[go: up one dir, main page]

JP2005123175A - 複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池 - Google Patents

複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池 Download PDF

Info

Publication number
JP2005123175A
JP2005123175A JP2004277371A JP2004277371A JP2005123175A JP 2005123175 A JP2005123175 A JP 2005123175A JP 2004277371 A JP2004277371 A JP 2004277371A JP 2004277371 A JP2004277371 A JP 2004277371A JP 2005123175 A JP2005123175 A JP 2005123175A
Authority
JP
Japan
Prior art keywords
composite particles
metal
negative electrode
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004277371A
Other languages
English (en)
Other versions
JP3995050B2 (ja
Inventor
Yasushi Madokoro
靖 間所
Kunihiko Eguchi
邦彦 江口
Katsuhiro Nagayama
勝博 長山
Toshihide Suzuki
利英 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2004277371A priority Critical patent/JP3995050B2/ja
Publication of JP2005123175A publication Critical patent/JP2005123175A/ja
Application granted granted Critical
Publication of JP3995050B2 publication Critical patent/JP3995050B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】リチウムイオン二次電池用負極として用いたときに、放電容量が高く、優れたサイクル特性と初期充放電効率が得られる負極材料とそれを用いたリチウムイオン二次電池の提供、ならびに、そのような負極材料の材料として好適な複合粒子とその製造方法の提供。
【解決手段】リチウムと合金化可能な金属、黒鉛質材料および炭素質材料からなる複合粒子において、該複合粒子が空隙を有し、かつ該複合粒子の全空隙に対する、金属周辺の空隙の割合が20%以上であることを特徴とする複合粒子、および、金属、黒鉛質材料および加熱後の残炭率が相対的に低い炭素質材料Aの前駆体を用いて混合後、加熱後の残炭率が相対的に高い炭素質材料Bを用いて混合することを特徴とする複合粒子の製造方法。
【選択図】図2

