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7790549B2 (en) * | 2008-08-20 | 2010-09-07 | Alpha & Omega Semiconductor, Ltd | Configurations and methods for manufacturing charge balanced devices |
US8928077B2 (en) * | 2007-09-21 | 2015-01-06 | Fairchild Semiconductor Corporation | Superjunction structures for power devices |
JP5198030B2 (ja) * | 2007-10-22 | 2013-05-15 | 株式会社東芝 | 半導体素子 |
US20120273916A1 (en) | 2011-04-27 | 2012-11-01 | Yedinak Joseph A | Superjunction Structures for Power Devices and Methods of Manufacture |
DE102015106693B4 (de) * | 2015-04-29 | 2024-11-28 | Infineon Technologies Austria Ag | Superjunction-Halbleitervorrichtung mit Übergangsabschlusserstreckungsstruktur |
JP5901003B2 (ja) | 2010-05-12 | 2016-04-06 | ルネサスエレクトロニクス株式会社 | パワー系半導体装置 |
JP5235960B2 (ja) * | 2010-09-10 | 2013-07-10 | 株式会社東芝 | 電力用半導体装置及びその製造方法 |
JP2012074441A (ja) * | 2010-09-28 | 2012-04-12 | Toshiba Corp | 電力用半導体装置 |
US8772868B2 (en) | 2011-04-27 | 2014-07-08 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US8786010B2 (en) | 2011-04-27 | 2014-07-22 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US8836028B2 (en) | 2011-04-27 | 2014-09-16 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US8673700B2 (en) * | 2011-04-27 | 2014-03-18 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US8872278B2 (en) | 2011-10-25 | 2014-10-28 | Fairchild Semiconductor Corporation | Integrated gate runner and field implant termination for trench devices |
US9184277B2 (en) * | 2012-10-31 | 2015-11-10 | Infineon Technologies Austria Ag | Super junction semiconductor device comprising a cell area and an edge area |
WO2014112239A1 (ja) * | 2013-01-16 | 2014-07-24 | 富士電機株式会社 | 半導体素子 |
US9515137B2 (en) | 2013-02-21 | 2016-12-06 | Infineon Technologies Austria Ag | Super junction semiconductor device with a nominal breakdown voltage in a cell area |
US9209292B2 (en) | 2013-07-18 | 2015-12-08 | Infineon Technologies Austria Ag | Charge compensation semiconductor devices |
US9293528B2 (en) | 2013-12-31 | 2016-03-22 | Infineon Technologies Austria Ag | Field-effect semiconductor device and manufacturing therefor |
US9281392B2 (en) | 2014-06-27 | 2016-03-08 | Infineon Technologies Austria Ag | Charge compensation structure and manufacturing therefor |
CN106505092B (zh) * | 2016-08-18 | 2024-05-14 | 全球能源互联网研究院 | 一种垂直型半导体器件的双面终端结构 |
CN106952946B (zh) * | 2017-04-19 | 2023-09-22 | 华润微电子(重庆)有限公司 | 一种过渡区结构 |
TWI699887B (zh) * | 2017-04-20 | 2020-07-21 | 聚積科技股份有限公司 | 具有分段式濃度的功率半導體裝置 |
US10236340B2 (en) | 2017-04-28 | 2019-03-19 | Semiconductor Components Industries, Llc | Termination implant enrichment for shielded gate MOSFETs |
US10374076B2 (en) | 2017-06-30 | 2019-08-06 | Semiconductor Components Industries, Llc | Shield indent trench termination for shielded gate MOSFETs |
JP7073698B2 (ja) * | 2017-12-07 | 2022-05-24 | 富士電機株式会社 | 半導体装置および半導体装置の製造方法 |
JP6981890B2 (ja) * | 2018-01-29 | 2021-12-17 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
CN111244151B (zh) * | 2018-11-29 | 2023-06-23 | 株洲中车时代半导体有限公司 | 一种功率半导体器件超级结终端结构 |
JP7249921B2 (ja) * | 2019-09-20 | 2023-03-31 | 株式会社東芝 | 半導体装置 |
CN113539830A (zh) * | 2020-04-13 | 2021-10-22 | 富士电机株式会社 | 超结半导体装置以及超结半导体装置的制造方法 |
