[go: up one dir, main page]

JP2006119121A - Shape measurement method and device for optical member - Google Patents

Shape measurement method and device for optical member Download PDF

Info

Publication number
JP2006119121A
JP2006119121A JP2005220502A JP2005220502A JP2006119121A JP 2006119121 A JP2006119121 A JP 2006119121A JP 2005220502 A JP2005220502 A JP 2005220502A JP 2005220502 A JP2005220502 A JP 2005220502A JP 2006119121 A JP2006119121 A JP 2006119121A
Authority
JP
Japan
Prior art keywords
shape
lens
measuring
optical member
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005220502A
Other languages
Japanese (ja)
Inventor
Nariya Matsumoto
斉也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005220502A priority Critical patent/JP2006119121A/en
Publication of JP2006119121A publication Critical patent/JP2006119121A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the magnitude of an eccentricity of a double-sided aspheric lens with high accuracy but without taking any trouble. <P>SOLUTION: An eccentricity measurement device 10 has a probe 11 and a sensing pin 13, and scans the surface of the lens 31 installed to a jig 12 to measure its shape. The jig 12 has a rotary stage 17 journalled to a support 16 by a rotary shaft 18, and can measure the shape of both the front and rear faces of the lens 31 by turning over the lens 31 by 180°. After measuring the shape of both the faces of the lens 31, intersection point coordinates of each the face to an optical axis are found by an arithmetic part 26. In the arithmetic part 26, processing for correcting the intersection point coordinates to the optical axis is performed on the basis of the eccentricity or the like of the rotary shaft 18 to measure eccentric amounts of two aspheric faces are measured with high accuracy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の曲面を有するレンズ等の光学部材を測定対象物として、各曲面の相対的な位置差を測定する光学部材の形状測定方法及び形状測定装置に関する。   The present invention relates to a shape measuring method and a shape measuring apparatus for an optical member for measuring a relative positional difference between curved surfaces using an optical member such as a lens having a plurality of curved surfaces as a measurement object.

光ディスク用対物レンズや携帯電話機に内蔵されるカメラ用対物レンズ等に両面非球面レンズが広く利用されている。両面非球面レンズは、2つの非球面の光軸が極めて高い精度で合致している必要があり、非球面レンズを製造する際には、実際に作製したレンズから非球面間の偏心を測定し、測定結果を製造工程にフィードバックしてレンズの成形精度を高める等の工夫がなされている。   Double-sided aspherical lenses are widely used for optical disk objective lenses, camera objective lenses incorporated in mobile phones, and the like. A double-sided aspherical lens requires that the optical axes of the two aspherical surfaces be aligned with extremely high accuracy. When manufacturing an aspherical lens, the eccentricity between the aspherical surfaces is measured from the actually fabricated lens. Ingenuity has been made, for example, to increase the molding accuracy of the lens by feeding back the measurement result to the manufacturing process.

特許文献1には、レンズの表面に押し当てられる2本の位置決めピンが形成された治具を有する偏心測定装置が記載されている。この偏心測定装置では、レンズの前面を測定する際に、レンズ前面を2本の位置決めピンに下方から押し当て、レンズの位置を固定した後に表面の形状を測定する。レンズの後面を測定する際には、レンズを位置決めピンから一度離して180度回転させ、レンズ後面を2本の位置決めピンに上方から押し当て、レンズの位置を固定した後に表面の形状を測定する。レンズの前面と後面の表面形状が測定されると各非球面の光軸の位置が求められ、非球面間の偏心量が算出される。   Patent Document 1 describes an eccentricity measuring device having a jig in which two positioning pins pressed against the surface of a lens are formed. In this eccentricity measuring apparatus, when measuring the front surface of the lens, the front surface of the lens is pressed against the two positioning pins from below, and the shape of the surface is measured after fixing the position of the lens. When measuring the rear surface of the lens, the lens is once separated from the positioning pin and rotated 180 degrees, the rear surface of the lens is pressed against the two positioning pins from above, the position of the lens is fixed, and then the surface shape is measured. . When the surface shapes of the front and rear surfaces of the lens are measured, the position of the optical axis of each aspheric surface is obtained, and the amount of eccentricity between the aspheric surfaces is calculated.

また、特許文献2に記載された偏心測定装置は、位置決め用の3つの真球が設けられたレンズ保持板を備えている。3つの真球は、その一部がレンズ保持板の前面と後面からそれぞれ露呈されている。レンズの前面を測定する際には、3つの真球の頂点位置を測定し、基準座標の決定とレンズ保持板の走査平面に対する傾き量の算出が行われる。レンズの後面を測定する際には、レンズ保持板を装置から外して裏返しにした後、同様にして3つの真球の頂点座標を測定し、基準座標の決定とレンズ保持板の傾き量の算出が行われる。レンズの前面と後面の表面形状が測定された後、真球によって決定された基準座標とレンズ保持板の傾き量から、各非球面の光軸の位置とその偏心量が算出される。
特開2002−214071号公報 特開2002−71344号公報
The eccentricity measuring device described in Patent Document 2 includes a lens holding plate provided with three true spheres for positioning. Part of the three true spheres is exposed from the front and rear surfaces of the lens holding plate. When measuring the front surface of the lens, the vertex positions of the three true spheres are measured, the reference coordinates are determined, and the amount of inclination of the lens holding plate with respect to the scanning plane is calculated. When measuring the rear surface of the lens, remove the lens holding plate from the device and turn it over, then measure the vertex coordinates of the three true spheres in the same way, determine the reference coordinates, and calculate the tilt amount of the lens holding plate Is done. After the surface shapes of the front and rear surfaces of the lens are measured, the position of the optical axis of each aspheric surface and the amount of eccentricity thereof are calculated from the reference coordinates determined by the true sphere and the tilt amount of the lens holding plate.
JP 2002-214071 A JP 2002-71344 A

しかしながら、上記特許文献1の偏心測定装置は、両面の形状を測定するためにレンズを裏返す際、レンズを位置決めピンから離す必要があるため、位置決めピンに突き当てるだけではレンズの基準位置を一定に保てず、精度の高い偏心測定ができないという問題があった。また、特許文献2記載の偏心測定装置は、レンズ保持板を裏返すために、レンズの各面を1度測定するたびに3つの真球の頂点座標を求める必要があり、手間と時間がかかるという問題があった。   However, since the eccentricity measuring apparatus of Patent Document 1 needs to separate the lens from the positioning pin when turning the lens over in order to measure the shape of both surfaces, the reference position of the lens can be kept constant only by striking the positioning pin. There was a problem that it was not possible to maintain and high-precision eccentricity measurement could not be performed. In addition, the eccentricity measuring device described in Patent Document 2 requires time and effort to obtain the vertex coordinates of three true spheres each time each surface of the lens is measured once in order to flip the lens holding plate. There was a problem.

本発明は、上記問題点を考慮してなされたもので、測定に要する手間や時間を削減し、高精度な偏心測定を可能とする光学部材の形状測定方法及び形状測定装置を提供することを目的とする。   The present invention has been made in consideration of the above-mentioned problems, and provides a shape measuring method and a shape measuring apparatus for an optical member that can reduce the labor and time required for measurement and enable highly accurate eccentricity measurement. Objective.

上記目的を達成するために、本発明は、物体の表面形状を測定する表面形状測定手段により、複数の曲面を有する光学部材の各曲面の形状を測定し、各曲面が有する特徴点の位置をそれぞれ求め、前記特徴点の位置を比較して各曲面間の位置ズレの大きさを測定する光学部材の形状測定方法において、前記光学部材を保持するための保持体を、回転軸を介して支持体に軸支させ、前記保持体を回転することにより、前記形状測定手段による形状測定の可能な測定位置に各曲面を変位させ、各測定位置で前記曲面の表面形状をそれぞれ測定し、求められた特徴点の位置から各曲面間の位置ズレの大きさを測定することを特徴とする。   In order to achieve the above object, the present invention measures the shape of each curved surface of an optical member having a plurality of curved surfaces by means of surface shape measuring means for measuring the surface shape of an object, and determines the position of a feature point that each curved surface has. In a method for measuring the shape of an optical member for measuring the size of positional deviation between curved surfaces by comparing the positions of the characteristic points, and supporting a holding body for holding the optical member via a rotating shaft. Each curved surface is displaced to a measurement position where shape measurement by the shape measuring means can be performed by pivoting on the body and rotating the holding body, and the surface shape of the curved surface is measured at each measurement position. The size of the positional deviation between the curved surfaces is measured from the position of the feature point.

前記保持体に保持させた真球の形状を前記表面形状測定手段により各測定位置で測定し、求められた真球の頂点の位置から前記回転軸の偏心量を算出し、回転軸の偏心量に基づいて前記各曲面の特徴点の位置を補正することを特徴とする。   The shape of the true sphere held by the holding body is measured at each measurement position by the surface shape measuring means, and the amount of eccentricity of the rotating shaft is calculated from the obtained position of the vertex of the true sphere, and the amount of eccentricity of the rotating shaft Based on the above, the position of the feature point of each curved surface is corrected.

