JP2005044948A - 半導体装置、および、その製造方法 - Google Patents
半導体装置、および、その製造方法 Download PDFInfo
- Publication number
- JP2005044948A JP2005044948A JP2003202131A JP2003202131A JP2005044948A JP 2005044948 A JP2005044948 A JP 2005044948A JP 2003202131 A JP2003202131 A JP 2003202131A JP 2003202131 A JP2003202131 A JP 2003202131A JP 2005044948 A JP2005044948 A JP 2005044948A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- diffusion layer
- layer
- impurity concentration
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/027—Manufacture or treatment of FETs having insulated gates [IGFET] of lateral single-gate IGFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/74—Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0221—Manufacture or treatment of FETs having insulated gates [IGFET] having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended-drain MOSFETs [EDMOS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
- H10D30/603—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended drain IGFETs [EDMOS]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/351—Substrate regions of field-effect devices
- H10D62/357—Substrate regions of field-effect devices of FETs
- H10D62/364—Substrate regions of field-effect devices of FETs of IGFETs
- H10D62/371—Inactive supplementary semiconductor regions, e.g. for preventing punch-through, improving capacity effect or leakage current
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Element Separation (AREA)
Abstract
【解決手段】P型シリコン基板1の上部に設けられたNウェル層2と、P型シリコン基板1の上部においてNウェル層2の上に設けられた、不純物濃度分布が深さ方向に均一であるP型の残存基板1aと、この残存基板1a内に設けられたMOSトランジスタ素子とを具備することを特徴としている。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は、半導体装置、および、その製造方法に関し、特に、MOSトランジスタ、および、その製造方法に関するものである。
【0002】
【従来の技術】
ドレイン近傍の電界を緩和し、MOSトランジスタの耐圧特性を向上させるには、ドレイン領域を低濃度領域と高濃度領域との2種類の不純物領域から構成することが効果的である。
【0003】
この電界を緩和する構造の代表的なものにLDD(Lightly Doped Drain)構造がある(例えば、特許文献1参照)。このLDD構造を有する高耐圧MOSトランジスタの構造を図11を参照して説明する。図11は、従来のLDD構造を有する高耐圧MOSトランジスタの構造を示す断面図である。
【0004】
P型シリコン基板101の素子形成領域に、Nウェル層102が設けられており、更に、このNウェル層102内に、P型のドレイン層103およびソース層104が離間して形成されている。そして、このドレイン層103およびソース層104の周囲には、ドレイン層103およびソース層104の各々を囲んで、ドレインLDD層105およびソースLDD層106が設けられている。このドレインLDD層105およびソースLDD層106の導電型は、ドレイン層103およびソース層104よりも不純物濃度が低いP型である。
【0005】
ドレインLDD層105とソースLDD層106との間には、N型のチャネル層107が設けられている。チャネル層107の上には、シリコン酸化膜108を介して、ゲート電極109が設けられており、ゲート電極109の側面にはサイドウォール110が設けられている。
【0006】
この従来の高耐圧MOSトランジスタにおける不純物濃度分布を図12に示す。図12は、図8中のA−A線に沿った不純物濃度のプロファイルである。横軸は半導体基板表面からの深さを示し、縦軸は不純物濃度を示している。また、図12の濃度プロファイルにおいては、図11と対応するピークに図11と同一の符号を付している。
【0007】
ドレイン層103は、不純物であるボロン(B)を1018〜1020/cm3含むP型となっている。ドレイン層103直下のドレインLDD層105は、ドレイン層103に比較して不純物濃度が低く、不純物ボロンを1016〜1017/cm3含むP型となっている。また、ドレインLDD層105直下のNウェル層102は、ドレインLDD層105よりも不純物濃度が低く、不純物であるリン(P)を1016/cm3程度含むN型となっており、このNウェル層102とドレインLDD層105によりPN接合が形成されている。
【特許文献1】
特開平6−140419号公報(第2頁、図1)
【0008】
【発明が解決しようとする課題】
しかしながら、上記従来の高耐圧MOSトランジスタでは、ドレインLDD層105の不純物濃度がNウェル層102の不純物濃度に比較して高いため、ドレイン電圧を印加した際に、ドレインLDD層105とNウェル層102とからなる空乏層が、ドレインLDD層105側よりも、専ら、Nウェル層102側へと大きく広がる。
【0009】