Description

本発明は、黒鉛質材料を含有する複合粒子およびその製造方法、それを用いたリチウムイオン二次電池用負極材料および負極、ならびにそれを用いたリチウムイオン二次電池に関する。
他の二次電池に比べて高電圧、高エネルギー密度という優れた特性を有するリチウムイオン二次電池は、電子機器の電源として広く普及している。近年、電子機器の小型化あるいは高性能化が急速に進み、リチウムイオン二次電池のさらなる高エネルギー密度化に対する要望はますます高まっている。
現在、リチウムイオン二次電池は、正極にLiCoO2 、負極に黒鉛を用いたものが一般的である。しかし、黒鉛負極は充放電の可逆性に優れるものの、その放電容量はすでに層間化合物LiC6 に相当する理論値372mAh/g に近い値まで到達しており、さらなる高エネルギー密度化を達成するためには、黒鉛より放電容量の大きい負極材料を開発する必要がある。
金属リチウムは負極材料として最高の放電容量を有するが、充電時にリチウムがデンドライト状に析出して負極が劣化し、充放電サイクルが短くなるという問題がある。また、デンドライト状に析出したリチウムがセパレータを貫通して正極に達し、短絡する可能性もある。
そのため、金属リチウムに代わる負極材料として、リチウムと合金を形成する金属または金属化合物が検討されてきた。これらの合金負極は、金属リチウムには及ばないものの黒鉛を遥かにしのぐ放電容量を有する。しかし、合金化に伴う体積膨張により活物質の粉化・剥離が発生し、未だ実用レベルのサイクル特性は得られていない。
前述のような合金負極の欠点を解決するため、金属または金属化合物と黒鉛質物または炭素質物のどちらか一方または両方との複合化が検討されている。
特許文献1には、金属または金属材料と、黒鉛材料および炭素材料からなる複合材料を電極材料として用いることが開示されている。この複合材料において、該炭素材料は、金属物質と黒鉛材料を結合または被覆する役割を担う。また、これは、アルゴンレーザーを用いたラマン分光法により測定した該炭素材料の表面のDバンド1360cm-1ピーク強度IDと、Gバンド1580cm-1ピーク強度IGの比ID/IG(=R値)は0.4以上、つまり該炭素材料が黒鉛化されていないことを示すことが開示されている。しかし、炭素材料が複合材料の内部に浸透している場合、該金属または金属化合物の周囲に膨張を緩衝する空隙を確保することができず、複合粒子構造の破壊によるサイクル特性の低下を招く場合がある。
特許文献2には、シリコン含有粒子と炭素含有粒子とからなる多孔性粒子を炭素で被覆した負極材料が開示されている。なお、該炭素含有粒子は一種の黒鉛材料に相当する。この技術の例では、負極材料を積極的に多孔質化したにもかかわらず、シリコンとリチウムが合金化する際の体積膨張により、負極材料の破壊が起こり、やはり満足できるサイクル特性は得られない。さらに、炭素含有粒子(黒鉛材料)が1μm以下と小さく、電解液の分解反応を生じやすいため、電解液の分解反応に由来する初期充放電効率の低下が顕在化する場合がある。
特許第3369589号公報 特許第3466576号公報
本発明者は、従来技術の複合粒子は、リチウムと合金を形成可能な金属の膨張を導電性を保ちながら、うまく吸収できないために、負極材料として用いた場合に、サイクル特性が悪くなるものと推測し、鋭意検討した結果、金属の周辺に、金属の平均粒子径より大きい空隙を形成すれば、合金形成時の金属の膨張を吸収でき、複合粒子の粉化や剥離を防止でき、金属の導電性を維持できることを見出し、本発明を完成するに至った。
本発明は、前記のような知見に鑑みてなされたものであり、リチウムイオン二次電池用負極として用いたときに、放電容量が高く、優れたサイクル特性と初期充放電効率が得られる負極材料とそれを用いたリチウムイオン二次電池を提供することを目的とする。また、そのような負極材料の材料として好適な黒鉛質材料を含有する複合粒子とその製造方法を提供することが目的である。
本発明は、リチウムと合金化可能な金属、黒鉛質材料および炭素質材料からなる複合粒子において、該複合粒子が空隙を有し、かつ該複合粒子の全空隙に対する、金属周辺の空隙の割合が20%以上であることを特徴とする複合粒子である。
本発明の複合粒子は、前記金属がシリコンであることが好ましい。
本発明の複合粒子は、前記金属がシリコンであり、該シリコンの一部が酸化物であることが好ましい。
また、本発明は、リチウムと合金化可能な金属と、黒鉛質材料および炭素質材料Aの前駆体を混合し、得られた複合粒子に該炭素質材料Aの前駆体より残炭率の高い炭素質材料Bの前駆体を混合した後、加熱することを特徴とする複合粒子の製造方法である。
本発明の複合粒子の製造方法は、リチウムと合金化可能な金属、黒鉛質材料、および残炭率が相対的に低い該炭素質材料Aの前駆体を混合し、複合粒子とした後、該複合粒子に残炭率が相対的に高い該炭素質材料Bの前駆体を混合し、加熱して、該金属の周辺に空隙を形成する方法が好ましい。
本発明の複合粒子の製造方法においては、前記炭素質材料Aの残炭率が、前記炭素質材料Bの残炭率に比して10%以上低いことが好ましい。
また、本発明は、前記いずれかの複合粒子を含むことを特徴とするリチウムイオン二次電池用負極材料である。
また、本発明は、前記リチウムイオン二次電池用負極材料を用いることを特徴とするリチウムイオン二次電池用負極である。
また、本発明は、前記リチウムイオン二次電池用負極を用いることを特徴とするリチウムイオン二次電池である。
本発明の複合粒子を含有する負極材料を用いて作製したリチウムイオン二次電池は、高い放電容量を有し、初期充放電容量およびサイクル特性に優れる。
そのため、本発明の負極材料を用いてなるリチウムイオン二次電池は、近年の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有効である。
また、本発明の複合粒子は、従来複合粒子の材料として使用されている材料を用いて製造することができるので、材料の入手が容易であり、材料コストが低い利点がある。また、本発明の複合粒子の製造方法は、比較的簡便な方法で目的の空隙を有する複合粒子を安定的に製造することができる利点もある。
以下、本発明をより具体的に説明する。
(複合粒子)
本発明の複合粒子は、主にリチウムと合金化可能な金属、黒鉛質材料および炭素質材料からなる複合粒子である。該複合粒子は、複数の金属粒子を分散して包含し、複数の大小の空隙を分散して含有しており、該各空隙の少なくとも一部が該各金属の周辺に存在している。そして複合粒子の周辺が炭素質材料で包囲される構造である。なお、複合粒子の形状は不特定であり、その大きさは3〜50μm程度のものが製造可能であり、特に制限されるものではない。
本発明の複合粒子において、金属周辺の空隙とは、該金属の表面の少なくとも一部に直接接して存在する空隙である。該金属粒子の表面の少なくとも一部に直接接して存在する空隙でなければ、金属粒子の膨張を吸収できず、負極材料として用いたときにサイクル特性の向上が不十分となる。該空隙は金属の種類により変動するので一様には言えないが、金属がシリコンの場合には、シリコンの中心から、シリコンが球状である場合には半径の、球状ではない場合には、その体積に相当する球とみなしてその半径の
Figure 2005123175
、好ましくは
Figure 2005123175
の距離にある領域内に存在することが好ましい。金属がスズの場合には、半径の
Figure 2005123175
、好ましくは
Figure 2005123175
の距離にある領域内に存在することが好ましい。
本発明の複合粒子の全空隙に対する、金属周辺の空隙の割合は20%以上でなければならない。20%未満では、金属がリチウムと合金を形成したときの膨張を吸収することができないからである。より好ましくは20〜100%、さらに好ましくは40〜100%、最も好ましくは50〜100%である。
また、複合粒子全体の空隙の割合は3〜50%であることが好ましい。3%未満であると、金属がリチウムと合金を形成した時の膨張を吸収できない場合があり、50%を超えると複合粒子の強度が不足する場合がある。
本発明の複合粒子の主要成分の好適組成(質量比)は、複合粒子全体を100としたとき、金属:黒鉛質材料:炭素質材料=1〜20:30〜95:4〜50の範囲であり、好ましくは2〜10:60〜93:5〜30の範囲である。
金属の組成が該範囲より少ないと、該複合粒子を含む負極材料をリチウムイオン二次電池に用いたときに、該電池の放電容量の向上効果が小さいことがあり、逆に該範囲より多くなると、該電池のサイクル特性の改良効果が小さくなることがある。
黒鉛質材料の組成が前記範囲を逸脱すると、金属の周辺に空隙を形成することが困難になる。
また炭素質材料の組成が該範囲を逸脱すると充放電効率やサイクル特性の改良効果が十分とは言えないことがある。
本発明の複合粒子の全空隙の容積は、例えば、粉砕して断面を露出させた複合粒子を水銀ポロシメータで測定することにより得られる。また、それから、複合粒子全体の空隙率(容積率)が計算される。
本発明の複合粒子全体の全空隙に対する金属周辺の空隙の割合は、50個の複合粒子の断面の、走査型電子顕微鏡写真(倍率400倍)について測定した全空隙面積と、全金属周辺の空隙の面積から得られる、複合粒子全体の全空隙に対する金属周辺の空隙の割合(面積率)の50個の平均値である。
本発明の複合粒子において、前記空隙が前記金属の周辺に存在しているので、リチウムイオン二次電池のサイクル特性が改良される。これは、充放電時における該金属の膨張、収縮が該空隙によって緩衝され、該複合粒子を含む負極材料の構造破壊が抑制されるためと考えられる。つまり、例え、金属自体が粉化した場合でも、該負極材料全体としての複合粒子の形態が維持されるため、該各複合粒子間の接触が保たれ、集電性が損なわれることはなく、サイクル特性の低下を抑制することが可能になるものと推定される。
(複合粒子の製造)
本発明は、リチウムと合金化可能な金属、黒鉛質材料、および炭素質材料の前駆体を含有する混合物を用いて、空隙の少なくとも一部が該金属の周辺に存在する複合粒子を製造し得る方法であれば、いかなる方法によって製造されても差し支えない。炭素質材料の前駆体は溶融、分散または溶解して用いることもできる。
金属、黒鉛質材料ならびに炭素質材料の前駆体AおよびBの好適組成(質量比)は、複合粒子全体を100としたとき、金属:黒鉛質材料:炭素質材料=1〜15:35〜95:4〜50の範囲であり、好ましくは2〜10:60〜93:5〜30の範囲となるような組成で配合される。具体的には金属:黒鉛質材料:炭素質材料A:炭素質材料B=1〜15:35〜95:2〜50:2〜40の範囲であり、好ましくは2〜10:60〜93:3〜30:2〜30の範囲である。
金属が該範囲より少ないと、該複合粒子を含む負極材料をリチウムイオン二次電池に用いたときに、該電池の放電容量の向上効果が小さいことがあり、逆に該範囲より多くなると該電池のサイクル特性の改良効果が小さくなることがある。
炭素質材料Aが該範囲より少ないと、サイクル特性の改良効果が十分でないことがあり、逆に該範囲より多いと、充放電効率の改良効果が十分でないことがある。
また炭素質材料Bが該範囲より少ないと、充放電効率の改良効果が十分でないことがあり、逆に該範囲より多いと、サイクル特性の改良効果が十分でないことがある。
本発明の複合粒子の製造方法は、リチウムと合金化可能な金属と、黒鉛質材料および残炭率の相対的に低い炭素質材料Aの前駆体を混合し、得られた複合粒子にさらに残炭率の相対的に高い炭素質材料Bの前駆体を混合し、加熱する方法である。この製造方法において、熱処理は、複合粒子の炭素質材料AおよびBが実質的に揮発物を含有しない状態になることが可能な温度で行うことが好ましい。
該前駆体は600℃以上、好ましくは800℃以上の温度で熱処理することにより、炭素化され、炭素質材料に導電性が付与される。該熱処理は、段階的に数回に分けて複数回行ってもよく、触媒の存在下に行ってもよい。また、酸化性ガス、非酸化性ガスの雰囲気のいずれで行ってもよい。
ただし、1500℃以上では炭素とシリコンが反応してSiCを生成するため、加熱温度は1500℃未満とする必要がある。1000〜1200℃であることが好ましい。また、適宜、分散媒を用いて混合することが好ましい。分散媒は、炭素質材料A、Bの前駆体が軟化、分解しない温度以下で除去することが好ましい。
また、熱処理の前後のいずれかの段階で、適宜、粉砕、篩い分け、分級による微粉除去などの粒度調整を行うことが好ましい。なお、比較的低温で熱処理し、前記複合体が柔軟性を有する状態で、複合体を転がす操作や高い剪断力を付与する操作を加えることにより、複合体が球状に近い形状となり、特に黒鉛材料の一つとして鱗片状黒鉛を使用する場合は、該鱗片状黒鉛が同心円状に配置されやすくなり好ましい。このような操作が可能な装置としては、GRANUREX[フロイト産業(株)製]、ニューグラマシン[(株)セイシン企業製]、アグロマスター[ホソカワミクロン(株)製]などの造粒機、ロールミル、ハイブリダイゼーションシステム[(株)奈良機械製作所製]、メカノマイクロシステム[(株)奈良機械製作所製]、メカノフュージョンシステム[ホソカワミクロン(株)製]などの圧縮剪断式加工装置などであり、これらを使用することができる。
(炭素質材料)
炭素質材料は導電性を有し、金属と黒鉛質材料とを結着するものであり、結着剤として不可欠な成分であり、前駆体を熱処理して得ることができる。炭素質材料の前駆体の種類は問わないが、本発明においては、炭素化後の炭素質材料の残炭率が異なる2種以上を使用する必要がある。残炭率が異なるとは、相対的に好ましくは数%以上、より好ましくは10%以上異なることを意味する。ここで、残炭率とは、JIS K2425の固定炭素法に準拠し、800℃に加熱し、実質的に全量が炭素化されたときの残分を言い、百分率で表す。
