JP2005129513A - 燃料電池発電システム - Google Patents
燃料電池発電システム Download PDFInfo
- Publication number
- JP2005129513A JP2005129513A JP2004279180A JP2004279180A JP2005129513A JP 2005129513 A JP2005129513 A JP 2005129513A JP 2004279180 A JP2004279180 A JP 2004279180A JP 2004279180 A JP2004279180 A JP 2004279180A JP 2005129513 A JP2005129513 A JP 2005129513A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- power generation
- flow path
- fuel cell
- generation system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
【課題】 内部改質型燃料電池発電システムにおいて、発電時に筒状燃料電池集合体の発電部分において生じる温度分布を減少させ、高い発電効率を実現する。
【解決手段】 多孔質支持管―空気極−固体酸化物−燃料極−インターコネクタで構成される筒状燃料電池セルの集合体と、前記筒状燃料電池セルの集合体周囲に配した断熱ボードと、前記断熱ボード周囲を囲む金属ケーシングとで構成され、前記燃料極に燃料を供給するための燃料流路を備えた燃料電池発電システムにおいて、前記流路は筒状燃料電池セルの直下部から前記筒状燃料電池セルの燃料極へ直接供給する主流路と、バイパス流路とからなり、前記バイパス燃料流路は前記断熱ボードと前記金属ケーシングの間に設けられ、前記バイパス燃料流路から筒状燃料電池集合体への燃料供給口が前記断熱ボードに設けられていることを特徴とする燃料電池発電システムを提供する。
【選択図】 図1
【解決手段】 多孔質支持管―空気極−固体酸化物−燃料極−インターコネクタで構成される筒状燃料電池セルの集合体と、前記筒状燃料電池セルの集合体周囲に配した断熱ボードと、前記断熱ボード周囲を囲む金属ケーシングとで構成され、前記燃料極に燃料を供給するための燃料流路を備えた燃料電池発電システムにおいて、前記流路は筒状燃料電池セルの直下部から前記筒状燃料電池セルの燃料極へ直接供給する主流路と、バイパス流路とからなり、前記バイパス燃料流路は前記断熱ボードと前記金属ケーシングの間に設けられ、前記バイパス燃料流路から筒状燃料電池集合体への燃料供給口が前記断熱ボードに設けられていることを特徴とする燃料電池発電システムを提供する。
【選択図】 図1
Description
本発明は燃料電池発電システムに関し、さらに詳細には高温型の直接内部改質式燃料電池発電システムに関する。
筒状固体酸化物形燃料電池セルは、多孔質支持管−空気極−固体酸化物−燃料極−インターコネクタで構成される。なお、空気極が多孔質支持管を兼用する場合もある。燃料電池発電システムにおいては、燃料電池セルは燃料電池容器に収納されている。燃料電池セルの外側の燃料極には燃料ガスラインから燃料ガスが供給される。燃料電池セルの内側には空気導入管が挿入されており、空気分配器を介して酸化剤ガスが供給される。
燃料ガスには、水素ガスを用いることがもっとも好適であるが、天然ガス、プロパンガスなどの炭化水素系燃料ガスを改質器などによって水素リッチガスに転換して導入されることが多い。一方酸化剤ガスとしては、酸素ガスを用いることがもっとも好適であるが、入手性の問題などから一般的には空気が用いられる。このようにして燃料極側に燃料ガスが、空気極側に酸化剤ガスが供給されると、電解質の両側において電気化学反応が起こり電力と熱と水を発生する。この反応は水の電気分解の逆反応である。
燃料ガスには、水素ガスを用いることがもっとも好適であるが、天然ガス、プロパンガスなどの炭化水素系燃料ガスを改質器などによって水素リッチガスに転換して導入されることが多い。一方酸化剤ガスとしては、酸素ガスを用いることがもっとも好適であるが、入手性の問題などから一般的には空気が用いられる。このようにして燃料極側に燃料ガスが、空気極側に酸化剤ガスが供給されると、電解質の両側において電気化学反応が起こり電力と熱と水を発生する。この反応は水の電気分解の逆反応である。