図11および図12において、このドレイン電圧印加時の空乏層の広がりを点線により示している。また、図11および図12においては、ドレインLDD層105側への空乏層の広がりをX1と付した矢印により示し、Nウェル層102側への空乏層の広がりをX2と付した矢印により示している。不純物濃度の差から、Nウェル層102への空乏層の広がりX2は広くなっているが、ドレインLDD層105側への空乏層の広がりX1は僅かとなっている。
【0010】
ドレインLDD層105側への空乏層の広がりX1が小さくなると、ドレイン近傍に電界が集中し、この電界集中により衝突電離が生じる。すると、衝突電離により発生したキャリアが電界に加速され、更なる衝突電離を引き起こす。そして、この過程を繰り返すことにより、キャリア数が次々に増倍し、大電流がドレインとNウェル層102との間に流れ、時には、素子の破壊に到る場合がある。この現象はアバランシェ降伏と呼ばれる。
【0011】
このようなことから、更なる耐圧特性の向上のために、ドレイン近傍の電界集中を緩和し、アバランシェ降伏の発生を防止することが求められている。
【0012】
本発明は、以上の背景からなされたものであり、耐圧特性に優れた半導体装置、および、その製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る半導体装置は、第1導電型の半導体基板と、前記半導体基板の上部に設けられた第2導電型の半導体領域と、前記半導体基板の上部において前記半導体領域の上に設けられた第1導電型の残存基板と、前記半導体基板の上部において前記残存基板の上に設けられた、不純物濃度が前記残存基板の不純物濃度よりも高い第1導電型の第1の拡散層と、前記半導体基板の上部において前記半導体領域の上に前記第1の拡散層に離間して設けられた、不純物濃度が前記残存基板の不純物濃度よりも高い第1導電型の第2の拡散層と、
前記半導体基板の上部において前記第1の拡散層と前記第2の拡散層との間に前記半導体領域と接して設けられた第2導電型の第3の拡散層と、前記第3の拡散層の上にゲート絶縁膜を介して設けられたゲート電極とを具備することを特徴としている。
【0014】
また、本発明に係る半導体装置の製造方法は、第1導電型の半導体基板の上部に、第2導電型の半導体領域を形成する工程と、前記半導体領域の上の残存基板形成領域に第1導電型の残存基板を形成する工程と、前記半導体基板の上部の前記残存基板の上に、不純物濃度が前記半導体基板の不純物濃度よりも高い第1導電型の第1の拡散層を形成する工程と、前記半導体基板の上部の前記半導体領域の上に、不純物濃度が前記半導体基板の不純物濃度よりも高い第1導電型の第2の拡散層を前記第1の拡散層から離間して形成する工程と、前記半導体基板の上部の前記第1の拡散層と前記第2の拡散層との間に、第2導電型の第3の拡散層を前記半導体領域と接して形成する工程と、前記第3の拡散層の上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜の上にゲート電極を形成する工程とを具備することを特徴としている。
【0015】
【発明の実施の形態】
(第1の実施の形態)
以下に、本発明に係る半導体装置、および、その製造方法についての第1の実施の形態を図1乃至5を参照して説明する。なお、以下においては、半導体基板としてP型シリコン基板を例に挙げて説明する。
【0016】
まず、本実施の形態に係る半導体装置について、図1を参照しながら説明する。図1は、本実施の形態に係る半導体装置の構造を示す断面図である。
【0017】
P型シリコン基板1の上部に、半導体領域であるNウェル層2が設けられている。このNウェル層2の上には、P型シリコン基板1の一部である残存基板1aが、Nウェル層2に囲まれて設けられ、これにより、残存基板1aがP型シリコン基板1の他の部分から電気的に分離されている。P型シリコン基板1の上部の残存基板1aの上には、P型のドレイン層3(第1の拡散層)およびソース層4(第2の拡散層)が離間して設けられており、ドレイン層3およびソース層4の周囲には、ドレイン層3およびソース層4の各々を囲んで、ドレインLDD層5(第4の拡散層)およびソースLDD層6(第5の拡散層)が設けられている。このドレインLDD層5およびソースLDD層6の導電型は、ドレイン層3およびソース層4よりも不純物濃度が低いP型である。
【0018】
P型シリコン基板1の上部のドレインLDD層5とソースLDD層6との間には、N型のチャネル層7(第3の拡散層)がNウェル層2と接して設けられ、これにより、残存基板1aが、ドレイン側とソース側の2つの領域へと分離されている。このチャネル層7の上には、ゲート絶縁膜であるシリコン酸化膜8を介して、ゲート電極9が設けられており、ゲート電極9の側面にはサイドウォール10が設けられている。
【0019】
次に、図1に示した本実施の形態の半導体装置の不純物濃度分布を図2に示す。図2は、図1中のA−A線に沿った不純物濃度のプロファイルであり、横軸は半導体基板表面からの深さを示し、縦軸は不純物の濃度を示している。また、図2の濃度プロファイルにおいては、図1と対応するピークに図1と同一の符号を付している。
【0020】
ドレイン層3は、不純物であるボロン(B)を1018〜1020/cm3含むP型となっており、ドレイン層3直下のドレインLDD層5は、ドレイン層3に比較して不純物濃度が低く、不純物ボロンを1016〜1017/cm3含むP型となっている。また、ドレインLDD層5直下の残存基板1aは、深さ方向に均一な濃度(1015/cm3程度)で不純物ボロンを含んだP型になっており、不純物であるリン(P)を1016/cm3程度含んだNウエル層2とPN接合を形成している。P型シリコン基板1は、不純物ボロンを1015/cm3程度含むP型であり、その不純物濃度が残存基板1aの不純物濃度と同一となっている。
【0021】
図1および図2において、このドレイン電圧印加時の空乏層の広がりを点線により示している。また、図1および図2においては、ドレイン側への空乏層の広がりをX1と付した矢印により示し、Nウェル層2側への空乏層の広がりをX2と付した矢印により示している。残存基板1aは、ドレイン層3およびドレインLDD層5と同一導電型であり、ドレイン層3およびドレインLDD層5とともに、MOSトランジスタのドレインを構成している。また、残存基板1aの不純物濃度はNウェル層2の不純物濃度よりも低く、Nウエル層2の接合深さはドレインLDD層5の深さ位置に比較して十分に深いため、空乏層はドレイン側に大きく広がる。このように、ドレインLDD層5とNウエル層2との間に残存基板1aを設けると、図11および図12を用いて説明した従来の高耐圧MOSトランジスタと比較して、ドレイン側の空乏層の広がりX1が大きくなり、結果的に、ドレイン近傍の電界集中が緩和される。
【0022】
