【0001】
【発明の属する技術分野】
本発明は、液晶表示パネルやガラス基板等の表示用基板の検査方法及び装置に関する。
【0002】
【従来の技術】
液晶表示パネルのような表示用基板は、液晶素子を含む画素が正しいか否かの点灯検査をされる。この種の自動点灯検査方法及び装置の1つとして、特許文献1に記載された技術が知られている。
【0003】
【特許文献1】
特開平10−160628号公報
【0004】
この従来技術においては、偏光方向を変更可能の偏光フィルタをCCDカメラと表示用基板との間に配置し、表示用基板を透過した光を偏光フィルタに通してCCDカメラで検出する際に、偏光フィルタによる偏光方向を順次変更することにより、見えやすくなる突起や異物等の偏光依存性部を検出している。
【0005】
【解決しようとする課題】
しかし、この従来技術では、表示用基板を透過した光を偏光フィルタに常に通さなければならないから、CCDカメラで画像情報を得る際に偏光フィルタによる偏光角度を変更しつつ、表示用基板自体の欠陥を検出しなければならない。このため、偏光フィルタ自体又はその駆動機構の構造が複雑で高価である。
【0006】
本発明の目的は、複雑な構造の偏光フィルタ又は駆動機構を用いることなく表示用基板の欠陥を検出可能にすることにある。
【0007】
【解決手段、作用、効果】
本発明に係る検査方法は、表示用基板から光検出手段に向かう第1の光による第1の画像信号と、前記第1の光を前記表示用基板による偏光角度に対し90°異なる偏光角度を有する偏光フィルタに通した第2の光による第2の画像信号とを用いて、前記表示用基板の真の欠陥情報を得ることを含む。
【0008】
本発明に係る検査装置は、検査すべき表示用基板を受けるチャックトップと、前記表示用基板に通電する複数のプローブを備えたプローブユニットと、前記表示用基板からの光を電気信号として検出する光検出手段と、前記表示用基板から前記光検出手段に向かう光の通路に出入り可能に配置された偏光フィルタであって前記表示用基板による偏光角度に対し90°異なる偏光角度を有する偏光フィルタと、前記表示用基板からの光のうち、前記偏光フィルタに通さない第1の光による第1の画像信号と、前記偏光フィルタに通した第2の光による第2の画像信号とを用いて、前記表示用基板の真の欠陥情報を得る画像処理装置とを含む。
【0009】
第1の光は、偏光フィルタを第1の光の通路外の位置に変位さることにより、得ることができる。これに対し、第2の光は、偏光フィルタをこれが第1の光の通路を遮断する位置に変位させることにより、得ることができる。第1及び第2の画像信号は、それぞれ、第1及び第2の光をCCDカメラのような光検出手段によって検出することにより、得ることができる。
【0010】
偏光フィルタを経ない第1の光による第1の画像信号は、表示用基板自体の状態を表す基板信号(真の欠陥信号を含む)と、光の乱反射を招く塵埃や傷等の異物の存在を表す異物信号とを含む。しかし、偏光フィルタを経た第2の光による第2の画像信号は、異物信号は含むが、基板信号は含まない。
【0011】
このため、表示用基板の真の欠陥情報は、第2の画像信号中の異物信号を用いて、第1の画像信号中の異物信号を除去することにより、得ることができる。
【0012】
本発明によれば、偏光フィルタが、第1の光の通路外となる位置と、第1の光を遮断する位置とに選択的に変位させればよいから、複雑な構造の偏光フィルタや駆動機構を用いることなく表示用基板の真の欠陥を検出することができる。
【0013】
前記真の欠陥情報は、前記第1の画像信号と第2の画像信号とによる減算処理を行うことにより得ることができる。前記表示用基板は、液晶素子を含むものであってもよいし、液晶素子を含まないガラス基板と、該ガラス基板に対向された偏光板とを含むものであってもよい。
【0014】
検査装置は、さらに、前記偏光フィルタをこれが前記第1の光の通路に、位置しない第1の位置と、位置する第2の位置とに選択的に変位させる変位機構を含むことができる。また、チャックトップは、受けた表示用基板に光を照射するバックライトを備えていてもよい。
【0015】
【発明の実施の形態】
図1を参照するに、検査装置10は、液晶素子を封入した液用表示パネルを表示用基板12としている。表示用基板12は、以下の説明では矩形の平面形状を有するものとするが、他の平面形状を有していてもよい。表示用基板12は、駆動用の通電が行われる複数の電極を矩形の少なくとも2つの辺に対応する箇所に有している。
【0016】
検査装置10は、検査すべき表示用基板12を受けるチャックトップ14と、チャックトップ14を変位させる検査ステージ16と、受けた表示用基板12に通電するプローブユニット18と、表示用基板12を通過した光を電気信号として検出する光検出器20と、表示用基板12と光検出器20との間の光路に出入り可能に配置された偏光フィルタ22と、偏光フィルタ22を表示用基板12と光検出器20との間の光路に出入り可能させる駆動機構24と、光検出器20の出力信号を用いて表示用基板12の真の欠陥情報を得る画像処理装置26と、これらの機械装置を収容しているシールドケース28とを含む。
【0017】
チャックトップ14は、受けた表示用基板12を真空的に吸着する複数の吸着溝を備えた既知のものであり、また受けた表示用基板12に下方から白色光を照射するバックライトを収容している。
【0018】