筒状固体酸化物形燃料電池による発電システムは、通常数十本から数百本のセルを電気的に接続し集合化して構成される。従来の内部改質式燃料電池発電システムを図4に示す。複数の筒状燃料電池セル1が接合された集合体は断熱ボード2によって囲まれ、さらにその外側を金属ケーシング3によって囲まれている。断熱が不十分な場合はこの金属ケーシング3のさらに外側も断熱ボードによって囲まれ保温される(図示しない)。各筒状燃料電池セル間の電気的接触を保つため外側からプレスする機構を持つ方が望ましい。
一方、高温型である固体酸化物形燃料電池の特徴として、その運転温度を利用して電池自身で水蒸気改質反応を起こし、都市ガスやLPG等の炭化水素から直接水素を生成させることができる点が上げられる。したがって、燃料ガスとして未改質、または部分的に改質されたガスを直接筒状燃料電池集合体に供給して発電を行うことが可能である。この方式は内部改質方式と呼ばれる。水蒸気改質反応は吸熱反応であるため、電池反応からの発熱を有効利用できる。また、電池反応で生成した水(水蒸気)も改質反応に利用することができる。図4においては、燃料ガス入口5から予熱された、未改質、または部分的に改質された燃料が供給され、上部から空気分配器と空気導入管を介して酸化剤ガスが供給される(図示しない)。
一方、高温型である固体酸化物形燃料電池の特徴として、その運転温度を利用して電池自身で水蒸気改質反応を起こし、都市ガスやLPG等の炭化水素から直接水素を生成させることができる点が上げられる。したがって、燃料ガスとして未改質、または部分的に改質されたガスを直接筒状燃料電池集合体に供給して発電を行うことが可能である。この方式は内部改質方式と呼ばれる。水蒸気改質反応は吸熱反応であるため、電池反応からの発熱を有効利用できる。また、電池反応で生成した水(水蒸気)も改質反応に利用することができる。図4においては、燃料ガス入口5から予熱された、未改質、または部分的に改質された燃料が供給され、上部から空気分配器と空気導入管を介して酸化剤ガスが供給される(図示しない)。
実際の発電状態においては筒状燃料電池集合体の発電部分において温度分布が生じ、セル性能を十分に発揮できないという問題があった。通常、燃料電池にはその性能を最大限に発揮するのに最適な温度領域がある。例えば、ジルコニアを電解質として用いた固体酸化物燃料電池においてはその範囲は900〜950℃程度である。これより高温になると発電性能ほとんど向上せず、むしろ、セル本体や周辺材料に高温によるダメージを与える、これより低い温度では発電性能が十分発揮できない。しかしながら、セルを集合化した場合、セル全体をこの温度範囲に制御するのは困難で、前記の筒状燃料電池集合体においては燃料の流れ方向を基準に述べると、燃料ガスと酸化剤ガスの供給条件に大きく影響されるが、燃料入口と出口部では低く、途中の中央部周辺で最高温度になるという傾向が一般的である。
特に内部改質方式では、水蒸気改質反応は筒状燃料電池集合体の燃料入口でかなり進行し、燃料入り口部の温度がさらに低くなってしまい、筒状燃料電池集合体の発電部分の温度分布をさらに大きくするなどの問題があった
この対策として、燃料極の厚さを燃料ガス入口側で薄く、燃料ガス出口に近づくにつれて厚くし、電極の改質性能を入口側で低く、出口側で高くする例がある(例えば、特許文献1参照)。この例は平板型燃料電池の例であるが、筒状燃料電池でも適用可能である。しかしながら、このようなセルを製造するには製造工程の複雑化をまねくという問題があった。また、セルの厚みが部分的に異なることにより、積層する場合も困難が生じるという問題もあった。
この対策として、燃料極の厚さを燃料ガス入口側で薄く、燃料ガス出口に近づくにつれて厚くし、電極の改質性能を入口側で低く、出口側で高くする例がある(例えば、特許文献1参照)。この例は平板型燃料電池の例であるが、筒状燃料電池でも適用可能である。しかしながら、このようなセルを製造するには製造工程の複雑化をまねくという問題があった。また、セルの厚みが部分的に異なることにより、積層する場合も困難が生じるという問題もあった。
また、その他の方法として、集合化したセル間に炭化水素燃料を水蒸気改質するための反応管を設ける方法がある(例えば、特許文献2参照)。この例では、反応管の管壁の厚みを調整し、高温となる部分を効果的に冷却するように工夫されている。しかしながら、このような方法では発電システムの複雑化と大型化をまねくという問題があった。