前記形状測定値と前記設計値とを比較して、前記各曲面の測定基準面に対する傾き量をそれぞれ算出し、求められた2つの傾き量の差に基づいて前記特徴点の位置を補正することを特徴とする。   Comparing the shape measurement value with the design value to calculate the amount of inclination of each curved surface with respect to the measurement reference surface, and correcting the position of the feature point based on the difference between the two obtained inclination amounts It is characterized by.

前記傾き量は、前記保持体に形成された平面部の傾きと、前記光学部材の一部を当接させる平坦な座面部の傾きとの差から算出することを特徴とする。   The amount of inclination is calculated from a difference between an inclination of a flat surface portion formed on the holding body and an inclination of a flat seat surface portion that makes a part of the optical member contact.

前記光学部材は、光軸を中心として回転対称な2つの非球面を有する両面非球面レンズであり、前記保持体を180度回転させて各非球面の光軸との交点を前記特徴点として求めるとともに、前記表面形状測定手段により測定された非球面の一部の形状測定値を、各曲面の設計値と比較することにより前記交点の位置を算出することを特徴とする。   The optical member is a double-sided aspherical lens having two aspherical surfaces that are rotationally symmetric with respect to the optical axis. The holding member is rotated 180 degrees to obtain the intersection point with each aspherical optical axis as the feature point. In addition, the position of the intersection is calculated by comparing a shape measurement value of a part of the aspheric surface measured by the surface shape measurement means with a design value of each curved surface.

前記表面形状測定手段は、物体表面との距離が一定に保たれるように触針を変位させながら物体表面を走査して表面形状を測定するプローブを備えていることを特徴とする。   The surface shape measuring means includes a probe for measuring the surface shape by scanning the object surface while displacing the stylus so that the distance from the object surface is kept constant.

また、本発明の形状測定装置は、上記の形状測定方法を使用する装置であって、物体の表面を走査してその形状を測定する形状測定手段と、複数の曲面が形成された光学部材を保持する保持体と、回転軸を介して前記保持体を回転自在に支持し、各曲面形状の測定が可能な位置に前記光学部材を変位させる支持手段とを備えたことを特徴とする。   The shape measuring apparatus of the present invention is an apparatus that uses the above-described shape measuring method, and includes a shape measuring means that scans the surface of an object and measures its shape, and an optical member on which a plurality of curved surfaces are formed. It is characterized by comprising a holding body to be held and a supporting means for rotatably supporting the holding body via a rotating shaft and displacing the optical member to a position where each curved surface shape can be measured.

本発明によれば、光学部材を保持する保持体を回転軸によって任意に回転させることができ、光学部材を反転させることによる位置ズレが発生しないから、精度の高い曲面間の位置ズレ、あるいは偏心を測定することが可能となり、測定に要する時間や手間を削減できる。また、曲面間の相対的な傾き量を高精度かつ短時間に測定できるから、光学部材の形状を正確に測定することができる。このような効果により、金型成形を用いて加工される光学部材においては金型の合わせ位置を微調整して成形精度を高めることや、曲面間の位置ズレ、偏心量を反映させた実物の物性値に近い高精度なシミュレーション等を実現できる。   According to the present invention, the holding body that holds the optical member can be arbitrarily rotated by the rotation shaft, and the positional deviation caused by reversing the optical member does not occur. Can be measured, and the time and labor required for measurement can be reduced. Moreover, since the relative inclination amount between the curved surfaces can be measured with high accuracy and in a short time, the shape of the optical member can be accurately measured. Due to such effects, in optical members processed using mold molding, it is possible to finely adjust the alignment position of the mold to increase molding accuracy, to reflect the positional deviation between the curved surfaces and the amount of eccentricity. High-precision simulations close to physical properties can be realized.

図1において、本発明を適用した偏心測定装置10は、三次元形状測定を行うプローブ11と、偏心測定を行うレンズを保持する治具12とを備えている。プローブ11には触針13が設けられている。プローブ11は、測定される対象物の表面に沿って触針13を基準座標軸であるX軸,Y軸,Z軸の3方向に移動させる。偏心測定装置10は、X軸とY軸を含む水平な基準平面を触針13の走査基準面としている。触針13は、その先端と測定対象物との間に原子間力が作用する距離まで接近し、原子間力が一定の大きさに保たれるようにZ軸方向に進退移動する。触針13は、プローブ11が例えば数十ミリメートルの範囲を3方向に移動するのに対し、例えば数マイクロメートルの範囲でZ軸方向に変位する。触針13には、曲率半径が例えば約5マイクロメートルに研磨されたダイヤモンドからなる先端部が設けられている。なお、ダイヤモンドの他に、ルビー、鋼球等を用いることもある。   In FIG. 1, an eccentricity measuring apparatus 10 to which the present invention is applied includes a probe 11 that performs three-dimensional shape measurement, and a jig 12 that holds a lens that performs eccentricity measurement. A probe 11 is provided with a stylus 13. The probe 11 moves the stylus 13 in the three directions of the X axis, the Y axis, and the Z axis, which are reference coordinate axes, along the surface of the object to be measured. The eccentricity measuring apparatus 10 uses a horizontal reference plane including the X axis and the Y axis as a scanning reference plane of the stylus 13. The stylus 13 approaches the distance where the interatomic force acts between the tip and the measurement object, and moves forward and backward in the Z-axis direction so that the interatomic force is maintained at a constant magnitude. The stylus 13 is displaced in the Z-axis direction within a range of several micrometers, for example, while the probe 11 moves in three directions within a range of several tens of millimeters, for example. The stylus 13 is provided with a tip portion made of diamond polished to a radius of curvature of, for example, about 5 micrometers. In addition to diamond, ruby, steel ball, etc. may be used.

治具12は、支持台16と回転ステージ17とからなる。回転ステージ17には回転軸18とレンズホルダー19が設けられている。回転ステージ17は支持台16に軸支されている。回転軸18の一端には、回転操作されるハンドル20が設けられている。ハンドル20を操作すると、回転ステージ17が回転軸18を中心に回転する。レンズホルダー19には、取り付けられたレンズを押さえるための板バネであるレンズ押さえ板21が設けられている。支持台16の側面にはピン差込み穴22が設けられている。ピン差込み穴22には回転ステージ17を固定するための位置決めピン23が差し込まれる。   The jig 12 includes a support base 16 and a rotary stage 17. The rotary stage 17 is provided with a rotary shaft 18 and a lens holder 19. The rotary stage 17 is pivotally supported on the support base 16. A handle 20 that is rotated is provided at one end of the rotary shaft 18. When the handle 20 is operated, the rotary stage 17 rotates about the rotary shaft 18. The lens holder 19 is provided with a lens pressing plate 21 which is a plate spring for pressing the attached lens. A pin insertion hole 22 is provided on the side surface of the support base 16. A positioning pin 23 for fixing the rotary stage 17 is inserted into the pin insertion hole 22.

偏心測定装置10には、測定値出力部25と演算部26が設けられている。測定値出力部25は、プローブ11と触針13が物体表面を走査して得られた各座標軸方向成分の変位情報が電気信号として入力され、これをデジタルデータに変換して出力する。演算部26は、測定対象物の曲面の設計式が予め入力され、測定値出力部25から出力される測定値と、予め入力された設計値とを比較して、測定値を設計値に合致(フィッティング)させる演算処理を行う。この演算処理では、測定値と設計値との較差から、測定された曲面の走査基準面に対する傾き量と、曲面が有する特徴点、例えば曲面の最高点、最低点である頂点座標や光軸との交点座標を算出することができる。   The eccentricity measuring apparatus 10 is provided with a measurement value output unit 25 and a calculation unit 26. The measured value output unit 25 receives displacement information of each coordinate axis direction component obtained by scanning the object surface with the probe 11 and the stylus 13 as an electric signal, converts this into digital data, and outputs it. The calculation unit 26 is preliminarily input with the design formula of the curved surface of the measurement object, compares the measurement value output from the measurement value output unit 25 with the design value input in advance, and matches the measurement value with the design value. An arithmetic process for fitting is performed. In this calculation process, from the difference between the measured value and the design value, the amount of inclination of the measured curved surface with respect to the scanning reference surface and the characteristic points of the curved surface, for example, the vertex coordinates and the optical axis, which are the highest point and the lowest point of the curved surface, are calculated. Can be calculated.

図2において、回転ステージ17には、平坦に形成されたステージ前面17fとステージ後面17bが設けられている。また、回転ステージ17には、ステージ前面17fからステージ後面17bに亘って貫通した開口部30が設けられている。レンズホルダー19は回転ステージ17のステージ前面17fの側から開口部30に取り付けられる。レンズホルダー19は回転ステージ17にネジ止めされ、測定するレンズの種類を変更するときに交換することができる。レンズホルダー19には、座面19aにレンズ31がセットされる。レンズ31は両面非球面レンズである。   In FIG. 2, the rotary stage 17 is provided with a stage front surface 17f and a stage rear surface 17b formed flat. The rotary stage 17 is provided with an opening 30 penetrating from the stage front surface 17f to the stage rear surface 17b. The lens holder 19 is attached to the opening 30 from the stage front surface 17 f side of the rotary stage 17. The lens holder 19 is screwed to the rotary stage 17 and can be exchanged when changing the type of lens to be measured. In the lens holder 19, a lens 31 is set on the seating surface 19a. The lens 31 is a double-sided aspheric lens.