本実施の形態に係る高耐圧MOSトランジスタのシミュレーションによるドレイン電流特性(ゲート−ソース間電圧VGS=0V)を図3に示す。横軸はドレイン−ソース間電圧VDSを示し、縦軸はドレイン電流IDを示している。また、Aと符号を付したドレイン電流特性は、本実施の形態に係る高耐圧MOSトランジスタのものを示し、一方、Bと符号を付したドレイン電流特性は、従来の高耐圧MOSトランジスタのものを示している。
【0023】
従来の高耐圧MOSトランジスタでは、ドレイン電圧が−30V程度に達したときにドレイン電流が急激に上昇しているが、本実施の形態に係る高耐圧MOSトランジスタでは、ドレイン電圧が−40V程度に達するまで急激なドレイン電流の上昇が生じていない。これは、本実施の形態に係る高耐圧MOSトランジスタが、従来の高耐圧MOSトランジスタに比較して、耐圧特性が大幅に向上されていることを示している。
【0024】
以上において説明した本実施の形態に係る半導体装置は、ドレインLDD層5とNウエル層2との間に残存基板1aを備えている。この残存基板1aは、深さ方向に均一で、かつ、ドレインLDD層5よりも低濃度の不純物プロファイルを有するため、ドレインLDD層5とNウエル層2との間に残存基板1aを設けることで、空乏層をドレイン側に大きく伸張し、ドレイン近傍の電界集中を緩和させることができる。
【0025】
また、本実施の形態に係る半導体装置は、残存基板1aがドレイン側とソース側との双方に設けられ、チャネル層7を中心として、ドレインおよびソースが対称に構成されている。このため、本実施の形態に係る半導体装置は、チャネル層7を挟んだ2つの領域のうち、いずれをドレインとし、もう一方をソースとするかを、電極配線の都合により、任意に変更することができる。
【0026】
次に、本実施の形態に係る半導体装置の製造方法を図4および図5を参照しながら説明する。図4および図5は、本実施の形態に係る半導体装置の製造方法を工程順に示す断面図である。
【0027】
まず、図4(a)に示すように、素子形成領域(MOSトランジスタを形成する領域)が開口するように、フォトリソグラフィーによりレジスト11のパターニングを行う。そして、このレジスト11をマスクとして、例えばリン(P)を不純物とした高加速電圧のイオン注入を行い、P型シリコン基板1内の所定の深さ位置にNウェル層2を形成する。
【0028】
次に、図4(b)に示すように、残存基板形成領域を囲む領域が開口するように、新たなレジスト12をフォトリソグラフィーにより形成する。ここで、残存基板形成領域とは、後の工程において、P型シリコン基板1の一部を他の部分から分離することで残存基板1aを形成する領域のことである。そして、このレジスト12をマスクとして、先のイオン注入よりも低い加速電圧により、リン(P)の2回目のイオン注入を行う。この2回目のイオン注入では、加速電圧を低くしたために、先のイオン注入よりも浅い深さ位置にボロン(B)が注入される。
【0029】
続いて、図4(c)に示すように、レジスト12をマスクとして、先の2回目のイオン注入よりも更に低い加速電圧により、リン(P)の3回目のイオン注入を行う。この3回目のイオン注入により、2回目のイオン注入よりも更に浅い深さ位置にリン(P)が注入される。そして、残存基板形成領域を囲んでNウェル層2が形成されることで、残存基板形成領域に残存基板1aが形成される。
【0030】
次に、図4(d)に示すように、チャネル形成領域が開口するように、レジスト13をフォトリソグラフィーにより形成する。そして、このレジスト13をマスクとして、図4(b)に示された先の2回目のイオン注入と同一の条件でリン(P)のイオン注入を行う。これにより、レジスト13の開口領域においてNウェル層2が上面へと広がって形成される。その後、引き続き、レジスト13をマスクとして、リン(P)のイオン注入を行い、チャネル層7をNウェル層2に接して形成する。
【0031】
次に、図5(a)に示すように、P型シリコン基板1の表面に熱酸化法などによりシリコン酸化膜8を形成する。そして、シリコン酸化膜8上に、例えばポリシリコン膜を成膜し、そのポリシリコン膜を所定パターンにより成膜することでゲート電極9を形成する。
【0032】
次に、図5(b)に示すように、新たなレジスト14をフォトリソグラフィーにより形成し、ボロン(B)のイオン注入を行うことにより、ドレインLDD層5およびソースLDD層6を形成する。
【0033】
次に、図5(c)に示すように、レジスト14を除去し、ゲート電極9の側面にサイドウォール10を形成する。サイドウォール10は、例えば、CVD法により成膜されたシリコン酸化膜をRIE法などでエッチングすることにより形成する。
【0034】
次に、図5(d)に示すように、ドレイン層3およびソース層4を設ける領域が開口するように、レジスト15をフォトリソグラフィーにより形成する。そして、レジスト15をマスクとして、ボロン(B)のイオン注入を行い、ドレイン層3およびソース層4を形成する。
【0035】
そして、この後、既知の手法により、層間絶縁膜の形成、コンタクトホールの形成、および、電極配線などを行うことにより、半導体装置が完成する。
【0036】
なお、以上に説明した工程においては、残存基板1a内への不純物の熱拡散を防ぐため、注入不純物を活性化させるためのアニールは短時間で行うことが望ましい。
【0037】
以上において説明した本実施の形態に係る半導体装置の製造方法は、異なる加速電圧の複数回のイオン注入を行うことにより、Nウェル層2の中にP型シリコン基板1の一部(残存基板1a)を残存させることができる。
【0038】
また、イオン注入により、ドレインLDD層5の直下に、ドレインLDD層5よりも不純物濃度が低いP型の拡散層を形成する場合、その拡散層の不純物濃度プロファイルを所望の濃度と分布に制御することが困難なことから、ドレイン耐圧のばらつきが生じる可能性がある。しかし、本実施の形態に係る半導体装置の製造方法は、Nウェル層2中にP型シリコン基板1の一部(残存基板1a)を残存させて、ドレインLDD層5よりも不純物濃度が低いP型の拡散層を形成している。このため、本実施の形態に係る半導体装置の製造方法は、不純物濃度プロファイルを、低濃度で、かつ、均一なものとすることができ、ドレイン耐圧のばらつきを抑制することができる。
【0039】
更に、図11に示された従来の高耐圧MOSトランジスタでは、Nウェル層102を形成するため、比較的、長時間のアニールを行い、イオン注入した不純物を十分に熱拡散させる必要がある。しかし、本実施の形態に係る半導体装置の製造方法は、不純物の活性化のためのアニール時間を短時間にとどめ、複数回のイオン注入により、Nウェル層2を形成している。長時間のアニールを行うと、深さ方向だけでなく、横方向にも不純物が拡散してしまうため、アニール時間を短時間とした本実施の形態に係る半導体装置の製造方法は、従来の半導体装置の製造方法に比較して、微細素子形成に適している。
【0040】
