[go: up one dir, main page]

JP2004039886A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2004039886A
JP2004039886A JP2002195484A JP2002195484A JP2004039886A JP 2004039886 A JP2004039886 A JP 2004039886A JP 2002195484 A JP2002195484 A JP 2002195484A JP 2002195484 A JP2002195484 A JP 2002195484A JP 2004039886 A JP2004039886 A JP 2004039886A
Authority
JP
Japan
Prior art keywords
semiconductor element
sealing resin
circuit board
semiconductor device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002195484A
Other languages
Japanese (ja)
Other versions
JP3804586B2 (en
Inventor
Toshiyuki Kojima
小島 俊之
Yoshihiro Tomura
戸村 善広
Tsukasa Shiraishi
白石 司
Satoru Tomekawa
留河 悟
Yutaka Kumano
熊野 豊
Ryuichi Saito
斎藤 龍一
Akifumi Mitsuda
満田 暁史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002195484A priority Critical patent/JP3804586B2/en
Publication of JP2004039886A publication Critical patent/JP2004039886A/en
Application granted granted Critical
Publication of JP3804586B2 publication Critical patent/JP3804586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem, in semiconductor filip mounting, that if distribution of a filler in a sealing resin varies asymmetrically within a semiconductor plane, when a thermal hysteresis is applied, a semiconductor device is not deformed to exert a harmful effect to its reliability. <P>SOLUTION: A portion 9 with low density of the filler in the sealing resin is made to radiate from the center of the semiconductor element to be thereby distributed symmetrically within the semiconductor device plane. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、フリップチップ実装技術を用いた半導体装置及び半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、半導体素子の集積度が高くなり、半導体装置の小型化及び接続端子の狭ピッチ化が進み、そのためフリップチップ実装技術を用いた半導体装置の開発が盛んに行われている。以下、図面を参照しながら、従来のフリップチップ実装技術を用いた半導体装置の一例について説明する。
【0003】
図9に従来のフリップチップ実装技術を用いた半導体装置の図を示す。図9(a)は、半導体装置を上から見た透視図で半導体素子を透視している。図9(b)は図9(a)の点線部分XX‘での断面図である。図に示すように半導体素子1の電極パッド7上に突起電極3が形成され回路基板2の電極8と導電性接着剤4を介して接続している。半導体素子1と回路基板2の間には、封止樹脂6が充填されている。封止樹脂6は半導体素子1と回路基板2をさらに強固に固定し信頼性を向上させるために用いる。
【0004】
以上のように構成された従来の半導体装置の製造方法について図10を用いて説明する。まず、半導体素子1の電極パッド7上に突起電極3を形成する。引き続き、突起電極3の先端部分に導電性接着剤4を塗布し、半導体素子1を回路基板2上に実装する。その後、導電性接着剤4を乾燥する(図10(a)〜(b))。
【0005】
次に液状の封止樹脂6を半導体素子1の一辺に沿って塗布し、毛細管現象を利用することで半導体素子1と回路基板2の間隙に封止樹脂6を注入する(図10(c))。
【0006】
最後に封止樹脂6を加熱し硬化し半導体装置を製造する(図10(d))。
【0007】
以上のようなフリップチップ実装技術を用いて半導体装置を製造していた。
【0008】
【発明が解決しようとする課題】
しかし前記のような従来の構成及び方法では、以下のような問題があった。図11,12(a)は、半導体装置を上から見て半導体素子を透視している図である。図11は、封止樹脂6が半導体素子1と回路基板2の間隙に注入されていく様子を示した図であり、図12は、封止樹脂6が注入された後の状態を示す図である。通常、液状の封止樹脂6を半導体素子1の一辺に沿って塗布し、毛細管現象によって半導体素子1と回路基板2の間隙に封止樹脂6が注入される。最初は、図11(a)に示すように、封止樹脂6は、注入側の辺と平行に一様に浸透していく。
