[go: up one dir, main page]

JPS61144541A - Optical component eccentricity measuring device - Google Patents

Optical component eccentricity measuring device

Info

Publication number
JPS61144541A
JPS61144541A JP26614884A JP26614884A JPS61144541A JP S61144541 A JPS61144541 A JP S61144541A JP 26614884 A JP26614884 A JP 26614884A JP 26614884 A JP26614884 A JP 26614884A JP S61144541 A JPS61144541 A JP S61144541A
Authority
JP
Japan
Prior art keywords
measured
measuring device
laser interference
eccentricity
interference device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26614884A
Other languages
Japanese (ja)
Other versions
JPH0613999B2 (en
Inventor
Masamichi Takeshita
竹下 正道
Shoki Eguchi
江口 昭喜
Toshiji Sakuma
利治 佐久間
Hisao Inage
久夫 稲毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26614884A priority Critical patent/JPH0613999B2/en
Publication of JPS61144541A publication Critical patent/JPS61144541A/en
Publication of JPH0613999B2 publication Critical patent/JPH0613999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure efficiently an eccentric quantity, etc. of a lens without touching them by providing a laser interference device and a sample placing base which can be displaced, and moving the sample placing base so that the center axis of an object to be measured and the optical axis of the laser interference device coincide with each other. CONSTITUTION:An eccentricity measuring device is constituted of a laser interference device 1 having a reference lens 4, sample placing base 10 consisting of a rotary base 10a which can turn around a Z axis, Y moving base 10b and an X moving base 10c, displacement measuring instrument 7 having a contact 7b, X moving measuring instrument 13x, Y moving extent measuring instrument and converged light display devices 5a, 5b, etc. In such a state, an object to be measured 8 having an aspherical lens surface 9 is placed on the rotary base 10a, the contact 7b is made to contact to its side face, and thereafter, the center axis of the object to be measured 8 and the optical axis of the interference device 1 are made to coincide with each other, and an eccentric quantity is measured by a moving extent of the placing plate 10 of the time when a reflected image of a laser beam reflected on the display devices 5a, 5b has coincided with the center of the display devices 5a, 5b.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光学部品の偏心測定装置に係り、特にレンズ
面の偏心量、すなわち、レンズ面での、レンズの光軸と
中心軸とのずれ量、およびまたおれ”、すなわち、前記
光軸と中心軸とのなす傾斜角を測定するに好適な、光学
部品の偏心測定装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an eccentricity measuring device for optical components, and in particular, to measuring the eccentricity of a lens surface, that is, the deviation between the optical axis and the central axis of the lens on the lens surface. The present invention relates to an optical component eccentricity measuring device suitable for measuring the angle of inclination between the optical axis and the central axis.

〔発明の背景〕[Background of the invention]

従来の、レンズの偏心測定−置は、特開昭48−595
6号公報に記載されているように、透過光によりて、1
枚のレンズままたはレンズ系の偏心を測定するものであ
りた。、このように、透過光を使用しているため、1枚
のレンズの片面や、たとえばプラスチックレンズの成形
に供せられる金型のレンズ成形面の偏心量およびまたお
れ”を測定することはで・きなかった。
The conventional method for measuring lens eccentricity is disclosed in Japanese Patent Application Laid-open No. 48-595.
As described in Publication No. 6, 1
It was used to measure the eccentricity of a lens or lens system. In this way, since transmitted light is used, it is not possible to measure the eccentricity and deflection of one side of a single lens or, for example, the lens molding surface of a mold used for molding plastic lenses.・I couldn't come.

透過光を使用しない測定、装置として、三次元測定測定
器があるが、この三次元測定器での測定は、接触式であ
るので、触針によってレンズ面を損傷するおそれがある
のみならず、測定に長時間を要して測定効率が悪いとい
う問題点もあった。
There is a three-dimensional measuring device as a measurement device that does not use transmitted light, but since the measurement with this three-dimensional measuring device is a contact method, there is not only a risk of damaging the lens surface with the stylus. There was also the problem that measurement took a long time and measurement efficiency was poor.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した従来技術の問題点を改善して、レン
ズの片面の偏心量およびまたおれ”を、非接触で、効率
よく測定することができる光学部品の偏心測定装置の提
供を、その目的とするものである。
The present invention improves the problems of the prior art described above and provides an optical component eccentricity measuring device that can efficiently measure the eccentricity and deflection of one side of a lens in a non-contact manner. This is the purpose.