更に、本実施の形態に係る半導体装置の製造方法は、Nウェル層2を形成する際に行うイオン注入の加速電圧および回数を変更することで、残存基板1aとNウェル層2との接合深さを、精度良く制御することができる。
【0041】
なお、本実施の形態に係る半導体装置、および、その製造方法においては、半導体基板をP型シリコン基板としているが、これに限られない。例えば、N型の半導体基板に対しては、各層の導電型を反対にすることにより、本実施の形態に説明した場合と同様の効果が得られる。
【0042】
また、本実施の形態に係る半導体装置、および、その製造方法においては、不純物としてボロン(B)およびリン(P)を用いているが、これらに限られない。
【0043】
更に、本実施の形態に係る半導体装置、および、その製造方法においては、残存基板1aの上にソース層4およびソースLDD層6を設けているが、これらの層は残存基板1aの上に設けられていなくても良い。ソース層4およびソースLDD層6が残存基板1aの上に設けられていない場合においても、本実施の形態に説明した場合と同様の効果が得られる。
【0044】
更に、本実施の形態に係る半導体装置、および、その製造方法においては、ドレイン層3の直下にドレインLDD層5を設け、ソース層4の直下にソースLDD層6を設けているが、これらのドレインLDD層5およびソースLDD層6は必須の構成要件ではない。ドレインLDD層5およびソースLDD層6が設けられていない場合、ドレインLDD層5がドレイン層3とチャネル層7との間にのみ設けられた場合、また、ソースLDD層6がソース層4とチャネル層7との間にのみ設けられた場合においても、同様に、ドレイン近傍の電界集中を緩和させることができる。
【0045】
更に、本実施の形態に係る半導体装置、および、その製造方法においては、残存基板1aの不純物濃度をP型シリコン基板1の不純物濃度と同一としているが、これに限られない。残存基板1aの不純物濃度は、深さ方向に均一で、かつ、ドレインLDD層5(ドレインLDD層5がない場合は、ドレイン層3)の不純物濃度よりも低ければ良い。例えば、P型シリコン基板1上にP型のエピタキシャル層を積層し、そのエピタキシャル層内に残存基板1aを設けても構わない。
(第2の実施の形態)
以下に、本発明に係る半導体装置、および、その製造方法についての第2の実施の形態を図6および図7を参照して説明する。
【0046】
まず、本実施の形態に係る半導体装置について、図6を参照しながら説明する。図6は、本実施の形態に係る半導体装置の構造を示す断面図である。なお、本実施の形態は、素子分離にトレンチアイソレーション技術を採用したものであり、素子形成領域内の素子構造は、第1の実施の形態において図1を参照して説明したものと同一である。よって、第1の実施の形態と共通する部分については、図1と同一の符号を付し、その説明を省略する。
【0047】
P型シリコン基板1の上部に、半導体領域であるN型の埋め込み層16が設けられている。また、P型シリコン基板1の上部には、残存基板1a、ドレイン層3、ソース層4、および、チャネル層7を囲んだ素子内分離溝17が、埋め込み層16に接して設けられている。素子内分離溝17内には、シリコン酸化膜18が充填されており、これにより、P型シリコン基板1の一部である残存基板1aが、埋め込み層16および素子内分離溝17に囲まれ、P型シリコン基板1の他の部分から電気的に分離されている。
【0048】
本実施の形態に係る半導体装置においても、不純物濃度がドレインLDD層5の不純物濃度よりも低い残存基板1aが、ドレイン層3およびドレインLDD層5とともに、MOSトランジスタのドレインを構成するため、第1の実施の形態と同様、ドレイン近傍の電界集中を緩和させることができる。
【0049】
また、本実施の形態に係る半導体装置は、シリコン酸化膜18が内部に充填された素子内分離溝17により、素子形成領域が他の領域から電気的に分離されている。このため、半導体基板に対して水平方向の素子分離がPN接合によりなされている場合に比較して、半導体素子間の耐圧特性が優れている。
【0050】
次に、本実施の形態に係る半導体装置の製造方法について図7を参照しながら説明する。図7は、本実施の形態に係る半導体装置の製造方法を工程順に示す断面図である。
【0051】
まず、図7(a)に示すように、素子形成領域が開口するように、フォトリソグラフィーによりレジスト19のパターニングを行う。そして、このレジスト19をマスクとして、例えばリン(P)を不純物とした高加速電圧のイオン注入を行い、P型シリコン基板1内の所定深さ位置に埋め込み層16を形成する。
【0052】
次に、図7(b)に示すように、残存基板形成領域を囲む領域が開口するようにパターニングされたシリコン酸化膜20を、P型シリコン基板1の上面に形成する。そして、このシリコン酸化膜20をマスクとして、RIE法などにより、P型シリコン基板1を埋め込み層16よりも深い深さ位置までエッチングし、残存基板形成領域を囲んで素子分離溝17を形成する。これにより、残存基板形成領域が埋め込み層16および素子分離溝17により囲まれ、残存基板形成領域に残存基板1aが形成される。
【0053】
次に、図7(c)に示すように、CVD法などによりシリコン酸化膜18を堆積し、エッチバックすることにより、シリコン酸化膜18を素子分離溝17内に充填する。
【0054】
そして、第1の実施の形態において図4(d)および図5(a)〜図5(d)を参照して説明した工程と同一の工程を残存基板1aに対して行い、その後、既知の手法により、層間絶縁膜の形成、コンタクトホールの形成、および、電極配線などを行うことにより、半導体装置が完成する。
【0055】
なお、以上に説明した工程においては、残存基板1a内への不純物の熱拡散を防ぐため、注入不純物を活性化させるためのアニールは短時間で行うことが望ましい。
【0056】
本実施の形態に係る半導体装置の製造方法は、高加速電圧のイオン注入により埋め込み層16を形成し、埋め込み層16を囲んで素子分離溝17を形成することにより、P型シリコン基板1の一部(残存基板1a)をP型シリコン基板1の他の部分から電気的に分離することができる。
【0057】
また、本実施の形態に係る半導体装置の製造方法は、埋め込み層16を形成するためのイオン注入の加速電圧を変更することにより、残存基板1aと埋め込み層16との接合深さを、精度良く制御することができる。
【0058】
更に、本実施の形態に係る半導体装置の製造方法は、他の効果において、第1の実施の形態と同様の効果を得ることができる。
【0059】
なお、本実施の形態に係る半導体装置、および、その製造方法においては、素子分離溝17に充填する絶縁材にシリコン酸化膜18を用いているが、これに限られない。例えば、ノンドープのポリシリコンを用いても構わない。なお、その場合には、より効果的に素子を電気的に分離するため、素子分離溝17の内面はシリコン酸化膜によって覆うことが望ましい。
【0060】