【0009】
しかし、封止樹脂6がある程度の距離を進むと、図11(b)に示すように、封止樹脂6中に含まれるフィラ径のばらつき、回路基板2の微小な凹凸などが影響により、徐々に封止樹脂6の流入速度にばらつきが生じて封止樹脂6が辺と平行に一様に注入されなくなる。
【0010】
その後、図11(c)に示すように、何点かで封止樹脂6の流れがせき止められているような形で封止樹脂6は注入されていき、さらに図11(d)に示すように先に侵入していた封止樹脂6の部分が互いに横に広がることで封止樹脂6は充填されていく。この時封止樹脂6が横に広がる速度は速いが、封止樹脂6中に含まれるフィラは固体であり重量が重いためこの封止樹脂の動きについていくことができず、主に封止樹脂6中に含まれる樹脂成分が横方向に広がっていき、この部分はフィラ分布が低い封止樹脂構成となる。この結果封止樹脂6を注入後の半導体装置において、図12に示すようにフィラ密度の低い部分9が封止樹脂6を注入した辺と反対側の辺付近で多数発生するという現象が生じていた。
【0011】
半導体装置を上部から超音波顕微鏡で観察した結果を図13に示す。これは、超音波顕微鏡によって、半導体素子1を透過して封止樹脂6の状態を観察した結果である。フィラ密度が低い部分9が封止樹脂を注入した辺と反対側で多数発生していることがわかる。
【0012】
フィラは封止樹脂6の熱膨張係数をコントロールする役割があるので、フィラの分布が半導体平面内で非対称にばらつくと、熱履歴を加えた場合、半導体装置が均等に変形せず、応力集中する部分が発生してしまうことがある。この結果、半導体素子1と封止樹脂6間の界面剥離が生じやすくなるという課題があった。さらに半導体素子1と回路基板2を電気的に接続している部分にダメージが加わるなどの現象が発生し、信頼性に悪影響を及ぼすという課題があった。
【0013】
【課題を解決するための手段】
上記課題を解決するために、本発明では、フィラの密度の少ない部分を半導体素子中央部から同心円状に分布させることで、半導体装置平面内でフィラ密度の分布がほぼ対称な形にすることを特徴とするものである。
【0014】
また、本発明の製造方法としては、液状の封止樹脂を大気圧中で半導体素子の外周全周に塗布した後、減圧装置を用いて半導体装置を一度減圧状態にし、その後再び大気圧に戻すことで、封止樹脂を半導体素子全周から注入することを特徴とするものである。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。なお、本発明は下記の実施の形態に限定されるものではない。また、各図面において同様の構造は同符合を用いて示している。
【0016】
(実施の形態1)
本発明の実施の形態1について、図1を用いて説明する。図1(a)は、半導体装置を上から見た透視図で半導体素子1を透過して見た図面である。図1(b)は図1(a)の点線部分KK‘での断面図である。図1(b)に示すように半導体素子1の電極パッド7上に突起電極3が形成され回路基板2の電極8と導電性接着剤4を介して接続している。例えば、突起電極3は導電性を有する金属、金、銅、アルミなどを用い、ワイヤーボンディング法でつくられた2段突起電極であり、導電性接着剤4は熱可塑性の樹脂中に導電性フィラを混入したものがあげられる。回路基板2としては、例えばセラミック基板、ガラエポ基板、ポリイミド基板、液晶ポリマ基板、全層樹脂IVH基板などが挙げられる。なお、突起電極、導電性接着剤、回路基板は上記に示した材料に限定されるものではない。
【0017】
半導体素子1と回路基板2の間には、仮固定用樹脂5と封止樹脂6が充填されている。仮固定用樹脂5は半導体装置の製造工程中に、半導体素子1と回路基板2との固定を補強するためのものである。封止樹脂6は半導体素子1と回路基板2との接続をより強固にし半導体装置の信頼性を向上するために用いる。封止樹脂6中に含まれるフィラとしては、例えばSiOを用いることができ、封止樹脂6の樹脂成分としてはエポキシ系樹脂を用いることができるが、特に材料に限定されるものではない。
【0018】
封止樹脂6において、フィラ密度の低い部分9が、半導体素子1の中心部から同心円状に放射して分布している。フィラは封止樹脂6の熱膨張係数をコントロールする役目があり、このようにフィラ密度の低い部分9が半導体装置平面内で対称な形をとることで、熱履歴を加えた場合、半導体装置が均等に変形し、応力が集中する部分が発生しないので、良好な信頼性を得る。
【0019】
半導体装置を上部から超音波顕微鏡で観察した結果を図2に示す。これは、超音波顕微鏡によって、半導体素子1を透過して封止樹脂6の状態を観察した結果である。このようにフィラ密度の低い部分が、半導体素子1の中心部から同心円状に放射して分布する構造にする。
【0020】
また、フィラには封止樹脂の吸水率を抑える役目も有る。そこで図1に示すように、半導体素子1と回路基板2を電気的に接合する突起電極3付近の封止樹脂6にフィラ密度の低い部分9つまり、吸水率の高い部分を存在させない構造をとると耐湿性試験においても良好な結果を得るので特に好ましい。
【0021】
つまり、本実施の形態においては、半導体素子中央部におけるフィラ濃度が、半導体素子周辺部におけるフィラ濃度よりも低くなっているため、特に耐湿性が良好な構造となっている。
【0022】
また、図1において半導体素子1と回路基板2との間で封止樹脂6が充填されていない部分(ボイド10)が半導体素子1の中心付近に存在すればなお好ましい。
【0023】
このボイド10がある場合、この空間の半導体素子面に封止樹脂6が充填されていると動作することができない素子例えば振動素子などを半導体素子表面上に設けることができる。半導体素子1としてこのような素子を使用する場合、封止樹脂6が完全に充填されている状態であると、半導体素子面側に振動素子を設けても、封止樹脂6と振動素子が密着しているため振動素子の動きが阻害されうまく動作しない。