検査ステージ16は、チャックトップ14を、X,Y,Zの方向に三次元的に移動させると共に、上下方向(Z方向)へ伸びる軸線θの周りに角度的に回転させるX,Y,Z,θのステージに形成されている。
【0019】
プローブユニット18は、それぞれが表示用基板12の電極に押圧される複数接触子30を有する複数のプローブブロック32を、表示用基板12の平面形状に対応した矩形の開口34を中央領域に有する基板36に配置している。
【0020】
接触子30は、図示の例では、ニードルタイプのプローブであるが、ブレードタイプ、ポゴピンタイプ、バンプタイプ等、他のタイプのものであってもよい。各プローブブロック32は、接触子30の先端(針先)が基板36の開口34を貫通して基板36の下方に突出する状態に、基板36の上面に取り付けられている。
【0021】
光検出器20は、CCDカメラやラインセンサのような既知のカメラであり、表示用基板12を透過した光を検出して、表示用基板12の画像を表す電気信号を発生して、画像処理装置26に出力する。
【0022】
偏光フィルタ22は、表示用基板12を通過する光の偏光角度に対し90°異なる偏光角度を有する(表示用基板12による光の偏光角度と同じ方向に振動する光の通過を阻止する)ものであり、表示用基板12から光検出器20に入射する光のうち、表示用基板12を通過した光の振動方向に対し90°異なる方向に振動する光を通過させる。
【0023】
偏光フィルタ22は、駆動機構24により、偏光フィルタ22が表示用基板12から光検出器20に向かう第1の光を、遮断しない第1の位置と、遮断する第2の位置とに選択的に移動される。
【0024】
検査時、表示用基板12は、チャックトップ14に載置され、バックライトユニットからの光が表示用基板12を通過する状態にバックライトユニットを維持した状態で各電極が接触子30に押圧される。この状態で、偏光フィルタ22が駆動機構24により第1及び第2の位置に選択的に変位される。
【0025】
画像処理装置26は、偏光フィルタ22が第1の位置に移動されているときの光検出器20の出力信号と、第2の位置に移動されているときの光検出器20の出力信号とを基に、第1及び第2の画像信号を発生し、両画像信号を用いて表示用基板12の真の欠陥情報を求める。
【0026】
偏光フィルタ22が第1の位置に移動されていると、表示用基板12から光検出器20に向かう第1の光が、偏光フィルタ22を経ることなく、光検出器20に入射する。このため、光検出器20の出力信号は偏光フィルタ22を経ない第1の光による第1の信号となり、画像処理装置26は第1の信号に対応する第1の画像信号を発生する。
【0027】
偏光フィルタ22が第2の位置に移動されていると、表示用基板12から光検出器20に向かう第1の光が偏光フィルタ22に入射するから、光偏光フィルタ22を通過した第2の光が検出器20に入射する。このため、光検出器20の出力信号は第2の光による第2の信号となり、画像処理装置26は第2の信号に対応する第2の画像信号を発生する。
【0028】
偏光フィルタ22を経ない第1の光による第1の画像信号は、表示用基板12自体の状態を表す基板信号(真の欠陥信号を含む)と、光の散乱又は乱反射を招く塵埃や傷等、異物の存在を表す異物信号とを含む。
【0029】
しかし、偏光フィルタ22を経た第2の光による第2の画像信号は、偏光フィルタ22が第1の光の振動方向に対し90°異なる方向に振動する光の通過は許すが、第1の光の振動方向と同じ方向に振動する光の通過を阻止するから、光の散乱又は乱反射に起因する異物信号は含むが、真の欠陥信号を含む基板信号は含まない。
【0030】
具体的には、図2に示すように、光の通過を許す偏光角度が互いに90°異なる2つの偏光フィルム40及び42をそれぞれ液晶素子層44の下面及び上面に配置している表示用パネル12の場合について、以下に説明する。
【0031】
先ず、チャックトップ14内のバックライトユニットからの光46は、白色光であると共に、光軸を中心に360°の方向に振動する光成分を含んでいる。
【0032】
この光46が水平方向に振動する光成分を通過させる偏光フィルム40に通されると、偏光フィルム40を通過する光は水平方向に振動する成分の光となる。
【0033】
次いで、偏光フィルム40を通過した光は、液晶素子層44を通過することにより垂直方向に振動する光に偏光される。
【0034】
次いで、液晶素子層44を通過した光は、垂直方向に振動する光成分を通過させる偏光フィルム42に通される。これにより、表示用基板12を通過した光48は、垂直方向に振動する光となる。
【0035】
表示用基板12を通過した光48は、偏光フィルタ22が第1及び第2の位置のいずれに変位されているかに応じて、光検出器20に直接入射されるか、垂直方向に振動する光(表示用基板12を通過した光)の通過を阻止する偏光フィルタ22を介して光検出器20に入射される。
【0036】
偏光フィルタ22が第1の位置に変位されていると、光48は偏光フィルタ22を経ないから、光検出器20に入射する光は表示用基板12自体の状態を表す光を含む。
【0037】
また、光の乱反射を招く塵埃や傷等の異物50が表示用基板12に存在すると、表示用基板12を通過する光又は通過した光が異物50により、散乱又は乱反射される。このため、異物50による散乱又は乱反射光52も光検出器20に入射する。
【0038】