また、本実施の形態に係る半導体装置、および、その製造方法においては、半導体基板をP型シリコン基板としているが、第1の実施の形態同様、これに限られない。
【0061】
更に、本実施の形態に係る半導体装置、および、その製造方法においては、不純物としてボロン(B)およびリン(P)を用いているが、第1の実施の形態同様、これらに限られない。
【0062】
更に、本実施の形態に係る半導体装置、および、その製造方法においては、残存基板1aの上に、ソース層4およびソースLDD層6を設けているが、第1の実施の形態同様、これらの層は残存基板1aの上に設けられていなくても良い。
【0063】
更に、本実施の形態に係る半導体装置、および、その製造方法においては、ドレイン層3の直下にドレインLDD層5を設け、ソース層4の直下にソースLDD層6を設けているが、第1の実施の形態同様、これらのドレインLDD層5およびソースLDD層6は、必須の構成要件ではない。
【0064】
更に、本実施の形態に係る半導体装置、および、その製造方法においては、残存基板1aの不純物濃度をP型シリコン基板1の不純物濃度と同一としているが、第1の実施の形態同様、これに限られない。残存基板1aの不純物濃度は、深さ方向に均一で、かつ、ドレインLDD層5(ドレインLDD層5がない場合は、ドレイン層3)の不純物濃度よりも低ければ良い。
(第3の実施の形態)
以下に、本発明に係る半導体装置、および、その製造方法についての第3の実施の形態を図8乃至10を参照して説明する。
【0065】
まず、本実施の形態に係る半導体装置について、図8を参照しながら説明する。図8は、本実施の形態に係る半導体装置の構造を示す断面図である。なお、本実施の形態は、第1の実施の形態において、残存基板1aをソース側に設けず、更に、ドレインLDD層5およびソースLDD層6を設けなかったものであり、他の部分は第1の実施の形態と共通している。よって、第1の実施の形態と共通する部分については、図1と同一の符号を付し、その説明を省略する。
【0066】
P型シリコン基板1の上部に、半導体領域であるN型ウェル層21が設けられている。このN型ウェル層21の上には、P型シリコン基板1の一部である残存基板1aが、Nウェル層21に囲まれて設けられ、これにより、残存基板1aがP型シリコン基板1の他の部分から電気的に分離されている。P型シリコン基板1の上部の残存基板1aの上には、P型のドレイン層3が設けられている。
【0067】
P型シリコン基板1の上部のNウェル層21の上には、P型のソース層4がドレイン層3と離間して設けられている。ドレイン層3とソース層4との間には、N型のチャネル層7がNウェル層21と接して設けられている。また、このチャネル層7の上には、ゲート絶縁膜であるシリコン酸化膜8を介して、ゲート電極9が設けられている。
【0068】
本実施の形態に係る半導体装置においても、不純物濃度がドレイン層3の不純物濃度よりも低い残存基板1aが、ドレイン層3とともに、MOSトランジスタのドレインを構成するため、第1および第2の実施の形態と同様、ドレイン近傍の電界集中を緩和させることができる。
【0069】
また、本実施の形態に係る半導体装置は、ドレイン層3とチャネル層7との間にドレインLDD層が設けられておらず、ソース層4とチャネル層7との間にソースLDD層が設けられていない。このため、本実施の形態に係る半導体装置は、ドレインLDD層およびソースLDD層が設けられていない分、ドレインLDD層およびソースLDD層が設けられた場合に比較して、素子面積が小さい。
【0070】
次に、本実施の形態に係る半導体装置の製造方法について図9および図10を参照しながら説明する。図9および図10は、本実施の形態に係る半導体装置の製造方法を工程順に示す断面図である。
【0071】
まず、図9(a)に示すように、素子形成領域が開口するように、フォトリソグラフィーによりレジスト22のパターニングを行う。そして、このレジスト22をマスクとして、例えばリン(P)を不純物とした高加速電圧のイオン注入を行い、P型シリコン基板1内の所定の深さ位置にNウェル層21を形成する。
【0072】
次に、図9(b)に示すように、残存基板形成領域を囲む領域が開口するように、新たなレジスト23をフォトリソグラフィーにより形成する。そして、このレジスト23をマスクとして、先のイオン注入よりも低い加速電圧により、リン(P)の2回目のイオン注入を行う。この2回目のイオン注入では、加速電圧を低くしたために、先のイオン注入よりも浅い深さ位置にボロン(B)が注入される。
【0073】
続いて、図9(c)に示すように、レジスト23をマスクとして、先の2回目のイオン注入よりも更に低い加速電圧により、リン(P)の3回目のイオン注入を行う。この3回目のイオン注入により、2回目のイオン注入よりも更に浅い深さ位置にリン(P)が注入される。そして、残存基板形成領域を囲んでNウェル層21が形成されることで、残存基板形成領域に残存基板1aが形成される。
【0074】
次に、図9(d)に示すように、チャネル形成領域が開口するように、レジスト24をフォトリソグラフィーにより形成する。そして、このレジスト24をマスクとしてリン(P)のイオン注入を行い、チャネル層7をNウェル層21に接して形成する。
【0075】
次に、図10(a)に示すように、P型シリコン基板1の表面に熱酸化法などによりシリコン酸化膜8を形成する。そして、シリコン酸化膜8上に、例えばポリシリコン膜を成膜し、そのポリシリコン膜を所定パターンにより成膜することでゲート電極9を形成する。
【0076】
次に、図10(b)に示すように、ドレイン層3を設ける領域が開口するように、新たなレジスト25をフォトリソグラフィーにより形成する。そして、レジスト25をマスクとして、ボロン(B)のイオン注入を行い、ドレイン層3を形成する。
【0077】
次に、図10(c)に示すように、ソース層4を設ける領域が開口するように、新たなレジスト26をフォトリソグラフィーにより形成する。そして、レジスト26をマスクとして、ボロン(B)のイオン注入を行い、ソース層4を形成する。
【0078】
そして、この後、既知の手法により、層間絶縁膜の形成、コンタクトホールの形成、および、電極配線などを行うことにより、半導体装置が完成する。
【0079】
なお、以上に説明した工程においては、残存基板1a内への不純物の熱拡散を防ぐため、注入不純物を活性化させるためのアニールは短時間で行うことが望ましい。
【0080】
本実施の形態に係る半導体装置の製造方法は、第1の実施の形態同様、異なる加速電圧の複数回のイオン注入を行うことにより、Nウェル層21の中にP型シリコン基板1の一部(残存基板1a)を残存させることができる。
【0081】
また、本実施の形態に係る半導体装置の製造方法は、第1の実施の形態同様、Nウェル層21を形成する際に行うイオン注入の加速電圧および回数を変更することで、残存基板1aとNウェル層21との接合深さを、精度良く制御することができる。
