JP2005332993A - 半導体装置および半導体装置の製造方法 - Google Patents
半導体装置および半導体装置の製造方法 Download PDFInfo
- Publication number
- JP2005332993A JP2005332993A JP2004150270A JP2004150270A JP2005332993A JP 2005332993 A JP2005332993 A JP 2005332993A JP 2004150270 A JP2004150270 A JP 2004150270A JP 2004150270 A JP2004150270 A JP 2004150270A JP 2005332993 A JP2005332993 A JP 2005332993A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- forming
- layer
- pair
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 124
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 56
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 102
- 125000006850 spacer group Chemical group 0.000 claims abstract description 72
- 238000000034 method Methods 0.000 claims abstract description 62
- 239000012535 impurity Substances 0.000 claims abstract description 47
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 27
- 238000002955 isolation Methods 0.000 claims abstract description 21
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 63
- 239000013078 crystal Substances 0.000 claims description 33
- 239000000758 substrate Substances 0.000 claims description 15
- 239000012212 insulator Substances 0.000 claims description 7
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 65
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 65
- 230000010354 integration Effects 0.000 abstract description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 239000010703 silicon Substances 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 209
- 229910052751 metal Inorganic materials 0.000 description 61
- 239000002184 metal Substances 0.000 description 61
- 229910052581 Si3N4 Inorganic materials 0.000 description 56
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 56
- 238000005530 etching Methods 0.000 description 54
- 229910017052 cobalt Inorganic materials 0.000 description 29
- 239000010941 cobalt Substances 0.000 description 29
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 29
- 239000010409 thin film Substances 0.000 description 12
- 229910052785 arsenic Inorganic materials 0.000 description 9
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 9
- 238000001312 dry etching Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000001459 lithography Methods 0.000 description 5
- 239000005360 phosphosilicate glass Substances 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 238000007630 basic procedure Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000004335 scaling law Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/025—Manufacture or treatment forming recessed gates, e.g. by using local oxidation
- H10D64/027—Manufacture or treatment forming recessed gates, e.g. by using local oxidation by etching at gate locations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
- H10D30/0321—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon
- H10D30/0323—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon comprising monocrystalline silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6704—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
- H10D30/6713—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes
- H10D30/6715—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes characterised by the doping profiles, e.g. having lightly-doped source or drain extensions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6704—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
- H10D30/6725—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device having supplementary regions or layers for improving the flatness of the device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/6737—Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
- H10D30/6739—Conductor-insulator-semiconductor electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/018—Spacers formed inside holes at the prospective gate locations, e.g. holes left by removing dummy gates
Landscapes
- Thin Film Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
【課題】 半導体装置の微細化および集積化を容易なプロセスで実現する。
【解決手段】 本発明の半導体装置の製造方法は、埋め込み酸化膜14上のSOI層16を側壁が垂直な一対の素子分離領域40で素子分離する工程と、素子分離されたSOI層16の上に多結晶シリコン層50を成膜する工程と、多結晶シリコン層50に不純物を注入する工程と、多結晶シリコン層50の上にシリコン酸化膜60を成膜する工程と、ゲート形成領域のシリコン酸化膜60および多結晶シリコン層50を選択的に除去し、さらにゲート形成領域のSOI層16を一定深さまで選択的に除去して凹部を形成する工程と、この凹部の側壁にサイドウォールスペーサ80を形成する工程と、多結晶シリコン層50からSOI層16に不純物を拡散させてソースドレイン領域を形成する工程と、凹部の底部にゲート絶縁膜74を形成した後、ゲートメタル層76を成膜してゲート電極を形成する工程と、を備える。
【選択図】図3
【解決手段】 本発明の半導体装置の製造方法は、埋め込み酸化膜14上のSOI層16を側壁が垂直な一対の素子分離領域40で素子分離する工程と、素子分離されたSOI層16の上に多結晶シリコン層50を成膜する工程と、多結晶シリコン層50に不純物を注入する工程と、多結晶シリコン層50の上にシリコン酸化膜60を成膜する工程と、ゲート形成領域のシリコン酸化膜60および多結晶シリコン層50を選択的に除去し、さらにゲート形成領域のSOI層16を一定深さまで選択的に除去して凹部を形成する工程と、この凹部の側壁にサイドウォールスペーサ80を形成する工程と、多結晶シリコン層50からSOI層16に不純物を拡散させてソースドレイン領域を形成する工程と、凹部の底部にゲート絶縁膜74を形成した後、ゲートメタル層76を成膜してゲート電極を形成する工程と、を備える。
【選択図】図3
Description
本発明は、半導体装置およびその製造方法に関する。より具体的には、本発明はエレベーテッド・ソースドレイン構造を有する電界効果トランジスタおよび製造方法に関する。
近年、半導体集積回路の高集積化が進展するのにともない、シリコン基板上に形成されるMOS型電界効果トランジスタ(MOSFET)がスケーリング則にしたがって微細化されている。このため、チャネル形成領域の不純物濃度が上がるとともに、MOSFETのゲート電極に電圧を印加したときに生じる反転層がより薄くなり、チャネルを流れる電子が界面散乱の影響をより受けやすくなっている。また、ソースドレイン接合容量が増加し、これがMOSFETの高速動作の妨げとなっている。
これらの解決手段として、SOI (Si-On-Insulator) と呼ばれる薄い半導体を絶縁膜上に設けた構造に形成したSOI MOSFETが知られている(たとえば、非特許文献1参照)。