【0024】
しかし、封止樹脂6が充填されていないボイド10と接している半導体素子面に振動素子を設けることにより、振動素子の動作を邪魔するものがないので、振動素子は正常に動作する。よってこのような実装体構造にすると振動素子を有する半導体素子の実装も可能となる。
【0025】
また、ボイド10に、半導体素子1と回路基板2を電気的に接続する接合部を設けることもできる。具体的には、この空隙部分に半導体素子1の電極パッド、突起電極、導電性接着剤、回路基板の電極を設けて、半導体素子1と回路基板2を電気的に接続する。そしてこの接続部分を周波数の高い信号伝達のパスとして利用することができる。通常の電気的接合部分は封止樹脂6に覆われているが、封止樹脂6は空気に比べ誘電率の高いので、高い周波数の信号を伝達すると信号に悪影響をおよぼし、うまく信号が伝達されないことがある。そこで、ボイド10部分に電気的接合部を作成し、それを周波数の高い信号伝達用に用いれば、封止樹脂6の悪影響を受けることなく、周波数の高い信号を精度良く伝達することが可能となる。
【0026】
なお、本実施の形態においてはボイド10部分は必須構成要件ではなく、例えば図3に示すようにボイド10がなく、封止樹脂6が内部全体に充填されていてもよい。ボイド10があろうとなかろうと、フィラ密度の低い部分9が、半導体素子1の中心部から同心円状に放射して分布している形状であれば、熱履歴を加えた場合、半導体装置が均等に変形し、応力が集中する部分が発生しないので、良好な信頼性を得られるからである。
【0027】
なお本実施の形態において、半導体装置作製中に半導体素子1と回路基板2との固定を強化する仮固定用樹脂5を用いているが、半導体装置を作製中に半導体素子1と回路基板2の固定が安定している場合は、図4、5に示すように仮固定用樹脂5が無くてもよい。
【0028】
なお、半導体素子1と回路基板2を電気的に接続する方法としては、突起電極3と導電性接着剤4を介して接続する方法を用いて説明したが、その他の方法、例えばはんだを用いる方法、金属からなる突起電極を用いて直接接続する方法を用いても、同様の効果があるのはもちろんのことである。
【0029】
なお、半導体素子1と回路基板2を電気的に接続する部分は、半導体素子1の辺付近、つまりペリフェラル状に配置されているが、半導体素子1と回路基板2を電気的に接続する部分は半導体素子1の全面に配置されている場合、つまりエリア状であっても同様の効果がある。
【0030】
(実施の形態2)
次に、実施の形態1に示した半導体装置の製造方法の一例について図6を用いて説明する。
【0031】
まず、半導体素子1の電極7上に突起電極3を形成し、突起電極3に導電性接着剤4を塗布したものを準備する。また、基板2上に仮固定用樹脂5を塗布したものを準備する。その後、半導体素子1を基板2上にフェースダウンでフリップチップ実装して搭載する(図6(a)〜(b))。
【0032】
続いて仮固定用樹脂5を加熱し硬化すると同時に、導電性接着剤4を加熱し乾燥させる。このとき、導電性接着剤4の接着力は弱いが、仮固定用樹脂5で固定を補強することで、引き続き行われる製造工程中においても、導電性接着剤4による接続部分を安定した状態に保つことができる。このときに使用する加熱装置としては、例えば、リフロー炉、静止リフロー炉、あるいはオーブン炉などがあげられる。
【0033】
引き続き、封止樹脂6を半導体素子1と基板2の間に減圧注入する。この減圧注入においては、まず図6(c)に示すように、液状の封止樹脂6を大気圧中で半導体素子1の辺に沿って全周に塗布する。その後、図6(d)に示すように、封止樹脂注入装置11に半導体装置を投入し、その後に減圧状態にする。この時、半導体素子1と回路基板2と封止樹脂6に囲まれたの空間に含まれる空気が封止樹脂6を通り抜け、外に排気されるため、この空間の気圧も真空状態となる。なお、急激に真空引きを行った場合、空間内の気体が外に急激に排気され、封止樹脂6が飛び散る現象が起こるので、大気圧から1000kPaに真空引きする工程は、5秒以上かけて行うことが好ましい。
【0034】
その後、再び大気圧に戻すことで、半導体素子1と回路基板2と封止樹脂6に囲まれたの空間の気圧は、半導体装置外部の気圧より相対的に低い状態となりこの気圧差を用いて、封止樹脂6は半導体素子1と回路基板2の間隙に注入されていく。この時急激に大気圧に戻すと半導体素子1の辺付近に何点かの微小なボイドが残存してしまうので、10000kPaから大気圧に戻す工程は10秒以上かけて行うことが望ましい。
【0035】
引き続き、封止樹脂注入装置の内部を大気圧に戻してから、あるいは大気圧に戻りかけたころに、封止樹脂注入装置の内部を、例えば供給バルブ12から気体を注入することにより加圧状態にし、その後再び大気圧戻す。この工程を行うことで半導体素子1の中央部付近に発生する封止樹脂6中のボイドの大きさを短時間で小さくすることができるので、ボイド径が小さい半導体装置を作製することが可能となる。
【0036】
具体的には、半導体素子1の大きさが1cm角を用いて減圧注入を行った場合、大気圧、真空引き(到達真空度10Pa)、大気圧に戻した直後のボイドの直径は500〜1000μmとなった。封止樹脂6の粘度が高いため大気圧に戻した後はゆっくりとボイドは収縮するので、ボイド径が500μm以下になるのは、25℃で5〜30Pa・sの粘度の封止樹脂を用いた場合、約12時間かかる。そこで、大気圧に戻したあとで、気圧を高くする工程を加えることで、短時間にてボイド径は500μm以下の大きさとなった。
【0037】
このようにして封止樹脂6を半導体素子1と回路基板2の間隙に注入する(図6(e))。
【0038】