炭素質材料の前駆体は、タールピッチ類および/または樹脂類であることが好ましい。タールピッチ類は相対的に炭素化後の空隙量が少ないので、炭素質材料Bの前駆体(つまり残炭率の相対的に高い炭素質材料の前駆体)として好ましく用いられる。一方、樹脂類は、相対的に炭素化後の空隙量が多くなるので、炭素質材料Aの前駆体(つまり残炭率の相対的に低い炭素質材料の前駆体)として好ましい。具体的には、石油系または石炭系のタールピッチ類として、コールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられる。また樹脂類として、ポリビニルアルコールなどの熱可塑性樹脂、フェノール樹脂、フラン樹脂などが挙げられる。例えば、炭素質材料Aの前駆体としては、残炭率が10〜50%のフェノール樹脂を、炭素質材料Bの前駆体としては、残炭率が50〜90%のコールタールピッチを用いることが好ましい。
残炭率が相対的に低い炭素質材料Aの前駆体は、加熱後の炭素質材料に多くの空隙を生じさせるので、主に金属周辺の空隙形成の役割を担う。一方、残炭率が相対的に高い炭素質材料Bの前駆体は、加熱後の炭素質材料に発生する空隙が少なく、緻密な炭素質材料を形成することができるので、主に複合粒子の最表層を形成し、複合粒子を包囲する役割を担う。その結果、これを含有する負極材料を用いたリチウムイオン二次電池の不可逆容量の低減(初期充放電効率の向上)が可能になる。したがって、本発明の複合粒子の製造過程において、炭素質材料Aの前駆体を先に、金属や黒鉛質材料と混合して複合化した後、炭素質材料Bの前駆体を混合して、複合化する必要がある。
炭素質材料A、Bの前駆体の残炭率の高低が逆の場合、すなわち、炭素質材料A、Bの前駆体の混合順序が前記と逆の場合には、空隙の形成も、最表層の形成も不完全なものになり、これを負極材料に用いてなるリチウムイオン二次電池のサイクル特性と初期充放電容量の改良効果が得られない。また、該炭素質材料が1種類の炭素質材料の前駆体のみに由来する場合には、その残炭率に実質的な差がないので、該空隙の形成、または不可逆容量の低減のいずれか一方の効果しか得られない。
(リチウムと合金化可能な金属)
リチウムと合金化可能な金属は、Al、Pb、Zn、Sn、Bi、In、Mg、Ga、Cd、Ag、Si、B、Au、Pt、Pd、Sb、Ge、Niなどであり、これら金属の2種以上の合金であってもよい。合金には、上記以外の元素をさらに含有していてもよい。好ましい金属はシリコンSiおよびスズSnであり、特に好ましいのは入手しやすいシリコンである。また、これら金属の化合物は、リチウムとの合金化による体積膨張が金属より小さいので、金属の一部が酸化物、窒化物、炭化物などの化合物であってもよい。好ましいのはシリコン酸化物およびスズ酸化物であり、特に好ましいのは、入手しやすいシリコン酸化物である。金属と金属化合物を併用する場合、その合計量に対して、金属化合物は10〜95質量%とすることが好ましい。この範囲であると、膨張を低減する効果が発揮される。さらに好ましいのは50〜95質量%である。
金属の平均粒子径は10μm以下であるのが好ましく、5μm以下であることがより好ましい。10μmを超えるとサイクル特性の改良効果が小さくなる場合がある。
金属の形状は特に制約されない。粒状、球状、板状、鱗片状、針状、糸状などのいずれであってもよい。ここで、平均粒子径とはレーザー回折式粒度計で測定される累積度数が体積分率で50%となる粒径を意味する。
(黒鉛質材料)
黒鉛質材料はリチウムイオンを吸蔵・放出できるものであればよく、特に限定されない。その一部または全部が黒鉛質で形成されているもの、例えば、タール、ピッチ類を最終的に1500℃以上で熱処理(黒鉛化)して得られる人造黒鉛や天然黒鉛などである。具体的には、石油系または石炭系のタールピッチ類などの易黒鉛化性炭素材料を、熱処理して重縮合させたメソフェーズ焼成体、メソフェーズ小球体、コークス類を1500℃以上、好ましくは2800〜3300℃で黒鉛化処理して得ることができる。
黒鉛質材料の形状は、球状、塊状、板状、鱗片状、繊維状などのいずれでもよいが、特に鱗片状または鱗片状に近い形状のものが好ましい。また、前記した各種の混合物、造粒物、被覆物、積層物であってもよい。また、液相、気相、固相における各種化学的処理、熱処理、酸化処理、物理的処理などを施したものであってもよい。
黒鉛質材料の平均粒子径は1〜30μm、特に3〜15μmであるのが好ましい。
本発明は前記複合粒子を含有するリチウムイオン二次電池用負極材料であり、または該負極材料を用いるリチウムイオン二次電池用負極であり、さらには、該負極を用いるリチウムイオン二次電池である。
(負極)
本発明のリチウムイオン二次電池用の負極は、通常の負極の成形方法に準じて作製されるが、化学的、電気化学的に安定な負極を得ることができる方法であれば何ら制限されない。負極の作製時には、本発明の複合粒子に結合剤を加えて、予め調製した負極合剤を用いることが好ましい。結合剤としては、電解質に対して、化学的および電気化学的に安定性を示すものが好ましく、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂粉末、ポリエチレン、ポリビニルアルコールなどの樹脂粉末、カルボキシメチルセルロースなどが用いられる。これらを併用することもできる。結合剤は、通常、負極合剤の全量中の1〜20質量%程度の割合で用いられる。
より具体的には、まず、本発明の複合粒子を分級などにより所望の粒度に調整し、結合剤と混合して得た混合物を溶剤に分散させ、ペースト状にして負極合剤を調製する。すなわち、本発明の複合粒子と、結合剤を、水、イソプロピルアルコール、N−メチルピロリドン、ジメチルホルムアミドなどの溶剤と混合して得たスラリーを、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、ペーストを調製する。該ペーストを、集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が均一かつ強固に接着した負極が得られる。負極合剤層の膜厚は10〜200μm、好ましくは20〜100μmである。
また、本発明の負極は、本発明の複合粒子と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末を乾式混合し、金型内でホットプレス成型して作製することもできる。
負極合剤層を形成した後、プレスなどの圧着を行うと、負極合剤層と集電体との接着強度をより高めることができる。
負極の作製に用いる集電体の形状としては、特に限定されることはないが、箔状、メッシュ、エキスパンドメタルなどの網状などである。集電材の材質としては、銅、ステンレス、ニッケルなどが好ましい。集電体の厚みは、箔状の場合で5〜20μm程度であるのが好ましい。
なお、本発明の負極は、リチウムと合金化可能な金属、黒鉛質材料と炭素質材料を含有する複合粒子に、天然黒鉛などの黒鉛質材料、さらに非晶質ハードカーボンなどの炭素質材料、フェノール樹脂などの有機物、シリコンなどの金属、酸化スズなどの金属化合物などを配合してもよい。
(リチウムイオン二次電池)
リチウムイオン二次電池は、通常、負極、正極および非水電解質を主たる電池構成要素とし、正極および負極はそれぞれリチウムイオンの担持体からなり、充電時にはリチウムイオンが負極中に吸蔵され、放電時には負極から離脱する電池機構によっている。
本発明のリチウムイオン二次電池は、負極材料として本発明の負極材料を用いること以外は特に限定されず、正極、電解質、セパレータなどの他の電池構成要素については一般的なリチウムイオン二次電池の要素に準じる。
(正極)
正極は、例えば正極材料と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布することにより形成される。正極の材料(正極活物質)は、充分量のリチウムを吸蔵/離脱し得るものを選択するのが好ましく、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物などのリチウム含有化合物、一般式MX Mo6 8-y (式中Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値である)で表されるシェブレル相化合物、活性炭、炭素繊維などである。バナジウム酸化物は、V2 5 、V6 13、V2 4 、V3 8 で示されるものである。
リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。複合酸化物は単独で使用しても、2種類以上を組合わせて使用してもよい。リチウム含有遷移金属酸化物は、具体的には、LiM1 1-X2 X 2 (式中M1 、M2 は少なくとも一種の遷移金属元素であり、Xは0≦X≦1の範囲の数値である)、またはLiM1 1-Y2 Y 4 (式中M1 、M2 は少なくとも一種の遷移金属元素であり、Yは0≦Y≦1の範囲の数値である)で示される。
1 、M2 で示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましいのはCo、Fe、Mn、Ti、Cr、V、Alなどである。好ましい具体例は、LiCoO2 、LiNiO2 、LiMnO2 、LiNi0.9 Co0.1 2 、LiNi0.5 Mn0.5 2 などである。
リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。
正極活物質は、前記化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウム等の炭酸塩を添加することができる。また、正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を適宜に使用することができる。
正極は、前記正極材料、結合剤、および正極に導電性を付与するための導電剤よりなる正極合剤を、集電体の両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電剤としては、黒鉛化物、カーボンブラックなど公知のものが使用される。
集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状等のものが用いられる。集電体の材質は、アルミニウム、ステンレス、ニッケル等である。その厚さは10〜40μmのものが好適である。
正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電材に接着される。
(非水電解質)
本発明のリチウムイオン二次電池に用いられる非水電解質としては、通常の非水電解液に使用される電解質塩であり、例えば、LiPF6 、LiBF4 、LiAsF6 、LiClO4 、LiB(C6 5 )、LiCl、LiBr、LiCF3 SO3 、LiCH3 SO3 、LiN(CF3 SO2 2 、LiC(CF3 SO2 3 、LiN(CF3 CH2 OSO2 2 、LiN(CF3 CF2 OSO2 2 、LiN(HCF2 CF2 CH2 OSO2 2 、LiN((CF3 2 CHOSO2 2 、LiB[(C6 3 ((CF3 2 4 、LiAlCl4 、LiSiF6 などのリチウム塩を用いることができる。特にLiPF6 、LiBF4 が酸化安定性の点から好ましく用いられる。
電解質中の電解質塩濃度は、0.1〜5mol /lが好ましく、0.5〜3.0mol/l がより好ましい。
非水電解質液とするための溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1,1 −または1,2 −ジメトキシエタン、1,2 −ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1 ,3−ジオキソラン、4 −メチル−1 ,3 −ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。
非水電解質を高分子固体電解質、高分子ゲル電解質などの高分子電解質とする場合には、マトリクスとして可塑剤(非水電解液)でゲル化された高分子化合物を用いる。該マトリクス高分子化合物としては、ポリエチレンオキサイドやその架橋体などのエーテル系樹脂、ポリメタクリレート系樹脂、ポリアクリレート系樹脂、ポリビニリデンフルオライド(PVDF)やビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂などを単独、もしくは混合して用いることができる。
これらの中で、酸化還元安定性の観点などから、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂を用いることが好ましい。
使用される可塑剤としては、前記の電解質塩や非水溶媒が使用できる。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1〜5mol /lが好ましく、0.5〜2.0mol/l がより好ましい。
高分子電解質の作製は特に限定されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融・溶解する方法、混合用有機溶媒に、高分子化合物、リチウム塩、および非水溶媒を溶解させた後、混合用有機溶媒を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒を混合し、混合物に紫外線、電子線または分子線などを照射して、重合性モノマーを重合させ、高分子化合物を得る方法などを挙げることができる。