【0082】
更に、本実施の形態に係る半導体装置の製造方法は、他の効果において、第1および第2の実施の形態と同様の効果を得ることができる。
【0083】
なお、本実施の形態に係る半導体装置、および、その製造方法においては、半導体基板をP型シリコン基板としているが、第1および第2の実施の形態同様、これに限られない。
【0084】
また、本実施の形態に係る半導体装置、および、その製造方法においては、不純物としてボロン(B)およびリン(P)を用いているが、第1および第2の実施の形態同様、これらに限られない。
【0085】
更に、本実施の形態に係る半導体装置、および、その製造方法においては、ドレインLDD層5をドレイン層3とチャネル層7との間に設けていないが、ドレインLDD層5を設けても構わない。同様に、本実施の形態に係る半導体装置、および、その製造方法においては、ソースLDD層6をソース層4とチャネル層7との間に設けていないが、ソースLDD層6を設けても構わない。
【0086】
更に、本実施の形態に係る半導体装置、および、その製造方法においては、残存基板1aの不純物濃度をP型シリコン基板1の不純物濃度と同一としているが、第1および第2の実施の形態同様、これに限られない。残存基板1aの不純物濃度は、深さ方向に均一で、かつ、ドレインLDD層5(ドレインLDD層5がない場合は、ドレイン層3)の不純物濃度よりも低ければ良い。
【0087】
本発明は、実施段階ではその要旨を変更しない範囲で種々に変形することが可能である。
【0088】
例えば、半導体領域の上に残存基板が設けられ、この残存基板が半導体基板の他の部分から電気的に分離されていれば、その分離構造は問わない。
【0089】
以上、詳述したように、本発明に係る半導体装置、および、その製造方法の特徴をまとめると以下の通りになる。
【0090】
本発明に係る半導体装置は、第1導電型の半導体基板と、前記半導体基板の上部に設けられた第2導電型の半導体領域と、前記半導体基板の上部において前記半導体領域の上に設けられた第1導電型の残存基板と、前記半導体基板の上部において前記残存基板の上に設けられた、不純物濃度が前記残存基板の不純物濃度よりも高い第1導電型の第1の拡散層と、前記半導体基板の上部において前記半導体領域の上に前記第1の拡散層に離間して設けられた、不純物濃度が前記残存基板の不純物濃度よりも高い第1導電型の第2の拡散層と、
前記半導体基板の上部において前記第1の拡散層と前記第2の拡散層との間に前記半導体領域と接して設けられた第2導電型の第3の拡散層と、前記第3の拡散層の上にゲート絶縁膜を介して設けられたゲート電極とを具備することを特徴としている。
【0091】
また、本発明に係る半導体装置は、前記残存基板の不純物濃度分布が深さ方向に均一であることを特徴としている。
【0092】
更に、本発明に係る半導体装置は、前記残存基板の不純物濃度が、前記半導体基板の不純物濃度と同一であることを特徴としている。
【0093】
更に、本発明に係る半導体装置は、前記半導体領域が、前記残存基板を囲んで設けられたことを特徴としている。
【0094】
更に、本発明に係る半導体装置は、前記半導体基板の上部において、前記残存基板、前記第1の拡散層、前記第2の拡散層、および、前記第3の拡散層を囲んで設けられた素子分離溝と、前記素子分離溝内に充填された絶縁材とを更に具備することを特徴としている。
【0095】
更に、本発明に係る半導体装置は、前記半導体基板の上部において、前記残存基板の上の、少なくとも、前記第1の拡散層と前記第3の拡散層との間に設けられた、不純物濃度が前記残存基板の不純物濃度よりも高く、前記第1の拡散層の不純物濃度よりも低い、第1導電型の第4の拡散層と、前記半導体基板の上部において、少なくとも、前記第2の拡散層と前記第3の拡散層との間に設けられた、不純物濃度が前記残存基板の不純物濃度よりも高く、前記第2の拡散層の不純物濃度よりも低い、第1導電型の第5の拡散層とを更に具備することを特徴としている。
【0096】
更に、本発明に係る半導体装置は、前記第2の拡散層が前記残存基板の上に設けられたことを特徴としている。
【0097】
更に、本発明に係る半導体装置の製造方法は、第1導電型の半導体基板の上部に、第2導電型の半導体領域を形成する工程と、前記半導体領域の上の残存基板形成領域に第1導電型の残存基板を形成する工程と、前記半導体基板の上部の前記残存基板の上に、不純物濃度が前記半導体基板の不純物濃度よりも高い第1導電型の第1の拡散層を形成する工程と、前記半導体基板の上部の前記半導体領域の上に、不純物濃度が前記半導体基板の不純物濃度よりも高い第1導電型の第2の拡散層を前記第1の拡散層から離間して形成する工程と、前記半導体基板の上部の前記第1の拡散層と前記第2の拡散層との間に、第2導電型の第3の拡散層を前記半導体領域と接して形成する工程と、前記第3の拡散層の上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜の上にゲート電極を形成する工程とを具備することを特徴としている。
【0098】
更に、本発明に係る半導体装置の製造方法は、前記残存基板の不純物濃度を深さ方向に均一とすることを特徴としている。
【0099】
更に、本発明に係る半導体装置の製造方法は、前記残存基板の不純物濃度を前記半導体基板の不純物濃度と同一とすることを特徴としている。
【0100】
更に、本発明に係る半導体装置の製造方法は、前記半導体領域を形成する工程において、前記残存基板形成領域を囲んで前記半導体領域を形成することを特徴としている。
【0101】
更に、本発明に係る半導体装置の製造方法は、前記残存基板を形成する工程において、前記半導体基板の上部に、前記残存基板形成領域を囲んで素子分離溝を形成することを特徴としている。
【0102】
更に、本発明に係る半導体装置の製造方法は、前記半導体基板の上部において、前記残存基板の上の、少なくとも、前記第1の拡散層と前記第3の拡散層との間に、不純物濃度が前記残存基板の不純物濃度よりも高く、前記第1の拡散層の不純物濃度よりも低い、第1導電型の第4の拡散層を形成する工程と、前記半導体基板の上部において、少なくとも、前記第2の拡散層と前記第3の拡散層との間に、不純物濃度が前記残存基板の不純物濃度よりも高く、前記第2の拡散層の不純物濃度よりも低い、第1導電型の第5の拡散層を形成する工程とを更に具備することを特徴としている。
【0103】
更に、本発明に係る半導体装置の製造方法は、前記第2の拡散層を形成する工程において、前記第2の拡散層を前記残存基板の上に形成することを特徴としている。
【0104】
【発明の効果】
本発明によれば、耐圧特性に優れた半導体装置、および、その製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る半導体装置の構造を示す断面図。
【図2】本発明の第1の実施の形態に係る半導体装置における不純物濃度のプロファイル。