Intel Technology Journal,Vol.6,Issue 2
Intel Technology Journal,Vol.6,Issue 2
従来の技術では、界面散乱が増えるため、MOSFETの重要な性能である易動度を上げることが困難になっている。また、ソースドレイン接合容量が増え、速い動作を妨げる。これを解決する手段の一つにエレベーテッドソースドレイン構造SOIFETがあるが、従来のDST等では十分な集積化を容易なプロセスで実現することが困難である。
たとえば、非特許文献1に記載のSOI MOSFETは、ソースドレインをエレベーティッド構造にすることにより寄生抵抗の低減が図られている。しかし、ソースドレインのエレベーテッド構造の実現にはエピプロセスを要しているため、製造プロセスが複雑化する。また、ソースドレインの側壁が傾斜するので、半導体装置の微細化および集積化を追求する上で不利となっている。
本発明はこうした課題に鑑みてなされたものであり、その目的は、半導体装置の微細化および集積化を容易なプロセスで実現する半導体装置の製造方法、およびその技術を用いて製造された半導体装置の提供にある。
本発明の半導体装置のある態様は、絶縁膜上に設けられた半導体層を有する基板と、前記基板に形成された一対の素子分離領域に挟まれた部分に、垂直にせり上げられたソース領域およびドレイン領域と、ソース領域およびドレイン領域の内側の側壁にそれぞれ設けられた第1および第2の絶縁膜と、前記第1の絶縁膜と前記第2の絶縁膜との間に、ゲート絶縁膜で絶縁されたゲート電極と、を備えることを特徴とする。
なお、上記態様において、前記ソース領域と前記ゲート電極との間に介在するソース側壁絶縁膜と、前記ドレイン領域と前記ゲート電極との間に介在するドレイン側壁絶縁膜と、前記ソース側壁絶縁膜の下に形成され、前記ソース領域と接合するソースエクステンション領域と、前記ドレイン側壁絶縁膜の下に形成され、前記ドレイン領域と接合するドレインエクステンション領域と、をさらに備えてもよく、また、前記ゲート絶縁膜が、ハフニウム、ジルコニウムまたはアルミニウムを含んでもよい。半導体装置がいわゆるhigh-k膜を用いたエレベーテッドソースドレイン構造を有することにより、ソースドレイン抵抗が低減され、短チャネル効果にも強くなる。
本発明の半導体装置の製造方法のある態様は、絶縁膜上の単結晶シリコン層を側壁が垂直な一対の素子分離領域で素子分離する工程と、素子分離された前記単結晶シリコン層の上に多結晶シリコン層を成膜する工程と、前記多結晶シリコン層に不純物を注入する工程と、前記多結晶シリコン層の上に絶縁膜を成膜する工程と、ゲート形成領域の前記絶縁膜および前記多結晶シリコン層を選択的に除去し、さらに前記ゲート形成領域の前記単結晶シリコン層を一定深さまで選択的に除去して凹部を形成する工程と、前記凹部の側壁にサイドウォールを形成する工程と、前記多結晶シリコン層から前記単結晶シリコン層に不純物を拡散させてソースドレイン領域を形成する工程と、前記凹部の底部にゲート絶縁膜を形成した後、導電膜を成膜してゲート電極を形成する工程と、を備えることを特徴とする。
これによれば、エピプロセスを経ずに、簡便なプロセスにより側壁が垂直なエレベート構造のソースドレインを形成することができ、半導体装置の集積化および微細化を容易に達成できる。
本発明の半導体装置の製造方法の他の態様は、絶縁膜上の単結晶シリコン層を側壁が垂直な一対の素子分離領域で素子分離する工程と、素子分離された前記単結晶シリコン層の上に一対の混晶半導体を形成する工程と、前記一対の混晶半導体の各側壁にサイドウォールを形成する工程と、前記一対の混晶半導体に不純物を注入する工程と、前記一対の混晶半導体の間のゲート形成領域の底部にゲート絶縁膜を形成した後、導電膜を成膜してゲート電極を形成する工程と、を備えることを特徴とする。
これによれば、エピプロセスを経ずに、簡便なプロセスにより側壁が垂直なエレベート構造のソースドレインを形成することができ、半導体装置の集積化および微細化を容易に達成できる。
本発明の半導体装置の製造方法の他の態様は、絶縁膜上の単結晶シリコン層の上に絶縁層を形成する工程と、ゲート形成領域の前記絶縁層および前記単結晶シリコン層を選択的に除去して側壁が垂直な凹部を形成する工程と、 前記凹部の底面に多結晶シリコン膜を形成した後、前記多結晶シリコン膜をエピタキシャル成長させて単結晶シリコン膜を形成する工程と、前記単結晶シリコン膜の上に、絶縁物に埋め込まれた側壁が垂直な一対のゲート形成用スペーサーを形成する工程と、前記一対のゲート形成用スペーサーの間の前記単結晶シリコン膜および前記一対のゲート形成用スペーサーの外側の前記単結晶シリコン層に対して不純物を注入する工程と、前記不純物を注入した領域の上部にサリサイドを形成する工程と、前記一対のゲート形成用スペーサーとその下の絶縁物を除去して一対の凹部を形成し、前記一対の凹部の底面に単結晶シリコン膜を露出させる工程と、前記一対の凹部の底部にゲート絶縁膜を形成した後、導電膜を成膜してゲート電極を形成する工程と、にゲート絶縁膜を介して一対のゲート電極を形成する工程と、を備えることを特徴とする。
これによれば、エピプロセスを経ずに、簡便なプロセスにより側壁が垂直なエレベート構造のソースドレインを形成することができ、半導体装置の集積化および微細化を容易に達成できる。
本発明の半導体装置の製造方法の他の態様は、絶縁膜上の単結晶シリコン層の上に絶縁層を形成する工程と、ゲート形成領域の前記絶縁層および前記単結晶シリコン層を選択的に除去して側壁が垂直な凹部を形成する工程と、前記凹部の底面に多結晶シリコン膜を形成した後、前記多結晶シリコン膜をエピタキシャル成長させて単結晶シリコン膜を形成する工程と、前記単結晶シリコン膜の上に、絶縁物に埋め込まれた側壁が垂直な一対のゲート形成用スペーサーを形成する工程と、前記一対のゲート形成用スペーサーの間の単結晶シリコン膜を選択的に除去し、さらにその下の前記絶縁膜を一定深さまで選択的に除去する工程と、前記一対のゲート形成用スペーサーの内側の側壁に多結晶シリコン膜を形成する工程と、前記多結晶シリコン膜および前記一対のゲート形成用スペーサーの外側の前記単結晶シリコン層に対して不純物を注入する工程と、前記不純物を注入した領域の上部にサリサイドを形成する工程と、前記一対のゲート形成用スペーサーとその下の絶縁物を除去して一対の凹部を形成し、前記一対の凹部の底面に単結晶シリコン膜を露出させる工程と、前記一対の凹部の底部にゲート絶縁膜を形成した後、導電膜を成膜してゲート電極を形成する工程と、にゲート絶縁膜を介して一対のゲート電極を形成する工程と、を備えることを特徴とする。
これによれば、エピプロセスを経ずに、簡便なプロセスにより側壁が垂直なエレベート構造のソースドレインを形成することができ、半導体装置の集積化および微細化を容易に達成できる。
なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれうる。
本発明によれば、半導体装置の微細化および集積化を容易なプロセスで実現することができる。
(実施形態1)
図1(A)に示すように、Si層12と、SOI層16(膜厚100nm)と、Si層12とSOI層16(膜厚100nm)との間に形成された埋め込み酸化膜(BOX膜)14とを含むSOI基板からなる半導体基板10の上に、窒化シリコン(Si3N4)層20および多結晶シリコン層30を成膜する。続いて、多結晶シリコン層30の上に図1の断面方向両端部に開口を有するレジストパターン(図示せず)を形成し、窒化シリコン層20および多結晶シリコン層30の両端部を選択的に除去する。
図1(A)に示すように、Si層12と、SOI層16(膜厚100nm)と、Si層12とSOI層16(膜厚100nm)との間に形成された埋め込み酸化膜(BOX膜)14とを含むSOI基板からなる半導体基板10の上に、窒化シリコン(Si3N4)層20および多結晶シリコン層30を成膜する。続いて、多結晶シリコン層30の上に図1の断面方向両端部に開口を有するレジストパターン(図示せず)を形成し、窒化シリコン層20および多結晶シリコン層30の両端部を選択的に除去する。
次に、図1(B)に示すように、プラズマエッチングにより多結晶シリコン層30およびSOI層16をドライエッチングし、徐々に除去する。多結晶シリコン層30およびSOI層16を除去する過程において、窒化シリコン層20からのプラズマ発光を光センサ(図示せず)により逐次検出し、発光強度が所定の値に到達した時点を基準にエンドポイントを設定しドライエッチングを停止する。
次に、図1(C)に示すように、ウェット酸化などの熱酸化法を用いて、SOI層16の両側に、厚さ100nmの素子分離領域40を形成する。
次に、図1(D)に示すように、熱リン酸を用いて窒化シリコン層20を除去した後、多結晶シリコン層50を成膜する。この多結晶シリコン層50に砒素などの不純物を3E15cm-2程度イオン注入する。さらに、CVD(Chemical Vapor Deposition)法によりシリコン酸化膜60および多結晶シリコン層62を成膜した後、リソグラフィ工程によりゲートパターンをマスクの開口部として、シリコン酸化膜60および多結晶シリコン層62をRIE(Reactive Ion Etching)法により下地との選択比の差を利用して選択的に除去する。この工程により、多結晶シリコン層50を底辺とし、側壁が垂直な凹部が形成される。
次に、図2(A)に示すように、多結晶シリコン層62および凹部底辺の多結晶シリコン層50をエッチングによりに徐々に除去する。さらに、凹部底辺の多結晶シリコン層50が除去された後、その下のSOI層16を徐々に除去し、シリコン酸化膜60の露出を発光強度の変化に基づいて検出することにより、エッチングを終了する。これにより、ゲート領域のSOI層16が一定深さまで除去され、ゲート領域のSOI層16の厚みが、たとえば、20〜30nm程度まで薄膜化される。この時点で、ゲート領域に、SOI層16を底辺とし、側壁が垂直な凹部が形成される。なお、ゲート領域のSOI層16の厚さは、多結晶シリコン層62の厚さに応じてエッチング終点を制御することで容易に変えることができる。ゲート領域のSOI層16の厚さは、ゲート長の長さの1/3以下程度が望ましい。これによれば、ソース・ドレイン間のパンチスルーなどの短チャネル効果を防止することができる。
次に、図2(B)に示すように、膜厚20〜30nmの多結晶シリコン層70を全面に堆積する。その後、膜厚100nmのシリコン酸化膜を全面に堆積し、RIE法などの異方性エッチングにより、ゲート領域の凹部の側壁にサイドウォールスペーサ80を形成する。
次に、図2(C)に示すように、RIE法により露出した多結晶シリコン層70を図2(B)で堆積した膜厚分だけエッチングにより除去する。
次に、図2(D)に示すように、SOI層16の表面露出部分を表面から20nmほど熱酸化した後、10〜20秒間、温度1000℃で熱処理を行う。このとき、多結晶シリコンの酸化レートが、単結晶シリコンの酸化レートより大きいため、多結晶シリコン層70の両端露出部はより深くまで(20nm以上まで)酸化される。その後、DHF(diluted hydrofluoric acid)洗浄またはBHF(buffered hydrofluoric acid)洗浄により、20nmほど表面のシリコン酸化膜を除去する。この工程により、チャネル部に単結晶シリコンが露出する。一方、多結晶シリコン層70の両端露出部は、薄いシリコン酸化膜(SiO2)72で被覆される。また、多結晶シリコン層50からSOI層16に不純物が拡散し、SOI層16に側壁が垂直なソース領域90およびドレイン領域94が形成され、さらにゲート直下のチャネル領域の両側にソース領域90およびドレイン領域94と接合するソースエクステンション領域92およびドレインエクステンション領域96がそれぞれ形成される。