これに対し、偏光フィルタ22が第2の位置に変位されていると、光検出器20に向かう全ての光が偏光フィルタ22に入射することになり、しかも偏光フィルタ22が表示用基板12による偏光角度と90°異なる偏光角度を有するから、光48は偏光フィルタ22により通過を阻止されるが、散乱又は乱反射光52のうち水平方向に振動する成分の光54が偏光フィルタ22を通過する。このため、光検出器20には、水平方向に振動する光は入射するが、表示用基板12を通過して垂直方向に振動する光は入射しない。
【0039】
上記のことから、画像処理装置26は、偏光フィルタ22が第1の位置に変位されていると、表示用基板12自体の状態を表す基板信号(真の欠陥信号を含む)と、光の乱反射を招く異物の存在を表す異物信号とを含む第1の画像信号を発生する。これに対し、偏光フィルタ22が第2の位置に変位されていると、画像処理装置26は、異物信号は含むが、基板信号は含まない第2の画像信号を発生する。
【0040】
画像処理装置26は、第2の画像信号中の異物信号を用いて、第1の画像信号中の異物信号を除去することにより、表示用基板12の真の欠陥情報を求める。具体的には、画像処理装置26は、第1の画像信号から第2の画像信号を減算することにより、表示用基板12の真の欠陥情報を求め、求めた欠陥情報をメモリに記憶する。
【0041】
すなわち、異物50から光検出器20に直接入射する光52と、光52のうちの偏光フィルタ22を通過した光54とは、検査装置10及び両画像信号内において、同じ座標位置に存在する。このため、第1の画像信号から第2の画像信号を減算すれば、異物信号が除去されて、表示用基板12の真の欠陥位置を表す欠陥情報を求めることができる。
【0042】
得られた欠陥情報は、図示しない仕分け装置において、欠陥箇所を有していない正常な表示用基板と、欠陥箇所を有している欠陥表示用基板とに仕分けることに用いられる。
【0043】
上記のように検査装置10によれば、偏光フィルタ22が、表示用基板12から光検出器20に向かう光の通路外となる第1の位置と、その光の通路を遮断する第2の位置とに選択的に変位させることにより、表示用基板12の真の欠陥情報を求めることができるから、複雑な構造の偏光フィルタやその駆動機構を用いることなく表示用基板12の真の欠陥を検出することができる。
【0044】
図3に示すように、液晶素子層44の一方(図では、下面)にのみ偏光フィルム40を有する表示用基板の場合、縦横に振動する光46は、先ず、偏光フィルム40により垂直方向に振動する光成分を除去されて、水平方向に振動する光成分の光が偏光フィルム40を通過する。
【0045】
次いで、偏光フィルム40を通過した光は液晶素子層44において垂直方向に振動する光成分に偏光されて、表示用基板12から光検出器20に指向される。このため、画像処理装置26は、偏光フィルタ22が第1の位置に移動されていれば、第1の画像信号を発生し、第2の位置に移動されていれば、第2の画像信号を発生する。
【0046】
本発明は、表示用基板12の表面に存在する異物のみならず、図4に示すように表示用基板12の内部に存在する異物や、光検出器20の光検出素子の欠陥等の影響を受けない真の欠陥情報を得ることができる。
【0047】
本発明は、光を表示用基板12に照射するバックライトユニットを用いる検査技術のみならず、表示用基板12の背後に反射鏡を配置して、反射光を用いる検査技術にも適用することができる。
【0048】
本発明は、上記実施例に限定されず、その趣旨を逸脱しない限り、種々変更することができる。
【図面の簡単な説明】
【図1】本発明に係る検査装置の一実施例を示す図である。
【図2】光の偏光状態の説明図である。
【図3】光の偏光状態の他の説明図である。
【図4】光の偏光状態のさらに他の説明図である。
【符号の説明】
10 検査装置
12 表示用基板
14 チャックトップ
16 検査ステージ
18 プローブユニット
20 光検出器
22 偏光フィルタ
24 変位機構
26 画像処理装置
30 接触子
50 異物[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for inspecting a display substrate such as a liquid crystal display panel and a glass substrate.
[0002]
[Prior art]
A display substrate such as a liquid crystal display panel is subjected to a lighting test to determine whether pixels including liquid crystal elements are correct. As one of such automatic lighting inspection methods and apparatuses, a technique described in Patent Document 1 is known.
[0003]
[Patent Document 1]
JP-A-10-160628 [0004]