【図3】本発明の第1の実施の形態に係る半導体装置における、シミュレーションによる耐圧計算結果を示すグラフ。
【図4】本発明の第1の実施の形態に係る半導体装置の製造方法の第1工程を工程順に示す断面図。
【図5】本発明の第1の実施の形態に係る半導体装置の製造方法の第2工程を工程順に示す断面図。
【図6】本発明の第2の実施の形態に係る半導体装置の構造を示す断面図。
【図7】本発明の第2の実施の形態に係る半導体装置の製造方法を工程順に示す断面図。
【図8】本発明の第3の実施の形態に係る半導体装置の構造を示す断面図。
【図9】本発明の第3の実施の形態に係る半導体装置の製造方法の第1工程を工程順に示す断面図。
【図10】本発明の第3の実施の形態に係る半導体装置の製造方法の第2工程を工程順に示す断面図。
【図11】従来の半導体装置の構造を示す断面図。
【図12】従来の半導体装置における不純物濃度のプロファイル。
【符号の説明】
1…P型シリコン基板
1a…残存基板
2、21…Nウェル層
3…ドレイン層
4…ソース層
5…ドレインLDD層
6…ソースLDD層
7…チャネル層
8、18、20…シリコン酸化膜
9…ゲート電極
10…サイドウォール
11〜15、19、22〜26…レジスト
16…埋め込み層
17…素子分離溝
Claims (14)
- 第1導電型の半導体基板と、
前記半導体基板の上部に設けられた第2導電型の半導体領域と、
前記半導体基板の上部において前記半導体領域の上に設けられた第1導電型の残存基板と、
前記半導体基板の上部において前記残存基板の上に設けられた、不純物濃度が前記残存基板の不純物濃度よりも高い第1導電型の第1の拡散層と、
前記半導体基板の上部において前記半導体領域の上に前記第1の拡散層に離間して設けられた、不純物濃度が前記残存基板の不純物濃度よりも高い第1導電型の第2の拡散層と、
前記半導体基板の上部において前記第1の拡散層と前記第2の拡散層との間に前記半導体領域と接して設けられた第2導電型の第3の拡散層と、
前記第3の拡散層の上にゲート絶縁膜を介して設けられたゲート電極とを具備することを特徴とする半導体装置。 - 前記残存基板の不純物濃度分布が深さ方向に均一であることを特徴とする請求項1記載の半導体装置。
- 前記残存基板の不純物濃度が、前記半導体基板の不純物濃度と同一であることを特徴とする請求項2記載の半導体装置。
- 前記半導体領域が、前記残存基板を囲んで設けられたことを特徴とする請求項1乃至3のいずれか1項記載の半導体装置。
- 前記半導体基板の上部において、前記残存基板、前記第1の拡散層、前記第2の拡散層、および、前記第3の拡散層を囲んで設けられた素子分離溝と、
前記素子分離溝内に充填された絶縁材とを更に具備することを特徴とする請求項1乃至3のいずれか1項記載の半導体装置。 - 前記半導体基板の上部において、前記残存基板の上の、少なくとも、前記第1の拡散層と前記第3の拡散層との間に設けられた、不純物濃度が前記残存基板の不純物濃度よりも高く、前記第1の拡散層の不純物濃度よりも低い、第1導電型の第4の拡散層と、
前記半導体基板の上部において、少なくとも、前記第2の拡散層と前記第3の拡散層との間に設けられた、不純物濃度が前記残存基板の不純物濃度よりも高く、前記第2の拡散層の不純物濃度よりも低い、第1導電型の第5の拡散層とを更に具備することを特徴とする請求項1乃至5のいずれか1項記載の半導体装置。 - 前記第2の拡散層が前記残存基板の上に設けられたことを特徴とする請求項1乃至6のいずれか1項記載の半導体装置。
- 第1導電型の半導体基板の上部に、第2導電型の半導体領域を形成する工程と、
前記半導体領域の上の残存基板形成領域に第1導電型の残存基板を形成する工程と、
前記半導体基板の上部の前記残存基板の上に、不純物濃度が前記半導体基板の不純物濃度よりも高い第1導電型の第1の拡散層を形成する工程と、
前記半導体基板の上部の前記半導体領域の上に、不純物濃度が前記半導体基板の不純物濃度よりも高い第1導電型の第2の拡散層を前記第1の拡散層から離間して形成する工程と、
前記半導体基板の上部の前記第1の拡散層と前記第2の拡散層との間に、第2導電型の第3の拡散層を前記半導体領域と接して形成する工程と、
前記第3の拡散層の上にゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜の上にゲート電極を形成する工程とを具備することを特徴とする半導体装置の製造方法。 - 前記残存基板の不純物濃度を深さ方向に均一とすることを特徴とする請求項8記載の半導体装置の製造方法。
- 前記残存基板の不純物濃度を前記半導体基板の不純物濃度と同一とすることを特徴とする請求項9記載の半導体装置の製造方法。
- 前記半導体領域を形成する工程において、前記残存基板形成領域を囲んで前記半導体領域を形成することを特徴とする請求項9または10のいずれか1項記載の半導体装置の製造方法。
- 前記残存基板を形成する工程において、前記半導体基板の上部に、前記残存基板形成領域を囲んで素子分離溝を形成することを特徴とする請求項9または10のいずれか1項記載の半導体装置の製造方法。
- 前記半導体基板の上部において、前記残存基板の上の、少なくとも、前記第1の拡散層と前記第3の拡散層との間に、不純物濃度が前記残存基板の不純物濃度よりも高く、前記第1の拡散層の不純物濃度よりも低い、第1導電型の第4の拡散層を形成する工程と、
前記半導体基板の上部において、少なくとも、前記第2の拡散層と前記第3の拡散層との間に、不純物濃度が前記残存基板の不純物濃度よりも高く、前記第2の拡散層の不純物濃度よりも低い、第1導電型の第5の拡散層を形成する工程とを更に具備することを特徴とする請求項9乃至12のいずれか1項記載の半導体装置の製造方法。 - 前記第2の拡散層を形成する工程において、前記第2の拡散層を前記残存基板の上に形成することを特徴とする請求項9乃至13のいずれか1項記載の半導体装置の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003202131A JP2005044948A (ja) | 2003-07-25 | 2003-07-25 | 半導体装置、および、その製造方法 |
US10/793,925 US20050017301A1 (en) | 2003-07-25 | 2004-03-08 | Semiconductor device having a diffusion layer and a manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003202131A JP2005044948A (ja) | 2003-07-25 | 2003-07-25 | 半導体装置、および、その製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005044948A true JP2005044948A (ja) | 2005-02-17 |