この封止樹脂注入法を用いると、半導体素子1の全周方向から封止樹脂6が注入されるので、封止樹脂のフィラ密度9が低い部分は、半導体素子1の中心から放射状に分布することになる。また、封止樹脂6が全周方向から注入されるので、半導体装置の電極がペリフェラル構造の場合は、半導体素子1と回路基板2を電気的に接合する突起電極3付近に、封止樹脂6にフィラ密度の低い部分9を存在させない構造(つまり、実施の形態1に示した構造)をとることが可能となる。
【0039】
また圧力差を用いて封止樹脂6を強制的に注入できるので、注入時間の短縮化が可能となり製造工程の能率アップとなる。また、ある程度粘度の高い封止樹脂6を用いた場合でも容易に注入が可能となるので、封止樹脂6の選択範囲が広がる。
【0040】
なお、ボイド径を小さくする必要がない場合は、真空引き後、大気圧及び大気圧付近に気圧を戻した後に気圧を高める工程はなくてもよいことは言うまでもない。
【0041】
なお、液状の封止樹脂6を注入する工程において、同時に封止樹脂6の粘度が低くなる温度、例えば50℃で封止樹脂6を加熱することで、さらに注入性がよくなり、注入時間の短時間化、安定化を図ることができる。
【0042】
なお、減圧注入法としては、大気圧中で封止樹脂を半導体素子1の全周に塗布した後、真空引きする工程を用いたが、真空中で半導体素子1の全周に封止樹脂を塗布する工程を用いた場合でも同様の効果を得られるのはもちろんのことである。
【0043】
以上の工程を経た後、引き続き、図6(f)に示すように加圧硬化装置13を用いて封止樹脂6を硬化する。フィルム14を基板2及び半導体素子1上部に配置し、供給バルブ15から気体を注入することでフィルム14上部の圧力を高め、半導体素子1を背面から加圧しながらヒータ16を用いて封止樹脂6を加熱硬化する。
【0044】
半導体素子1の背面から加圧しながら加熱して封止樹脂6硬化しているので、短時間で硬化した場合でも封止樹脂6の熱膨張によって導電性接着剤4の接続部にダメージを与えるといった不具合が生じることなく、封止樹脂6を加熱硬化することできる。よってこの硬化方法を用いると、速硬化性の封止樹脂6を用いての安定した短時間硬化、例えば150〜160℃、5分で硬化することが可能となり、生産性の向上となる。
【0045】
なお、フィルム14としてはPPS(ポリフニレンサルファイと)フィルム、ポリイミドフィルムなどがあげられるが、これらに限られるものではない。
【0046】
フィルム14の厚さとしては25μm以上が好ましい。25μm以下の場合薄すぎて強度が低いため、工程中にフィルムが破れるなどの不具合が生じること場合が考えられるからである。
【0047】
フィルム14を加圧する気圧としては、200kPa以下が好ましい。200kPa以上の場合、加圧力が大きすぎ半導体素子1にダメージを与える可能性がある。
【0048】
なお、フィルムの半導体素子にあたる側の面をあらかじめ離型剤などをコーティングしておき離型処理しておくと封止樹脂硬化後容易にフィルムを取り外すことが可能となり、生産性が向上する。
【0049】
なお、フィルム14の下部の圧力を減圧状態つまり1気圧以下にして、半導体素子1を加圧すると同時に封止樹脂6を硬化する方法でも同様の効果が得られることは言うまでもない。
【0050】
なお、フィルム14上部から加圧すると同時にフィルム14下部の領域を減圧することにより、半導体素子1を加圧すると同時に封止樹脂6を硬化する方法でも同様の効果が得られる。
【0051】
なお、仮固定用樹脂5を用いる製造方法について述べたが、接着力の強い導電性接着剤4を用いるなどして、半導体素子1と回路基板2の固定が十分強い場合は、仮固定用樹脂5は不要であり、仮固定用樹脂5を塗布する工程及び仮固定用樹脂5を硬化する工程が無くても良い。
【0052】
なお、半導体素子1と基板2の電気的接続には、突起電極3と導電性接着剤4を用いる製造方法について述べたが、半導体素子1と基板2の接続方法を他の製造方法、例えばはんだ接合法や金属接合法を用いても同様の効果が得られることは、言うまでもない。
【0053】
なお、封止樹脂6を加熱硬化する方法としては、加圧硬化装置を用いて説明したが、加圧を用いずに硬化時間を長くかけてオーブン炉などで行っても、同様の効果が得られることは、言うまでもない。
【0054】
なお、封止樹脂6中に含まれるボイド10を更に小さくしたい場合は、半導体装置を気圧の高い状態にさらしながら、封止樹脂6を硬化すれば良い。具体的には加圧オーブンなどを用いることができる。
【0055】
以上の製造方法を用いることで、封止樹脂6において、フィラ密度の低い部分9が、半導体素子1の中心部から放射状に分布している半導体装置が作製可能となる。フィラは封止樹脂6の熱膨張係数をコントロールする役目があるので、フィラ密度の低い部分が半導体装置平面内で対称な形をとることで、熱履歴を加えた場合、半導体装置が均等に変形し、応力が集中する部分が発生しないので、良好な信頼性を得ることができる。また、フィラには封止樹脂6の吸水率を抑える役目も有るので、突起電極3付近にフィラ密度の低い部分9がないことで、耐湿性試験においても良好な結果を得ることができる。
【0056】
(実施の形態3)
次に、実施の形態1に示した半導体装置の製造方法の他の一例について図7を用いて説明する。
【0057】
まず、半導体素子1の電極7上に突起電極3を形成する。次に図7(a)〜(b)に示すように、突起電極3に導電性接着剤4を塗布した後、半導体素子1を基板2上にフェースダウンでフリップチップ実装にて搭載し、続いて導電性接着剤4を加熱し乾燥させる。加熱装置としては、例えば、リフロー炉、静止リフロー炉、あるいはオーブン炉などがあげられる。
【0058】
引き続き図7(c)に示すように、予め半導体素子中央部付近に設けた貫通穴より液状の封止樹脂6を例えば封止樹脂塗布装置17を用いて注入し、回路基板と半導体素子の間隙に充填する。この封止樹脂注入法を用いると、半導体素子1の中心方向から封止樹脂6が注入されるので、封止樹脂のフィラ密度が低い部分9は、半導体素子1の中心から放射状に分布することになる。
【0059】