特開平6−342663号公報(第1図)
特開2003−115307号公報(第1図)
本発明は、上記問題を解決するためになされたものであり、本発明の課題は、燃料電池発電システムの発電状態においては、筒状燃料電池集合体の発電部分において燃料電池下部が低温になりすぎるような温度分布が生じ、セル性能が十分に発揮できないということである。内部改質方式を採用した場合この温度分布はさらに大きくなる傾向にあった。
上記課題を解決するために、本発明では多孔質支持管−空気極−固体酸化物−燃料極−インターコネクタで構成される筒状燃料電池セルの集合体と、前記筒状燃料電池セルの集合体周囲に配した断熱ボードと、前記断熱ボード周囲を囲む金属ケーシングとで構成され、前記燃料極に燃料を供給するための燃料流路を備えた燃料電池発電システムにおいて、前記流路は筒状燃料電池セルの直下部から前記筒状燃料電池セルの燃料極へ直接供給する主流路と、バイパス流路とからなり、前記バイパス燃料流路は前記断熱ボードと前記金属ケーシングの間に設けられ、前記バイパス燃料流路から筒状燃料電池集合体への燃料供給口が前記断熱ボードに設けられていることを特徴とする燃料電池発電システムを提供する。これにより、セルの下部が低温になりすぎるのを防止すると同時に、セルの中央部〜上部を冷却して温度分布を小さくすることができる。
本発明の好ましい態様においては、前記燃料電池発電システムにおいて、断熱ボードに設けられた供給口内の通気抵抗を、供給口以外へのガス流路の通気抵抗よりも低くする。これによりバイパス燃料流路を通過してきたガスを、より多くセルの高温部に流すことができる。
本発明の好ましい態様においては、前記バイパス燃料流路の前記供給口より下流にガス封止部を備える。バイパス燃料流路を通過してきた燃料ガスを無駄なく高温部に供給できる。
本発明の好ましい態様においては、前記バイパス燃料流路の前記供給口より下流で断熱ボードと金属ケーシング間の隙間を狭めたことにより、バイパス燃料流路を通過してきた燃料ガスを無駄なく高温部に供給できる。
本発明の好ましい態様においては、筒状燃料電池セルの集合体周囲に配した断熱ボードの外側に溝が刻まれたことにより、高温部冷却用のバイパス燃料流路を容易に形成することができる。
本発明の好ましい態様においては、燃料の一部を燃料電池に供給するための断熱ボードに設けた供給部の位置が、セルの略中央部にあることにより、高温部を効果的に冷却することができる。略中央部とは燃料電池集合体を燃料流れ方向に4等分したときに両端をのぞいた部分であればよい。
以上の説明から明らかなように、本発明の燃料電池発電システムによれば、バイパス燃料流路を設けて筒状燃料電池の集合体の高温部に未改質燃料を含むガスを供給することにより、発電部での温度分布を減少させることができ、発電システムの効率を高めることができる。
以下に図面を参照して本発明をより具体的に説明する。
図1に示すように、複数の筒状燃料電池セル1が接合された集合体は断熱ボード2によって囲まれ、さらにその外側を金属ケーシング3によって囲まれている。断熱が不十分な場合はこの金属ケーシング3のさらに外側も断熱ボードによって囲まれ保温される(図示しない)。各筒状燃料電池セル間の電気的接触を保つため外側からプレスする機構を持つ方が望ましい。下部からは、燃料ガス入口5から予熱された未改質、または部分的に改質された燃料が供給され、上部から空気分配器と空気導入管を介して酸化剤ガスが供給される(図示しない)。燃料ガスの一部は断熱ボード2と金属ケーシング3によって形成された底部と側部の隙間、燃料ガスバイパス流路6を通り、底部を通過した後は燃料電池集合体部を通る燃料と平行に移動する。そして、燃料電池集合体部の温度が最も高い位置の近傍の断熱ボードの供給口から燃料電池集合体部に入り込む。温度の高い部分の範囲が広い場合は供給口の位置を分散させても良い。このような供給口の位置は燃料電池集合体の発電部分のうち、燃料流れ方向に対し、発電部分の燃料入口を基点として1/4から3/4の間にあることが望ましい。これより図上での上部への流れはガス封止部4によって止められる。途中から燃料電池集合体部に入った燃料は高温部で水蒸気改質され、その部分を冷却することになり、全体の温度分布を小さくする。この効果は、断熱ボードに最も近いセルで最大で、内側のセルにはガスの拡散と熱移動により効果が波及する。