〔発明の概要〕[Summary of the invention]

本発明に係る光学部品の偏心測定装置の構成は、2方向
に光軸を有し、この方向に移動可能なレーザ干渉装置と
、2軸まわりに回動可能で、X方向、Y方向へ移動可能
で、且つXZ面、Y2面内で傾斜可能な、被測定物を載
置固定することができる試料搭載台と、この試料搭載台
のX方向、Y方向の移動量を測定することができる移動
厚測定器と、該試料搭載台をXZ面、YZ面内で傾斜さ
せ、その傾斜量を表示することができる傾斜つまみと、
該試料搭載台に載置固定された被測定物のX方向の変位
を測定することができる、前記レーザ干渉装置と一体に
設けられた変位測定器と、前記レーザ干渉装置から放射
され被測定物の表面で収束する収束レーザ光の反射像、
干渉縞外周線を表示することができる表示装置とを具備
せしめるようにしたものである。
The configuration of the eccentricity measurement device for optical components according to the present invention includes a laser interference device that has optical axes in two directions and is movable in these directions, and a laser interference device that is rotatable around two axes and moves in the X and Y directions. A sample mounting table that can be tilted in the XZ plane and Y2 plane, on which the object to be measured can be placed and fixed, and the amount of movement of this sample mounting table in the X and Y directions can be measured. a movable thickness measuring device, a tilting knob capable of tilting the sample mounting table in the XZ plane and the YZ plane and displaying the amount of tilt;
a displacement measuring device that is provided integrally with the laser interference device and is capable of measuring the displacement in the X direction of the object to be measured that is placed and fixed on the sample mounting stage; The reflected image of the convergent laser beam converging on the surface of
The present invention is equipped with a display device capable of displaying the outer peripheral line of interference fringes.

〔発明の実施例〕[Embodiments of the invention]

実施例の説明に入るまえに、本発明に係る基本的事項を
説明する。
Before entering into the description of the embodiments, basic matters related to the present invention will be explained.

透過光では測定不可能な金型のレンズ成形面や、レンズ
片面の測定を可能にするため、本発明の光学部品の偏心
測定装置は、レーザ干渉装置を使用して、被測定物であ
るレンズ面へ照射したレーザ光の反射像を、表示装置で
捕えるようにした。そして、被゛測定物を載置する試料
搭載台を、前記レーザ干渉装置の光軸まわりに回動可能
で、該光軸と垂直な面内において移動可能で、且つ面外
へ傾斜可能に構成した。また、前記レーザ干渉装置と一
体に、被測定物の変位を測定することができる変位測定
器を設けるようにした。
In order to make it possible to measure the lens molding surface of a mold or one side of a lens, which cannot be measured with transmitted light, the optical component eccentricity measuring device of the present invention uses a laser interference device to measure the lens molding surface of the object to be measured. A display device captures the reflected image of the laser beam irradiated onto the surface. The sample mounting table on which the object to be measured is placed is configured to be rotatable around the optical axis of the laser interference device, movable in a plane perpendicular to the optical axis, and tiltable out of the plane. did. Further, a displacement measuring device capable of measuring the displacement of the object to be measured is provided integrally with the laser interference device.

このように構成したものにおいて、被測定物の側面に接
触せしめた前記変位測定器を前記レーザ干渉装置の光軸
方向に沿って上下方向へ移動させたとき、その変位量が
ほとんど変化しなくなるように、前記試料搭載台の傾き
を修正する。これにより、被測定物の中心軸と前記レー
ザ干渉装置の光軸とが平行になる。次に、前記試料搭載
台を回動させたとき、前記変位測定器の目盛変化が最も
小さくなるように、該試料搭載台をその面内で移動させ
る。これにより、被測定物の中心軸と前記レーザ干渉装
置の光軸とが一致する。
With this configuration, when the displacement measuring device that is in contact with the side surface of the object to be measured is moved in the vertical direction along the optical axis direction of the laser interference device, the amount of displacement hardly changes. Then, correct the inclination of the sample mounting stage. Thereby, the central axis of the object to be measured and the optical axis of the laser interference device become parallel. Next, when the sample mounting table is rotated, the sample mounting table is moved within its plane so that a change in the scale of the displacement measuring device is minimized. Thereby, the central axis of the object to be measured and the optical axis of the laser interference device are aligned.