In this prior art, a polarization filter capable of changing the polarization direction is disposed between a CCD camera and a display substrate, and when light transmitted through the display substrate is passed through the polarization filter and detected by the CCD camera, a polarization filter is used. By sequentially changing the polarization direction by the filter, a polarization-dependent portion such as a protrusion or a foreign matter that is easily visible is detected.
[0005]
[Problem to be solved]
However, in this conventional technique, since light transmitted through the display substrate must be constantly passed through the polarizing filter, the defect of the display substrate itself is changed while changing the polarization angle by the polarizing filter when obtaining image information with the CCD camera. Must be detected. Therefore, the structure of the polarizing filter itself or its driving mechanism is complicated and expensive.
[0006]
An object of the present invention is to make it possible to detect a defect of a display substrate without using a polarizing filter or a driving mechanism having a complicated structure.
[0007]
[Solutions, actions, and effects]
In the inspection method according to the present invention, the first image signal by the first light traveling from the display substrate to the light detection unit and the polarization angle different from the polarization angle by the display substrate by 90 ° with respect to the first light are used. Obtaining true defect information of the display substrate using the second image signal of the second light having passed through the polarizing filter.
[0008]
An inspection apparatus according to the present invention detects a chuck top that receives a display substrate to be inspected, a probe unit including a plurality of probes that energize the display substrate, and detects light from the display substrate as an electric signal. A light detection unit, and a polarization filter arranged so as to be able to enter and exit a light path from the display substrate to the light detection unit, the polarization filter having a polarization angle different from the polarization angle by the display substrate by 90 °; Using, from among the light from the display substrate, a first image signal based on a first light not passing through the polarizing filter and a second image signal based on a second light passing through the polarizing filter, An image processing apparatus for obtaining true defect information of the display substrate.