レンズ31は、レンズ押さえ板21により上方から押さえられ、レンズホルダー19の内部に保持される。レンズホルダー19は、その中心に穴が形成されており、回転ステージ17を180度回転させることによってレンズ31の表裏両面がプローブ11及び触針13にそれぞれ対面する。回転ステージ17の側面には固定穴32が設けられている。固定穴32は、回転ステージ17の一方の側面から他方の側面に貫通しており、支持台16のピン差込み穴22から差し込まれた位置決めピン23の先端部分が差し込まれる。位置決めピン23を用いることにより、回転ステージ17はレンズ31を180度回転させるごとに固定することができる。   The lens 31 is pressed from above by the lens pressing plate 21 and is held inside the lens holder 19. The lens holder 19 has a hole formed in the center thereof, and the front and back surfaces of the lens 31 face the probe 11 and the stylus 13 by rotating the rotary stage 17 by 180 degrees. A fixing hole 32 is provided on the side surface of the rotary stage 17. The fixing hole 32 penetrates from one side surface of the rotary stage 17 to the other side surface, and the tip portion of the positioning pin 23 inserted from the pin insertion hole 22 of the support base 16 is inserted. By using the positioning pin 23, the rotary stage 17 can be fixed every time the lens 31 is rotated 180 degrees.

図3において、偏心測定装置10により両面非球面レンズの偏心量を求めるための原理について説明する。レンズ31の各面の光軸との交点位置を正確に求めるためには、治具12の精度等に起因する較正データを求める必要がある。この較正データは、治具12を設置する面の水平度に関する誤差と回転ステージ17を反転させた時の回転角度の誤差とを足し合わせた傾き量θr(f),θr(b)(図3(a))と、レンズホルダー19の座面19aの水平度に関する誤差である傾き量θs(図3(b))と、回転ステージ17のステージ前面17fとステージ後面17bの平行度に関する誤差である傾き量θp(f),θp(b)(図3(c))とがある。また、回転軸18が有する誤差として、回転軸18の軸心18aのX軸に対する平行度の誤差である傾き量θzと、XY平面上における軸心18aからレンズホルダー19の中心までの距離(オフセット量)Yoがある(図8参照)。なお、θzは、軸心18aをX軸方向に補正するために必要なZ軸を回転中心とする傾き量を表す。 In FIG. 3, the principle for obtaining the amount of eccentricity of the double-sided aspheric lens by the eccentricity measuring device 10 will be described. In order to accurately obtain the position of the intersection of each surface of the lens 31 with the optical axis, it is necessary to obtain calibration data resulting from the accuracy of the jig 12 and the like. The calibration data includes inclination amounts θ r (f), θ r (b) (addition of an error related to the level of the surface on which the jig 12 is installed and an error of the rotation angle when the rotary stage 17 is inverted. 3 (a)), an inclination amount θ s (FIG. 3 (b)) which is an error related to the level of the seating surface 19a of the lens holder 19, and parallelism between the stage front surface 17f and the stage rear surface 17b of the rotary stage 17. There are inclination amounts θ p (f) and θ p (b) (FIG. 3C) which are errors. Further, as an error of the rotating shaft 18, an inclination amount θ z that is an error in parallelism with respect to the X axis of the axis 18 a of the rotating shaft 18 and a distance from the axis 18 a on the XY plane to the center of the lens holder 19 ( There is an offset amount) Y o (see FIG. 8). Note that θ z represents the amount of inclination with the Z axis as the center of rotation necessary for correcting the axis 18a in the X axis direction.

上記θr,θs,θpをはじめとする各傾きの誤差の大きさは、X軸を回転中心とする成分とY軸を中心とする回転成分とに分離できる。以降の説明では、XとYの指数をそれぞれ付することにより各座標軸を回転中心とする傾き量の成分を表すものとする。 The magnitude of each tilt error including θ r , θ s , and θ p can be separated into a component centered on the X axis and a rotational component centered on the Y axis. In the following description, it is assumed that the components of the tilt amount with each coordinate axis as the center of rotation are represented by attaching X and Y indices, respectively.

レンズ31の前面形状を測定することにより求められるレンズ前面31fの傾き量をθm(f)としたとき、その成分θmx(f)とθmy(f)は、
θmx(f)=θlx(f)+θsx+θrx(f)
θmy(f)=θly(f)+θsy+θry(f)+θky(f)
と表される。なお、θl(f)は、レンズ前面31fの真の傾き量であり、θk(f)は、ステージ前面17fをプローブ11と対面させた状態における回転軸18の軸心18aの傾き量である。
When the inclination amount of the lens front surface 31f obtained by measuring the front surface shape of the lens 31 is θ m (f), its components θ mx (f) and θ my (f) are
θ mx (f) = θ lx (f) + θ sx + θ rx (f)
θ my (f) = θ ly (f) + θ sy + θ ry (f) + θ ky (f)
It is expressed. Θ l (f) is the true tilt amount of the lens front surface 31 f, and θ k (f) is the tilt amount of the axis 18 a of the rotating shaft 18 in a state where the stage front surface 17 f faces the probe 11. is there.

また、回転ステージ17のステージ前面17fの形状を測定することにより求められる傾き量をθh(f)としたとき、その成分は、
θhx(f)=θrx(f)+θpx(f)
θhy(f)=θry(f)+θpy(f)+θky(f)
と表される。これらの値とレンズ前面31fの形状を測定して求められる光軸A1のXY平面上における位置座標Xm(f),Ym(f)とから、光軸A1の真の位置座標Xl(f),Yl(f)とレンズ前面31fの真の傾き量θlx(f),θly(f)が算出できる。
l(f)=Xm(f)+Hz(f)・sin(θhy(f)−θpy(f))+Lz(f)・sin(θsy)
l(f)=Ym(f)+Hz(f)・sin(θhx(f)−θpx(f))+Lz(f)・sin(θsx)
θlx(f)=θmx(f)−θsx−θhx(f)+θpx(f)
θly(f)=θmy(f)−θsy−θhy(f)+θpy(f)
但し、図4に示すように、Hz(f)はレンズ前面31fの頂点(光軸との交点)から軸心18aまでの距離、Hz(b)はレンズ後面31bの頂点から軸心18aまでの距離、Lz(f),Lz(b)はそれぞれレンズ単体での各面の高さである。なお、Hz(f),Hz(b),Lz(f),Lz(b)は、測定の性質上、治具12及びレンズ31の設計値から求められる値で十分であるが、測定精度をさらに高める場合には実測値を用いてもよい。また、上式に示されるように、θr(f)は式中で打ち消され、回転ステージ17の回転角度の誤差は測定結果に影響しない。
Further, when the inclination amount obtained by measuring the shape of the stage front surface 17f of the rotary stage 17 is θ h (f), the component is
θ hx (f) = θ rx (f) + θ px (f)
θ hy (f) = θ ry (f) + θ py (f) + θ ky (f)
It is expressed. From these values and the position coordinates X m (f), Y m (f) of the optical axis A1 on the XY plane obtained by measuring the shape of the lens front surface 31f, the true position coordinates X l ( f), Y l (f) and true inclination amounts θ lx (f), θ ly (f) of the lens front surface 31f can be calculated.
X l (f) = X m (f) + H z (f) · sin (θ hy (f) −θ py (f)) + L z (f) · sin (θ sy )
Y l (f) = Y m (f) + H z (f) · sin (θ hx (f) −θ px (f)) + L z (f) · sin (θ sx )
θ lx (f) = θ mx (f) −θ sx −θ hx (f) + θ px (f)
θ ly (f) = θ my (f) −θ sy −θ hy (f) + θ py (f)
However, as shown in FIG. 4, H z (f) is the distance from the vertex (intersection with the optical axis) of the lens front surface 31f to the axis 18a, and H z (b) is the axis 18a from the vertex of the lens rear surface 31b. , L z (f) and L z (b) are the heights of the surfaces of the lens alone. For H z (f), H z (b), L z (f), and L z (b), values obtained from design values of the jig 12 and the lens 31 are sufficient due to the nature of measurement. In order to further increase the measurement accuracy, an actual measurement value may be used. Further, as shown in the above equation, θ r (f) is canceled out in the equation, and the error of the rotation angle of the rotary stage 17 does not affect the measurement result.