高分子電解質中の非水溶媒の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると、導電率が低くなり、90質量%を超えると、機械的強度が弱くなり、成膜化しにくい。
(セパレータ)
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。セパレータは特に限定されるものではないが、例えば織布、不織布、合成樹脂製微多孔膜などが挙げられる。合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等である。
本発明のリチウムイオン二次電池においては、ポリマー電解質を用いることも可能である。
ポリマー電解質を用いたリチウムイオン二次電池は、一般にポリマー電池と呼ばれ、本発明の複合粒子を用いてなる負極と、正極およびポリマー電解質から構成される。例えば、負極、ポリマー電解質、正極の順に積層し、電池外装材内に収容することで作製される。なお、これに加えて、さらに、負極と正極の外側にポリマー電解質を配するようにしてもよい。
さらに、本発明のリチウムイオン二次電池の構造は任意であり、その形状、形態について特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。高分子固体電解質電池やポリマー電池の場合には、ラミネートフィルムに封入した構造とすることもできる。
次に本発明を実施例および比較例により具体的に説明するが、本発明はこれらの例に限定されるものではない。また、実施例および比較例では、図1に示すような構成の評価用ボタン型二次電池を作製して評価した。実電池は、本発明の目的に基づき、公知の方法に準じて作製することができる。
実施例および比較例において、炭素質材料の前駆体の残炭率はJIS K2425の固定炭素法に準拠して以下のように測定した。
炭素質材料1gをるつぼに量り取り、ふたをしないで430℃の電気炉で30分間加熱した。その後、二重るつぼとし、800℃の電気炉で30分間加熱して揮発分を除き、残分の百分率を残炭率とした。
複合粒子の平均粒子径はレーザー回折式粒度分布計(セイシン社製、LS−5000)を用いて測定し、累積度数が体積分率で50%となる粒子径とした。
複合粒子全体の空隙率は、水銀ポロシメーターを用いて全空隙の容積を測定し、複合粒子の全体の容積に対する割合を求めた。
複合粒子の全空隙に対する金属周辺の空隙の割合は、粒子断面の走査型電子顕微鏡観察から二次元的に空隙領域の面積割合を算出することによって求め、50個の複合粒子の断面における計測結果の平均値を採用した。ここで、空隙が金属の表面の少なくとも一部に直接接して存在すれば金属周辺の空隙とした。
(実施例1)
(複合粒子の製造)
フェノール樹脂[住友ベークライト(株)製、残炭率50%]のエタノール溶液に、金属シリコン粉末[高純度化学研究所(株)製、平均粒子径2μm]を分散させたスラリーと、天然黒鉛[(株)中越黒鉛工業所製、平均粒子径10μm]を、二軸加熱ニーダーを用いて、150℃で1時間混練し、混練物を得た。その際、固形分比率がフェノール樹脂:シリコン粉末:天然黒鉛=18:6:76となるように調製した。
次いで、コールタールピッチ[JFEケミカル(株)製、残炭率60%]にタール中油を混合し、コールタールピッチ溶液を調製した。該溶液と該混練物を、二軸加熱ニーダーを用いて、200℃で1時間混練した。その際、固形分比率がコールタールピッチ:該混練物=30:70となるように調製した。混練後、真空にして該混練物中の溶媒を除去した。
得られた混練物を、粗粉砕した後、1000℃で10時間加熱し、該混練物が実質的に揮発物を含有しない状態にした。すなわち、フェノール樹脂およびコールタールピッチを炭素化した。得られた複合粒子の平均粒子径は15μmであった。加熱前の混練物と、得られた複合粒子のシリコン/天然黒鉛/炭素質材料の組成と、測定した複合粒子全体の空隙率、および複合粒子の全空隙に対する金属周辺の空隙の割合を表1に示した。
該複合粒子は、図2に示すように、シリコン11と天然黒鉛12が、コールタールピッチ由来の炭素質材料Aおよびフェノール樹脂由来の炭素質材料Bと一体化した複合粒子となっており、金属周辺に空隙が存在するものであった。
(負極合剤ペーストの作製)
前記複合粒子90質量%と、ポリフッ化ビニリデン10質量%をN−メチルピロリドンに入れ、ホモミキサーを用いて2000rpm で30分間攪拌混合し、有機溶剤系負極合剤を調製した。
(作用電極の作製)
前記負極合剤ペーストを銅箔に均一な厚さで塗布し、真空中90℃で溶剤を揮発させ、乾燥し、負極合剤層をハンドプレスによって加圧した。銅箔と負極合剤層を直径15.5mmの円柱状に打抜いて、集電体と、該集電体に密着した負極合剤とからなる作用電極を作製した。
(対極の作製)
リチウム金属箔ニッケルネットに押付け、直径15.5mmの円柱状に打抜いて、ニッケルネットからなる集電体と、該集電体に密着したリチウム金属箔からなる対極を作製した。
(電解液・セパレータ)
エチレンカーボネート33vol%とメチルエチルカーボネート67vol%を混合してなる混合溶媒に、LiPF6 を1mol/dm3 となる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体に含浸させ、電解液が含浸したセパレータを作製した。
(評価電池)
評価電池として、図1に示すボタン型二次電池を作製した。
集電体7bに密着した負極2と、集電体7aに密着した正極4との間に、電解液を含浸させたセパレータ5を挟んで、積層した。その後、負極集電体7b側が外装カップ1内に、正極集電体7a側が外装缶3内に収容されるように、外装カップ1と外装缶3とを合わせた。その際、外装カップ1と外装缶3との周縁部に、絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。
該評価電池について、温度25℃で下記のような充放電実験を行い、放電容量、初期充放電効率、サイクル特性を計算した。評価結果を表2に示した。
(放電容量・初期充放電効率)
0.9mAの電流値で回路電圧が0mVに達するまで定電流充電を行い、回路電圧が0mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるまで充電を続けた。その間の通電量から充電容量を求めた。その後、120分間休止した。次に、0.9mAの電流値で回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。次式から初期充放電効率を計算した。なお、この試験では、リチウムを黒鉛質粒子へ吸蔵する過程を充電、離脱する過程を放電とした。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)× 100
(サイクル特性)
放電容量、初期充放電効率を評価した評価電池とは別の評価電池を同様に作製し、以下のような評価を行った。
回路電圧が0mVに達するまで4.0mAの電流値で定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、120分間休止した。次に、4.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。20回充放電を繰返した。次式を用いてサイクル特性を計算した。
サイクル特性=(第20サイクルにおける放電容量/第1サイクルにおける放電容 量)×100
電池特性(放電容量、初期充放電効率およびサイクル特性)についての評価結果を表2に示した。
表2に示すように、作用電極に実施例1の複合粒子を用いて得られた評価電池は、高い放電容量を示し、かつ高い初期充放電効率を有する。さらに、優れたサイクル特性を示す。
(実施例2)
実施例1における複合粒子の固形分比率をフェノール樹脂:シリコン粉末:天然黒鉛=27:6:67となるように変更する以外は、実施例1と同様に、複合粒子を作製した。得られた複合粒子の平均粒子径は14μmであった。加熱前の混練物と、複合粒子のシリコン:天然黒鉛:炭素質材料の組成と、測定した複合粒子全体の空隙率、および複合粒子の全空隙に対する金属周辺の空隙の割合を表1に示した。また、実施例1と同様の方法と条件で、該複合粒子、負極および非水電解質を用いてリチウムイオン二次電池を作製した。該電池の放電容量、初期充放電効率とサイクル特性を実施例1と同様に測定し、評価結果を表2に示した。
表2に示すように、作用電極に実施例2の複合粒子を用いて得られた評価電池は、高い放電容量を示し、かつ高い初期充放電効率を有する。さらに、優れたサイクル特性を示す。
(実施例3)
実施例1において用いたフェノール樹脂とコールタールピッチを、それぞれ異なるフェノール樹脂[JFEケミカル(株)製:残炭率40%]と異なるコールタールピッチ[JFEケミカル(株)製:残炭率65%]に代える以外は、実施例1と同様に複合粒子を製造した。得られた複合粒子の平均粒子径は15μmであった。加熱前の混練物と、複合粒子のシリコン:天然黒鉛:炭素質材料の組成と、測定した複合粒子全体の空隙率、および複合粒子の全空隙に対する金属周辺の空隙の割合を表1に示した。また、実施例1と同様な方法と条件で、該複合粒子、負極および非水電解質を用いて、リチウムイオン二次電池を作製した。該電池の放電容量、初期充放電効率とサイクル特性を実施例1と同様に測定し、評価結果を表2に示した。
表2に示すように、作用電極に実施例3の複合粒子を用いて得られた評価電池は、高い放電容量を示し、かつ高い初期充放電効率を有する。さらに、優れたサイクル特性を示す。
(実施例4)
実施例1において用いたシリコン粉末に代えて、スズ粉末(Aldrich 社製、平均粒子径1μm)を用い、フェノール樹脂のエタノール溶液中で天然黒鉛と混合する際に、固形分比率がフェノール樹脂:スズ粉末:天然黒鉛=18:27:55となるように調製する以外は、実施例1と同様な方法と条件で、複合粒子を作製した。得られた複合粒子の平均粒子径は12μmであった。加熱前の混練物と、複合粒子のスズ粉末:天然黒鉛:炭素質材料の組成と、測定した複合粒子全体の空隙率、および複合粒子の全空隙に対する金属周辺の空隙の割合を表1に示した。また、実施例1と同様な方法と条件で、該複合粒子、負極および非水電解質を用いて、リチウムイオン二次電池を作製した。該電池の放電容量、初期充放電効率とサイクル特性を実施例1と同様に測定し、評価結果を表2に示した。
表2に示すように、作用電極に実施例4の複合粒子を用いて得られた評価電池は、高い放電容量を示し、かつ高い初期充放電効率を有する。さらに、優れたサイクル特性を示す。
(実施例5)
実施例1において、シリコン粉末に加えて、一酸化ケイ素粉末[(株)高純度化学研究所製、平均粒子径10μm]を用い、シリコン粉末50質量部と一酸化ケイ素粉末50質量部を配合したフェノール樹脂のエタノール溶液中で天然黒鉛と混合する際に、固形分比率がフェノール樹脂:(シリコン粉末+一酸化ケイ素粉末):天然黒鉛=17.6:8.7:73.8となるように調製し、ついで、コールタ−ルピッチ溶液と混練する際に、固形分比率がコールタールピッチ:該混練物=27.5:72.5となるように調製する以外は、実施例1と同様な方法と条件で、複合粒子を作製した。得られた複合粒子の平均粒子径は20μmであった。加熱前の混練物と、複合粒子のシリコン:一酸化ケイ素:天然黒鉛:炭素質材料の組成と、測定した複合粒子全体の空隙率、および複合粒子の全空隙に対する金属周辺の空隙の割合を表1に示した。また、実施例1と同様な方法と条件で、該複合粒子、負極および非水電解質を用いて、リチウムイオン二次電池を作製した。該電池の放電容量、初期充放電効率とサイクル特性を実施例1と同様に測定し、評価結果を表2に示した。
表2に示すように、作用電極に実施例5の複合粒子を用いて得られた評価電池は、高い放電容量を示し、かつ高い初期充放電効率を有する。さらに、優れたサイクル特性を示す。
(比較例1)
実施例1で使用したのと同じ金属、黒鉛質材料および炭素質材料を使用し、これらを一括して混練した、すなわち、フェノール樹脂、金属シリコン粉末、天然黒鉛およびコールタールピッチをタール中油を溶媒として、二軸加熱ニーダーで同時に混練した後、混練物を加熱し、溶媒を除去し、乾燥した。得られた混練物を粉砕し、1000℃で10時間焼成する以外は、実施例1と同様に、複合粒子を作製した。得られた複合粒子の平均粒子径は15μmであった。加熱前の混練物と、複合粒子のシリコン:天然黒鉛:炭素質材料の組成と、測定した複合粒子全体の空隙率、および複合粒子の全空隙に対する金属周辺の空隙の割合を表1に示した。また、実施例1と同様の方法と条件で、該複合粒子、負極および非水電解質を用いてリチウムイオン二次電池を作製した。該電池の放電容量、初期充放電効率とサイクル特性を実施例1と同様に測定し、評価結果を表2に示した。
表2に示すように、シリコン粒子の周辺に空隙が存在しない比較例1では、高い初期充放電効率やサイクル特性が得られない。これは、充放電時のシリコン粒子の膨張・収縮により複合粒子の構造が破壊され、導電性の低下や活物質の集電体からの剥離が発生したためと考えられる。
Figure 2005123175
Figure 2005123175
充放電試験に用いるためのボタン型評価電池の構造を示す模式断面図である。 本発明の実施例1の複合粒子の断面の模式図である。
符号の説明
1 外装カップ
2 作用電極
3 外装缶
4 対極
5 セパレータ
6 絶縁ガスケット
7a、7b 集電体
11 金属シリコン
12 天然黒鉛
13 コールタールピッチ由来炭素質材料
14 フェノール樹脂由来の炭素質材料
15 空隙