[0009]
The first light can be obtained by displacing the polarizing filter to a position outside the path of the first light. On the other hand, the second light can be obtained by displacing the polarizing filter to a position where it blocks the path of the first light. The first and second image signals can be obtained by detecting the first and second lights, respectively, with light detecting means such as a CCD camera.
[0010]
The first image signal generated by the first light that has not passed through the polarizing filter includes a substrate signal (including a true defect signal) indicating the state of the display substrate itself and the presence of foreign matter such as dust and scratches that cause diffused reflection of light. And a foreign matter signal representing However, the second image signal of the second light having passed through the polarizing filter includes a foreign substance signal but does not include a substrate signal.
[0011]
Therefore, true defect information of the display substrate can be obtained by using the foreign substance signal in the second image signal and removing the foreign substance signal in the first image signal.
[0012]
According to the present invention, the polarizing filter may be selectively displaced between a position outside the first light path and a position blocking the first light. A true defect of the display substrate can be detected without using a mechanism.
[0013]
The true defect information can be obtained by performing a subtraction process between the first image signal and the second image signal. The display substrate may include a liquid crystal element, or may include a glass substrate that does not include a liquid crystal element, and a polarizing plate that faces the glass substrate.
[0014]
The inspection apparatus may further include a displacement mechanism for selectively displacing the polarizing filter between a first position where the polarizing filter is not located in the first light path and a second position where the polarizing filter is located. Further, the chuck top may include a backlight that irradiates the received display substrate with light.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to FIG. 1, an inspection apparatus 10 uses a liquid display panel in which a liquid crystal element is sealed as a display substrate 12. The display substrate 12 has a rectangular planar shape in the following description, but may have another planar shape. The display substrate 12 has a plurality of electrodes to be energized for driving at locations corresponding to at least two sides of a rectangle.
[0016]
The inspection apparatus 10 includes a chuck top 14 for receiving the display substrate 12 to be inspected, an inspection stage 16 for displacing the chuck top 14, a probe unit 18 for energizing the received display substrate 12, and passing through the display substrate 12. A photodetector 20 for detecting the converted light as an electric signal; a polarizing filter 22 disposed so as to be able to enter and exit the optical path between the display substrate 12 and the photodetector 20; A drive mechanism 24 that enables the optical path to enter and exit from the detector 20, an image processing device 26 that uses the output signal of the photodetector 20 to obtain true defect information of the display substrate 12, and accommodates these mechanical devices. And a shield case 28 that is mounted.
[0017]
The chuck top 14 is a known type having a plurality of suction grooves for sucking the received display substrate 12 in a vacuum, and houses a backlight that irradiates the received display substrate 12 with white light from below. ing.
[0018]
The inspection stage 16 moves the chuck top 14 three-dimensionally in the X, Y, and Z directions, and also rotates the chuck top 14 angularly about an axis θ extending in the up-down direction (Z direction). θ is formed on the stage.
[0019]
The probe unit 18 includes a plurality of probe blocks 32 each having a plurality of contacts 30 pressed against the electrodes of the display substrate 12, and a rectangular opening 34 corresponding to the planar shape of the display substrate 12 in a central region. 36.
[0020]
The contact 30 is a needle type probe in the illustrated example, but may be of another type such as a blade type, a pogo pin type, a bump type, or the like. Each probe block 32 is attached to the upper surface of the substrate 36 such that the tip (needle tip) of the contact 30 penetrates through the opening 34 of the substrate 36 and projects below the substrate 36.
[0021]
The photodetector 20 is a known camera such as a CCD camera or a line sensor, detects light transmitted through the display substrate 12, generates an electric signal representing an image of the display substrate 12, and performs image processing. Output to the device 26.