レンズ後面31bの形状を測定することにより求められるレンズ後面31bの傾き量θm(b)は、
θmx(b)=θlx(b)+θsx+θrx(b)
θmy(b)=−θly(b)+(−θsy)+θry(b)+θky(b)
と表され、ステージ後面17bの形状を測定することにより求められる傾き量θh(b)は、
θhx(b)=θrx(b)+θpx(b)
θhy(b)=θry(b)+(−θpy(b))+θky(b)
と表される。
The inclination amount θ m (b) of the lens rear surface 31b obtained by measuring the shape of the lens rear surface 31b is expressed as follows:
θ mx (b) = θ lx (b) + θ sx + θ rx (b)
θ my (b) = − θ ly (b) + (− θ sy ) + θ ry (b) + θ ky (b)
The inclination amount θ h (b) obtained by measuring the shape of the stage rear surface 17b is expressed as follows:
θ hx (b) = θ rx (b) + θ px (b)
θ hy (b) = θ ry (b) + (− θ py (b)) + θ ky (b)
It is expressed.

上記の各値とレンズ後面31bの形状を測定して求められる光軸A2の位置座標Xm(b),Ym(b)とから、光軸A2の真の位置座標Xl(b),Yl(b)とレンズ前面31fの傾き量θlx(b),θly(b)が算出できる。Yl(b)については、軸心18aの偏心によるオフセット量Yoを考慮する。
l(b)=Xm(b)−Hz(b)・sin(θhy(b)−(−θpy(b)))−Lz(b)・sin(−θsy)
l(b)=−(Ym(b)−Hz(b)・sin(θhx(b)−θpx(b))−Lz(b)・sin(θsx)−2・Yo)
θlx(b)=θmx(b)−θsx−θhx(b)+θpx(b)
θly(b)=−θmy(b)−θsy+θhy(b)+θpy(b)
但し、Hz(b)は、軸心18aからレンズ後面31bの頂点までの距離、Lz(b)は、レンズの高さである。
From the above values and the position coordinates X m (b), Y m (b) of the optical axis A2 obtained by measuring the shape of the lens rear surface 31b, the true position coordinates X l (b), Y l (b) and tilt amounts θ lx (b) and θ ly (b) of the lens front surface 31f can be calculated. For Y l (b), an offset amount Y o due to the eccentricity of the axis 18a is taken into account.
X l (b) = X m (b) −H z (b) · sin (θ hy (b) − (− θ py (b))) − L z (b) · sin (−θ sy )
Y l (b) = − (Y m (b) −H z (b) · sin (θ hx (b) −θ px (b)) − L z (b) · sin (θ sx ) −2 · Y o )
θ lx (b) = θ mx (b) −θ sx −θ hx (b) + θ px (b)
θ ly (b) = − θ my (b) −θ sy + θ hy (b) + θ py (b)
However, H z (b) is the distance from the axis 18a to the apex of the lens rear surface 31b, and L z (b) is the height of the lens.

一般に、θが十分小さい時、sinθ≒θ,cosθ≒1であることが知られている。したがって、
sin(θa+θb)=θa+θb
とみなすことができ、偏心量Sを求めるには、Xl(f),Xl(b),Yl(f),Yl(b)はそれぞれ以下の形に近似してもよい。
l(f)=Xm(f)+Hz(f)・(θhy(f)+(θsy−θpy(f)) 1)
l(b)=Xm(b)−Hz(b)・(θhy(b)−(θsy−θpy(b)) 2)
l(f)=Ym(f)+Hz(f)・(θhx(f)+(θsx−θpx(f)) 3)
l(b)=−[Ym(b)−Hz(b)・(θhx(b)+(θsx−θpx(b))−2・Yo] 4)
In general, it is known that sin θ≈θ and cos θ≈1 when θ is sufficiently small. Therefore,
sin (θ a + θ b ) = θ a + θ b
In order to obtain the eccentricity S, X l (f), X l (b), Y l (f), and Y l (b) may be approximated to the following forms, respectively.
X l (f) = X m (f) + H z (f) · (θ hy (f) + (θ sy −θ py (f)) 1)
X l (b) = X m (b) −H z (b) · (θ hy (b) − (θ sy −θ py (b)) 2)
Y l (f) = Y m (f) + H z (f) · (θ hx (f) + (θ sx −θ px (f)) 3)
Y l (b) = − [Y m (b) −H z (b) · (θ hx (b) + (θ sx −θ px (b)) − 2 · Y o ] 4)

図5において、レンズ前面31fの光軸A1とレンズ後面31bの光軸A2との間の偏心量Sは、以下の式により求めることができる。
S=((Xl(f)−Xl(b))2+(Yl(f)−Yl(b))2)1/2 5)
また、レンズ前面31fとレンズ後面31bの相対的な傾き量であるレンズ面の倒れTx,Tyを、
x=θlx(f)−θlx(b) 6)
x=θly(f)−θly(b) 7)
として求めることができる。
In FIG. 5, the amount of eccentricity S between the optical axis A1 of the lens front surface 31f and the optical axis A2 of the lens rear surface 31b can be obtained by the following equation.
S = ((X l (f) −X l (b)) 2 + (Y l (f) −Y l (b)) 2 ) 1/2 5)
In addition, the lens surface tilts T x and T y , which are the relative tilt amounts of the lens front surface 31 f and the lens rear surface 31 b,
T x = θ lx (f) −θ lx (b) 6)
T x = θ ly (f) −θ ly (b) 7)
Can be obtained as

次に、図6を用いてレンズ31の偏心量を測定する際の手順について説明する。レンズ31の形状を測定する前に、治具12の較正データを得るための予備測定を行う。この予備測定では、座面19aの傾きと、回転ステージ17のステージ前面17f及びステージ後面17bの傾きとの差を求めることにより、(θsx−θpx(f)),(θsx−θpx(b)),(θsy−θpy(f)),(θsy−θpy(b))を算出する。また、真球35を用いて軸心18aのX軸に対する傾き量θzとオフセット量Yoを求める。 Next, a procedure for measuring the amount of eccentricity of the lens 31 will be described with reference to FIG. Before measuring the shape of the lens 31, a preliminary measurement for obtaining calibration data of the jig 12 is performed. In this preliminary measurement, (θ sx −θ px (f)), (θ sx −θ px ) is obtained by obtaining a difference between the inclination of the seating surface 19 a and the inclination of the stage front surface 17 f and the stage rear surface 17 b of the rotary stage 17. (B)), (θ sy −θ py (f)), (θ sy −θ py (b)) are calculated. Moreover, obtaining the inclination amount theta z and the offset amount Y o with respect to the X-axis of the axis 18a using a true sphere 35.

回転ステージ17にレンズホルダー19を取り付けた治具12を用意し、座面19aの形状を測定する。座面19aの形状測定値から演算部26によって求められる傾き量は、治具12の傾きθrとレンズ座面19aの傾きθsとを含んだ値である。次に、回転ステージ17に取り付けたレンズホルダー19にレンズ31とほぼ同じ直径の真球35を取り付け、真球35の表面形状を測定する。なお、真球35にはG10以上の等級の高い真球を使用する。偏心測定装置10では、プローブ11が触針13をX軸及びY軸に沿って十字状に移動させて物体表面を走査する。なお、触針13は、十字状の走査に限らず、ジグザグ状、放射状、同心円状に走査してもよく、非球面レンズの偏心測定を行う場合には、非球面の一部を十字状に1度走査するのみで十分である。 A jig 12 having a lens holder 19 attached to the rotary stage 17 is prepared, and the shape of the seating surface 19a is measured. Tilt amount obtained from the shape measurement of the seating surface 19a by the operation unit 26 is a value including the inclination theta s of inclination of the jig 12 theta r and the lens seat surface 19a. Next, a true sphere 35 having the same diameter as the lens 31 is attached to the lens holder 19 attached to the rotary stage 17, and the surface shape of the true sphere 35 is measured. The true sphere 35 is a true sphere having a grade of G10 or higher. In the eccentricity measuring apparatus 10, the probe 11 scans the object surface by moving the stylus 13 in a cross shape along the X axis and the Y axis. Note that the stylus 13 is not limited to the cross-shaped scanning, and may be scanned in a zigzag shape, a radial shape, or a concentric shape. When measuring the decentering of the aspherical lens, a part of the aspherical surface is shaped like a cross. It is sufficient to scan once.

図7(a)に示すように、プローブ11と回転ステージ17のステージ前面17fとが対面している状態で、プローブ11及び触針13を真球35に接近させ、真球35の表面の形状を測定する。演算部26では、真球35の測定値から真球35の頂点の座標XB(f)とYB(f)が算出される。位置決めピン23を取り外してハンドル20を操作し、回転ステージ17を180度反転させる。図7(b)に示すように、プローブ11及び触針13を回転ステージ17のステージ後面17bと対面させ、同様にして真球35の表面の形状を測定し、真球35のステージ後面17bにおける頂点の座標XB(b)とYB(b)が算出される。 As shown in FIG. 7A, in the state where the probe 11 and the stage front surface 17f of the rotary stage 17 face each other, the probe 11 and the stylus 13 are brought close to the true sphere 35, and the shape of the surface of the true sphere 35 is reached. Measure. In the calculation unit 26, the coordinates X B (f) and Y B (f) of the vertex of the true sphere 35 are calculated from the measured value of the true sphere 35. The positioning pin 23 is removed and the handle 20 is operated to invert the rotary stage 17 by 180 degrees. As shown in FIG. 7B, the probe 11 and the stylus 13 are made to face the stage rear surface 17b of the rotary stage 17, the shape of the surface of the true sphere 35 is measured in the same manner, and the true sphere 35 on the stage rear surface 17b is measured. Vertex coordinates X B (b) and Y B (b) are calculated.