図1に示すように、複数の筒状燃料電池セル1が接合された集合体は断熱ボード2によって囲まれ、さらにその外側を金属ケーシング3によって囲まれている。断熱が不十分な場合はこの金属ケーシング3のさらに外側も断熱ボードによって囲まれ保温される(図示しない)。各筒状燃料電池セル間の電気的接触を保つため外側からプレスする機構を持つ方が望ましい。下部からは、燃料ガス入口5から予熱された未改質、または部分的に改質された燃料が供給され、上部から空気分配器と空気導入管を介して酸化剤ガスが供給される(図示しない)。燃料ガスの一部は断熱ボード2と金属ケーシング3によって形成された底部と側部の隙間、燃料ガスバイパス流路6を通り、底部を通過した後は燃料電池集合体部を通る燃料と平行に移動する。そして、燃料電池集合体部の温度が最も高い位置の近傍の断熱ボードの供給口から燃料電池集合体部に入り込む。温度の高い部分の範囲が広い場合は供給口の位置を分散させても良い。このような供給口の位置は燃料電池集合体の発電部分のうち、燃料流れ方向に対し、発電部分の燃料入口を基点として1/4から3/4の間にあることが望ましい。これより図上での上部への流れはガス封止部4によって止められる。途中から燃料電池集合体部に入った燃料は高温部で水蒸気改質され、その部分を冷却することになり、全体の温度分布を小さくする。この効果は、断熱ボードに最も近いセルで最大で、内側のセルにはガスの拡散と熱移動により効果が波及する。
断熱ボード2と金属ケーシング3によって形成された底部と側部の隙間の確保のために、隙間の一部に断熱材板や金属板により形成されたスペーサを入れても良い。これらスペーサの位置や幅でバイパス燃料ガスの流量を制御することが可能である。同様に隙間の確保のために、隙間の一部や全体に金属性の波板等を入れても良い。また、これらを併用しても良い。
図1に示した例では燃料ガスバイパス流路から燃料電池集合体部へのガス通路は断熱ボードに開けられた穴であるが、この部分にのみガス透過性の高い断熱ボード等を設置しても良い。
図2は、バイパス燃料流路を止めるために断熱ボード2と金属ケーシング3間の隙間を狭め、金属ケーシングを直接断熱ボードに押し付けるようにした燃料電池発電システムの例である。図2においては金属ケーシング3側に段差をつける加工を行っているが、断熱ボード2側に逆の段差をつけても、または両方法を併用しても良い。
図1の例と同様に隙間の確保のために、隙間の一部に断熱材板や金属板により形成されたスペーサを入れても良い。スペーサの位置や幅でバイパス燃料ガスの流量を制御することが可能である。同様に隙間の確保のために、隙間の一部や全体に金属性の波板等を入れても良い。また、これらを併用しても良い。
または、金属ケーシングの加工により溝を形成し、断熱ボードと金属ケーシング間の一部をバイパス燃料ガスが通過するようにしても良い。
図1の例と同様に隙間の確保のために、隙間の一部に断熱材板や金属板により形成されたスペーサを入れても良い。スペーサの位置や幅でバイパス燃料ガスの流量を制御することが可能である。同様に隙間の確保のために、隙間の一部や全体に金属性の波板等を入れても良い。また、これらを併用しても良い。
または、金属ケーシングの加工により溝を形成し、断熱ボードと金属ケーシング間の一部をバイパス燃料ガスが通過するようにしても良い。
図3は、バイパス燃料流路が筒状燃料電池セルの集合体周囲に配した断熱ボード2の外側に刻まれた溝である燃料電池発電システムの例である。図において溝部分は断熱ボード2の底部から側部にかけて点線で示されている。溝の位置や深さでバイパス燃料ガスの流量を制御することが可能である。
1 筒状燃料電池セル
2 断熱ボード
3 金属ケーシング
4 ガス封止部
5 未改質、または部分的に改質された燃料ガス入口
6 未改質、または部分的に改質された燃料ガスバイパス流路
7 燃焼排気ガス出口
8 燃料供給口
9 通気抵抗が小さい部分
10 通気抵抗が大きい部分
11 燃料ガス
12 発電部分
2 断熱ボード
3 金属ケーシング
4 ガス封止部
5 未改質、または部分的に改質された燃料ガス入口
6 未改質、または部分的に改質された燃料ガスバイパス流路
7 燃焼排気ガス出口
8 燃料供給口
9 通気抵抗が小さい部分
10 通気抵抗が大きい部分
11 燃料ガス
12 発電部分
Claims (6)