[0022]
The polarization filter 22 has a polarization angle different from the polarization angle of light passing through the display substrate 12 by 90 ° (prevents light passing through the display substrate 12 from vibrating in the same direction as the polarization angle of light). In addition, of the light incident on the photodetector 20 from the display substrate 12, light that vibrates in a direction that is different from the vibration direction of the light that has passed through the display substrate 90 by 90 degrees is passed.
[0023]
The polarizing filter 22 is selectively driven by the driving mechanism 24 between a first position where the first light traveling from the display substrate 12 to the photodetector 20 is not blocked and a second position where the first light is blocked. Be moved.
[0024]
At the time of inspection, the display substrate 12 is placed on the chuck top 14, and each electrode is pressed by the contact 30 while the backlight unit is maintained in a state where light from the backlight unit passes through the display substrate 12. You. In this state, the polarization filter 22 is selectively displaced to the first and second positions by the driving mechanism 24.
[0025]
The image processing device 26 converts the output signal of the photodetector 20 when the polarization filter 22 is moved to the first position and the output signal of the photodetector 20 when the polarization filter 22 is moved to the second position. Then, the first and second image signals are generated, and the true defect information of the display substrate 12 is obtained using both the image signals.
[0026]
When the polarization filter 22 has been moved to the first position, the first light traveling from the display substrate 12 to the photodetector 20 enters the photodetector 20 without passing through the polarization filter 22. Therefore, the output signal of the photodetector 20 becomes the first signal of the first light that does not pass through the polarizing filter 22, and the image processing device 26 generates a first image signal corresponding to the first signal.
[0027]
When the polarization filter 22 is moved to the second position, the first light traveling from the display substrate 12 to the photodetector 20 is incident on the polarization filter 22, so that the second light that has passed through the optical polarization filter 22 Is incident on the detector 20. Therefore, the output signal of the photodetector 20 becomes a second signal of the second light, and the image processing device 26 generates a second image signal corresponding to the second signal.
[0028]
The first image signal generated by the first light that has not passed through the polarizing filter 22 includes a substrate signal (including a true defect signal) indicating the state of the display substrate 12 itself and dust and scratches that cause light scattering or irregular reflection. And a foreign matter signal indicating the presence of foreign matter.
[0029]
However, the second image signal of the second light that has passed through the polarizing filter 22 allows the light that the polarizing filter 22 vibrates in a direction different by 90 ° from the vibration direction of the first light to pass, but the first light Blocking the passage of light oscillating in the same direction as the vibration direction of the substrate, the signal includes a foreign substance signal caused by scattering or irregular reflection of light, but does not include a substrate signal including a true defect signal.
[0030]
Specifically, as shown in FIG. 2, the display panel 12 includes two polarizing films 40 and 42 having polarization angles that allow light to pass through and differ from each other by 90 ° on the lower surface and the upper surface of the liquid crystal element layer 44, respectively. The case is described below.
[0031]
First, the light 46 from the backlight unit in the chuck top 14 is white light and includes a light component oscillating in a direction of 360 ° around the optical axis.
[0032]
When the light 46 is passed through the polarizing film 40 that allows a light component that vibrates in the horizontal direction to pass, the light that passes through the polarizing film 40 becomes light having a component that vibrates in the horizontal direction.
[0033]
Next, the light that has passed through the polarizing film 40 is polarized into light that vibrates in the vertical direction by passing through the liquid crystal element layer 44.
[0034]
Next, the light that has passed through the liquid crystal element layer 44 is passed through the polarizing film 42 that allows the light component that vibrates in the vertical direction to pass. As a result, the light 48 that has passed through the display substrate 12 becomes light that vibrates in the vertical direction.
[0035]
The light 48 that has passed through the display substrate 12 is directly incident on the photodetector 20 or light that vibrates in the vertical direction, depending on whether the polarizing filter 22 is displaced to the first position or the second position. (Light passing through the display substrate 12) is incident on the photodetector 20 via the polarizing filter 22 that blocks passage of the light.
[0036]
When the polarizing filter 22 is displaced to the first position, the light 48 does not pass through the polarizing filter 22, and the light incident on the photodetector 20 includes light indicating the state of the display substrate 12 itself.