なお、本実施の形態においては、実施の形態1とはフィラ密度の分布状態が異なっており、フィラ濃度の低い部分が半導体素子の周辺に存在している状態となる。このようにしても、フィラの密度の少ない部分を半導体素子中央部から同心円状に分布させることができ、半導体装置平面内でフィラ密度の分布がほぼ対称な形にすることができる。
【0060】
なお、液状の封止樹脂6を注入する工程において、同時に封止樹脂6の粘度が低くなる温度、例えば50℃で封止樹脂6を加熱することで、さらに注入性がよくなり、注入時間の短時間化を図ることができる。
【0061】
引き続き、封止樹脂6を加熱して硬化して半導体装置が完成する(図7(d))。封止樹脂加熱方法としてはオーブン炉を用いて加熱する。
【0062】
なお、半導体素子1と基板2の電気的接続には、突起電極3と導電性接着剤4を用いる製造方法について述べたが、半導体素子1と基板2の接続方法を他の製造方法、例えばはんだ接合法や金属接合法を用いても同様の効果が得られることは、もちろんである。
【0063】
なお製造工程中、半導体素子1と回路基板2の接合が弱い場合は、回路基板上に仮固定用樹脂を塗布した後半導体素子1を実装し、仮固定用樹脂を硬化させる工程を設けることで、製造工程中も半導体素子1と回路基板2の接続を安定に保つことが出来ることは言うまでもない。
【0064】
以上の製造方法を用いることで、封止樹脂6において、フィラ密度の低い部分9が、半導体素子1の中心部から放射状に分布している半導体装置が作製可能となる。フィラは封止樹脂の熱膨張係数をコントロールする役目があるので、フィラ密度の低い部分9が半導体装置平面内で対称な形をとることで、熱履歴を加えた場合、半導体装置が均等に変形し、応力が集中する部分が発生しないので、良好な信頼性を得ることができる。
【0065】
(実施の形態4)
次に、実施の形態1に示した半導体装置の製造方法の他の一例について図8を用いて説明する。
【0066】
まず、半導体素子1の電極7上に突起電極3を形成する。次に図8(a)〜(b)に示すように、突起電極3に導電性接着剤4を塗布した後、半導体素子1を基板2上に搭載し、続いて導電性接着剤4を加熱し乾燥させる。加熱装置としては、例えば、リフロー炉、静止リフロー炉、あるいはオーブン炉などがあげられる。
【0067】
引き続き図8(c)に示すように、予め半導体素子を搭載する回路基板部分の中心部付近に設けた貫通穴より、液状の封止樹脂を注入し、回路基板と半導体素子の間隙に充填する。この封止樹脂注入法を用いると、半導体素子1の中心方向から封止樹脂6が注入されるので、封止樹脂のフィラ密度が低い部分9は、半導体素子1の中心から放射状に分布することになる。
【0068】
なお、液状の封止樹脂6を注入する工程において、同時に封止樹脂6の粘度が低くなる温度、例えば50℃で封止樹脂6を加熱することで、さらに注入性がよくなり、注入時間の短時間化を図ることができる。
【0069】
引き続き、封止樹脂6を加熱して硬化して半導体装置が完成する(図8(d))。封止樹脂加熱方法としてはオーブン炉を用いて加熱する。
【0070】
なお、半導体素子1と基板2の電気的接続には、突起電極3と導電性接着剤4を用いる製造方法について述べたが、半導体素子1と基板2の接続方法を他の製造方法、例えばはんだ接合法や金属接合法を用いても同様の効果が得られることは、言うまでもない。
【0071】
なお製造工程中、半導体素子1と回路基板2の接合が弱い場合は、回路基板上に仮固定用樹脂を塗布した後半導体素子1を実装し、仮固定用樹脂を硬化させる工程を設けることで、製造工程中も半導体素子1と回路基板2の接続を安定に保つことが出来る。
【0072】
以上の製造方法を用いることで、封止樹脂6において、フィラ密度の低い部分9が、半導体素子1の中心部から放射状に分布している半導体装置が作製可能となる。フィラは封止樹脂の熱膨張係数をコントロールする役目があるので、フィラ密度の低い部分9が半導体装置平面内で対称な形をとることで、熱履歴を加えた場合、半導体装置が均等に変形し、応力が集中する部分が発生しないので、良好な信頼性を得ることができる。
【0073】
【発明の効果】
以上のように本発明によれば、封止樹脂中のフィラ分布が、半導体素子の中心部から放射状に分布している半導体装置の構成となり、フィラ分布が半導体装置平面内で対称な形をとることができる。これにより、熱履歴を加えた場合半導体装置が均等に変形することができ、良好な信頼性を得ることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の構成を説明する図
【図2】本発明の実施の形態1の構成を説明する図
【図3】本発明の実施の形態1の構成を説明する図
【図4】本発明の実施の形態1の構成を説明する図
【図5】本発明の実施の形態1の構成を説明する図
【図6】本発明の実施の形態2の製造方法を説明する図
【図7】本発明の実施の形態3の製造方法を説明する図
【図8】本発明の実施の形態4の製造方法を説明する図
【図9】従来の半導体装置を説明する図
【図10】従来の半導体装置の製造方法を説明する図
【図11】従来の半導体装置の製造方法を示す図
【図12】従来の半導体装置を示す図
【図13】従来の半導体装置の製造方法を示す図
【符号の説明】
1 半導体素子
2 回路基板
3 突起電極
4 導電性接着剤
5 仮固定用樹脂
6 封止樹脂
7 電極
8 電極
9 フィラ密度の低い部分
10 ボイド
11 封止樹脂注入装置
12 供給バルブ
13 加圧硬化装置
14 フィルム
15 供給バルブ
16 ヒータ
17 封止樹脂塗布装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device using flip-chip mounting technology and a method for manufacturing a semiconductor device.