Claims (8)

  1. リチウムと合金化可能な金属、黒鉛質材料および炭素質材料からなる複合粒子において、該複合粒子が空隙を有し、かつ該複合粒子の全空隙に対する、金属周辺の空隙の割合が20%以上であることを特徴とする複合粒子。
  2. 前記金属がシリコンであることを特徴とする請求項1に記載の複合粒子。
  3. 前記金属がシリコンであり、該シリコンの一部が酸化物であることを特徴とする請求項1に記載の複合粒子。
  4. リチウムと合金化可能な金属と、黒鉛質材料および炭素質材料Aの前駆体を混合し、得られた複合粒子に該炭素質材料Aの前駆体よりも残炭率の高い炭素質材料Bの前駆体を混合した後、加熱することを特徴とする複合粒子の製造方法。
  5. 前記炭素質材料Aの残炭率が、前記炭素質材料Bの残炭率に比して10%以上低いことを特徴とする請求項4に記載の複合粒子の製造方法。
  6. 請求項1〜3のいずれか1項に記載の複合粒子を含むことを特徴とするリチウムイオン二次電池用負極材料。
  7. 請求項6に記載のリチウムイオン二次電池用負極材料を用いることを特徴とするリチウムイオン二次電池用負極。
  8. 請求項7に記載のリチウムイオン二次電池用負極を用いることを特徴とするリチウムイオン二次電池。
JP2004277371A 2003-09-26 2004-09-24 リチウムイオン二次電池負極材料用複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池 Expired - Lifetime JP3995050B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277371A JP3995050B2 (ja) 2003-09-26 2004-09-24 リチウムイオン二次電池負極材料用複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003336422 2003-09-26
JP2004277371A JP3995050B2 (ja) 2003-09-26 2004-09-24 リチウムイオン二次電池負極材料用複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP2005123175A true JP2005123175A (ja) 2005-05-12
JP3995050B2 JP3995050B2 (ja) 2007-10-24