前記表示装置に映った反射像が表示装置中心位置と一致
するように、前記試料搭載台を移動せしめたときの、そ
の移動量が偏心量であり、また、前記反射像の中心近傍
の干渉縞が同心円になるように、該試料搭載台を傾斜せ
しめたときの、その傾斜角がまたおれ”である。
When the sample mounting stage is moved so that the reflected image reflected on the display device coincides with the center position of the display device, the amount of movement is the amount of eccentricity, and the interference fringe near the center of the reflected image is The angle of inclination when the sample mounting stage is tilted so that it becomes a concentric circle is the angle of inclination.

本発明は、上記した基本的事項に基づいてなされたもの
である。
The present invention has been made based on the above-mentioned basic matters.

以下、実施例によりて説明する。Examples will be described below.

第1図は、本発明の一実施例に係る、光学部品の偏心測
定装置の側面図、第2図は、第1図に係る光学部品の偏
心測定装置の平面図、第3図は、第1[におけるレーザ
干渉装置からのレーザ光とその反射状態を示す部分側面
図、第4図は、第1図における被測定物の中心軸と光軸
との位置関係を示す部分側面図、第5図は、他の被測定
物(非球面)の中心軸と光軸、たおれとの関係を示す部
分側面図である。
FIG. 1 is a side view of an optical component eccentricity measuring device according to an embodiment of the present invention, FIG. 2 is a plan view of the optical component eccentricity measuring device according to FIG. 1, and FIG. 1 is a partial side view showing the laser beam from the laser interference device and its reflection state, FIG. 4 is a partial side view showing the positional relationship between the central axis of the object to be measured and the optical axis in FIG. The figure is a partial side view showing the relationship between the central axis, optical axis, and sag of another object to be measured (aspherical surface).

図において、1は、2方向(第1図において上下方向)
に光軸を有し、レーザ光を収束するためのリファレンス
レンズ4を具備したレーザ干渉装置であり、このレーザ
干渉装置1は、その支持アーム2部によって、支持台1
4に立てられた支持ロッド3に2方向に移動可能に取付
けられている。10は、前記支持台14上に、支持枠1
9によって支持された試料搭載台であって、この試料搭
載台10は、2軸まわりに回動可能な回転台10αと、
X移動台10bとX移動台10eとを具備し、前記回転
台10α上に被測定物8を載置固定することができるよ
うになっている。11は、この回転台10αを回動させ
るに使用される、試料搭載台10に取付けられたモータ
、12xは、該試料搭載台10をX方向へ移動させるに
使用される。X移動台10Cに取付けられたX移動つま
み、12yは、該試料搭載台10をY方向へ移動させる
に使用される、X移動台10bに取付けられたX移動つ
まみである。19.fは、試料搭載台10をXZ面内で
傾斜させ、その傾斜量を表示することができる傾斜つま
みに係るXZ面傾斜つまみ、19yは、試料搭載台10
をXZ面内で傾斜させ、その傾斜量を表示することがで
きる傾斜つまみに係るYZ面傾斜つまみである。7は、
試料搭載台10に載置固定された被測定物8のX方向の
変位を測定することができる、触子7bを有する変位測
定器であって、この変位測定器7は、前記レーザ干渉装
置1に取付けた支持バー6によって、該レーザ干渉装置
1に一体に取付けられている。13x 、 1syは、
いずれも支持台14に立てられ、それぞれ試料搭載台1
0のX方向、Y方向の移動量を測定することができるX
移動量測定器、X移動量測定器である。
In the figure, 1 stands for 2 directions (vertical direction in Figure 1)
This laser interference device is equipped with a reference lens 4 for converging laser light, and has an optical axis at
It is attached to a support rod 3 erected at 4 so as to be movable in two directions. 10 is a support frame 1 mounted on the support stand 14.
The sample mounting table 10 is supported by a rotary table 10α that is rotatable around two axes;
It is equipped with an X-movement table 10b and an X-movement table 10e, and the object to be measured 8 can be placed and fixed on the rotary table 10α. Reference numeral 11 denotes a motor attached to the sample mounting table 10, which is used to rotate the rotary table 10α, and 12x is used to move the sample mounting table 10 in the X direction. The X-movement knob 12y attached to the X-movement table 10C is an X-movement knob attached to the X-movement table 10b, which is used to move the sample mounting table 10 in the Y direction. 19. f is an XZ plane tilt knob that can tilt the sample mounting table 10 in the XZ plane and display the amount of tilt; 19y is the sample mounting table 10;
This is a YZ plane tilting knob that can tilt in the XZ plane and display the amount of tilt. 7 is
A displacement measuring instrument having a probe 7b capable of measuring the displacement in the X direction of an object to be measured 8 mounted and fixed on a sample mounting stage 10, and this displacement measuring instrument 7 is connected to the laser interference device 1. It is integrally attached to the laser interference device 1 by a support bar 6 attached to the laser interference device 1. 13x, 1sy are
Both are placed on a support stand 14, and each sample mounting stand 1
X that can measure the amount of movement of 0 in the X and Y directions
These are a movement amount measuring device and an X movement amount measuring device.