[0002]
[Prior art]
2. Description of the Related Art In recent years, the degree of integration of semiconductor elements has increased, and miniaturization of semiconductor devices and narrowing of pitches of connection terminals have progressed. Therefore, development of semiconductor devices using flip-chip mounting technology has been actively conducted. Hereinafter, an example of a semiconductor device using a conventional flip-chip mounting technique will be described with reference to the drawings.
[0003]
FIG. 9 shows a diagram of a semiconductor device using a conventional flip-chip mounting technique. FIG. 9A is a perspective view of the semiconductor device as viewed from above, in which the semiconductor element is seen through. FIG. 9B is a cross-sectional view taken along a dotted line XX ′ of FIG. 9A. As shown in the figure, a protruding electrode 3 is formed on an electrode pad 7 of a semiconductor element 1 and is connected to an electrode 8 of a circuit board 2 via a conductive adhesive 4. The sealing resin 6 is filled between the semiconductor element 1 and the circuit board 2. The sealing resin 6 is used to further firmly fix the semiconductor element 1 and the circuit board 2 to improve reliability.
[0004]
A method of manufacturing the conventional semiconductor device having the above-described configuration will be described with reference to FIG. First, the protruding electrodes 3 are formed on the electrode pads 7 of the semiconductor element 1. Subsequently, a conductive adhesive 4 is applied to the tip of the protruding electrode 3, and the semiconductor element 1 is mounted on the circuit board 2. Thereafter, the conductive adhesive 4 is dried (FIGS. 10A and 10B).
[0005]
Next, a liquid sealing resin 6 is applied along one side of the semiconductor element 1, and the sealing resin 6 is injected into a gap between the semiconductor element 1 and the circuit board 2 by utilizing a capillary phenomenon (FIG. 10C). ).
[0006]
Finally, the sealing resin 6 is heated and cured to manufacture a semiconductor device (FIG. 10D).
[0007]
A semiconductor device has been manufactured using the above-described flip-chip mounting technology.
[0008]
[Problems to be solved by the invention]
However, the conventional configuration and method as described above have the following problems. FIGS. 11 and 12 (a) are views in which the semiconductor device is seen through from above and the semiconductor element is seen through. FIG. 11 is a diagram showing a state in which the sealing resin 6 is injected into the gap between the semiconductor element 1 and the circuit board 2, and FIG. 12 is a view showing a state after the sealing resin 6 is injected. is there. Usually, a liquid sealing resin 6 is applied along one side of the semiconductor element 1, and the sealing resin 6 is injected into a gap between the semiconductor element 1 and the circuit board 2 by a capillary phenomenon. At first, as shown in FIG. 11A, the sealing resin 6 penetrates uniformly in parallel with the side on the injection side.
[0009]
However, when the sealing resin 6 travels a certain distance, as shown in FIG. 11B, the dispersion of the filler diameter contained in the sealing resin 6 and the minute unevenness of the circuit board 2 gradually affect the sealing resin 6. As a result, the inflow speed of the sealing resin 6 varies, and the sealing resin 6 cannot be injected uniformly in parallel with the sides.
[0010]
Thereafter, as shown in FIG. 11C, the sealing resin 6 is injected in such a manner that the flow of the sealing resin 6 is blocked at some points, and further as shown in FIG. 11D. The portions of the sealing resin 6 that have invaded earlier spread laterally with each other, so that the sealing resin 6 is filled. At this time, the speed at which the sealing resin 6 spreads laterally is high, but the filler contained in the sealing resin 6 is solid and heavy, so that the sealing resin cannot move. The resin component contained in 6 spreads in the horizontal direction, and this portion becomes a sealing resin configuration having a low filler distribution. As a result, in the semiconductor device into which the sealing resin 6 has been injected, as shown in FIG. 12, a phenomenon occurs in which a large number of portions 9 having a low filler density occur near the side opposite to the side where the sealing resin 6 is injected. Was.
[0011]
FIG. 13 shows the result of observing the semiconductor device from above with an ultrasonic microscope. This is a result of observing the state of the sealing resin 6 through the semiconductor element 1 with an ultrasonic microscope. It can be seen that many portions 9 having a low filler density are generated on the side opposite to the side where the sealing resin is injected.
[0012]
Since the filler has a role of controlling the coefficient of thermal expansion of the sealing resin 6, if the distribution of the filler varies asymmetrically within the semiconductor plane, the semiconductor device does not deform evenly when heat history is added, and stress concentration occurs. Parts may occur. As a result, there is a problem that the interface separation between the semiconductor element 1 and the sealing resin 6 easily occurs. In addition, there is a problem that a phenomenon occurs such as damage to a portion where the semiconductor element 1 and the circuit board 2 are electrically connected, which adversely affects reliability.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides that a portion having a low filler density is concentrically distributed from a central portion of a semiconductor element so that the distribution of the filler density is substantially symmetric in a semiconductor device plane. It is a feature.