次に、図3(A)に示すように、ALD(Atomic Layer Deposition)法またはCVD法により、いわゆるhigh-k膜をゲート絶縁膜74として成膜し、その上にゲートメタル層76を成膜する。high-k絶縁膜は、ハフニウム、ジルコニウムまたはアルミニウムを含み、具体例としては、ハフニウム酸化物、ジルコニウム酸化物、アルミニウム酸化物、ハフニウムシリケート、ジルコニウムシリケート、アルミニウムシリケート等が例示される。さらに、ゲートメタル層76の上に、ハードマスクとして窒化シリコン層78を成膜する。なお、ゲートメタル層76は、多層でもよい。たとえば、ゲートメタル層76は、ゲート絶縁膜74の上に成膜された第1のメタル層と、第1のメタル層の上に成膜された第2のメタル層を含み、第1のメタル層により第2のメタル層の仕事関数を補正させてもよい。なお、通常、仕事関数は第1のメタル層で決まるが、第1および第2のメタル層を熱処理等で混合させることにより、仕事関数を補正することも可能である。
次に、図3(B)に示すように、リソグラフィ工程によりゲートパターンをマスクした状態で、窒化シリコン層78を選択的に除去する。さらに、選択的に除去された窒化シリコン層78の下のゲートメタル層76、ゲート絶縁膜74、シリコン酸化膜60および多結晶シリコン層50をエッチングにより除去する。エッチングの終点は、素子分離領域40が露出し始めるにつれて生じる発光強度の変化により定められる。エッチング除去により生じた側壁部分には、必要に応じて、窒化シリコンを用いてサイドウォール79を形成してもよい。なお、窒化シリコンをコンタクトエッチング時のストップ膜として用いる場合には、窒化シリコン膜を20nm程度の薄膜とし、その上に低温形成シリコン酸化膜などのゲート絶縁膜を形成してもよい。本工程以降、コンタクトエッチング、配線材料堆積および配線加工を行うことにより、上部構造を形成することができる。
図3(B)は、実施形態1に係る半導体製造方法によって作製された半導体装置のソースドレイン方向の断面構造を示す。本実施形態の半導体装置は、側壁が垂直に形成されたエレベート構造のソース領域90およびドレイン領域94を有し、ソース領域90およびドレイン領域94がゲート直下のチャネル領域のSOI層16の両側に設けられたソースエクステンション領域92およびドレインエクステンション領域96とそれぞれ接合する。ゲート電極は、ゲート絶縁膜74およびゲートメタル層76で構成されており、チャネル領域のSOI層16を底辺とし、ソース領域90とドレイン領域94との間に形成された凹部に埋め込まれる。
(実施形態2)
本実施形態に係る半導体装置の製造方法は、実施形態1の図1(A)から図1(D)の多結晶シリコン層50への不純物注入工程までは共通するため、実施形態1と共通する工程の説明を省略する。
本実施形態に係る半導体装置の製造方法は、実施形態1の図1(A)から図1(D)の多結晶シリコン層50への不純物注入工程までは共通するため、実施形態1と共通する工程の説明を省略する。
実施形態1と共通する工程に続いて、図4(A)に示すように、多結晶シリコン層50の上にCVD法により窒化シリコン層100および多結晶シリコン層110を成膜した後、リソグラフィ工程によりゲートパターンをマスクの開口部として、窒化シリコン層100および多結晶シリコン層110をRIE法により選択的に除去する。この工程により、多結晶シリコン層50を底辺とし、側壁が垂直な凹部が形成される。
次に、図4(B)に示すように、多結晶シリコン層110および凹部底辺の多結晶シリコン層50をエッチングにより除去する。さらに、凹部底辺の多結晶シリコン層50が除去された後、その下のSOI層16を徐々に除去し、窒化シリコン層の露出を発光強度の変化に基づいて検出することにより、エッチングを終了する。これにより、ゲート領域のSOI層16が一定深さまで除去され、ゲート領域のSOI層16の厚みが、たとえば、20〜30nm程度まで薄膜化される。この時点で、ゲート領域に、SOI層16を底辺とし、側壁が垂直な凹部が形成される。なお、ゲート領域のSOI層16の厚さは、多結晶シリコン層62の厚さに応じてエッチング終点を制御することで容易に変えることができる。
次に、図4(C)に示すように、膜厚20〜30nmの多結晶シリコン層120を堆積する。その後、膜厚100nmのシリコン酸化膜を堆積し、RIE法などの異方性エッチングにより、ゲート領域の凹部の側壁にサイドウォールスペーサ130を形成する。
次に、図4(D)に示すように、RIE法により露出した多結晶シリコン層120を図4(C)で堆積した膜厚分だけエッチングにより除去する。
次に、図5(A)に示すように、表面露出部分を表面から20nmほど熱酸化した後、10〜20秒間、温度1000℃で熱処理を行う。その後、DHF洗浄またはBHF洗浄により、20nmほど表面のシリコン酸化膜を除去する。この工程により、多結晶シリコン層70の両面露出部がシリコン酸化膜72に変化する。また、多結晶シリコン層50からSOI層16に不純物が拡散し、SOI層16に側壁が垂直なソース領域90およびドレイン領域94が形成され、さらにゲート直下のチャネル領域の両側にソース領域90およびドレイン領域94と接合するソースエクステンション領域92およびドレインエクステンション領域96がそれぞれ形成される。
次に、図5(B)に示すように、ALD法またはCVD法によりhigh-k膜をゲート絶縁膜140として成膜し、その上にゲートメタル層150を成膜する。なお、ゲートメタル層150は、多層でもよい。たとえば、ゲートメタル層150は、ゲート絶縁膜140の上に成膜された第1のメタル層と、第1のメタル層の上に成膜された第2のメタル層を含み、第1のメタル層により第2のメタル層の仕事関数を補正させてもよい。
次に、図5(C)に示すように、窒化シリコン層100をストッパーとしてゲートメタル層150をCMP(Chemical Mechanical Polishing)により除去して、表面を平坦化し、ゲート領域のみにゲートメタル層150を残存させる。図5(C)から明らかなように、ゲートメタル層150の高さは素子分離領域40の高さよりも高い。したがって、トランジスタ層直上の第1層目の配線が無くても、素子分離領域40の上の窒化シリコン層100に埋め込む形でゲート電極を伸ばし、別の活性領域上のゲートと電気的に接続させることができる。
次に、図6に示すように、窒化シリコン層100および多結晶シリコン層50をエッチングにより除去する。エッチング除去により生じた側壁部分には、必要に応じて、窒化シリコンを用いてサイドウォールを形成してもよいが、本実施形態では、窒化シリコンをコンタクトエッチング時のストップ膜として用いる。この場合には、窒化シリコン膜152を20nm程度の薄膜とし、その上に低温形成シリコン酸化膜などのゲート絶縁膜160を形成する。本工程以降、コンタクトエッチング、配線材料堆積および配線加工を行うことにより、上部構造を形成することができる。
図6は、実施形態2に係る半導体製造方法によって作製された半導体装置のソースドレイン方向の断面構造を示す。本実施形態の半導体装置は、側壁が垂直に形成されたエレベート構造のソース領域90およびドレイン領域94を有し、ソース領域90およびドレイン領域94がゲート直下のチャネル領域のSOI層16の両側に設けられたソースエクステンション領域92およびドレインエクステンション領域96とそれぞれ接合する。ゲート電極は、ゲート絶縁膜140およびゲートメタル層150で構成されており、チャネル領域のSOI層16を底辺とし、ソース領域90とドレイン領域94との間に形成された凹部に埋め込まれる。
(実施形態3)
本実施形態では、半導体基板200として、埋め込み酸化膜220によりSi層210と分離されたSOI層230を有するSOI基板を用いる。なお、SOI層230の厚みは、たとえば、表面を酸化処理した後、形成した酸化膜を除去する手法により予め、100nm程度まで薄膜化する。まず、図7(A)に示すように、このSOI層230の両端に素子分離領域240を形成し、SOI層230を素子分離する。素子分離領域240の形成の方法は、実施形態1の図1(A)から(D)の熱リン酸による窒化シリコン層の除去工程までと同様である。
本実施形態では、半導体基板200として、埋め込み酸化膜220によりSi層210と分離されたSOI層230を有するSOI基板を用いる。なお、SOI層230の厚みは、たとえば、表面を酸化処理した後、形成した酸化膜を除去する手法により予め、100nm程度まで薄膜化する。まず、図7(A)に示すように、このSOI層230の両端に素子分離領域240を形成し、SOI層230を素子分離する。素子分離領域240の形成の方法は、実施形態1の図1(A)から(D)の熱リン酸による窒化シリコン層の除去工程までと同様である。
次に、図7(B)に示すように、CVD法によりSOI層230の上に膜厚100〜150nmのSiGeなどの混晶半導体層250を形成する。この混晶半導体層250に3E15cm-2程度の砒素などの不純物イオンをイオン注入する。なお、混晶半導体層250を形成する際に、不純物イオンを予め含ませることも可能であり、この場合には、混晶半導体層250にイオン注入する工程は省略される。さらに、混晶半導体層250の上に、リソグラフィ法によりゲートを形成するためのゲートパターンを形成し、このゲートパターンをマスクとして、反応性エッチング(RIE)法により、混晶半導体層250をエッチングし、ゲート領域のSOI層230を露出させる。なお、SiGeのエッチング速度は、Siより著しく大きいため、エッチングをSOI層230の表面で停止させることは容易である。
次に、図8(A)に示すように、酸化シリコン、窒化シリコンなどの絶縁材料を表面に堆積させた後、異方性エッチングを利用してエッチバックすることにより、各混晶半導体層250の側壁にサイドウォールスペーサ252を形成する。
次に、図8(B)に示すように、10〜20秒間、温度1000℃で活性化アニールを行った後、表面に犠牲酸化膜(図示せず)を形成する。この工程により、混晶半導体層250からSOI層230へ不純物が拡散し、ゲート直下のチャネル領域のSOI層230の両側にソースエクステンション領域246およびドレインエクステンション領域248が形成される。続いて、犠牲酸化膜を除去した後、ALD法、CVD法などの技術でhigh-k膜をゲート絶縁膜260として成膜し、その上に第1のゲートメタル層270および第2のゲートメタル層280を成膜する。なお、第1のゲートメタル層270は、第2のゲートメタル層280の仕事関数の補正に用いられる。第1のゲートメタル層270に代えて、シリサイドを用いてもよい。続いて、CMPおよびエッチバックによりゲート領域以外のゲート絶縁膜260、第1のゲートメタル層270および第2のゲートメタル層280を除去して、メタルゲート電極をゲート領域の凹部に埋め込む。なお、素子分離領域240に電極材料が残渣として残ることによって短絡が懸念される場合は、素子分離領域240上を開口部とするレジストマスクを形成し、さらにエッチングを行うことにより、残渣を除去することが望ましい。
図8は、実施形態3に係る半導体製造方法によって作製された半導体装置のソースドレイン方向の断面構造を示す。本実施形態の半導体装置は、側壁が垂直に形成されたエレベート構造のソース領域90およびドレイン領域94を有し、ソース領域90およびドレイン領域94がゲート直下のチャネル領域のSOI層230の両側に設けられたソースエクステンション領域およびドレインエクステンション領域96とそれぞれ接合する。ゲート電極は、ゲート絶縁膜260、第1のゲートメタル層270および第2のゲートメタル層280で構成されており、チャネル領域のSOI層230を底辺とし、ソース領域90とドレイン領域94との間に形成された凹部に埋め込まれる。
(実施形態4)