- 多孔質支持管―空気極−固体酸化物−燃料極−インターコネクタで構成される筒状燃料電池セルの集合体と、前記筒状燃料電池セルの集合体周囲に配した断熱ボードと、前記断熱ボード周囲を囲む金属ケーシングとで構成され、前記燃料極に燃料を供給するための燃料流路を備えた燃料電池発電システムにおいて、
前記流路は筒状燃料電池セルの直下部から前記筒状燃料電池セルの燃料極へ直接供給する主流路と、バイパス流路とからなり、
前記バイパス燃料流路は前記断熱ボードと前記金属ケーシングの間に設けられ、前記バイパス燃料流路から筒状燃料電池集合体への燃料供給口が前記断熱ボードに設けられていることを特徴とする燃料電池発電システム。 - 前記燃料電池発電システムにおいて、断熱ボードに設けられた供給口内の通気抵抗が、供給口以外へのガス流路の通気抵抗よりも低いことを特徴とする請求項1に記載の燃料電池発電システム。
- 前記供給口内の通気抵抗を相対的に低くするために、前記バイパス燃料流路の前期供給口より下流にガス封止部を備えたことを特徴とする請求項1または請求項2に記載の燃料電池発電システム。
- 前記供給口内の通気抵抗を相対的に低くするために、前記バイパス燃料流路の前記供給口より下流で断熱ボードと金属ケーシング間の隙間を狭めたことを特徴とする請求項1または請求項2に記載の燃料電池発電システム。
- 前記バイパス燃料流路が前記断熱ボードの外側に刻まれた溝であることを特徴とする請求項1または請求項2に記載の燃料電池発電システム。
- 燃料の一部を燃料電池に供給するための断熱ボードに設けた供給口の位置が、筒状燃料電池集合体の燃料流れ方向に対し、略中央部にあることを特徴とする請求項1または請求項2に記載の燃料電池発電システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004279180A JP2005129513A (ja) | 2003-09-30 | 2004-09-27 | 燃料電池発電システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003342360 | 2003-09-30 | ||
JP2004279180A JP2005129513A (ja) | 2003-09-30 | 2004-09-27 | 燃料電池発電システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005129513A true JP2005129513A (ja) | 2005-05-19 |
Family
ID=34655725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004279180A Pending JP2005129513A (ja) | 2003-09-30 | 2004-09-27 | 燃料電池発電システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005129513A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006252916A (ja) * | 2005-03-10 | 2006-09-21 | Toto Ltd | 固体酸化物型燃料電池 |
JP2008171745A (ja) * | 2007-01-15 | 2008-07-24 | Casio Comput Co Ltd | 輻射防止膜、反応装置、燃料電池装置、電子機器、熱線反射膜、及び断熱容器 |
US7927751B2 (en) | 2006-01-30 | 2011-04-19 | Hitachi, Ltd. | Fuel cell power system |
JP2011528845A (ja) * | 2008-07-23 | 2011-11-24 | ダイムラー・アクチェンゲゼルシャフト | 燃料電池システムで流体を加湿する加湿装置 |
KR101253849B1 (ko) * | 2010-12-28 | 2013-04-12 | 주식회사 포스코 | 연료전지 스택의 단위전지 |
JP2018137092A (ja) * | 2017-02-21 | 2018-08-30 | 三菱日立パワーシステムズ株式会社 | 燃料電池および複合発電システムならびにその運転方法 |
-
2004