図8において、プローブ11と回転ステージ17のステージ前面17fとが対面する第1測定位置と、ステージ後面17bと対面する第2測定位置とでそれぞれ算出された真球35の頂点座標XB(f),YB(f)とXB(b)とYB(b)より、軸心18aのX軸に対する傾き量θzとオフセット量Yoを算出する。θzは、
θz=90−tan-1((YB(f)−YB(b))/(XB(f)−XB(b)))
として算出され、YoはθzによりYB(f),YB(b)を補正したYB’(f)とYB’(b)を用い、
o=[(YB’(f)−YB’(b)]/2
として算出される。
In FIG. 8, the vertex coordinates X B (f) of the true sphere 35 calculated at the first measurement position where the probe 11 and the stage front surface 17f of the rotary stage 17 face each other and at the second measurement position where the probe rear surface 17b faces each other. ), Y B (f), X B (b), and Y B (b), an inclination amount θ z and an offset amount Y o with respect to the X axis of the axis 18a are calculated. θ z is
θ z = 90−tan −1 ((Y B (f) −Y B (b)) / (X B (f) −X B (b)))
Is calculated as, Y o is used Y B by θ z (f), Y B (b) Y B corrected for '(f) and Y B' (b),
Y o = [(Y B ′ (f) −Y B ′ (b)] / 2
Is calculated as

図9において、位置決めピン23を外し、回転ステージ17を180度反転させて元に戻し、レンズホルダー19にセットした真球35を取り外す。レンズホルダー19に偏心量Sを測定するレンズ31をセットし、回転ステージ17のステージ前面17fの形状測定を行う(図9(a))。この測定によって、ステージ前面17fの水平度を表す傾き量θh(f)の各成分θhx(f),θhy(f)が求められる。先に測定した座面19aの傾き量をθh(f)から差し引くことにより、(θsx−θpx(f)),(θsy−θpy(f))を算出することができる。以下の説明では、
θsx−θpx(f)=θspx(f)
θsy−θpy(f)=θspy(f)
とする。
In FIG. 9, the positioning pin 23 is removed, the rotary stage 17 is inverted 180 degrees and returned to its original position, and the true sphere 35 set on the lens holder 19 is removed. The lens 31 for measuring the eccentricity S is set in the lens holder 19, and the shape of the stage front surface 17f of the rotary stage 17 is measured (FIG. 9A). By this measurement, each component θ hx (f), θ hy (f) of the tilt amount θ h (f) indicating the level of the stage front surface 17f is obtained. (Θ sx −θ px (f)) and (θ sy −θ py (f)) can be calculated by subtracting the previously measured inclination amount of the seating surface 19a from θ h (f). In the description below,
θ sx −θ px (f) = θ spx (f)
θ sy −θ py (f) = θ spy (f)
And

次に、レンズ前面31fの形状を測定する(図9(b))。レンズ前面31fの形状が測定されると、その測定値と設計値とが演算部26により比較され、レンズ前面31fの光軸A1の座標Xm(f),Ym(f),Zm(f)とその傾き量θmx(f),θmy(f)が算出される。 Next, the shape of the lens front surface 31f is measured (FIG. 9B). When the shape of the lens front surface 31f is measured, the measured value and the design value are compared by the calculation unit 26, and the coordinates X m (f), Y m (f), Z m (of the optical axis A1 of the lens front surface 31f are compared. f) and the inclination amounts θ mx (f), θ my (f) are calculated.

位置決めピン23を外し、回転ステージ17を180度反転させて第2測定位置にセットする。プローブ11及び触針13をレンズ後面31bに接近させ、レンズ後面31bの形状を測定する(図9(c))。演算部26により、レンズ後面31bの光軸A2の座標Xm(b),Ym(b),Zm(b)と、傾き量θmx(b),θmy(b)が算出される。次に、ステージ後面17bの形状測定を行い(図9(d))、ステージ後面17bの傾き量θhx(b),θhy(b)が算出される。先に測定した座面19aの傾き量と、θh(b)とから、(θsx−θpx(b)),(θsy−θpy(b))を算出することができる。以下の説明では、
θsx−θpx(b)=θspx(b)
θsy−θpy(b)=θspy(b)
とする。
The positioning pin 23 is removed, and the rotary stage 17 is inverted 180 degrees and set at the second measurement position. The probe 11 and the stylus 13 are brought close to the lens rear surface 31b, and the shape of the lens rear surface 31b is measured (FIG. 9C). The calculation unit 26 calculates coordinates X m (b), Y m (b), Z m (b) of the optical axis A2 of the lens rear surface 31b, and inclination amounts θ mx (b), θ my (b). . Next, the shape of the stage rear surface 17b is measured (FIG. 9D), and the tilt amounts θ hx (b) and θ hy (b) of the stage rear surface 17b are calculated. (Θ sx −θ px (b)) and (θ sy −θ py (b)) can be calculated from the inclination amount of the seating surface 19a measured earlier and θ h (b). In the description below,
θ sx −θ px (b) = θ spx (b)
θ sy −θ py (b) = θ spy (b)
And

このようにして各値を求めた後、光軸A1,A2の位置座標(Xm(f),Ym(f),Zm(f)),(Xm(b),Ym(b),Zm(b))にθzによる補正演算を行う。なお、θzを考慮する必要のない場合は、上記測定結果によって求められた値を1)〜4)式に代入すればよい。θzによる補正では、光軸A1,A2のZ軸成分は不変であるから、補正後の光軸A1の位置座標を(Xm’(f),Ym’(f),Zm(f))、光軸A2の位置座標を((Xm’(b),Ym’(b),Zm(b))とすると、各光軸の座標のX軸成分とY軸成分は、それぞれ一般的な回転の写像として求められ、
m’(f)=cos(θz)・Xm(f)+sin(θz)・Ym(f)
m’(f)=−sin(θz)・Xm(f)+cos(θz)・Ym(f)
m’(b)=cos(θz)・Xm(b)+sin(θz)・Ym(b)
m’(b)=−sin(θz)・Xm(b)+cos(θz)・Ym(b)
となる。
After obtaining each value in this way, the position coordinates (X m (f), Y m (f), Z m (f)), (X m (b), Y m (b ), a correction operation is performed by theta z in Z m (b)). If it is not necessary to consider θ z , the value obtained from the measurement result may be substituted into the formulas 1) to 4). θ in accordance with correction z, since Z-axis component of the optical axis A1, A2 is unchanged, the position coordinates of the optical axis A1 of the corrected (X m '(f), Y m' (f), Z m (f )), the position coordinates of the optical axis A2 ((X m '(b ), Y m' (b), when the Z m (b)), X-axis component and Y axis component of the coordinates of each optical axis, Each is required as a general rotation map,
X m ′ (f) = cos (θ z ) · X m (f) + sin (θ z ) · Y m (f)
Y m ′ (f) = − sin (θ z ) · X m (f) + cos (θ z ) · Y m (f)
X m ′ (b) = cos (θ z ) · X m (b) + sin (θ z ) · Y m (b)
Y m ′ (b) = − sin (θ z ) · X m (b) + cos (θ z ) · Y m (b)
It becomes.

また、θzによって補正を行ったθm(f),θm(f)の各成分を(θmx’(f),θmy’(f)),(θmx’(b),θmy’(b))とすると、
θmx’(f)=tan-1(−tan(θmy(f))・sin(θz))+tan(θmx(f))・cos(θz))
θmy’(f)=tan-1(tan(θmy(f))・cos(θz))+tan(θmx(f))・sin(θz))
θmx’(b)=tan-1(−tan(θmy(b))・sin(θz))+tan(θmx(b))・cos(θz))
θmy’(b)=tan-1(tan(θmy(b))・cos(θz))+tan(θmx(b))・sin(θz))
となる。
Further, each component of θ m (f) and θ m (f) corrected by θ z is expressed as (θ mx '(f), θ my ' (f)), (θ mx '(b), θ my '(B))
θ mx '(f) = tan −1 (−tan (θ my (f)) · sin (θ z )) + tan (θ mx (f)) · cos (θ z ))
θ my '(f) = tan −1 (tan (θ my (f)) · cos (θ z )) + tan (θ mx (f)) · sin (θ z ))
θ mx '(b) = tan −1 (−tan (θ my (b)) · sin (θ z )) + tan (θ mx (b)) · cos (θ z ))
θ my '(b) = tan −1 (tan (θ my (b)) · cos (θ z )) + tan (θ mx (b)) · sin (θ z ))
It becomes.