16は、前記レーザ干渉装置1から放射され、被測定物
8の表面に係るレンズ面9で収束する収束レーザ光、5
α、5bは、それぞれ、この収束レーザ光16の反射像
17.干渉縞外周41i18を表示することができる収
束光表示装置、干渉縞表示装置である。
16 is a convergent laser beam emitted from the laser interference device 1 and converged on the lens surface 9 on the surface of the object to be measured 8;
α, 5b are the reflected images 17. of this convergent laser beam 16, respectively. This is a convergent light display device and an interference fringe display device that can display the outer circumference 41i18 of interference fringes.

このように構成した光学部品の偏心測定装置の動作を、
まずレンズ面9が球面である被測定物8の場合について
説明する。
The operation of the eccentricity measuring device for optical components configured in this way is as follows.
First, the case of the object to be measured 8 in which the lens surface 9 is a spherical surface will be described.

この被測定物8を試料搭載台10の回転台10α上に搭
載して固定する。支持アーム2および変位測定器アーム
7αを調整して、被測定物8の側面に変位測定器7の触
子7bを触接させる@支捺アーム2を支持pラド3に沿
りて上下動させたとき1前記変位測定器7の変位表示が
変化しなくなるように1Xz面傾斜つまみ19J、YZ
面傾斜つまみ19/を調整して試料搭載台10の傾きを
修正する。これによりて、被測定物8の中心軸とレーザ
干渉装置1の光軸とが平行になる。
The object to be measured 8 is mounted and fixed on the rotary table 10α of the sample mounting table 10. Adjust the support arm 2 and the displacement measuring device arm 7α to bring the contactor 7b of the displacement measuring device 7 into contact with the side surface of the object to be measured 8.@Move the supporting arm 2 up and down along the support plate 3. When 1
Adjust the surface inclination knob 19/ to correct the inclination of the sample mounting stage 10. Thereby, the central axis of the object to be measured 8 and the optical axis of the laser interference device 1 become parallel.

モータ11を駆動して前記回転台10cLを回動させた
とき、前記変位測定器7の変位表示が所定値(予め設定
した被測定物8の外形誤差、たとえば2μm)になるよ
うに、X移動つまみ12x。
When the rotary table 10cL is rotated by driving the motor 11, the X movement is performed so that the displacement display of the displacement measuring device 7 becomes a predetermined value (a preset external shape error of the object 8, for example, 2 μm). Knobs 12x.

X移動つまみ1231を調整する。これによって、被測
定物8の中心軸とレーザ干渉装置1の光軸とが一致する
Adjust the X movement knob 1231. As a result, the central axis of the object to be measured 8 and the optical axis of the laser interference device 1 are aligned.

レーザ干渉装置1をONにし、リファレンスレンズ4を
調整して、該レーザ干渉装置1からのレーザ光をレンズ
面9に収束させる(第3図鬼収束レーザ光16はレンズ
面9で反射し、この反射像が収束光表示装@ 5 aお
よび干渉縞表示装置5bに表示される。この収束レーザ
光の反射像17は、第3図に示すように、表示装置5a
の中心位置15gからずれている。
The laser interference device 1 is turned ON, the reference lens 4 is adjusted, and the laser beam from the laser interference device 1 is converged on the lens surface 9 (Fig. The reflected image is displayed on the convergent light display device @5a and the interference fringe display device 5b.The reflected image 17 of this convergent laser beam is displayed on the display device 5a as shown in FIG.
It is shifted from the center position 15g.