CN113517336A (zh) * | 2021-07-13 | 2021-10-19 | 电子科技大学 | 一种mos型超结功率器件的终端结构 |
CN114628526B (zh) * | 2022-05-06 | 2022-08-02 | 长鑫存储技术有限公司 | 半导体结构及半导体结构的制作方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002524879A (ja) * | 1998-09-02 | 2002-08-06 | シーメンス アクチエンゲゼルシヤフト | 高電圧型半導体構成素子 |
JP2003115589A (ja) * | 2001-10-03 | 2003-04-18 | Fuji Electric Co Ltd | 半導体装置及びその製造方法 |
JP2004119611A (ja) * | 2002-09-25 | 2004-04-15 | Toshiba Corp | 電力用半導体素子 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3908572B2 (ja) | 2002-03-18 | 2007-04-25 | 株式会社東芝 | 半導体素子 |
JP2006005275A (ja) | 2004-06-21 | 2006-01-05 | Toshiba Corp | 電力用半導体素子 |
JP4967236B2 (ja) | 2004-08-04 | 2012-07-04 | 富士電機株式会社 | 半導体素子 |
-
2005
- 2005-12-20 JP JP2005367249A patent/JP2007173418A/ja active Pending
-
2006
- 2006-12-19 US US11/612,723 patent/US7605423B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002524879A (ja) * | 1998-09-02 | 2002-08-06 | シーメンス アクチエンゲゼルシヤフト | 高電圧型半導体構成素子 |
JP2003115589A (ja) * | 2001-10-03 | 2003-04-18 | Fuji Electric Co Ltd | 半導体装置及びその製造方法 |
JP2004119611A (ja) * | 2002-09-25 | 2004-04-15 | Toshiba Corp | 電力用半導体素子 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8395230B2 (en) | 2008-08-08 | 2013-03-12 | Sony Corporation | Semiconductor device and method of manufacturing the same |
US8404526B2 (en) | 2008-09-10 | 2013-03-26 | Sony Corporation | Semiconductor device and manufacturing method for the same |
US8421152B2 (en) | 2008-09-10 | 2013-04-16 | Sony Corporation | Semiconductor device and manufacturing method for the same |
JP2011029233A (ja) * | 2009-07-21 | 2011-02-10 | Toshiba Corp | 電力用半導体素子およびその製造方法 |
JP2017098550A (ja) * | 2015-11-24 | 2017-06-01 | 聚積科技股▲ふん▼有限公司 | パワー半導体デバイス |
JP2018129532A (ja) * | 2018-04-11 | 2018-08-16 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
JP2021170625A (ja) * | 2020-04-13 | 2021-10-28 | 富士電機株式会社 | 超接合半導体装置および超接合半導体装置の製造方法 |
JP7585678B2 (ja) | 2020-04-13 | 2024-11-19 | 富士電機株式会社 | 超接合半導体装置および超接合半導体装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US7605423B2 (en) | 2009-10-20 |
US20070138543A1 (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007173418A (ja) | 半導体装置 | |
JP5491723B2 (ja) | 電力用半導体装置 | |
JP4635067B2 (ja) | 半導体装置及びその製造方法 | |
JP5002148B2 (ja) | 半導体装置 | |
JP5198030B2 (ja) | 半導体素子 | |
JP5188037B2 (ja) | 半導体装置 | |
JP4621708B2 (ja) | 半導体装置及びその製造方法 | |
JP4768259B2 (ja) | 電力用半導体装置 | |
JP5132123B2 (ja) | 電力用半導体素子 | |
JP5196766B2 (ja) | 半導体装置 | |
JP4564510B2 (ja) | 電力用半導体素子 | |
CN102420249B (zh) | 功率半导体装置 | |
CN105097934B (zh) | 半导体器件及其制造方法 | |
JP5537996B2 (ja) | 半導体装置 | |
JP5342752B2 (ja) | 半導体装置 | |
JP4996848B2 (ja) | 半導体装置 | |
US20060220156A1 (en) | Semiconductor device and method for manufacturing same | |
JP2008182054A (ja) | 半導体装置 | |
JP2009272397A (ja) | 半導体装置 | |
JP2009088345A (ja) | 半導体装置 | |
JP5559232B2 (ja) | 電力用半導体素子 | |
US20160079350A1 (en) | Semiconductor device and manufacturing method thereof | |
US20110169080A1 (en) | Charge balance power device and manufacturing method thereof | |
JP5655052B2 (ja) | 半導体装置 | |
JP2009111237A (ja) | 半導体素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120209 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120605 |