[0014]
Further, as a manufacturing method of the present invention, after applying a liquid sealing resin to the entire outer periphery of the semiconductor element at atmospheric pressure, the semiconductor device is once depressurized using a decompression device, and then returned to atmospheric pressure again. In this case, the sealing resin is injected from the entire periphery of the semiconductor element.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the following embodiments. In each of the drawings, similar structures are denoted by the same reference numerals.
[0016]
(Embodiment 1)
Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1A is a perspective view of the semiconductor device viewed from above, and is a view of the semiconductor device 1 as seen through. FIG. 1B is a cross-sectional view taken along a dotted line KK ′ in FIG. As shown in FIG. 1B, the protruding electrode 3 is formed on the electrode pad 7 of the semiconductor element 1 and is connected to the electrode 8 of the circuit board 2 via the conductive adhesive 4. For example, the protruding electrode 3 is a two-step protruding electrode made of a conductive metal, gold, copper, aluminum, or the like by a wire bonding method, and the conductive adhesive 4 includes a conductive filler in a thermoplastic resin. Is mixed. Examples of the circuit board 2 include a ceramic substrate, a glass epoxy substrate, a polyimide substrate, a liquid crystal polymer substrate, and an all-layer resin IVH substrate. The protruding electrodes, the conductive adhesive, and the circuit board are not limited to the materials described above.
[0017]
A space between the semiconductor element 1 and the circuit board 2 is filled with a temporary fixing resin 5 and a sealing resin 6. The temporary fixing resin 5 is used to reinforce the fixing between the semiconductor element 1 and the circuit board 2 during the manufacturing process of the semiconductor device. The sealing resin 6 is used for further strengthening the connection between the semiconductor element 1 and the circuit board 2 and improving the reliability of the semiconductor device. The filler contained in the sealing resin 6 is, for example, SiO 2 2 Can be used, and an epoxy-based resin can be used as a resin component of the sealing resin 6, but is not particularly limited to a material.
[0018]
In the sealing resin 6, portions 9 having a low filler density are radiated concentrically from the center of the semiconductor element 1 and distributed. The filler has a role of controlling the coefficient of thermal expansion of the sealing resin 6, and the portion 9 having a low filler density has a symmetrical shape in the plane of the semiconductor device. Good reliability is obtained because the parts are uniformly deformed and stress is not concentrated.
[0019]
FIG. 2 shows the result of observing the semiconductor device from above with an ultrasonic microscope. This is a result of observing the state of the sealing resin 6 through the semiconductor element 1 with an ultrasonic microscope. In this way, a structure in which portions having a low filler density are radiated concentrically from the center of the semiconductor element 1 and distributed.
[0020]
The filler also has a function of suppressing the water absorption of the sealing resin. Therefore, as shown in FIG. 1, a structure is adopted in which a portion 9 having a low filler density, that is, a portion having a high water absorption rate is not present in the sealing resin 6 near the protruding electrode 3 for electrically connecting the semiconductor element 1 and the circuit board 2. It is particularly preferable because good results are obtained also in a moisture resistance test.
[0021]
That is, in the present embodiment, the filler concentration in the central part of the semiconductor element is lower than the filler concentration in the peripheral part of the semiconductor element, so that the structure has particularly good moisture resistance.
[0022]
In FIG. 1, it is more preferable that a portion (void 10) where the sealing resin 6 is not filled between the semiconductor element 1 and the circuit board 2 exists near the center of the semiconductor element 1.
[0023]
When the void 10 is present, an element that cannot operate when the semiconductor element surface in this space is filled with the sealing resin 6, such as a vibration element, can be provided on the surface of the semiconductor element. When such an element is used as the semiconductor element 1, if the sealing resin 6 is completely filled, even if the vibration element is provided on the semiconductor element surface side, the sealing resin 6 and the vibration element adhere to each other. Therefore, the movement of the vibration element is hindered and does not operate properly.
[0024]
However, by providing the vibrating element on the surface of the semiconductor element in contact with the void 10 not filled with the sealing resin 6, the vibrating element operates normally because there is nothing to hinder the operation of the vibrating element. Therefore, with such a mounting structure, a semiconductor element having a vibration element can be mounted.
[0025]
In addition, a joint for electrically connecting the semiconductor element 1 and the circuit board 2 can be provided in the void 10. Specifically, an electrode pad, a protruding electrode, a conductive adhesive, and an electrode of a circuit board of the semiconductor element 1 are provided in the gap portion, and the semiconductor element 1 and the circuit board 2 are electrically connected. Then, this connection portion can be used as a path for transmitting a high-frequency signal. The normal electrical joint is covered with the sealing resin 6, but since the sealing resin 6 has a higher dielectric constant than air, transmitting a high-frequency signal adversely affects the signal, and the signal is not transmitted well. Sometimes. Therefore, if an electrical junction is formed at the void 10 and used for transmitting a high-frequency signal, it is possible to transmit a high-frequency signal with high accuracy without being adversely affected by the sealing resin 6. Become.