ところで、被測定物8のレンズ面9は球面であるので、
その光軸20は、第4図に示すように、レンズ面9の最
も高い位置を通り、中心軸21と平行であり、“たおれ
、は存在しない。そして、前反射像17は、レンズ面9
の最も高い位置の像であるので、第3図における、収束
光表示装置5aの中心位置15Lと反射像17とのずれ
量が、第4図に示される偏心量22である。
By the way, since the lens surface 9 of the object to be measured 8 is a spherical surface,
As shown in FIG. 4, the optical axis 20 passes through the highest position of the lens surface 9 and is parallel to the central axis 21, and there is no "sagging".
Since it is the image at the highest position, the amount of deviation between the center position 15L of the convergent light display device 5a and the reflected image 17 in FIG. 3 is the eccentricity amount 22 shown in FIG.

したがって、反射像17が収束光表示装置5αの中心位
置15(Lと一致するように、X移動つまみ12&、X
移動つまみ12yを操作して、そのときのX移動量測定
器13&、X移動量測定器1!Byの測定量をマイコン
(図示せず)へ入力すれば、所望の偏心量22が計算さ
れる。
Therefore, the X movement knob 12&,
By operating the movement knob 12y, the X movement amount measuring device 13 &, X movement amount measuring device 1! By inputting the measured amount of By to a microcomputer (not shown), a desired eccentricity amount 22 is calculated.

次に、レンズ面9人が非球面である被測定物8A(第5
図)の場合について説明する。
Next, the object to be measured 8A (fifth lens) whose lens surface is aspherical
The case shown in Figure) will be explained.

被測定物8人の中心軸21Aとレーザ干渉装置1の光軸
とを一致させる動作は、前述した被測定物8(レンズ面
9が球面)の場合と同様である。また、レーザ干渉装置
1を動作させて、収束光表示装置5α、干渉縞表示装置
5hに収束レーザ光の反射像17.干渉縞を表示させる
方法も同様である。
The operation of aligning the central axes 21A of the eight objects to be measured with the optical axis of the laser interference device 1 is the same as in the case of the object to be measured 8 (the lens surface 9 is spherical) described above. Further, by operating the laser interference device 1, the reflected image 17 of the convergent laser beam is displayed on the convergent light display device 5α and the interference fringe display device 5h. The method for displaying interference fringes is also similar.

ところで、被測定物8Aのレンズ面9Aは非球面である
ので、その光軸20Aは1本だけ存在し、また、球面の
場合と異なり、光軸2OAは、偏心j122Aとまたお
れ、23とが存在する。そこでXZ面傾斜つまみ192
とYZ面傾斜つまみ15’3/とを動作させて、またお
れ、を減少させる。
By the way, since the lens surface 9A of the object to be measured 8A is an aspherical surface, there is only one optical axis 20A, and unlike the case of a spherical surface, the optical axis 2OA is located between the eccentricity j122A and the 23. exist. Therefore, the XZ plane tilt knob 192
and YZ plane inclination knob 15'3/ to reduce the sag.

”たおれ、の減少にともない、モータ11によって回動
する被測定物8Aの反射像17.干渉縞外周@18の動
きが小さくなり、またおれ、のなくなりたとき静止する
。このときのXZ面傾斜つまみ19!、YZ面傾斜つま
み193Tに表示された傾斜量を前記マイコンへ入力す
れば、所望の”たおれ、23が計算される。X移動っま
み12x。
As the sagging decreases, the reflected image 17 of the object to be measured 8A rotated by the motor 11.The movement of the outer periphery of the interference fringes @18 becomes smaller, and it comes to rest when the sagging disappears.The XZ plane inclination at this time By inputting the amount of inclination displayed on the knob 19! and the YZ plane inclination knob 193T to the microcomputer, the desired "sag, 23" is calculated. X movement mamami 12x.