本実施形態に係る半導体装置の製造方法は、実施形態3と基本的には同様であるが、図7(B)において、混晶半導体層250を形成した後、混晶半導体層250の上に多結晶シリコン層253をさらに形成する。この多結晶シリコン層253に3E15cm-2程度の砒素などの不純物イオンをイオン注入する。実施形態3と同様に、混晶半導体層250を形成する際に、不純物イオンを予め含ませることも可能であり、この場合には、多結晶シリコン層253にイオン注入する工程は省略される。図9は、本実施形態に係る製造方法により製造された半導体装置の概略断面図である。本実施形態に係る半導体装置は、混晶半導体層250の上に多結晶シリコン層253が設けられているため、サイドウォール形成工程などのエッチング時に、混晶半導体層250が膜減りすることを防止することができる。
本実施形態に係る半導体装置の製造方法は、実施形態3と基本的には同様であるが、図7(B)において、混晶半導体層250を形成した後、混晶半導体層250の上に多結晶シリコン層253をさらに形成する。この多結晶シリコン層253に3E15cm-2程度の砒素などの不純物イオンをイオン注入する。実施形態3と同様に、混晶半導体層250を形成する際に、不純物イオンを予め含ませることも可能であり、この場合には、多結晶シリコン層253にイオン注入する工程は省略される。図9は、本実施形態に係る製造方法により製造された半導体装置の概略断面図である。本実施形態に係る半導体装置は、混晶半導体層250の上に多結晶シリコン層253が設けられているため、サイドウォール形成工程などのエッチング時に、混晶半導体層250が膜減りすることを防止することができる。
(実施形態5)
本実施形態に係る半導体装置の製造方法は、CMOSを製造する場合の実施形態3の変形例に該当する。本実施形態では、pMOS領域およびnMOS領域にそれぞれ実施形態3の図7(A)から(B)の工程を実施する。ただし、pMOS領域に形成された混晶半導体層250には、たとえばホウ素などのアクセプタが不純物として注入され、nMOS領域に形成された混晶半導体層250には、たとえば砒素などのドナーが不純物として注入される。その後、PSG(Phospho Silicate Glass)層を全面に成膜した後、pMOS領域のPSGを等方性エッチングで除去し、改めて全面にBSG(Boron Silicate Glass)層を成膜してからnMOS領域のBSGを等方性エッチングで除去する。さらに、pMOS領域のBSGおよびnMOS領域のPSGを異方性エッチングすることにより、図10(A)に示すように、pMOS領域の混晶半導体層250の側壁にBSGからなるサイドウォールスペーサ254を形成し、一方、nMOS領域の混晶半導体層250の側壁にPSGからなるサイドウォールスペーサ256を形成する。次に、活性化アニールを実施する。これにより、サイドウォールスペーサ254からpMOS領域のSOI層230に、pMOS領域の混晶半導体層250に拡散した不純物と同一導電型の不純物が拡散するとともに、サイドウォールスペーサ256からnMOS領域のSOI層230に、nMOS領域の混晶半導体層250に拡散した不純物と同一導電型の不純物が拡散し、pMOS領域およびnMOS領域にそれぞれ不純物濃度が濃いソースエクステンション領域およびドレインエクステンション領域が形成される。
本実施形態に係る半導体装置の製造方法は、CMOSを製造する場合の実施形態3の変形例に該当する。本実施形態では、pMOS領域およびnMOS領域にそれぞれ実施形態3の図7(A)から(B)の工程を実施する。ただし、pMOS領域に形成された混晶半導体層250には、たとえばホウ素などのアクセプタが不純物として注入され、nMOS領域に形成された混晶半導体層250には、たとえば砒素などのドナーが不純物として注入される。その後、PSG(Phospho Silicate Glass)層を全面に成膜した後、pMOS領域のPSGを等方性エッチングで除去し、改めて全面にBSG(Boron Silicate Glass)層を成膜してからnMOS領域のBSGを等方性エッチングで除去する。さらに、pMOS領域のBSGおよびnMOS領域のPSGを異方性エッチングすることにより、図10(A)に示すように、pMOS領域の混晶半導体層250の側壁にBSGからなるサイドウォールスペーサ254を形成し、一方、nMOS領域の混晶半導体層250の側壁にPSGからなるサイドウォールスペーサ256を形成する。次に、活性化アニールを実施する。これにより、サイドウォールスペーサ254からpMOS領域のSOI層230に、pMOS領域の混晶半導体層250に拡散した不純物と同一導電型の不純物が拡散するとともに、サイドウォールスペーサ256からnMOS領域のSOI層230に、nMOS領域の混晶半導体層250に拡散した不純物と同一導電型の不純物が拡散し、pMOS領域およびnMOS領域にそれぞれ不純物濃度が濃いソースエクステンション領域およびドレインエクステンション領域が形成される。
次に、10(B)に示すように、図8(B)と同様な工程により、メタルゲート電極をpMOS領域およびnMOS領域のゲート領域の凹部にそれぞれ埋め込む。pMOS領域およびnMOS領域に、ソースエクステンション領域およびドレインエクステンション領域がそれぞれ形成されるため、ソース領域およびドレイン領域とゲート直下に形成されるチャネルの反転層とがそれぞれ確実に電気的に接続される。
なお、図10(A)において、サイドウォールスペーサ254およびサイドウォールスペーサ256を形成した後、pMOS領域のSOI層230にpMOS領域の混晶半導体層250に注入した不純物と反対導電型の不純物を注入し、nMOS領域のSOI層230にnMOS領域の混晶半導体層250に注入した不純物と反対導電型の不純物を注入してもよい。これによりソースエクステンション領域およびドレインエクステンション領域がチャネル領域に拡散して、チャネル長が短くなりすぎることが抑制される。
(実施形態6)
本実施形態では、まず、Si層302と、SOI層306と、Si層302とSOI層306との間に形成された埋め込み酸化膜304とを含むSOI基板からなる半導体基板300に窒化シリコン層310を堆積させる。その後、リソグラフィ法により中央部に開口を有するレジストを形成し、窒化シリコン層310およびSOI層306を選択的に除去して、側壁が垂直な凹部を形成する。次に、レジストを除去した後、スパッタ等により半導体基板300に対して多結晶シリコン層320を異方的に成膜する。次に、図11(A)に示すように、窒化シリコン層310およびSOI層306の側面に堆積した多結晶シリコン層を等方性エッチングにより除去する。続いて、埋め込み酸化膜304の上に堆積した多結晶シリコン層320を電子ビーム照射などにより加熱して、固相エピタキシャル成長によって両側のSOI層306の方から中央部に向けて順に結晶成長させ、単結晶シリコン膜322を形成する。
本実施形態では、まず、Si層302と、SOI層306と、Si層302とSOI層306との間に形成された埋め込み酸化膜304とを含むSOI基板からなる半導体基板300に窒化シリコン層310を堆積させる。その後、リソグラフィ法により中央部に開口を有するレジストを形成し、窒化シリコン層310およびSOI層306を選択的に除去して、側壁が垂直な凹部を形成する。次に、レジストを除去した後、スパッタ等により半導体基板300に対して多結晶シリコン層320を異方的に成膜する。次に、図11(A)に示すように、窒化シリコン層310およびSOI層306の側面に堆積した多結晶シリコン層を等方性エッチングにより除去する。続いて、埋め込み酸化膜304の上に堆積した多結晶シリコン層320を電子ビーム照射などにより加熱して、固相エピタキシャル成長によって両側のSOI層306の方から中央部に向けて順に結晶成長させ、単結晶シリコン膜322を形成する。
次に、CVD法により凹部に沿ってシリコン酸化膜330を堆積させる。続いて、図11(B)に示すように、多結晶シリコンを成膜した後、ドライエッチングなどのエッチバックにより凹部の両側壁に一対のスペーサ340を形成する。
次に、一対のスペーサ340の垂直な側壁と露出した単結晶シリコン膜322とで形成された凹部に、シリコン酸化膜を堆積した後、ドライエッチングなどのエッチバックを行うことにより、各シリコン酸化膜330の凹部底面側の端部をスペーサ340に沿って上方へ延長させる。次に、図11(C)に示すように、CVD法により窒化ケイ素層350を全面に堆積させる。
次に、CMPによる表面の平滑化を行い、窒化シリコン層310を露出させる。さらに、図12(A)に示すように、多結晶シリコンからなるスペーサ340の上部を酸化させる。これにより、両方のスペーサ340がシリコン酸化膜330でそれぞれ取り囲まれる。
次に、窒化シリコン層310を除去した後、窒化シリコンまたは酸化シリコンで両方のシリコン酸化膜330の両側側部にスペーサ360を形成する。続いて、図12(B)に示すように、露出したSOI層306および単結晶シリコン膜322に対して、砒素などの不純物をイオン注入する。これにより、一対のソース領域390が埋め込み酸化膜304の両端部上に形成されるとともに、およびドレイン領域391が凹部底面に形成される。
次に、コバルトを全面に成膜した後、熱処理を行うことによりコバルトと一対のソース領域390およびドレイン領域391との間でシリサイド化反応を起こさせる。このとき、図12(C)に示すように、一対のソース領域390、およびドレイン領域391から単結晶シリコン膜322へ不純物が熱拡散する。この結果、一対のソース領域390にそれぞれ接合する一対のソースエクステンション領域392が形成されるとともに、ドレイン領域391の両端部に接合する一対のドレインエクステンション領域393が形成される。その後、図12(C)に示すように、未反応のコバルトを選択的に除去することにより、凹部底面および両方のSOI層306の上部にコバルトサリサイド370を形成する。
次に、窒化ケイ素薄膜(図示せず)を全面に堆積させる。この窒化ケイ素薄膜は、コンタクトエッチング時のストッパーとして用いられる。続いて、シリコン酸化膜372を全面に堆積させた後、CMPまたはエッチバックにより表面を平坦化し、図13(A)に示すように、シリコン酸化膜330に埋め込まれたスペーサ340の上部を露出させる。
次に、シリコン酸化膜330に埋め込まれたスペーサ340をエッチングして除去し、エッチングにより生じた凹部底面のシリコン酸化膜をウエットエッチングして単結晶シリコン膜322を露出させる。この後、図13(B)に示すように、high-k膜からなるゲート絶縁膜380を全面に堆積させた後、ゲートメタル層382を堆積させ、金属CMPまたはエッチバックによりゲートに不要な部分のゲート絶縁膜380およびゲートメタル層382を選択的に除去する。
図13(B)は、実施形態6に係る半導体製造方法によって作製された半導体装置のソースドレイン方向の断面構造を示す。本実施形態の半導体装置は、側壁が垂直に形成された一対のエレベート構造のソース領域390、および共通のドレイン領域391を備える。各ソース領域390はゲート直下のチャネル領域に接続するソースエクステンション領域392とそれぞれ接合する。また、ドレイン領域391の両端部はゲート直下のチャネル領域に接続するドレインエクステンション領域393とそれぞれ接合する。一対のゲート電極は、ゲート絶縁膜380およびゲートメタル層382で構成されており、チャネル領域の単結晶シリコン膜322を底辺とし、2つのソース領域390と共通のドレイン領域391との間に形成された一対の凹部に埋め込まれている。
(実施形態7)