- 2004-09-27 JP JP2004279180A patent/JP2005129513A/ja active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006252916A (ja) * | 2005-03-10 | 2006-09-21 | Toto Ltd | 固体酸化物型燃料電池 |
US7927751B2 (en) | 2006-01-30 | 2011-04-19 | Hitachi, Ltd. | Fuel cell power system |
JP2008171745A (ja) * | 2007-01-15 | 2008-07-24 | Casio Comput Co Ltd | 輻射防止膜、反応装置、燃料電池装置、電子機器、熱線反射膜、及び断熱容器 |
JP2011528845A (ja) * | 2008-07-23 | 2011-11-24 | ダイムラー・アクチェンゲゼルシャフト | 燃料電池システムで流体を加湿する加湿装置 |
US8968944B2 (en) | 2008-07-23 | 2015-03-03 | Daimler Ag | Humidifier device for humidifying a fluid in a fuel cell system |
KR101253849B1 (ko) * | 2010-12-28 | 2013-04-12 | 주식회사 포스코 | 연료전지 스택의 단위전지 |
JP2018137092A (ja) * | 2017-02-21 | 2018-08-30 | 三菱日立パワーシステムズ株式会社 | 燃料電池および複合発電システムならびにその運転方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6811913B2 (en) | Multipurpose reversible electrochemical system | |
AU2013276596B2 (en) | Gas distribution element for a fuel cell | |
US20110076573A1 (en) | Solid Oxide Type Fuel Cell and Operating Method Thereof | |
US8021794B2 (en) | Fuel cell with cross-shaped reformer | |
AU2002219941A1 (en) | Multipurpose reversible electrochemical system | |
EP2675007A1 (en) | A gas flow dividing element | |
JP2011129489A (ja) | 燃料電池モジュール | |
CA2499922A1 (en) | Solid oxide fuel cell stack assembly having tapered diffusion layers | |
JP5254588B2 (ja) | 固体酸化物形燃料電池モジュール | |
JP2011222136A (ja) | 燃料電池モジュール | |
JP5066373B2 (ja) | 燃料電池モジュール | |
JP2007128717A (ja) | 燃料電池の運転方法 | |
JP2005129513A (ja) | 燃料電池発電システム | |
JP4956946B2 (ja) | 燃料電池 | |
JP2004362800A (ja) | 燃料電池 | |
JP2007200709A (ja) | 固体酸化物形燃料電池スタックおよびその運転方法 | |
JP2009245627A (ja) | 固体酸化物形燃料電池 | |
JP2005019034A (ja) | 固体酸化物形燃料電池 | |
JP2006236599A (ja) | 燃料電池発電装置の水回収方法 | |
JP2007080761A (ja) | 燃料電池およびその起動方法 | |
JP4706191B2 (ja) | 固体酸化物形燃料電池 | |
EP3796442B1 (en) | Fuel cell system | |
JP2004119298A (ja) | 燃料電池発電システム | |
JP2009129701A (ja) | 燃料電池モジュール | |
JP2007128739A (ja) | 燃料電池 |