Family
ID=34074517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003202131A Abandoned JP2005044948A (ja) | 2003-07-25 | 2003-07-25 | 半導体装置、および、その製造方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20050017301A1 (ja) |
JP (1) | JP2005044948A (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4482428B2 (ja) * | 2004-11-12 | 2010-06-16 | 川崎マイクロエレクトロニクス株式会社 | 半導体集積回路の製造方法および半導体集積回路 |
CN100416799C (zh) * | 2005-11-30 | 2008-09-03 | 奇景光电股份有限公司 | 三重工作电压元件 |
US20080128762A1 (en) * | 2006-10-31 | 2008-06-05 | Vora Madhukar B | Junction isolated poly-silicon gate JFET |
JP2009277798A (ja) * | 2008-05-13 | 2009-11-26 | Sony Corp | 固体撮像装置及び電子機器 |
US20100237439A1 (en) * | 2009-03-18 | 2010-09-23 | Ming-Cheng Lee | High-voltage metal-dielectric-semiconductor device and method of the same |
US8614484B2 (en) * | 2009-12-24 | 2013-12-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | High voltage device with partial silicon germanium epi source/drain |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5132235A (en) * | 1987-08-07 | 1992-07-21 | Siliconix Incorporated | Method for fabricating a high voltage MOS transistor |
JP3393544B2 (ja) * | 1997-02-26 | 2003-04-07 | シャープ株式会社 | 半導体装置の製造方法 |
KR100350648B1 (ko) * | 2000-01-17 | 2002-08-28 | 페어차일드코리아반도체 주식회사 | 모스 트랜지스터 및 그 제조 방법 |
-
2003
- 2003-07-25 JP JP2003202131A patent/JP2005044948A/ja not_active Abandoned
-
2004
- 2004-03-08 US US10/793,925 patent/US20050017301A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20050017301A1 (en) | 2005-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9786657B1 (en) | Semiconductor structure including a transistor including a gate electrode region provided in a substrate and method for the formation thereof | |
KR101418398B1 (ko) | 필드 형성층을 구비하는 고전압 반도체소자 및 그 제조방법 | |
US8889518B2 (en) | LDMOS transistor with asymmetric spacer as gate | |
JP4972855B2 (ja) | 半導体装置およびその製造方法 | |
KR101531882B1 (ko) | 반도체 소자 및 그 제조 방법 | |
JP2008140817A (ja) | 半導体装置 | |
JP2010062564A (ja) | ポリエミッタ型バイポーラトランジスタ、bcd素子、ポリエミッタ型バイポーラトランジスタの製造方法及びbcd素子の製造方法 | |
JP2006186145A (ja) | 半導体装置及びその製造方法 | |
JP6700648B2 (ja) | 半導体装置の製造方法 | |
KR101469343B1 (ko) | 수직 파워 mosfet 및 그 제조 방법 | |
JP4477309B2 (ja) | 高耐圧半導体装置及びその製造方法 | |
KR100488099B1 (ko) | 쇼오트 채널 모오스 트랜지스터 및 그 제조 방법 | |
JP2005044948A (ja) | 半導体装置、および、その製造方法 | |
JP2007088334A (ja) | 半導体装置およびその製造方法 | |
JP2004146825A (ja) | Mosトランジスター及びその製造方法 | |
KR20090025703A (ko) | 반도체 소자 및 이의 제조방법 | |
JP2007165370A (ja) | 半導体装置及びその製造方法 | |
JP2005093456A (ja) | 横型短チャネルdmos及びその製造方法並びに半導体装置 | |
JP2009088449A (ja) | 半導体装置およびその製造方法 | |
TWI557904B (zh) | 半導體裝置及其製造方法 | |
JP3303806B2 (ja) | 半導体装置およびその製造方法 | |
JP2004165468A (ja) | 半導体装置とその製造方法 | |
JP2007059722A (ja) | 半導体装置及びその製造方法 | |
JP2007180244A (ja) | 半導体装置及びその製造方法 | |
JP3902412B2 (ja) | 半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050415 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051115 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20051207 |