本実施形態は、実施形態6の製造方法と基本的な手順は同様である。以下では、実施形態6と同様な手順を省略して、実施形態6と異なる手順を説明する。本実施形態の工程は、図11(B)を用いて説明した工程までは実施形態6と共通する。ここで、本実施形態では、窒化ケイ素層350に代えて多結晶シリコン層を全面に堆積させる。この多結晶シリコン膜は、図12(A)で、多結晶シリコンからなるスペーサ340の上部を酸化させる工程に代えて、酸化処理を行うことにより、シリコン酸化膜に変化する。また、凹部底面に形成されたシリコン酸化膜は、窒化シリコン層310を除去する工程の過程、またはその前後において、選択的に除去される。この後、実施形態6と同様に、両方のシリコン酸化膜330の両側側部にスペーサ360を形成する工程以降を実施することにより、実施形態6で製造される半導体装置と同様な構成を得ることができる。
本実施形態は、実施形態6の製造方法と基本的な手順は同様である。以下では、実施形態6と同様な手順を省略して、実施形態6と異なる手順を説明する。本実施形態の工程は、図11(B)を用いて説明した工程までは実施形態6と共通する。ここで、本実施形態では、窒化ケイ素層350に代えて多結晶シリコン層を全面に堆積させる。この多結晶シリコン膜は、図12(A)で、多結晶シリコンからなるスペーサ340の上部を酸化させる工程に代えて、酸化処理を行うことにより、シリコン酸化膜に変化する。また、凹部底面に形成されたシリコン酸化膜は、窒化シリコン層310を除去する工程の過程、またはその前後において、選択的に除去される。この後、実施形態6と同様に、両方のシリコン酸化膜330の両側側部にスペーサ360を形成する工程以降を実施することにより、実施形態6で製造される半導体装置と同様な構成を得ることができる。
(実施形態8)
本実施形態は、実施形態6で、上記図11(B)を用いて説明した工程の後、スペーサ340を側壁とする凹部に、シリコン酸化膜を堆積した後、ドライエッチングなどのエッチバックを行うことにより、両方のシリコン酸化膜330の凹部底面側の端部を側壁が垂直なスペーサ340に沿って上方へ延長させる工程までは、実施形態6の製造方法と同様である。
本実施形態は、実施形態6で、上記図11(B)を用いて説明した工程の後、スペーサ340を側壁とする凹部に、シリコン酸化膜を堆積した後、ドライエッチングなどのエッチバックを行うことにより、両方のシリコン酸化膜330の凹部底面側の端部を側壁が垂直なスペーサ340に沿って上方へ延長させる工程までは、実施形態6の製造方法と同様である。
本実施形態では、次に、図14(A)に示すように、多結晶シリコン層を全面に堆積させた後、エッチバックにより両方のスペーサ340の側壁に多結晶シリコンからなるスペーサ400を形成するとともに、両方のスペーサ400の間に露出する単結晶シリコン膜322を選択的に除去して、埋め込み酸化膜304を露出させる。この工程により、両方のスペーサ400の間に側壁が垂直な溝が形成される。
次に、図14(B)に示すように、両端上部平面上のシリコン酸化膜330とその下の多結晶シリコン層320および窒化シリコン層310をエッチングにより除去する。さらに、全面にシリコン酸化膜を成膜した後、エッチバックすることにより、両方のスペーサ400の間に設けられた溝にシリコン酸化膜410を埋め込む。このとき、スペーサ340の上部にもシリコン酸化膜が埋め込まれ、埋め込まれたシリコン酸化膜がシリコン酸化膜330と一体化する。これにより、スペーサ340がシリコン酸化膜330の中に埋め込まれる。また、シリコン酸化膜330の外側にシリコン酸化膜からなるスペーサ420が形成される。
次に、露出したSOI層306およびスペーサ400に対して、砒素などの不純物をイオン注入する。これにより、一対のソース領域470が埋め込み酸化膜304の両端部上に形成されるとともに、および一対のドレイン領域471が凹部内に離間して形成される。続いて、コバルトを全面に成膜した後、熱処理を行うことによりコバルトとSOI層306およびスペーサ400の多結晶シリコンとの間でシリサイド化反応を起こさせる。このとき、図14(C)に示すように、一対のソース領域470およびドレイン領域471から単結晶シリコン膜322へ不純物が熱拡散する。この結果、一対のソース領域470にそれぞれ接合するソースエクステンション領域473が形成されるとともに、一対のドレイン領域471にそれぞれ接合するドレインエクステンション領域474が形成される。その後、図14(C)に示すように、未反応のコバルトを選択的に除去することにより、コバルトサリサイド430を形成する。
次に、窒化ケイ素薄膜(図示せず)を全面に堆積させる。この窒化ケイ素薄膜は、コンタクトエッチング時のストッパーとして用いることができる。続いて、シリコン酸化膜440を全面に堆積させた後、CMPまたはエッチバックにより表面を平坦化し、図15(A)に示すように、シリコン酸化膜330に埋め込まれたスペーサ340の上部を露出させる。
次に、シリコン酸化膜330に埋め込まれたスペーサ340をエッチングして除去し、エッチングにより生じた凹部底面のシリコン酸化膜をウエットエッチングして単結晶シリコン膜322を露出させる。この後、図15(B)に示すように、high-k膜からなるゲート絶縁膜450を全面に堆積させた後、ゲートメタル層460を堆積させ、金属CMPまたはエッチバックによりゲートに不要な部分のゲート絶縁膜450およびゲートメタル層460を選択的に除去する。
図15(B)は、実施形態8に係る半導体製造方法によって作製された半導体装置のソースドレイン方向の断面構造を示す。本実施形態の半導体装置は、側壁が垂直に形成された一対のエレベート構造のソース領域470、および一対のソース領域470に対応する一対のドレイン領域471を備える。各ソース領域470はゲート直下のチャネル領域に接続するソースエクステンション領域473とそれぞれ接合する。また、各ドレイン領域471はゲート直下のチャネル領域に接続するドレインエクステンション領域474とそれぞれ接合する。一対のゲート電極は、ゲート絶縁膜450およびゲートメタル層460で構成されており、チャネル領域の単結晶シリコン膜322を底辺とし、ソース領域とドレイン領域との間に形成された一対の凹部に埋め込まれている。
(実施形態9)
本実施形態は、実施形態6で、図11(B)を用いて説明した工程の後、スペーサ340を側壁とする凹部に、シリコン酸化膜を堆積した後、ドライエッチングなどのエッチバックを行うことにより、両方のシリコン酸化膜330の凹部底面側の端部をスペーサ340に沿って上方へ延長させる工程までは、実施形態6の製造方法と同様である。
本実施形態は、実施形態6で、図11(B)を用いて説明した工程の後、スペーサ340を側壁とする凹部に、シリコン酸化膜を堆積した後、ドライエッチングなどのエッチバックを行うことにより、両方のシリコン酸化膜330の凹部底面側の端部をスペーサ340に沿って上方へ延長させる工程までは、実施形態6の製造方法と同様である。
本実施形態では、次に、エッチングにより、凹部底面の単結晶シリコン膜322ならびに両端上部平面上のシリコン酸化膜330およびその下の多結晶シリコン層320を選択的に除去する。続いて、図16(A)に示すように、中央の側壁が垂直な凹部に多結晶シリコン層500を堆積させた後、多結晶シリコン層500をエッチバックする。
次に、図16(B)に示すように、窒化シリコン層310をエッチングにより除去した後、露出したSOI層306および多結晶シリコン層500に対して砒素などの不純物をイオン注入する。これにより、一対のソース領域560が埋め込み酸化膜304の両端部上に形成されるとともに、およびドレイン領域561が凹部に形成される。なお、窒化シリコン層310を除去する領域を素子形成領域のみにすることにより、素子形成領域以外に残存する窒化シリコン層310を後述するCMP工程のストッパーとして用いることができる。
次に、コバルトを全面に成膜した後、熱処理を行うことによりコバルトとSOI層306および多結晶シリコン層500との間でシリサイド化反応を起こさせる。このとき、図16(C)に示すように、一対のソース領域560、およびドレイン領域561から単結晶シリコン膜322へ不純物が熱拡散する。この結果、一対のソース領域560にそれぞれ接合する一対のソースエクステンション領域562が形成されるとともに、ドレイン領域561の下部の両端部に接合する一対のドレインエクステンション領域563が形成される。その後、図16(C)に示すように、未反応のコバルトを選択的に除去することにより、コバルトサリサイド510を形成する。このとき、コバルトサリサイド510はスペーサ340の上部にもコバルトサリサイド510が形成されるが、この後述する工程で除去される。
次に、窒化ケイ素薄膜(図示せず)を全面に堆積させる。この窒化ケイ素薄膜は、コンタクトエッチング時のストッパーとして用いられる。続いて、シリコン酸化膜520を全面に堆積させた後、CMPまたはエッチバックにより表面を平坦化し、図17(A)に示すように、スペーサ340の上に形成されたコバルトサリサイド510を露出させる。
次に、スペーサ340の上に形成されたコバルトサリサイド510およびその下のスペーサ340をエッチングにより除去する。その後、エッチングにより生じた凹部底面のシリコン酸化膜をウエットエッチングして単結晶シリコン膜322を露出させる。さらに、図17(B)に示すように、high-k膜からなるゲート絶縁膜530を凹部底面に堆積させた後、ゲートメタル層540を堆積させ、金属CMPまたはエッチバックによりゲートに不要な部分のゲートメタル層540を選択的に除去する。
図17(B)は、実施形態9に係る半導体製造方法によって作製された半導体装置のソースドレイン方向の断面構造を示す。本実施形態の半導体装置は、側壁が垂直に形成された一対のエレベート構造のソース領域560、共通のドレイン領域561を備える。各ソース領域560はゲート直下のチャネル領域に接続するソースエクステンション領域562とそれぞれ接合する。また、ドレイン領域561の下部の両端部はゲート直下のチャネル領域に接続するドレインエクステンション領域563とそれぞれ接合する。一対のゲート電極は、ゲート絶縁膜530およびゲートメタル層540で構成されており、チャネル領域の単結晶シリコン膜322を底辺とし、ソース領域560とドレイン領域561との間に形成された一対の凹部に埋め込まれている。
(実施形態10)
本実施形態は、実施形態6で、図11(B)を用いて説明した工程の後、スペーサ340を側壁とする凹部に、シリコン酸化膜を堆積した後、ドライエッチングなどのエッチバックを行うことにより、両方のシリコン酸化膜330の凹部底面側の端部をスペーサ340に沿って上方へ延長させる工程までは、実施形態6の製造方法と同様である。ドライエッチングなどのエッチバックにおいては、単結晶シリコン膜322の上のシリコン酸化膜も除去される。
本実施形態は、実施形態6で、図11(B)を用いて説明した工程の後、スペーサ340を側壁とする凹部に、シリコン酸化膜を堆積した後、ドライエッチングなどのエッチバックを行うことにより、両方のシリコン酸化膜330の凹部底面側の端部をスペーサ340に沿って上方へ延長させる工程までは、実施形態6の製造方法と同様である。ドライエッチングなどのエッチバックにおいては、単結晶シリコン膜322の上のシリコン酸化膜も除去される。
本実施形態では、次に、凹部の単結晶シリコン膜322をエッチングにより除去し、さらに埋め込み酸化膜304を一定深さまでエッチングにより除去する。この後、図18(A)に示すように、多結晶シリコン層600を成膜した後、エッチバックを行い、多結晶シリコン層600に形成された側壁が垂直な凹部の底辺に埋め込み酸化膜304を露出させる。
次に、図18(B)に示すように、窒化シリコン層310をエッチングにより除去した後、露出したSOI層306および多結晶シリコン層600に対して砒素などの不純物をイオン注入する。これにより、一対のソース領域660が埋め込み酸化膜304の両端部上に形成されるとともに、および一対のドレイン領域661が凹部内に離間して形成される。ドレイン領域661の下端は、埋め込み酸化膜304の上面より下に位置する。なお、窒化シリコン層310を除去する領域を素子形成領域のみにすることにより、素子形成領域以外に残存する窒化シリコン層310を後述するCMP工程のストッパーとして用いることができる。