また、同様にしてθh(f)とθh(b)についても補正を行う。θzによる補正がなされたθh’(f)とθh’(b)の各成分を(θhx’(f),θhy’(f)),(θhx’(b),θhy’(b))とすると、
θhx’(f)=tan-1(−tan(θhy(f))・sin(θz))+tan(θhx(f))・cos(θz))
θhy’(f)=tan-1(tan(θhy(f))・cos(θz))+tan(θhx(f))・sin(θz))
θhx’(b)=tan-1(−tan(θhy(b))・sin(θz))+tan(θhx(b))・cos(θz))
θhy’(b)=tan-1(tan(θhy(b))・cos(θz))+tan(θhx(b))・sin(θz))
となる。なお、θspx(f),θspy(f),θspx(b),θspy(b)は、θh’(f)とθh’(b)とからθspx’(f),θspy’(f),θspx’(b),θspy’(b)として算出される。
Similarly, θ h (f) and θ h (b) are also corrected. The components of θ h ′ (f) and θ h ′ (b) corrected by θ z are expressed as (θ hx ′ (f), θ hy ′ (f)), (θ hx ′ (b), θ hy '(B))
θ hx '(f) = tan −1 (−tan (θ hy (f)) · sin (θz)) + tan (θ hx (f)) · cos (θ z ))
θ hy '(f) = tan -1 (tan (θ hy (f)) · cos (θz)) + tan (θ hx (f)) · sin (θ z ))
θ hx ′ (b) = tan −1 (−tan (θ hy (b)) · sin (θz)) + tan (θ hx (b)) · cos (θ z ))
θ hy ′ (b) = tan −1 (tan (θ hy (b)) · cos (θz)) + tan (θ hx (b)) · sin (θ z ))
It becomes. Note that θ spx (f), θ spy (f), θ spx (b), θ spy (b) are obtained from θ h ′ (f) and θ h ′ (b) by θ spx ′ (f), θ It is calculated as spy '(f), θ spx ' (b), θ spy '(b).

以上の補正処理を行った後、上記1)〜4)式に各値を代入することでレンズ前面31fの光軸A1とレンズ後面31bの光軸A2について真の位置座標が算出される。
l(f)=Xm’(f)+Hz(f)・(θhy’(f)+θspy’(f))
l(f)=Ym’(f)+Hz(f)・(θhx’(f)+θspx’(f))
l(b)=Xm’(b)−Hz(b)・(θhy’(b)−(θspy’(b))
l(b)=−[Ym’(b)−Hz(b)・(θhx’(b)+(θspx’(b))−2・Yo]
θlx(f)=θmx’(f)−θhx’(f)+θspx’(f)
θly(f)=θmy’(f)−θhy’(f)−θspy’(f)
θlx(b)=θmx’(b)−θhx’(b)−θspx’(b)
θly(b)=−θmy’(b)+θhy’(b)−θspy’(b)
5)〜7)式から偏心量S,レンズ面の相対的な傾き量(レンズ面の倒れ)Tx,Tyが求められる。以下に測定例を示す。
After performing the above correction processing, the true position coordinates are calculated with respect to the optical axis A1 of the lens front surface 31f and the optical axis A2 of the lens rear surface 31b by substituting each value into the above formulas 1) to 4).
X l (f) = X m ′ (f) + H z (f) · (θ hy ′ (f) + θ spy ′ (f))
Y l (f) = Y m ′ (f) + H z (f) · (θ hx ′ (f) + θ spx ′ (f))
X l (b) = X m ′ (b) −H z (b) · (θ hy ′ (b) − (θ spy ′ (b))
Y l (b) = − [Y m ′ (b) −H z (b) · (θ hx ′ (b) + (θ spx ′ (b)) − 2 · Y o ]
θ lx (f) = θ mx '(f) −θ hx ' (f) + θ spx '(f)
θ ly (f) = θ my '(f) −θ hy ' (f) −θ spy '(f)
θ lx (b) = θ mx '(b) −θ hx ′ (b) −θ spx ′ (b)
θ ly (b) = − θ my ′ (b) + θ hy ′ (b) −θ spy ′ (b)
From the equations 5) to 7), the decentering amount S and the relative tilt amounts (lens surface tilt) T x and T y of the lens surface are obtained. A measurement example is shown below.

Figure 2006119121
Figure 2006119121

なお、θzは治具12を動かす又は交換することがない限り、同じ値を用いることができ、θsp(f),θsp(b),Yoは、レンズホルダー19を交換しない限り同じ値を用いることができるので、2回目以降の測定では、図6に示す測定手順の一部を省略することができる。すなわち、同じ形状の異なるレンズを測定する場合、ステップ1〜ステップ7を省略し、ステップ8以降のみを行えばよく、測定に要する時間を短縮できる。 Note that the same value can be used for θ z unless the jig 12 is moved or replaced, and θ sp (f), θ sp (b), and Y o are the same unless the lens holder 19 is replaced. Since values can be used, a part of the measurement procedure shown in FIG. 6 can be omitted in the second and subsequent measurements. That is, when measuring different lenses having the same shape, steps 1 to 7 may be omitted, and only steps 8 and after may be performed, and the time required for measurement can be shortened.

また、θsp(f),θsp(b)の値を求めるには、座面19aと回転ステージ17のステージ前面17fとステージ後面17bの形状測定を行う以外にも、2つの方法が考えられる。第1の方法は、レンズと同形、かつ平坦性が保証された円板をレンズホルダー19に取り付け、この円板の形状とステージ両面の形状を測定して、それらの差を算出することによりθsp(f),θsp(b)を求めるものである。 Further, in order to obtain the values of θ sp (f) and θ sp (b), there are two methods other than measuring the shapes of the seating surface 19a, the stage front surface 17f of the rotary stage 17, and the stage rear surface 17b. . In the first method, a disk having the same shape as the lens and with a guaranteed flatness is attached to the lens holder 19, the shape of the disk and the shape of both surfaces of the stage are measured, and the difference between them is calculated. sp (f), θ sp (b) is obtained.

第2の方法は、偏心や面の倒れがない精度の高い両面非球面レンズを使用するものである。この両面非球面レンズをレンズホルダー19に取り付け、ステップ9〜ステップ13を行う。これにより、レンズ面の倒れθm(f,0)とθm(b,0)と回転ステージ17の傾き量θh(f,0)とθh(b,0)とが求められる。また、レンズホルダー19から両面非球面レンズを取り外し、これを180度回転させてレンズホルダー19に再び取り付ける。同様にして、ステップ9〜13を行い、θm(f,180),θm(b,180),θh(f,180)とθh(b,180)が求められ、以下の式によりθspx(f),θspy(f),θspx(b) θspy(b)を算出できる。
θspx(f)=[(θmx(f,0)+θmx(f,180))−(θhx(f,0)+θhx(f,180))]/2
θspy(f)=[(θmy(f,0)+θmy(f,180))−(θhy(f,0)+θhy(f,180))]/2
θspx(b)=[(θmx(b,0)+θmx(b,180))−(θhx(b,0)+θhx(b,180))]/2
θspy(b)=−[(θmy(b,0)+θmy(b,180))−(θhy(b,0)+θhy(b,180))]/2
The second method uses a double-sided aspheric lens with high accuracy that is free from decentration and surface tilt. The double-sided aspheric lens is attached to the lens holder 19 and Steps 9 to 13 are performed. Thereby, the tilts θ m (f, 0) and θ m (b, 0) of the lens surface and the tilt amounts θ h (f, 0) and θ h (b, 0) of the rotary stage 17 are obtained. Also, the double-sided aspheric lens is removed from the lens holder 19, rotated 180 degrees, and attached to the lens holder 19 again. Similarly, steps 9 to 13 are performed, and θ m (f, 180), θ m (b, 180), θ h (f, 180) and θ h (b, 180) are obtained. θ spx (f), θ spy (f), θ spx (b) θ spy (b) can be calculated.
θ spx (f) = [(θ mx (f, 0) + θ mx (f, 180)) − (θ hx (f, 0) + θ hx (f, 180))] / 2
θ spy (f) = [(θ my (f, 0) + θ my (f, 180)) − (θ hy (f, 0) + θ hy (f, 180))] / 2
θ spx (b) = [(θ mx (b, 0) + θ mx (b, 180)) − (θ hx (b, 0) + θ hx (b, 180))] / 2
θ spy (b) = − [(θ my (b, 0) + θ my (b, 180)) − (θ hy (b, 0) + θ hy (b, 180))] / 2