X移動つまみ12yを動作させて、試料搭載台1゜を移
動させ、反射像17.干渉縞同心円18の中心をそれぞ
れ表示装置中心15α、15bに一致させる。そのとき
のX移動量測定器135.X移動量測定器13yの測定
量を前記マイコンへ入力すれば、所望の偏心量22Aが
計算される。
Operate the X movement knob 12y to move the sample mounting stage 1°, and reflect the reflected image 17. The centers of the interference fringe concentric circles 18 are made to coincide with the display device centers 15α and 15b, respectively. X movement amount measuring device 135 at that time. By inputting the measured amount of the X movement amount measuring device 13y to the microcomputer, the desired eccentricity amount 22A is calculated.

具体的数値を述べると、偏心量の許容値は通常10μm
程度であり、本実施例装置を使用することにより、α3
μm/本の干渉縞単位の測定が可能である。。
To give specific figures, the allowable amount of eccentricity is usually 10 μm.
By using the device of this embodiment, α3
Measurement can be performed in units of μm/interference fringe. .

以上説明した実施例によれば、従来から行なわれている
透過光による測定では不可能であった、金型のレンズ成
形面やレンズ片面の偏心量。
According to the embodiments described above, the amount of eccentricity of the lens molding surface of the mold or one side of the lens, which was impossible to measure using conventional transmitted light.

またおれ、の測定が、レーザ光を使用することにより可
能となった。レーザ光の利用は、同時に、非接触での測
定が可能であり、三次元測定機等の接触式測定と異なり
、レンズ面全面を一時に測定できるので、測定時間の大
幅な短縮を図ることができ、また接触式のような触針の
接触による表面損傷を防止できるという効果がある。
In addition, the measurement of pores has become possible by using laser light. At the same time, the use of laser light enables non-contact measurement, and unlike contact-type measurements such as those using coordinate measuring machines, the entire lens surface can be measured at once, significantly shortening the measurement time. It also has the effect of preventing surface damage caused by contact with the stylus, as in the case of a contact type.

また、被測定物の外形をレーザ干渉装置1の光軸と平行
もしくは一致させることができるので該被測定物゛の、
外形に対するレンズ面−回毎の偏心量、′たおれおの測
定が可能になり、金型のレンズ成形面の偏心修正時等に
、修正すべき内容と量を的確に示すことができる。
In addition, since the outer shape of the object to be measured can be made parallel or coincident with the optical axis of the laser interference device 1, the outer shape of the object to be measured can be
It becomes possible to measure the amount of eccentricity and tilt of the lens surface relative to the outer shape, and it is possible to accurately indicate the content and amount to be corrected when correcting the eccentricity of the lens molding surface of the mold.

加うるに、これまでの測定法で、分離して捕えていなか
ったレンズ面の偏心量とまたおれ、とを分離できるので
、金型のレンズ成形面の偏心修正時などにも効果がある
In addition, since it is possible to separate the amount of eccentricity and waviness of the lens surface, which were not captured separately in the conventional measurement methods, it is also effective when correcting the eccentricity of the lens molding surface of a mold.

なお、本実施例においては、変位測定器7を1個だけ設
けるようにしたが、複数個の変位測定器7を、支持パー
6に取付けて2方向(上。
In this embodiment, only one displacement measuring device 7 is provided, but a plurality of displacement measuring devices 7 are attached to the support par 6 in two directions (upward and downward directions).