次に、コバルトを全面に成膜した後、熱処理を行うことによりコバルトとSOI層306および多結晶シリコン層600との間でシリサイド化反応を起こさせる。このとき、図18(C)に示すように、一対のソース領域660および一対のドレイン領域661から単結晶シリコン膜322へ不純物が熱拡散する。この結果、一対のソース領域660にそれぞれ接合するソースエクステンション領域662が形成されるとともに、一対のドレイン領域661にそれぞれ接合するドレインエクステンション領域663が形成される。本実施形態では、ドレイン領域661の下端が、単結晶シリコン膜322より下に位置するため、ドレインエクステンション領域663とドレイン領域661とを確実に接合することができる。その後、図18(C)に示すように、未反応のコバルトを選択的に除去することにより、コバルトサリサイド610を形成する。このとき、コバルトサリサイド610はスペーサ340の上部にもコバルトサリサイド610が形成されるが、この後述する工程で除去される。
次に、窒化ケイ素薄膜(図示せず)を全面に堆積させる。この窒化ケイ素薄膜は、コンタクトエッチング時のストッパーとして用いられる。続いて、シリコン酸化膜620を全面に堆積させた後、CMPまたはエッチバックにより表面を平坦化し、図19(A)に示すように、スペーサ340を露出させる。
次に、スペーサ340をエッチングにより除去する。その後、エッチングにより生じた凹部底面のシリコン酸化膜をウエットエッチングして単結晶シリコン膜322を露出させる。さらに、図19(B)に示すように、high-k膜からなるゲート絶縁膜630を凹部底面に堆積させた後、ゲートメタル層640を堆積させ、金属CMPまたはエッチバックによりゲートに不要な部分のゲートメタル層640を選択的に除去する。
図19(B)は、実施形態10に係る半導体製造方法によって作製された半導体装置のソースドレイン方向の断面構造を示す。本実施形態の半導体装置は、側壁が垂直に形成された一対のエレベート構造のソース領域660、および一対のソース領域660に対応する一対のドレイン領域661を備える。各ソース領域660はゲート直下のチャネル領域に接続するソースエクステンション領域662とそれぞれ接合する。また、各ドレイン領域661はゲート直下のチャネル領域に接続するドレインエクステンション領域663とそれぞれ接合する。一対のゲート電極は、ゲート絶縁膜630およびゲートメタル層640で構成されており、チャネル領域の単結晶シリコン膜322を底辺とし、ソース領域とドレイン領域との間に形成された一対の凹部に埋め込まれる。
本実施形態の半導体装置は、ドレイン領域661が一定深さまで掘り込まれた埋め込み酸化膜304の上に形成されているため、ドレイン領域661とドレインエクステンション領域663との導通を確実に形成することができる。
(実施形態11)
本実施形態は、実施形態6で、図11(B)を用いて説明した工程の後、スペーサ340を側壁とする凹部に、シリコン酸化膜を堆積した後、ドライエッチングなどのエッチバックを行うことにより、両方のシリコン酸化膜330の凹部底面側の端部をスペーサ340に沿って上方へ延長させる工程までは、実施形態6の製造方法と同様である。ドライエッチングなどのエッチバックにおいては、単結晶シリコン膜322の上のシリコン酸化膜も除去される。
本実施形態は、実施形態6で、図11(B)を用いて説明した工程の後、スペーサ340を側壁とする凹部に、シリコン酸化膜を堆積した後、ドライエッチングなどのエッチバックを行うことにより、両方のシリコン酸化膜330の凹部底面側の端部をスペーサ340に沿って上方へ延長させる工程までは、実施形態6の製造方法と同様である。ドライエッチングなどのエッチバックにおいては、単結晶シリコン膜322の上のシリコン酸化膜も除去される。
本実施形態では、次に、側壁が垂直な凹部底面の単結晶シリコン膜322およびその下の埋め込み酸化膜304を一定深さまでエッチングにより除去するとともに、両端上部平面上のシリコン酸化膜330およびその下の多結晶シリコン層320をエッチングにより除去する。続いて、図20(A)に示すように、凹部に多結晶シリコン層700を堆積させた後、多結晶シリコン層700をエッチバックして、多結晶シリコン層700を凹部に埋め込む。
次に、図20(B)に示すように、窒化シリコン層310をエッチングにより除去した後、露出したSOI層306および多結晶シリコン層700に対して砒素などの不純物をイオン注入する。これにより、一対のソース領域760が埋め込み酸化膜304の両端部上に形成されるとともに、およびドレイン領域761が凹部に形成される。ドレイン領域761の下端は、埋め込み酸化膜304の上面より下に位置する。なお、窒化シリコン層310を除去する領域を素子形成領域のみにすることにより、素子形成領域以外に残存する窒化シリコン層310を後述するCMP工程のストッパーとして用いることができる。
次に、コバルトを全面に成膜した後、熱処理を行うことによりコバルトとSOI層306および多結晶シリコン層700との間でシリサイド化反応を起こさせる。このとき、図20(C)に示すように、一対のソース領域760、およびドレイン領域761から単結晶シリコン膜322へ不純物が熱拡散する。この結果、一対のソース領域760にそれぞれ接合する一対のソースエクステンション領域762が形成されるとともに、ドレイン領域761の両側に接合する一対のドレインエクステンション領域763が形成される。その後、図20(C)に示すように、未反応のコバルトを選択的に除去することにより、コバルトサリサイド710を形成する。このとき、コバルトサリサイド710はスペーサ340の上部にもコバルトサリサイド710が形成されるが、この後述する工程で除去される。
次に、窒化ケイ素薄膜(図示せず)を全面に堆積させる。この窒化ケイ素薄膜は、コンタクトエッチング時のストッパーとして用いられる。続いて、シリコン酸化膜720を全面に堆積させた後、CMPまたはエッチバックにより表面を平坦化し、図20(A)に示すように、スペーサ340を露出させる。
次に、スペーサ340をエッチングにより除去する。その後、エッチングにより生じた凹部底面のシリコン酸化膜をウエットエッチングして単結晶シリコン膜322を露出させる。さらに、図21に示すように、high-k膜からなるゲート絶縁膜730を凹部底面に堆積させた後、ゲートメタル層740を堆積させ、金属CMPまたはエッチバックによりゲートに不要な部分のゲートメタル層740を選択的に除去する。
図21は、実施形態11に係る半導体製造方法によって作製された半導体装置のソースドレイン方向の断面構造を示す。本実施形態の半導体装置は、側壁が垂直に形成された一対のエレベート構造のソース領域760、および共通のドレイン領域761を備える。各ソース領域760はゲート直下のチャネル領域に接続するソースエクステンション領域762とそれぞれ接合する。また、ドレイン領域761はその両側において、ゲート直下のチャネル領域に接続するドレインエクステンション領域763とそれぞれ接合する。一対のゲート電極は、ゲート絶縁膜730およびゲートメタル層740で構成されており、チャネル領域の単結晶シリコン膜322を底辺とし、ソース領域とドレイン領域との間に形成された一対の凹部に埋め込まれる。
本実施形態の半導体装置は、が一定深さまで掘り込まれた埋め込み酸化膜304の上に形成されているため、ドレイン領域761とドレインエクステンション領域763との導通を確実に形成することができる。
なお、上記各実施形態ではソースドレインの側壁に関して「垂直」という用語を用いたが、ソースドレインの側壁は必ずしも厳密な意味で垂直である必要はなく、本発明における「垂直」とは、本発明の所期の目的を達成する範囲で「実質的に垂直」である場合も概念的に含む。
以上説明したように、本発明の半導体装置の製造方法によれば、エピプロセスを経ずに、簡便なプロセスにより側壁が垂直なエレベート構造のソースドレインを形成することができ、半導体装置の集積化および微細化を容易に達成できるとともに、半導体装置製造の歩留まり向上や製造安定性の向上を図ることができる。
また、本発明の半導体装置は、チャネル領域の不純物濃度が低いので、低電界でオンオフが制御可能であり、界面散乱低減と易動度が改善される。また、ソースドレイン接合容量が低減され、動作時の消費電力を低減することができる。さらに、ゲート絶縁膜としてhigh-k膜を用いたエレベーテッドソースドレイン構造を有することにより、ソースドレイン抵抗が低減され、短チャネル効果にも強くなる。
本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
10 半導体基板、12 Si層、14 埋め込み酸化膜、16 SOI層、20 窒化シリコン層、30 多結晶シリコン層、40 素子分離領域、50 多結晶シリコン層、74 ゲート絶縁膜、76 ゲートメタル層、78 窒化シリコン層、79 サイドウォール、80 サイドウォールスペーサ、90 ソース領域、92 ソースエクステンション領域、94 ドレイン領域、96 ドレインエクステンション領域、100 窒化シリコン層、110 多結晶シリコン層、120 多結晶シリコン層、130 サイドウォールスペーサ、140 ゲート絶縁膜、150 ゲートメタル層、152 窒化シリコン膜、160 ゲート絶縁膜、210 Si層、220 酸化膜、230 SOI層、240 素子分離領域、250 混晶半導体層、252 サイドウォールスペーサ、253 多結晶シリコン層、254,256 サイドウォールスペーサ、260 ゲート絶縁膜、302 Si層、304 埋め込み酸化膜、306 SOI層、310 窒化シリコン層、320 多結晶シリコン層、322 単結晶シリコン膜、330 シリコン酸化膜、350 窒化ケイ素層、370 コバルトサリサイド、372 シリコン酸化膜、380 ゲート絶縁膜、382 ゲートメタル層、410 シリコン酸化膜、430 コバルトサリサイド、440 シリコン酸化膜、450 ゲート絶縁膜、460 ゲートメタル層、500 多結晶シリコン層、510 コバルトサリサイド、520 シリコン酸化膜、530 ゲート絶縁膜、540 ゲートメタル層、600 多結晶シリコン層、610 コバルトサリサイド、620 シリコン酸化膜、630 ゲート絶縁膜、640 ゲートメタル層、700 多結晶シリコン層、710 コバルトサリサイド、720 シリコン酸化膜、730 ゲート絶縁膜、740 ゲートメタル層。
Claims (7)
- 絶縁膜上に設けられた半導体層を有する基板と、
前記基板に形成された一対の素子分離領域に挟まれた部分に、垂直にせり上げられたソース領域およびドレイン領域と、
ソース領域およびドレイン領域の内側の側壁にそれぞれ設けられた第1および第2の絶縁膜と、
前記第1の絶縁膜と前記第2の絶縁膜との間に、ゲート絶縁膜で絶縁されたゲート電極と、
を備えることを特徴とする半導体装置。 - 前記ソース領域と前記ゲート電極との間に介在するソース側壁絶縁膜と、
前記ドレイン領域と前記ゲート電極との間に介在するドレイン側壁絶縁膜と、
前記ソース側壁絶縁膜の下に形成され、前記ソース領域と接合するソースエクステンション領域と、
前記ドレイン側壁絶縁膜の下に形成され、前記ドレイン領域と接合するドレインエクステンション領域と、
をさらに備えることを特徴とする請求項1に記載の半導体装置。 - 前記ゲート絶縁膜が、ハフニウム、ジルコニウムまたはアルミニウムを含むことを特徴とする請求項1または2に記載の半導体装置。
- 絶縁膜上の単結晶シリコン層を側壁が垂直な一対の素子分離領域で素子分離する工程と、
素子分離された前記単結晶シリコン層の上に多結晶シリコン層を成膜する工程と、