また、オフセット量Yoを求めるにあたり、真球35を用いない方法として、十分な面精度を有する両面非球面レンズを用いる方法が考えられる。この非球面レンズをレンズホルダー19に取り付け、ステップ9〜ステップ13を行い、上述の4)式のYoを0としてXm(f,0),Ym(f,0),Xm(b,0),Ym(b,0)を求める。また、レンズホルダー19から両面非球面レンズを取り外して180度回転して、再びレンズホルダー19に取り付けてステップ9〜ステップ13を行い、Xm(f,180),Ym(f,180),Xm(b,180),Ym(b,180)を求める。Yoを求めるためには、Ym(f,0),Ym(b,0),Ym(f,180),Ym(b,180)の4つの値を下記の式に代入すればよい。
o=[Ym(f,0)−Ym(b,0)+Ym(f,180)−Ym(b,180)]
Further, in obtaining the offset amount Y o , as a method not using the true sphere 35, a method using a double-sided aspheric lens having sufficient surface accuracy is conceivable. Attach the aspheric lens in the lens holder 19 performs the step 9 to step 13, as X m 0 to Y o of the above 4) (f, 0), Y m (f, 0), X m (b , 0), Y m (b, 0). Further, the double-sided aspheric lens is removed from the lens holder 19 and rotated 180 degrees, and is attached to the lens holder 19 again, and Steps 9 to 13 are performed, and X m (f, 180), Y m (f, 180), X m (b, 180) and Y m (b, 180) are obtained. In order to obtain Y o , four values Y m (f, 0), Y m (b, 0), Y m (f, 180), and Y m (b, 180) are substituted into the following equation. That's fine.
Y o = [Y m (f, 0) −Y m (b, 0) + Y m (f, 180) −Y m (b, 180)]

なお、本発明においては、回転軸18と支持台16の軸受け部分とのガタをなくすために、支持台16の軸受け部分に回転軸18を付勢するバネ等を設けてもよく、測定の精度を高めることを目的に、治具12の細部に種々の工夫を施すのが好適である。また、測定するレンズを保持するためには、レンズホルダー19の上方からレンズ押さえ板21のバネ力で挟持する以外にも、レンズホルダー19に設けた穴から空気を吸引してレンズの縁をレンズホルダーに固定させる、又はレンズをレンズホルダー19に接着して固定する等など適宜の手段を用いることができる。また、回転ステージ17を回転させる際には手動に限らず、自動で行われるようにしてもよい。さらに、回転ステージ17の平面測定にレーザー干渉計等の光学的な測定手段を使用してもよい。   In the present invention, in order to eliminate backlash between the rotating shaft 18 and the bearing portion of the support base 16, a spring or the like for biasing the rotating shaft 18 may be provided on the bearing portion of the support base 16. For the purpose of improving, it is preferable to apply various devices to the details of the jig 12. Further, in order to hold the lens to be measured, in addition to holding the lens holder 19 from above with the spring force of the lens pressing plate 21, air is sucked from a hole provided in the lens holder 19 so that the edge of the lens is positioned on the lens. Appropriate means such as fixing to the holder or attaching the lens to the lens holder 19 and fixing can be used. Further, when rotating the rotary stage 17, it is not limited to manual operation but may be performed automatically. Furthermore, an optical measuring means such as a laser interferometer may be used for planar measurement of the rotary stage 17.

本発明は、両面非球面レンズの偏心測定のみならず、球面の外径を正確に測定することを前提として、片面非球面レンズや球面レンズの偏心測定に利用してもよく、眼鏡用レンズの測定に用いてもよい。あるいは、図10に示すように、自由曲面等からなる曲面が形成された偏心光学部材50のように厳密な光軸が定義されない広義のレンズの形状測定に利用してもよく、この場合、偏心光学部材50曲面S1の特徴点として、最高点P1或いは最低点P2の頂点座標を求め、曲面S2の特徴点として、最高点P3或いは最低点P4の頂点座標を求め、これらの特徴点の位置ズレが設計値に対してどの程度の食い違いを生じているかによって曲面S1と曲面S2の相対的な位置ズレ量を測定してもよい。なお、1つの光学面上に複数の錐体が設けられた光学部材のように、複数の不連続な平面又は曲面から成り立つ光学面についても広義の曲面とし、固有の特徴点が定められる光学面を有するものであれば、本発明を適用することが可能である。   The present invention may be used not only for measuring the eccentricity of a double-sided aspheric lens but also for measuring the eccentricity of a single-sided aspherical lens or a spherical lens on the premise that the outer diameter of the spherical surface is accurately measured. It may be used for measurement. Alternatively, as shown in FIG. 10, it may be used to measure the shape of a lens in a broad sense in which a strict optical axis is not defined, such as an eccentric optical member 50 having a curved surface formed of a free curved surface or the like. The vertex coordinates of the highest point P1 or the lowest point P2 are obtained as the feature points of the optical member 50 curved surface S1, the vertex coordinates of the highest point P3 or the lowest point P4 are obtained as feature points of the curved surface S2, and the positional deviation of these feature points is obtained. The relative positional deviation amount between the curved surface S1 and the curved surface S2 may be measured depending on how much discrepancy is generated with respect to the design value. In addition, an optical surface consisting of a plurality of discontinuous planes or curved surfaces, such as an optical member in which a plurality of cones are provided on one optical surface, is a curved surface in a broad sense and an optical surface on which unique feature points are determined. The present invention can be applied as long as it has.

また、レンズ以外にも、柱体の側面に曲面を形成したプリズムや鏡面を有する光学部材、宝石や石材等のガラスと異なる物質からなる透明体又は不透明体の形状測定に用いることができる。また、表面形状を測定する光学部材は、180度の回転ごとに固定できるものに限らず、90度又は45度ごとのように様々な回転角度で光学部材の測定位置が固定できるようにし、様々な形状の光学部材の形状測定を可能にすることが好適である。さらに、本発明において使用する表面形状測定装置は、原子間力に基づく走査変位から表面形状を測定するものに限らず、触針13と光学部材がともに導電性を有している場合にはトンネル電流を利用した表面形状測定を行ってもよく、各種の走査型プローブを用いた測定を行ってもよく、光学部材の曲面各部にレーザー等の光や電磁波を照射し、その反射光や透過光から表面形状を測定する非接触・光学式の測定を行ってもよい。   In addition to the lens, it can be used for measuring the shape of a transparent body or an opaque body made of a material different from glass, such as an optical member having a prism or a mirror surface with a curved surface on the side surface of a pillar, or glass such as gemstone or stone. In addition, the optical member for measuring the surface shape is not limited to one that can be fixed every rotation of 180 degrees, and the measurement position of the optical member can be fixed at various rotation angles such as every 90 degrees or 45 degrees. It is preferable to be able to measure the shape of an optical member having a simple shape. Furthermore, the surface shape measuring apparatus used in the present invention is not limited to the one that measures the surface shape from the scanning displacement based on the interatomic force. If both the stylus 13 and the optical member have conductivity, the surface shape measuring device is a tunnel. Surface shape measurement using electric current may be performed, measurement using various scanning probes may be performed, light such as laser or electromagnetic waves is irradiated to each curved surface portion of the optical member, and reflected light or transmitted light thereof is irradiated. Non-contact / optical measurement for measuring the surface shape may be performed.

偏心測定装置を概略的に示す斜視図である。It is a perspective view showing an eccentricity measuring device roughly. 治具の側断面図である。It is a sectional side view of a jig. 治具が有する誤差の種類を示す説明図である。It is explanatory drawing which shows the kind of error which a jig | tool has. レンズ及び治具に固有の各係数を示す説明図である。It is explanatory drawing which shows each coefficient intrinsic | native to a lens and a jig | tool. 偏心量を算出する原理を示す説明図である。It is explanatory drawing which shows the principle which calculates the amount of eccentricity. 偏心量を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the amount of eccentricity. 較正データを求めるために真球の表面を測定する様子を示す回転ステージの断面図である。It is sectional drawing of the rotation stage which shows a mode that the surface of a true sphere is measured in order to obtain | require calibration data. θzとYoを算出する原理を示す説明図である。It is explanatory drawing which shows the principle which calculates (theta) z and Yo . レンズとステージ表面を測定する様子を示す回転ステージの断面図である。It is sectional drawing of the rotation stage which shows a mode that a lens and the stage surface are measured. 一般的なレンズと異なる光学部材を示す断面図である。It is sectional drawing which shows the optical member different from a general lens.