Family

ID=34622123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277371A Expired - Lifetime JP3995050B2 (ja) 2003-09-26 2004-09-24 リチウムイオン二次電池負極材料用複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP3995050B2 (ja)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109631A (ja) * 2005-09-15 2007-04-26 Nissan Motor Co Ltd 電池用電極
JP2007141504A (ja) * 2005-11-15 2007-06-07 Hitachi Chem Co Ltd リチウムイオン二次電池用負極材
WO2008047768A1 (en) * 2006-10-16 2008-04-24 Panasonic Corporation Composite negative active material for non-aqueous electrolyte secondary battery, process for production of the same, and non-aqueous electrolyte secondary battery using the same
JP2009129914A (ja) * 2007-11-27 2009-06-11 Samsung Sdi Co Ltd リチウム2次電池用負極活物質、その製造方法、及びこれを含むリチウム2次電池
WO2010074243A1 (ja) 2008-12-26 2010-07-01 積水化学工業株式会社 電極用炭素粒子の製造方法、電極用炭素粒子及びリチウムイオン二次電池用負極材料
JP2011057541A (ja) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd 炭素材料、電極材料及びリチウムイオン二次電池負極材料
JP2011527982A (ja) * 2008-07-15 2011-11-10 ユニバーシテート デュースブルク−エッセン 多孔質炭素基板へのシリコン及び/若しくは錫の差込
US8399131B2 (en) 2007-06-01 2013-03-19 Panasonic Corporation Composite negative electrode active material and non-aqueous electrolyte secondary battery
WO2013088711A1 (ja) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 難黒鉛化性炭素材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
WO2013088712A1 (ja) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 非晶質炭素粒子の製造方法、非晶質炭素粒子、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
WO2013099278A1 (ja) * 2011-12-28 2013-07-04 パナソニック株式会社 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP2013182706A (ja) * 2012-02-29 2013-09-12 Sumitomo Bakelite Co Ltd 負極用前駆体、負極用前駆体の製造方法、負極用材料の製造方法、電極およびリチウムイオン二次電池
US8562869B2 (en) 2006-12-19 2013-10-22 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
KR101328982B1 (ko) * 2006-04-17 2013-11-13 삼성에스디아이 주식회사 음극 활물질 및 그 제조 방법
US8709653B2 (en) 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
CN104332616A (zh) * 2014-09-09 2015-02-04 刘剑洪 石墨烯包覆石墨复合锂离子电池负极材料及其制备方法
WO2015022964A1 (ja) * 2013-08-14 2015-02-19 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
KR101502897B1 (ko) * 2007-12-28 2015-03-17 삼성에스디아이 주식회사 음극 활물질용 복합물, 이를 포함하는 음극 활물질 및 리튬전지
WO2015059859A1 (ja) * 2013-10-24 2015-04-30 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池の負極用粉末
US9252428B2 (en) 2012-04-25 2016-02-02 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2016035274A1 (ja) * 2014-09-01 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質
JP2016056095A (ja) * 2011-12-16 2016-04-21 Jfeケミカル株式会社 非晶質炭素粒子の製造方法
JP2017130274A (ja) * 2016-01-18 2017-07-27 東ソー株式会社 リチウム二次電池用負極材およびその製造方法、リチウム二次電池
JP2018006331A (ja) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極材料及びその製造方法
JP2018006332A (ja) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極材料及びその製造方法
JP2018170246A (ja) * 2017-03-30 2018-11-01 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
WO2020059225A1 (ja) 2018-09-19 2020-03-26 Jsr株式会社 電極製造装置
JP2020068191A (ja) * 2017-12-27 2020-04-30 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
WO2020084949A1 (ja) 2018-10-24 2020-04-30 Jmエナジー株式会社 電極製造装置及び電極製造方法
WO2020110433A1 (ja) 2018-11-28 2020-06-04 Jmエナジー株式会社 電極製造方法、蓄電デバイスの製造方法、及び電極製造装置
WO2020152980A1 (ja) 2019-01-23 2020-07-30 Jmエナジー株式会社 電極製造システム及び電極製造方法
WO2020152986A1 (ja) 2019-01-23 2020-07-30 Jmエナジー株式会社 ドーピングシステム及びドーピング方法
WO2020170607A1 (ja) 2019-02-20 2020-08-27 Jmエナジー株式会社 電極製造システム、クリーニングユニット、及び電極製造方法
WO2020208965A1 (ja) 2019-04-10 2020-10-15 Jmエナジー株式会社 電極製造方法及び蓄電デバイスの製造方法
CN112038590A (zh) * 2019-06-04 2020-12-04 中国科学院物理研究所 新型固态电池及其正极材料
WO2021039085A1 (ja) 2019-08-30 2021-03-04 Jmエナジー株式会社 ドープ電極の製造方法及び蓄電デバイスの製造方法
CN112768644A (zh) * 2020-04-16 2021-05-07 西安越遴新材料研究院有限公司 一种利用改性沥青包覆硅碳复合负极材料界面的修饰方法
WO2021106286A1 (ja) 2019-11-28 2021-06-03 Jmエナジー株式会社 電極製造方法
WO2021131124A1 (ja) 2019-12-26 2021-07-01 Jmエナジー株式会社 電極の製造方法、蓄電デバイスの製造方法、及び電極製造装置
WO2021157157A1 (ja) 2020-02-04 2021-08-12 武蔵エナジーソリューションズ株式会社 ドーピングシステム及び電極の製造方法
CN113270571A (zh) * 2020-02-17 2021-08-17 丰田自动车株式会社 锂离子二次电池的制造方法和负极材料
WO2022102381A1 (ja) 2020-11-10 2022-05-19 武蔵エナジーソリューションズ株式会社 二次電池の製造方法及びドープ電極の製造方法
WO2022270063A1 (ja) 2021-06-24 2022-12-29 武蔵エナジーソリューションズ株式会社 ドープ電極の製造方法
WO2023276314A1 (ja) 2021-06-28 2023-01-05 武蔵エナジーソリューションズ株式会社 ドープ電極の製造方法及びドープ電極の製造システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451538B1 (ko) 2010-12-10 2014-10-15 히타치가세이가부시끼가이샤 리튬 이온 이차 전지용 부극재 및 그 제조 방법, 리튬 이온 이차 전지용 부극, 그리고 리튬 이온 이차 전지
CN104813518B (zh) * 2012-11-21 2017-10-20 昭和电工株式会社 锂离子电池用负极材料的制造方法
KR102191190B1 (ko) 2017-10-05 2020-12-16 쇼와 덴코 가부시키가이샤 리튬 이온 2차전지용 부극재료, 그 제조 방법, 부극용 페이스트, 부극 시트 및 리튬 이온 2차전지