前記多結晶シリコン層に不純物を注入する工程と、
前記多結晶シリコン層の上に絶縁膜を成膜する工程と、
ゲート形成領域の前記絶縁膜および前記多結晶シリコン層を選択的に除去し、さらに前記ゲート形成領域の前記単結晶シリコン層を一定深さまで選択的に除去して凹部を形成する工程と、
前記凹部の側壁にサイドウォールを形成する工程と、
前記多結晶シリコン層から前記単結晶シリコン層に不純物を拡散させてソースドレイン領域を形成する工程と、
前記凹部の底部にゲート絶縁膜を形成した後、導電膜を成膜してゲート電極を形成する工程と、
を備えることを特徴とする半導体装置の製造方法。 - 絶縁膜上の単結晶シリコン層を側壁が垂直な一対の素子分離領域で素子分離する工程と、
素子分離された前記単結晶シリコン層の上に一対の混晶半導体を形成する工程と、
前記一対の混晶半導体の各側壁にサイドウォールを形成する工程と、
前記一対の混晶半導体に不純物を注入する工程と、
前記一対の混晶半導体の間のゲート形成領域の底部にゲート絶縁膜を形成した後、導電膜を成膜してゲート電極を形成する工程と、
を備えることを特徴とする半導体装置の製造方法。 - 絶縁膜上の単結晶シリコン層の上に絶縁層を形成する工程と、
ゲート形成領域の前記絶縁層および前記単結晶シリコン層を選択的に除去して側壁が垂直な凹部を形成する工程と、
前記凹部の底面に多結晶シリコン膜を形成した後、前記多結晶シリコン膜をエピタキシャル成長させて単結晶シリコン膜を形成する工程と、
前記単結晶シリコン膜の上に、絶縁物に埋め込まれた側壁が垂直な一対のゲート形成用スペーサーを形成する工程と、
前記一対のゲート形成用スペーサーの間の前記単結晶シリコン膜および前記一対のゲート形成用スペーサーの外側の前記単結晶シリコン層に対して不純物を注入する工程と、
前記不純物を注入した領域の上部にサリサイドを形成する工程と、
前記一対のゲート形成用スペーサーとその下の絶縁物を除去して一対の凹部を形成し、前記一対の凹部の底面に単結晶シリコン膜を露出させる工程と、
前記一対の凹部の底部にゲート絶縁膜を形成した後、導電膜を成膜してゲート電極を形成する工程と、にゲート絶縁膜を介して一対のゲート電極を形成する工程と、
を備えることを特徴とする半導体装置の製造方法。 - 絶縁膜上の単結晶シリコン層の上に絶縁層を形成する工程と、
ゲート形成領域の前記絶縁層および前記単結晶シリコン層を選択的に除去して側壁が垂直な凹部を形成する工程と、
前記凹部の底面に多結晶シリコン膜を形成した後、前記多結晶シリコン膜をエピタキシャル成長させて単結晶シリコン膜を形成する工程と、
前記単結晶シリコン膜の上に、絶縁物に埋め込まれた側壁が垂直な一対のゲート形成用スペーサーを形成する工程と、
前記一対のゲート形成用スペーサーの間の単結晶シリコン膜を選択的に除去し、さらにその下の前記絶縁膜を一定深さまで選択的に除去する工程と、
前記一対のゲート形成用スペーサーの内側の側壁に多結晶シリコン膜を形成する工程と、
前記多結晶シリコン膜および前記一対のゲート形成用スペーサーの外側の前記単結晶シリコン層に対して不純物を注入する工程と、
前記不純物を注入した領域の上部にサリサイドを形成する工程と、
前記一対のゲート形成用スペーサーとその下の絶縁物を除去して一対の凹部を形成し、前記一対の凹部の底面に単結晶シリコン膜を露出させる工程と、
前記一対の凹部の底部にゲート絶縁膜を形成した後、導電膜を成膜してゲート電極を形成する工程と、にゲート絶縁膜を介して一対のゲート電極を形成する工程と、
を備えることを特徴とする半導体装置の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004150270A JP2005332993A (ja) | 2004-05-20 | 2004-05-20 | 半導体装置および半導体装置の製造方法 |
US11/132,197 US20050260818A1 (en) | 2004-05-20 | 2005-05-19 | Semiconductor device and method for fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004150270A JP2005332993A (ja) | 2004-05-20 | 2004-05-20 | 半導体装置および半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005332993A true JP2005332993A (ja) | 2005-12-02 |
Family
ID=35375727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004150270A Withdrawn JP2005332993A (ja) | 2004-05-20 | 2004-05-20 | 半導体装置および半導体装置の製造方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20050260818A1 (ja) |
JP (1) | JP2005332993A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009099725A (ja) * | 2007-10-16 | 2009-05-07 | Semiconductor Energy Lab Co Ltd | 半導体装置及びその作製方法 |
JP2010537401A (ja) * | 2007-08-15 | 2010-12-02 | アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド | 薄いsoiの集積化のためのmosトランジスタおよびその製造方法 |
JP2013258427A (ja) * | 2008-02-15 | 2013-12-26 | Unisantis Electronics Singapore Pte Ltd | 半導体装置の製造方法 |
WO2015097633A1 (en) * | 2013-12-26 | 2015-07-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP2015167247A (ja) * | 2009-12-04 | 2015-09-24 | 株式会社半導体エネルギー研究所 | 半導体素子 |
WO2019025917A1 (ja) * | 2017-08-04 | 2019-02-07 | 株式会社半導体エネルギー研究所 | 半導体装置、及び表示装置 |
JP2022141892A (ja) * | 2015-01-26 | 2022-09-29 | 株式会社半導体エネルギー研究所 | 半導体装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7271044B2 (en) * | 2005-07-21 | 2007-09-18 | International Business Machines Corporation | CMOS (complementary metal oxide semiconductor) technology |
US20080308870A1 (en) * | 2007-06-15 | 2008-12-18 | Qimonda Ag | Integrated circuit with a split function gate |
CN102832133B (zh) * | 2012-08-29 | 2014-12-03 | 北京大学 | 在体硅上制备独立双栅FinFET的方法 |
US20200098934A1 (en) * | 2018-09-25 | 2020-03-26 | Shriram Shivaraman | Spacer and channel layer of thin-film transistors |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5200352A (en) * | 1991-11-25 | 1993-04-06 | Motorola Inc. | Transistor having a lightly doped region and method of formation |
US5646073A (en) * | 1995-01-18 | 1997-07-08 | Lsi Logic Corporation | Process for selective deposition of polysilicon over single crystal silicon substrate and resulting product |
US5682055A (en) * | 1995-06-07 | 1997-10-28 | Sgs-Thomson Microelectronics, Inc. | Method of forming planarized structures in an integrated circuit |
JP2778553B2 (ja) * | 1995-09-29 | 1998-07-23 | 日本電気株式会社 | 半導体装置およびその製造方法 |
US5637518A (en) * | 1995-10-16 | 1997-06-10 | Micron Technology, Inc. | Method of making a field effect transistor having an elevated source and an elevated drain |
US6232641B1 (en) * | 1998-05-29 | 2001-05-15 | Kabushiki Kaisha Toshiba | Semiconductor apparatus having elevated source and drain structure and manufacturing method therefor |
TW410382B (en) * | 1999-06-11 | 2000-11-01 | United Microelectronics Corp | Method of manufacturing forming metal oxide semiconductor transistor with raised source/drain |
US6319783B1 (en) * | 1999-11-19 | 2001-11-20 | Chartered Semiconductor Manufatcuring Ltd. | Process to fabricate a novel source-drain extension |
US6284610B1 (en) * | 2000-09-21 | 2001-09-04 | Chartered Semiconductor Manufacturing Ltd. | Method to reduce compressive stress in the silicon substrate during silicidation |
JP2002343963A (ja) * | 2001-05-17 | 2002-11-29 | Sony Corp | 溝ゲート型電界効果トランジスタ及びその製造方法 |
JP4193097B2 (ja) * | 2002-02-18 | 2008-12-10 | 日本電気株式会社 | 半導体装置およびその製造方法 |
KR100438788B1 (ko) * | 2002-06-12 | 2004-07-05 | 삼성전자주식회사 | 반도체 장치 및 그의 제조방법 |