下方向)に配設するようにすれば、被測定物8の中心軸
とレーザ干渉装置1の光軸とを平行にする場合、支持ア
ーム2を上下動させる必要がないので、測定の効率゛が
さらに肉上するとい・う利点がある。
If the central axis of the object to be measured 8 and the optical axis of the laser interference device 1 are parallel to each other, there is no need to move the support arm 2 up and down, which improves measurement efficiency. It has the advantage of increasing the meat even further.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、レンズの片
面の偏心量およびまたゎみ、を、非接触で1効率よく測
定することができる、光学部品の偏心測定装置を提供す
ることができる。
As described in detail above, according to the present invention, it is possible to provide an optical component eccentricity measuring device that can efficiently measure the eccentricity and deflection of one side of a lens in a non-contact manner. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る、光学部品の偏心測
定装置の側面図、第2図は、第1図に係る光学部品の偏
心測定装置の平面図、第3図は、第1図におけるレーザ
干渉装置からのレーザ光とその反射状態を示す部分側面
図、第4図は、第1図における被測定物の中心軸と光軸
との位置関係を示す部分側面図、第5図は、他の被測定
物(非球面)の中心軸と光軸、たおれとの関係を示す部
分側面図である。 1・・・レーザ干渉装置、5α・・・収束光表示装置、
5b・・・干渉縞表示装置、7・・・変位測定器、8゜
8A・・・被測定物、10・・・試料搭載台、10α・
・・回・私金、1ab−・・X移動台51QC−X移動
台、11・・・モータ、12x・・・X移動つまみ、1
2y・・・X移動つまみ、15.f−・・X移動量測定
器、13y・・・X移動量測定器、17・・・収束レー
ザ光の反射像、18・・・干渉縞外周線、19x・・・
XZ面傾斜つまみ、19y・・・XZ面傾斜つまみ、2
2,22A・・・偏心量、23・・・たおれ。 代理人弁理士 高  橋  明  失 業1図 茗2 図
FIG. 1 is a side view of an optical component eccentricity measuring device according to an embodiment of the present invention, FIG. 2 is a plan view of the optical component eccentricity measuring device according to FIG. 1, and FIG. 1 is a partial side view showing the laser beam from the laser interference device and its reflection state; FIG. 4 is a partial side view showing the positional relationship between the central axis of the object to be measured and the optical axis in FIG. 1; The figure is a partial side view showing the relationship between the central axis, optical axis, and sag of another object to be measured (aspherical surface). 1... Laser interference device, 5α... Convergent light display device,
5b... Interference fringe display device, 7... Displacement measuring device, 8° 8A... Measured object, 10... Sample mounting stand, 10α.
...times, private money, 1ab-...X moving table 51QC-X moving table, 11...motor, 12x...X moving knob, 1
2y...X movement knob, 15. f--X movement amount measuring device, 13y...
XZ plane inclined knob, 19y...XZ plane inclined knob, 2
2, 22A... Eccentricity, 23... Fall. Representative Patent Attorney Akira Takahashi Unemployment 1 Figure Mei 2 Figure

Claims (1)

【特許請求の範囲】 1、Z方向に光軸を有し、この方向に移動可能なレーザ
干渉装置と、Z軸まわりに回動可能で、X方向、Y方向
へ移動可能で、且つXZ面、YZ面内で傾斜可能な、被
測定物を載置固定することができる試料搭載台と、この
試料搭載台のX方向、Y方向の移動量を測定することが
できる移動量測定器と、該試料搭載台をXZ面、YZ面
内で傾斜させ、その傾斜量を表示することができる傾斜
つまみと、該試料搭載台に載置固定された被測定物のX
方向の変位を測定することができる、前記レーザ干渉装
置と一体に設けられた変位測定器と、前記レーザ干渉装
置から放射され被測定物の表面で収束する収束レーザ光
の反射像、干渉縞外周線を表示することができる表示装
置とを具備したことを特徴とする光学部品の偏心測定装
置。 2、変位測定器を、Z方向に複数個設けたものである特
許請求の範囲第1項記載の光学部品の偏心測定装置。
[Claims] 1. A laser interference device that has an optical axis in the Z direction and is movable in this direction, and a laser interference device that is rotatable around the Z axis and movable in the X and Y directions, and that is movable in the XZ plane. , a sample mounting table capable of tilting in the YZ plane and capable of mounting and fixing an object to be measured, and a movement amount measuring device capable of measuring the amount of movement of this sample mounting table in the X direction and the Y direction; A tilt knob that can tilt the sample mounting table in the XZ plane and YZ plane and display the amount of inclination, and an X
a displacement measuring device that is integrated with the laser interference device and is capable of measuring displacement in a direction; a reflected image of a convergent laser beam emitted from the laser interference device and converged on the surface of the object to be measured; and an outer periphery of interference fringes. 1. A device for measuring eccentricity of an optical component, comprising: a display device capable of displaying a line. 2. The eccentricity measuring device for an optical component according to claim 1, wherein a plurality of displacement measuring devices are provided in the Z direction.
JP26614884A 1984-12-19 1984-12-19 Deviation measuring device for optical components Expired - Lifetime JPH0613999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26614884A JPH0613999B2 (en) 1984-12-19 1984-12-19 Deviation measuring device for optical components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26614884A JPH0613999B2 (en) 1984-12-19 1984-12-19 Deviation measuring device for optical components