符号の説明Explanation of symbols

10 偏心測定装置
11 プローブ
12 治具
13 触針
16 支持台
17 回転ステージ
17f ステージ前面
17b ステージ後面
18 回転軸
18a 軸心
19 レンズホルダー
19a 座面
26 演算部
31 レンズ
31f レンズ前面
31b レンズ後面
35 真球
A1 光軸
A2 光軸
DESCRIPTION OF SYMBOLS 10 Eccentricity measuring apparatus 11 Probe 12 Jig 13 Stitch 16 Support stand 17 Rotating stage 17f Stage front surface 17b Stage rear surface 18 Rotating shaft 18a Axis center 19 Lens holder 19a Seat surface 26 Arithmetic unit 31 Lens 31f Lens front surface 31b Lens rear surface 35 True sphere A1 Optical axis A2 Optical axis

Claims (7)

物体の表面形状を測定する表面形状測定手段により、複数の曲面を有する光学部材の各曲面の形状を測定し、各曲面が有する特徴点の位置をそれぞれ求め、前記特徴点の位置を比較して各曲面間の位置ズレの大きさを測定する光学部材の形状測定方法において、
前記光学部材を保持するための保持体を、回転軸を介して支持体に軸支させ、
前記保持体を回転することにより、前記表面形状測定手段による形状測定の可能な測定位置に各曲面を変位させ、
各測定位置で前記曲面の表面形状をそれぞれ測定し、求められた特徴点の位置から各曲面間の位置ズレの大きさを測定することを特徴とする光学部材の形状測定方法。
The surface shape measuring means for measuring the surface shape of the object measures the shape of each curved surface of the optical member having a plurality of curved surfaces, obtains the position of each feature point on each curved surface, and compares the position of the feature point In the method of measuring the shape of the optical member for measuring the size of the positional deviation between the curved surfaces,
A holding body for holding the optical member is pivotally supported on a support body via a rotation shaft,
By rotating the holding body, each curved surface is displaced to a measurement position where shape measurement by the surface shape measurement means is possible,
A method for measuring a shape of an optical member, wherein the surface shape of the curved surface is measured at each measurement position, and the size of the positional deviation between the curved surfaces is measured from the position of the obtained feature point.
前記保持体に保持させた真球の形状を前記表面形状測定手段により各測定位置で測定し、求められた真球の頂点の位置から前記回転軸の偏心量を算出し、回転軸の偏心量に基づいて前記各曲面の特徴点の位置を補正することを特徴とする請求項1記載の光学部材の形状測定方法。   The shape of the true sphere held by the holding body is measured at each measurement position by the surface shape measuring means, and the amount of eccentricity of the rotating shaft is calculated from the obtained position of the vertex of the true sphere, and the amount of eccentricity of the rotating shaft 2. The method of measuring the shape of an optical member according to claim 1, wherein the position of the feature point of each curved surface is corrected based on the above. 前記形状測定手段による測定値と前記曲面の設計値とを比較して、各曲面の測定基準面に対する傾き量をそれぞれ算出し、求められた2つの傾き量の差に基づいて前記特徴点の位置を補正することを特徴とする請求項1又は2記載の光学部材の形状測定方法。   The measured value by the shape measuring means and the design value of the curved surface are compared to calculate the amount of inclination of each curved surface with respect to the measurement reference surface, and the position of the feature point is based on the difference between the two obtained inclination amounts. The shape measuring method of an optical member according to claim 1 or 2, wherein 前記傾き量は、前記保持体に形成された平面部の傾きと、前記光学部材の一部を当接させる平坦な座面部の傾きとの差から算出することを特徴とする請求項3記載の光学部材の形状測定方法。   The inclination amount is calculated from a difference between an inclination of a flat surface portion formed on the holding body and an inclination of a flat seat surface portion that makes a part of the optical member contact. A method for measuring the shape of an optical member. 前記光学部材は、光軸を中心として回転対称な2つの非球面を有する両面非球面レンズであり、前記保持体を180度回転させて各非球面の光軸との交点を前記特徴点として求めるとともに、
前記表面形状測定手段により各非球面の一部分の形状を測定した形状測定値を、各曲面の設計値と比較することにより前記交点の位置を算出し、非球面間の偏心量を求めることを特徴とする請求項1ないし4にいずれか1つ記載の光学部材の形状測定方法。
The optical member is a double-sided aspherical lens having two aspherical surfaces that are rotationally symmetric with respect to the optical axis. The holding member is rotated 180 degrees to obtain the intersection point with each aspherical optical axis as the feature point. With
The shape measurement value obtained by measuring the shape of a part of each aspheric surface by the surface shape measuring means is compared with the design value of each curved surface, thereby calculating the position of the intersection and obtaining the amount of eccentricity between the aspheric surfaces. The shape measuring method of an optical member according to any one of claims 1 to 4.
前記表面形状測定手段は、物体表面との距離を一定に保ちながら触針を変位させて表面形状を測定するプローブを備えていることを特徴とする請求項1ないし5にいずれか1つ記載の光学部材の形状測定方法。   6. The surface shape measuring means includes a probe for measuring a surface shape by displacing a stylus while keeping a distance from an object surface constant. A method for measuring the shape of an optical member. 物体の表面を走査してその形状を測定する形状測定手段と、複数の曲面が形成された光学部材を保持する保持体と、回転軸を介して前記保持体を回転自在に支持し、各曲面形状の測定が可能な位置に前記光学部材を変位させる支持手段とを備えたことを特徴とする光学部材の形状測定装置。
Shape measuring means for scanning the surface of an object and measuring the shape thereof, a holding body for holding an optical member on which a plurality of curved surfaces are formed, and the holding body are rotatably supported via a rotating shaft. An optical member shape measuring apparatus comprising: a supporting means for displacing the optical member at a position where the shape can be measured.
JP2005220502A 2004-09-21 2005-07-29 Shape measurement method and device for optical member Pending JP2006119121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220502A JP2006119121A (en) 2004-09-21 2005-07-29 Shape measurement method and device for optical member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004272962 2004-09-21
JP2005220502A JP2006119121A (en) 2004-09-21 2005-07-29 Shape measurement method and device for optical member

Publications (1)

Publication Number Publication Date
JP2006119121A true JP2006119121A (en) 2006-05-11

Family

ID=36537127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220502A Pending JP2006119121A (en) 2004-09-21 2005-07-29 Shape measurement method and device for optical member

Country Status (1)

Country Link
JP (1) JP2006119121A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258612A (en) * 2005-03-17 2006-09-28 Mitsutoyo Corp Inter-axis angle correction method
JP2009002771A (en) * 2007-06-21 2009-01-08 Nsk Ltd Article shape measuring method and measuring apparatus
JP2010008192A (en) * 2008-06-26 2010-01-14 Mitsutoyo Corp Fixture for measuring shape of object to be measured and method for measuring three-dimensional shape
CN102538738A (en) * 2010-12-13 2012-07-04 鸿富锦精密工业(深圳)有限公司 Device for measuring eccentricity of optical component
CN104359446A (en) * 2014-11-26 2015-02-18 天润曲轴股份有限公司 Supporting and locating device for measurement of profile tolerance of inner bore of connecting rod
JP5898822B1 (en) * 2016-01-29 2016-04-06 株式会社ミラック光学 Work holding device and dovetail sliding stage with work holding device
CN106164641A (en) * 2014-03-31 2016-11-23 柯尼卡美能达株式会社 The mensuration fixture of optical element, eccentric determinator and eccentric assay method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258612A (en) * 2005-03-17 2006-09-28 Mitsutoyo Corp Inter-axis angle correction method
JP2009002771A (en) * 2007-06-21 2009-01-08 Nsk Ltd Article shape measuring method and measuring apparatus
JP2010008192A (en) * 2008-06-26 2010-01-14 Mitsutoyo Corp Fixture for measuring shape of object to be measured and method for measuring three-dimensional shape
CN102538738A (en) * 2010-12-13 2012-07-04 鸿富锦精密工业(深圳)有限公司 Device for measuring eccentricity of optical component
CN106164641A (en) * 2014-03-31 2016-11-23 柯尼卡美能达株式会社 The mensuration fixture of optical element, eccentric determinator and eccentric assay method
CN106164641B (en) * 2014-03-31 2018-09-21 柯尼卡美能达株式会社 The measurement fixture of optical element, eccentric measurement device and eccentric assay method
CN104359446A (en) * 2014-11-26 2015-02-18 天润曲轴股份有限公司 Supporting and locating device for measurement of profile tolerance of inner bore of connecting rod
JP5898822B1 (en) * 2016-01-29 2016-04-06 株式会社ミラック光学 Work holding device and dovetail sliding stage with work holding device

Similar Documents

Publication Publication Date Title
US8296098B2 (en) Metrological instrument
JP2002357415A (en) Apparatus and method for measuring shape, method for manufacturing object to be measured
JP2004317159A (en) Reference holder for roundness measuring machines
JP7045194B2 (en) Lens measuring device and lens measuring method
EP2138803B1 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
JP2012063338A (en) Sphere shape measuring device
CN106796104B (en) Form measuring instrument and form measuring method
TWI387721B (en) Three-dimensional profile inspecting apparatus
US7142313B2 (en) Interaxis angle correction method
JP2006119121A (en) Shape measurement method and device for optical member
JP2003057026A (en) Alignment adjusting apparatus for probe, measuring machine equipped therewith and alignment adjusting method for probe
CN101413788B (en) Surface topography measuring method and device thereof
CN101413787B (en) Appearance detection device capable of adjusting inclination angle
CN109737876B (en) A laser and optical composite probe measurement method and device
JP2018059733A (en) Three-dimentional shape measurement system
JP2009514188A (en) Facet mirror and method of manufacturing mirror facet
CN101408405B (en) Optical aspheric measuring system and its platform
JP2002243431A (en) Wafer warpage measurement method
JPS61144541A (en) Optical component eccentricity measuring device
CN201387316Y (en) Two-dimensional graphics roundness measuring device
JP3940819B2 (en) Semiconductor wafer surface shape measuring apparatus and surface shape measuring method
TWI375139B (en)
JP7553816B2 (en) Shape measuring machine and alignment method therefor
JP2006090719A (en) Shape-measuring apparatus and shape-measuring method using it
JP4309727B2 (en) Measuring jig and three-dimensional shape measuring method using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A712