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286763A (ja) * 1992-04-07 1993-11-02 Mitsubishi Petrochem Co Ltd 電極材料
JPH08231273A (ja) * 1995-02-24 1996-09-10 Asahi Organic Chem Ind Co Ltd 炭化物の製造方法及びその炭化物の粒子を含んでなる負極
JPH10321226A (ja) * 1997-05-21 1998-12-04 Asahi Chem Ind Co Ltd 二次電池
JPH1197014A (ja) * 1997-09-18 1999-04-09 Toshiba Corp 二次電池用電極材料
JPH11279785A (ja) * 1998-03-31 1999-10-12 Osaka Gas Co Ltd 電極用複合炭素材料およびその製造方法並びにこれを用いた非水電解液二次電池
JPH11343109A (ja) * 1998-03-25 1999-12-14 Osaka Gas Co Ltd 炭素材料およびその製造方法、リチウム二次電池用負極並びにリチウム二次電池
JP2000173612A (ja) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその負極材料
JP2000203818A (ja) * 1999-01-13 2000-07-25 Hitachi Chem Co Ltd 複合炭素粒子、その製造法、負極材料、リチウム二次電池用負極及びリチウム二次電池
JP2001345100A (ja) * 2000-05-31 2001-12-14 Hitachi Chem Co Ltd リチウム二次電池負極用炭素質粒子、その製造方法、リチウム二次電池負極及びリチウム二次電池
JP2002151066A (ja) * 2000-11-09 2002-05-24 Sanyo Electric Co Ltd リチウム二次電池用負極材料
JP2002216751A (ja) * 2000-11-14 2002-08-02 Mitsui Mining Co Ltd リチウム二次電池負極用複合材料及びリチウム二次電池
JP2002231225A (ja) * 2001-02-01 2002-08-16 Hitachi Chem Co Ltd 複合電極材料とその製造方法、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2002260658A (ja) * 2001-03-02 2002-09-13 Samsung Sdi Co Ltd 炭素質材料及びリチウム二次電池
JP2003303588A (ja) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3369589B2 (ja) * 1992-04-07 2003-01-20 三菱化学株式会社 電極材料
JPH05286763A (ja) * 1992-04-07 1993-11-02 Mitsubishi Petrochem Co Ltd 電極材料
JPH08231273A (ja) * 1995-02-24 1996-09-10 Asahi Organic Chem Ind Co Ltd 炭化物の製造方法及びその炭化物の粒子を含んでなる負極
JPH10321226A (ja) * 1997-05-21 1998-12-04 Asahi Chem Ind Co Ltd 二次電池
JPH1197014A (ja) * 1997-09-18 1999-04-09 Toshiba Corp 二次電池用電極材料
JPH11343109A (ja) * 1998-03-25 1999-12-14 Osaka Gas Co Ltd 炭素材料およびその製造方法、リチウム二次電池用負極並びにリチウム二次電池
JPH11279785A (ja) * 1998-03-31 1999-10-12 Osaka Gas Co Ltd 電極用複合炭素材料およびその製造方法並びにこれを用いた非水電解液二次電池
JP2000173612A (ja) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd 非水電解質二次電池およびその負極材料
JP2000203818A (ja) * 1999-01-13 2000-07-25 Hitachi Chem Co Ltd 複合炭素粒子、その製造法、負極材料、リチウム二次電池用負極及びリチウム二次電池
JP2001345100A (ja) * 2000-05-31 2001-12-14 Hitachi Chem Co Ltd リチウム二次電池負極用炭素質粒子、その製造方法、リチウム二次電池負極及びリチウム二次電池
JP2002151066A (ja) * 2000-11-09 2002-05-24 Sanyo Electric Co Ltd リチウム二次電池用負極材料
JP2002216751A (ja) * 2000-11-14 2002-08-02 Mitsui Mining Co Ltd リチウム二次電池負極用複合材料及びリチウム二次電池
JP3466576B2 (ja) * 2000-11-14 2003-11-10 三井鉱山株式会社 リチウム二次電池負極用複合材料及びリチウム二次電池
JP2002231225A (ja) * 2001-02-01 2002-08-16 Hitachi Chem Co Ltd 複合電極材料とその製造方法、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2002260658A (ja) * 2001-03-02 2002-09-13 Samsung Sdi Co Ltd 炭素質材料及びリチウム二次電池
JP2003303588A (ja) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012082B2 (en) 2004-03-08 2015-04-21 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US8709653B2 (en) 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
JP2007109631A (ja) * 2005-09-15 2007-04-26 Nissan Motor Co Ltd 電池用電極
JP2007141504A (ja) * 2005-11-15 2007-06-07 Hitachi Chem Co Ltd リチウムイオン二次電池用負極材
US8906557B2 (en) 2006-04-17 2014-12-09 Samsung Sdi Co., Ltd. Anode active material and method of preparing the same
KR101328982B1 (ko) * 2006-04-17 2013-11-13 삼성에스디아이 주식회사 음극 활물질 및 그 제조 방법
WO2008047768A1 (en) * 2006-10-16 2008-04-24 Panasonic Corporation Composite negative active material for non-aqueous electrolyte secondary battery, process for production of the same, and non-aqueous electrolyte secondary battery using the same
US8562869B2 (en) 2006-12-19 2013-10-22 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
US8399131B2 (en) 2007-06-01 2013-03-19 Panasonic Corporation Composite negative electrode active material and non-aqueous electrolyte secondary battery
JP2009129914A (ja) * 2007-11-27 2009-06-11 Samsung Sdi Co Ltd リチウム2次電池用負極活物質、その製造方法、及びこれを含むリチウム2次電池
US9391314B2 (en) 2007-11-27 2016-07-12 Samsung Sdi Co., Ltd. Negative active material, method of preparing the same, and rechargeable lithium battery including the same
KR101502897B1 (ko) * 2007-12-28 2015-03-17 삼성에스디아이 주식회사 음극 활물질용 복합물, 이를 포함하는 음극 활물질 및 리튬전지
JP2011527982A (ja) * 2008-07-15 2011-11-10 ユニバーシテート デュースブルク−エッセン 多孔質炭素基板へのシリコン及び/若しくは錫の差込
US8940192B2 (en) 2008-12-26 2015-01-27 Sekisui Chemical Co., Ltd. Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
KR101511821B1 (ko) * 2008-12-26 2015-05-18 세키스이가가쿠 고교가부시키가이샤 전극용 탄소 입자의 제조 방법, 전극용 탄소 입자 및 리튬 이온 2 차 전지용 부극 재료
WO2010074243A1 (ja) 2008-12-26 2010-07-01 積水化学工業株式会社 電極用炭素粒子の製造方法、電極用炭素粒子及びリチウムイオン二次電池用負極材料
JP2011057541A (ja) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd 炭素材料、電極材料及びリチウムイオン二次電池負極材料
US9735421B2 (en) 2011-12-16 2017-08-15 Jfe Chemical Corporation Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2013144633A (ja) * 2011-12-16 2013-07-25 Jfe Chemical Corp 難黒鉛化性炭素材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
JP2013144632A (ja) * 2011-12-16 2013-07-25 Jfe Chemical Corp 非晶質炭素粒子の製造方法、非晶質炭素粒子、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
WO2013088712A1 (ja) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 非晶質炭素粒子の製造方法、非晶質炭素粒子、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
WO2013088711A1 (ja) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 難黒鉛化性炭素材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
US9379384B2 (en) 2011-12-16 2016-06-28 Jfe Chemical Corporation Method for producing non-graphitizable carbon material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2016104698A (ja) * 2011-12-16 2016-06-09 Jfeケミカル株式会社 非晶質炭素粒子
JP2016056095A (ja) * 2011-12-16 2016-04-21 Jfeケミカル株式会社 非晶質炭素粒子の製造方法
WO2013099278A1 (ja) * 2011-12-28 2013-07-04 パナソニック株式会社 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
US10050262B2 (en) 2011-12-28 2018-08-14 Panasonic Intellectual Property Mangement Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JPWO2013099278A1 (ja) * 2011-12-28 2015-04-30 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極およびそれを用いた非水電解質二次電池
JP2013182706A (ja) * 2012-02-29 2013-09-12 Sumitomo Bakelite Co Ltd 負極用前駆体、負極用前駆体の製造方法、負極用材料の製造方法、電極およびリチウムイオン二次電池
US9252428B2 (en) 2012-04-25 2016-02-02 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US10749178B2 (en) 2013-08-14 2020-08-18 Tosoh Corporation Composite active material for lithium secondary batteries and method for producing same
WO2015022964A1 (ja) * 2013-08-14 2015-02-19 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
JPWO2015059859A1 (ja) * 2013-10-24 2017-03-09 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池の負極用粉末
WO2015059859A1 (ja) * 2013-10-24 2015-04-30 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池の負極用粉末
CN106797025A (zh) * 2014-09-01 2017-05-31 三洋电机株式会社 非水电解质二次电池用负极活性物质
JPWO2016035274A1 (ja) * 2014-09-01 2017-06-15 三洋電機株式会社 非水電解質二次電池用負極活物質
CN106797025B (zh) * 2014-09-01 2019-06-18 三洋电机株式会社 非水电解质二次电池用负极活性物质
WO2016035274A1 (ja) * 2014-09-01 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質
US10062903B2 (en) 2014-09-01 2018-08-28 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary battery
US10741833B2 (en) 2014-09-01 2020-08-11 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary battery
CN104332616A (zh) * 2014-09-09 2015-02-04 刘剑洪 石墨烯包覆石墨复合锂离子电池负极材料及其制备方法
JP2017130274A (ja) * 2016-01-18 2017-07-27 東ソー株式会社 リチウム二次電池用負極材およびその製造方法、リチウム二次電池
JP2018006331A (ja) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極材料及びその製造方法
JP2018006332A (ja) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極材料及びその製造方法
JP2018170246A (ja) * 2017-03-30 2018-11-01 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
JP2020068191A (ja) * 2017-12-27 2020-04-30 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
JP2023011743A (ja) * 2017-12-27 2023-01-24 東ソー株式会社 リチウム二次電池用複合活物質
JP7293645B2 (ja) 2017-12-27 2023-06-20 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
JP7452599B2 (ja) 2017-12-27 2024-03-19 東ソー株式会社 リチウム二次電池用複合活物質
WO2020059225A1 (ja) 2018-09-19 2020-03-26 Jsr株式会社 電極製造装置
WO2020084949A1 (ja) 2018-10-24 2020-04-30 Jmエナジー株式会社 電極製造装置及び電極製造方法
WO2020110433A1 (ja) 2018-11-28 2020-06-04 Jmエナジー株式会社 電極製造方法、蓄電デバイスの製造方法、及び電極製造装置
US12300803B2 (en) 2019-01-23 2025-05-13 Musashi Energy Solutions Co., Ltd. Doping system and doping method
US12095071B2 (en) 2019-01-23 2024-09-17 Musashi Energy Solutions Co., Ltd. Electrode manufacturing system and electrode manufacturing method
WO2020152986A1 (ja) 2019-01-23 2020-07-30 Jmエナジー株式会社 ドーピングシステム及びドーピング方法
WO2020152980A1 (ja) 2019-01-23 2020-07-30 Jmエナジー株式会社 電極製造システム及び電極製造方法
WO2020170607A1 (ja) 2019-02-20 2020-08-27 Jmエナジー株式会社 電極製造システム、クリーニングユニット、及び電極製造方法
US12068473B2 (en) 2019-02-20 2024-08-20 Musashi Energy Solutions Co., Ltd. System for manufacturing an electrode, cleaning unit, and electrode manufacturing method
WO2020208965A1 (ja) 2019-04-10 2020-10-15 Jmエナジー株式会社 電極製造方法及び蓄電デバイスの製造方法
CN112038590B (zh) * 2019-06-04 2023-05-02 中国科学院物理研究所 新型固态电池及其正极材料
CN112038590A (zh) * 2019-06-04 2020-12-04 中国科学院物理研究所 新型固态电池及其正极材料
US12218339B2 (en) 2019-08-30 2025-02-04 Musashi Energy Solutions Co., Ltd. Method for manufacturing doped electrode and method for manufacturing power storage device
WO2021039085A1 (ja) 2019-08-30 2021-03-04 Jmエナジー株式会社 ドープ電極の製造方法及び蓄電デバイスの製造方法
US11811046B2 (en) 2019-11-28 2023-11-07 Musashi Energy Solutions Co., Ltd. Method for manufacturing electrode
WO2021106286A1 (ja) 2019-11-28 2021-06-03 Jmエナジー株式会社 電極製造方法
WO2021131124A1 (ja) 2019-12-26 2021-07-01 Jmエナジー株式会社 電極の製造方法、蓄電デバイスの製造方法、及び電極製造装置
WO2021157157A1 (ja) 2020-02-04 2021-08-12 武蔵エナジーソリューションズ株式会社 ドーピングシステム及び電極の製造方法
JP7290124B2 (ja) 2020-02-17 2023-06-13 トヨタ自動車株式会社 リチウムイオン二次電池の製造方法および負極材料
US11721833B2 (en) 2020-02-17 2023-08-08 Toyota Jidosha Kabushiki Kaisha Method of producing lithium ion secondary battery and negative electrode material
CN113270571B (zh) * 2020-02-17 2024-02-13 丰田自动车株式会社 锂离子二次电池的制造方法和负极材料
JP2021128917A (ja) * 2020-02-17 2021-09-02 トヨタ自動車株式会社 リチウムイオン二次電池の製造方法および負極材料
CN113270571A (zh) * 2020-02-17 2021-08-17 丰田自动车株式会社 锂离子二次电池的制造方法和负极材料
CN112768644A (zh) * 2020-04-16 2021-05-07 西安越遴新材料研究院有限公司 一种利用改性沥青包覆硅碳复合负极材料界面的修饰方法
WO2022102381A1 (ja) 2020-11-10 2022-05-19 武蔵エナジーソリューションズ株式会社 二次電池の製造方法及びドープ電極の製造方法
WO2022270063A1 (ja) 2021-06-24 2022-12-29 武蔵エナジーソリューションズ株式会社 ドープ電極の製造方法
WO2023276314A1 (ja) 2021-06-28 2023-01-05 武蔵エナジーソリューションズ株式会社 ドープ電極の製造方法及びドープ電極の製造システム