Publications (2)

Publication Number Publication Date
JPS61144541A true JPS61144541A (en) 1986-07-02
JPH0613999B2 JPH0613999B2 (en) 1994-02-23

Family

ID=17426963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26614884A Expired - Lifetime JPH0613999B2 (en) 1984-12-19 1984-12-19 Deviation measuring device for optical components

Country Status (1)

Country Link
JP (1) JPH0613999B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296132A (en) * 1988-05-24 1989-11-29 Olympus Optical Co Ltd Non spherical lens eccentricity measuring apparatus
US5548396A (en) * 1993-08-13 1996-08-20 Ricoh Company, Ltd. Method and apparatus for measuring eccentricity of aspherical lens having an aspherical surface on only one lens face
JP2009265050A (en) * 2008-04-30 2009-11-12 Konica Minolta Opto Inc Eccentricity measuring method and eccentricity measuring device
CN109000885A (en) * 2018-05-22 2018-12-14 歌尔股份有限公司 The detection method and device of camera lens and display screen assembling
CN109163679A (en) * 2018-07-27 2019-01-08 东莞市凯融光学科技有限公司 Method for measuring mechanical eccentricity of image type mold core
CN110793455A (en) * 2018-08-01 2020-02-14 株式会社三丰 Roundness measuring device, measurement guide system, and measurement guide method
CN112444214A (en) * 2020-11-20 2021-03-05 叶莉娟 Laser detection early warning method for eccentric rotation of rotating shaft

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296132A (en) * 1988-05-24 1989-11-29 Olympus Optical Co Ltd Non spherical lens eccentricity measuring apparatus
US5548396A (en) * 1993-08-13 1996-08-20 Ricoh Company, Ltd. Method and apparatus for measuring eccentricity of aspherical lens having an aspherical surface on only one lens face
JP2009265050A (en) * 2008-04-30 2009-11-12 Konica Minolta Opto Inc Eccentricity measuring method and eccentricity measuring device
CN109000885A (en) * 2018-05-22 2018-12-14 歌尔股份有限公司 The detection method and device of camera lens and display screen assembling
CN109163679A (en) * 2018-07-27 2019-01-08 东莞市凯融光学科技有限公司 Method for measuring mechanical eccentricity of image type mold core
CN110793455A (en) * 2018-08-01 2020-02-14 株式会社三丰 Roundness measuring device, measurement guide system, and measurement guide method
CN112444214A (en) * 2020-11-20 2021-03-05 叶莉娟 Laser detection early warning method for eccentric rotation of rotating shaft

Also Published As

Publication number Publication date
JPH0613999B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
CN105627947B (en) A kind of measuring method and its measurement apparatus of the unknown aspheric surface error of rotational symmetry
US20110258867A1 (en) Surface measurement instrument and method
EP2177870B1 (en) Optical wave interference measuring apparatus
EP2138803B1 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
US8059278B2 (en) Optical wave interference measuring apparatus
JPS61144541A (en) Optical component eccentricity measuring device
JP2000266534A (en) Surface profile measuring apparatus, inclination adjuster therefor and method for adjusting attitude of object
JPH1151624A (en) Surface shape measuring instrument
CN209674117U (en) A kind of optical mirror slip assembly device
CN113203553B (en) A lens center error measuring system and measuring method
JP6800442B2 (en) 3D shape measurement system
CN118565387A (en) High-precision auto-collimation device with automatic calibration function and measurement method
CN117718801A (en) Hemispherical harmonic oscillator ion beam trimming tool setting device and method based on white light interferometer and machine tool measuring head
JP3702733B2 (en) Alignment method and mechanism of optical inspection apparatus
US4653911A (en) Autocollimation method and apparatus
CN109341587A (en) Splicing measuring device and method
JP2006119121A (en) Shape measurement method and device for optical member
JPH10260008A (en) Stage device, coordinate measuring device, and position measuring method
EP4402431A1 (en) Swing arm profilometer and method of measurement with this profilometer
JPH11211426A (en) Surface form measuring device
US2883905A (en) Optical contour gauging apparatus
JPH07229812A (en) Decentering measuring device and centering device for aspherical lens
JP2014202589A (en) Surface interval measurement device
TWI375139B (en)
CN111043990B (en) An autocollimator and method of using the same