KR100485690B1 (ko) * | 2002-10-26 | 2005-04-27 | 삼성전자주식회사 | 모스 트랜지스터 및 그 제조방법 |
KR100620197B1 (ko) * | 2002-12-30 | 2006-09-01 | 동부일렉트로닉스 주식회사 | 반도체 소자의 모스형 트랜지스터 제조 방법 |
JPWO2004097943A1 (ja) * | 2003-04-28 | 2006-07-13 | 松下電器産業株式会社 | 半導体装置とその製造方法 |
KR100491979B1 (ko) * | 2003-06-27 | 2005-05-27 | 한국전자통신연구원 | 초미세 채널 전계 효과 트랜지스터 및 그 제조방법 |
US6812105B1 (en) * | 2003-07-16 | 2004-11-02 | International Business Machines Corporation | Ultra-thin channel device with raised source and drain and solid source extension doping |
US6939751B2 (en) * | 2003-10-22 | 2005-09-06 | International Business Machines Corporation | Method and manufacture of thin silicon on insulator (SOI) with recessed channel |
US7138320B2 (en) * | 2003-10-31 | 2006-11-21 | Advanced Micro Devices, Inc. | Advanced technique for forming a transistor having raised drain and source regions |
US7101743B2 (en) * | 2004-01-06 | 2006-09-05 | Chartered Semiconductor Manufacturing L.T.D. | Low cost source drain elevation through poly amorphizing implant technology |
US7135724B2 (en) * | 2004-09-29 | 2006-11-14 | International Business Machines Corporation | Structure and method for making strained channel field effect transistor using sacrificial spacer |
US7109556B2 (en) * | 2004-11-16 | 2006-09-19 | Texas Instruments Incorporated | Method to improve drive current by increasing the effective area of an electrode |
US7226820B2 (en) * | 2005-04-07 | 2007-06-05 | Freescale Semiconductor, Inc. | Transistor fabrication using double etch/refill process |
-
2004
- 2004-05-20 JP JP2004150270A patent/JP2005332993A/ja not_active Withdrawn
-
2005
- 2005-05-19 US US11/132,197 patent/US20050260818A1/en not_active Abandoned
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010537401A (ja) * | 2007-08-15 | 2010-12-02 | アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド | 薄いsoiの集積化のためのmosトランジスタおよびその製造方法 |
US8664722B2 (en) | 2007-10-16 | 2014-03-04 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor with metal silicide layer |
JP2009099725A (ja) * | 2007-10-16 | 2009-05-07 | Semiconductor Energy Lab Co Ltd | 半導体装置及びその作製方法 |
JP2013258427A (ja) * | 2008-02-15 | 2013-12-26 | Unisantis Electronics Singapore Pte Ltd | 半導体装置の製造方法 |
JP2020031221A (ja) * | 2009-12-04 | 2020-02-27 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP2015167247A (ja) * | 2009-12-04 | 2015-09-24 | 株式会社半導体エネルギー研究所 | 半導体素子 |
JP7564161B2 (ja) | 2009-12-04 | 2024-10-08 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP2022166322A (ja) * | 2009-12-04 | 2022-11-01 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP2019041117A (ja) * | 2009-12-04 | 2019-03-14 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
WO2015097633A1 (en) * | 2013-12-26 | 2015-07-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US9530856B2 (en) | 2013-12-26 | 2016-12-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
JP2022141892A (ja) * | 2015-01-26 | 2022-09-29 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP7471349B2 (ja) | 2015-01-26 | 2024-04-19 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US12074224B2 (en) | 2015-01-26 | 2024-08-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
JPWO2019025917A1 (ja) * | 2017-08-04 | 2020-08-20 | 株式会社半導体エネルギー研究所 | 半導体装置、及び表示装置 |
JP7118973B2 (ja) | 2017-08-04 | 2022-08-16 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2019025917A1 (ja) * | 2017-08-04 | 2019-02-07 | 株式会社半導体エネルギー研究所 | 半導体装置、及び表示装置 |
US11626037B2 (en) | 2017-08-04 | 2023-04-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and display device |
US12243447B2 (en) | 2017-08-04 | 2025-03-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and display device |
Also Published As
Publication number | Publication date |
---|---|
US20050260818A1 (en) | 2005-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100781580B1 (ko) | 이중 구조 핀 전계 효과 트랜지스터 및 그 제조 방법 | |
JP5286701B2 (ja) | 半導体装置および半導体装置の製造方法 | |
JP5220257B2 (ja) | Cmos垂直置換ゲート(vrg)トランジスタ | |
CN100568535C (zh) | 利用自对准后栅极控制前栅极绝缘体上硅mosfet的器件阈值 | |
TWI408805B (zh) | 虛擬本體接觸之三閘極 | |
US11996448B2 (en) | Manufacturing method of semiconductor device including field-effect transistor comprising buried oxide (BOX) film and silicon layer | |
KR100639679B1 (ko) | 매립 절연막을 구비하는 트랜지스터의 제조방법 및 그에의하여 제조된 트랜지스터 | |
US7176110B2 (en) | Technique for forming transistors having raised drain and source regions with different heights | |
JP2009021456A (ja) | フィン型トランジスタおよびその形成方法 | |
WO2014063381A1 (zh) | Mosfet的制造方法 | |
WO2014063380A1 (zh) | Mosfet的制造方法 | |
WO2012041071A1 (zh) | 半导体器件及其制造方法 | |
JP2005332993A (ja) | 半導体装置および半導体装置の製造方法 | |
JP4086099B2 (ja) | 半導体素子の形成方法 | |
JP2006128427A (ja) | 半導体装置の製造方法及び半導体装置 | |
US20030042568A1 (en) | Method of manufacturing MOSEFT and structure thereof | |
JP2008288364A (ja) | 半導体装置および半導体装置の製造方法 | |
WO2014063379A1 (zh) | Mosfet的制造方法 | |
JP2009111046A (ja) | 半導体装置および半導体装置の製造方法 | |
JP2005285980A (ja) | 半導体装置および半導体装置の製造方法 | |
JP2005116592A (ja) | 電界効果トランジスタ | |
JP2008500721A (ja) | 平面デュアルゲート半導体装置 | |
JPH06177377A (ja) | 絶縁ゲート電界効果トランジスタ | |
JP2004207726A (ja) | 二重ゲート型電界効果トランジスタおよびその製造方法 | |
JP6416329B2 (ja) | 半導体装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070521 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090402 |