Also Published As

Publication number Publication date
JP3995050B2 (ja) 2007-10-24

Similar Documents

Publication Publication Date Title
JP3995050B2 (ja) リチウムイオン二次電池負極材料用複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池
JP5348878B2 (ja) リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池
JP3957692B2 (ja) リチウムイオン二次電池負極材料用複合黒鉛粒子、負極およびリチウムイオン二次電池
JP5993337B2 (ja) リチウムイオン二次電池用負極材料およびその製造方法ならびにこれを用いたリチウムイオン二次電池用負極ならびにリチウムイオン二次電池
JP6316466B2 (ja) 炭素質被覆黒鉛粒子およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP4809617B2 (ja) リチウムイオン二次電池用負極材料およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP6278870B2 (ja) 炭素質被覆黒鉛粒子の製造方法、および、それを含有するリチウムイオン二次電池負極の製造方法
JP6285350B2 (ja) 炭素質被覆黒鉛粒子の製造方法およびリチウムイオン二次電池用負極材料の製造方法
JP2011243567A (ja) リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池
JP4927384B2 (ja) リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池
JP4723830B2 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP4996830B2 (ja) リチウムイオン二次電池負極用金属−黒鉛質系粒子およびその製造方法、ならびにリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5156195B2 (ja) リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極、ならびにリチウムイオン二次電池
JP4785341B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN112424118A (zh) 整体中间相石墨化物的制造方法
JP5133543B2 (ja) メソカーボン小球体黒鉛化物の製造方法
JP4855696B2 (ja) リチウムイオン二次電池用負極材料およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP4996827B2 (ja) リチウムイオン二次電池負極用金属−黒鉛系複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極ならびにリチウムイオン二次電池
JP5066132B2 (ja) 多結晶メソカーボン小球体黒鉛化品、負極活物質およびリチウムイオン二次電池
JP6322525B2 (ja) 炭素質被覆黒鉛粒子の製造方法
JP2019160791A (ja) リチウムイオン二次電池負極材料用炭素質被覆黒鉛質粒子の製造方法、リチウムイオン二次電池負極材料用炭素質被覆黒鉛質粒子、リチウムイオン二次電池負極およびリチウムイオン二次電池
JP5865273B2 (ja) 黒鉛材料の製造方法
JP4628007B2 (ja) 炭素材料の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP4143354B2 (ja) リチウムイオン二次電池負極用炭素材料およびリチウムイオン二次電池
JP2004083398A (ja) 多結晶メソカーボン小球体黒鉛化品、その製造方法およびリチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060801

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3995050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

EXPY Cancellation because of completion of term