[0037]
In addition, when a foreign substance 50 such as dust or a scratch that causes irregular reflection of light is present on the display substrate 12, light passing through or passing through the display substrate 12 is scattered or irregularly reflected by the foreign substance 50. Therefore, the scattered or irregularly reflected light 52 due to the foreign matter 50 also enters the photodetector 20.
[0038]
On the other hand, if the polarizing filter 22 is displaced to the second position, all the light traveling toward the photodetector 20 will be incident on the polarizing filter 22, and the polarizing filter 22 will be polarized by the display substrate 12. Since the light 48 has a polarization angle different from the angle by 90 °, the light 48 is blocked from passing by the polarizing filter 22, but the light 54 of the horizontally oscillating component of the scattered or irregularly reflected light 52 passes through the polarizing filter 22. Therefore, light that vibrates in the horizontal direction is incident on the photodetector 20, but light that vibrates in the vertical direction after passing through the display substrate 12 is not incident.
[0039]
From the above, when the polarizing filter 22 is displaced to the first position, the image processing device 26 generates a substrate signal (including a true defect signal) indicating the state of the display substrate 12 itself and irregular light reflection. And a foreign matter signal indicating the presence of a foreign matter causing the first image signal. On the other hand, when the polarizing filter 22 is displaced to the second position, the image processing device 26 generates a second image signal that includes the foreign matter signal but does not include the substrate signal.
[0040]
The image processing device 26 uses the foreign matter signal in the second image signal to remove the foreign matter signal in the first image signal, thereby obtaining true defect information of the display substrate 12. Specifically, the image processing device 26 obtains true defect information of the display substrate 12 by subtracting the second image signal from the first image signal, and stores the obtained defect information in the memory.
[0041]
That is, the light 52 that is directly incident on the photodetector 20 from the foreign substance 50 and the light 54 of the light 52 that has passed through the polarization filter 22 are present at the same coordinate position in the inspection apparatus 10 and both image signals. Therefore, if the second image signal is subtracted from the first image signal, the foreign matter signal is removed, and defect information indicating a true defect position on the display substrate 12 can be obtained.
[0042]
The obtained defect information is used by a sorting device (not shown) to sort a normal display substrate having no defective portion and a defective display substrate having a defective portion.
[0043]
According to the inspection device 10 as described above, the first position where the polarizing filter 22 is located outside the light path from the display substrate 12 to the photodetector 20 and the second position where the light path is blocked. , The true defect information of the display substrate 12 can be obtained. Therefore, the true defect of the display substrate 12 can be detected without using a polarizing filter having a complicated structure or a driving mechanism thereof. can do.
[0044]
As shown in FIG. 3, in the case of a display substrate having a polarizing film 40 only on one of the liquid crystal element layers 44 (the lower surface in the figure), light 46 that vibrates vertically and horizontally is first vibrated by the polarizing film 40 in the vertical direction. Then, the light component that vibrates in the horizontal direction passes through the polarizing film 40.
[0045]
Next, the light that has passed through the polarizing film 40 is polarized in the liquid crystal element layer 44 into a light component that vibrates in the vertical direction, and is directed from the display substrate 12 to the photodetector 20. For this reason, the image processing device 26 generates the first image signal when the polarization filter 22 has been moved to the first position, and generates the second image signal when the polarization filter 22 has been moved to the second position. appear.
[0046]
According to the present invention, not only the foreign matter existing on the surface of the display substrate 12 but also the foreign matter existing inside the display substrate 12 as shown in FIG. True defect information that is not received can be obtained.
[0047]
The present invention can be applied not only to an inspection technique using a backlight unit that irradiates light to the display substrate 12, but also to an inspection technique using a reflected light by disposing a reflecting mirror behind the display substrate 12. it can.
[0048]
The present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist thereof.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of an inspection apparatus according to the present invention.
FIG. 2 is an explanatory diagram of a polarization state of light.
FIG. 3 is another explanatory diagram of a polarization state of light.
FIG. 4 is still another explanatory diagram of the polarization state of light.
[Explanation of symbols]
REFERENCE SIGNS LIST 10 inspection device 12 display substrate 14 chuck top 16 inspection stage 18 probe unit 20 photodetector 22 polarizing filter 24 displacement mechanism 26 image processing device 30 contact 50 foreign matter