[0026]
In the present embodiment, the void 10 is not an essential component. For example, as shown in FIG. 3, the void 10 may not be provided, and the sealing resin 6 may be entirely filled. Regardless of whether the voids 10 are present or not, if the portion 9 having a low filler density is radiated concentrically from the center of the semiconductor element 1 and distributed, the semiconductor device will be evenly distributed when heat history is added. This is because good reliability can be obtained because there is no portion where deformation and stress concentration occur.
[0027]
In this embodiment, the temporary fixing resin 5 is used to strengthen the fixing between the semiconductor element 1 and the circuit board 2 during the manufacture of the semiconductor device. When the fixing is stable, the temporary fixing resin 5 may be omitted as shown in FIGS.
[0028]
Although the method of electrically connecting the semiconductor element 1 and the circuit board 2 has been described using the method of connecting the bump electrodes 3 to the circuit board 2 via the conductive adhesive 4, other methods, for example, a method using solder It is needless to say that the same effect can be obtained even if a method of directly connecting the electrodes by using the protruding electrodes made of metal is used.
[0029]
The portion for electrically connecting the semiconductor element 1 and the circuit board 2 is arranged near the side of the semiconductor element 1, that is, in a peripheral shape, but the portion for electrically connecting the semiconductor element 1 and the circuit board 2 is The same effect can be obtained when the semiconductor element 1 is arranged on the entire surface, that is, in the case of an area.
[0030]
(Embodiment 2)
Next, an example of a method for manufacturing the semiconductor device described in Embodiment 1 will be described with reference to FIGS.
[0031]
First, the protruding electrode 3 is formed on the electrode 7 of the semiconductor element 1, and the protruding electrode 3 coated with the conductive adhesive 4 is prepared. Further, a substrate 2 on which a temporary fixing resin 5 is applied is prepared. After that, the semiconductor element 1 is flip-chip mounted face-down on the substrate 2 and mounted (FIGS. 6A and 6B).
[0032]
Subsequently, the temporary fixing resin 5 is heated and cured, and at the same time, the conductive adhesive 4 is heated and dried. At this time, the adhesive strength of the conductive adhesive 4 is weak, but the fixing portion is reinforced by the temporary fixing resin 5 so that the connection portion by the conductive adhesive 4 is stabilized even during the subsequent manufacturing process. Can be kept. Examples of the heating device used at this time include a reflow furnace, a stationary reflow furnace, and an oven furnace.
[0033]
Subsequently, the sealing resin 6 is injected between the semiconductor element 1 and the substrate 2 under reduced pressure. In this reduced pressure injection, first, as shown in FIG. 6C, a liquid sealing resin 6 is applied over the entire circumference along the side of the semiconductor element 1 at atmospheric pressure. Thereafter, as shown in FIG. 6D, the semiconductor device is put into the sealing resin injection device 11, and then the pressure is reduced. At this time, since the air contained in the space surrounded by the semiconductor element 1, the circuit board 2 and the sealing resin 6 passes through the sealing resin 6 and is exhausted outside, the pressure in this space is also in a vacuum state. When the vacuum is rapidly evacuated, the gas in the space is rapidly evacuated to the outside and a phenomenon that the sealing resin 6 is scattered occurs. It is preferred to do so.
[0034]
Thereafter, by returning to the atmospheric pressure again, the pressure in the space surrounded by the semiconductor element 1, the circuit board 2, and the sealing resin 6 becomes relatively lower than the pressure outside the semiconductor device, and this pressure difference is used. The sealing resin 6 is injected into the gap between the semiconductor element 1 and the circuit board 2. At this time, if the pressure is rapidly returned to the atmospheric pressure, some small voids remain near the side of the semiconductor element 1. Therefore, the step of returning to the atmospheric pressure from 10,000 kPa is desirably performed over 10 seconds or more.
[0035]
Subsequently, after the inside of the sealing resin injection device is returned to the atmospheric pressure, or at the time when the pressure is returned to the atmospheric pressure, the inside of the sealing resin injection device is pressurized by injecting a gas from the supply valve 12, for example. And then return to atmospheric pressure again. By performing this step, the size of the voids in the sealing resin 6 generated near the center of the semiconductor element 1 can be reduced in a short time, so that a semiconductor device having a small void diameter can be manufactured. Become.
[0036]
Specifically, when the semiconductor element 1 is subjected to reduced pressure injection using a 1 cm square size, the diameter of the void immediately after returning to the atmospheric pressure, evacuation (attainment vacuum degree of 10 Pa), and the atmospheric pressure is 500 to 1000 μm. It became. Since the voids shrink slowly after returning to atmospheric pressure because the viscosity of the sealing resin 6 is high, the void diameter becomes 500 μm or less by using a sealing resin having a viscosity of 5 to 30 Pa · s at 25 ° C. If so, it takes about 12 hours. Then, after returning to the atmospheric pressure, by adding a step of increasing the atmospheric pressure, the void diameter was reduced to 500 μm or less in a short time.
[0037]
Thus, the sealing resin 6 is injected into the gap between the semiconductor element 1 and the circuit board 2 (FIG. 6E).
[0038]
When this sealing resin injection method is used, the sealing resin 6 is injected from the entire circumferential direction of the semiconductor element 1, so that a portion where the filler density 9 of the sealing resin is low is distributed radially from the center of the semiconductor element 1. Will be. In addition, since the sealing resin 6 is injected from all directions, when the electrode of the semiconductor device has a peripheral structure, the sealing resin 6 is provided near the protruding electrode 3 that electrically connects the semiconductor element 1 and the circuit board 2. It is possible to adopt a structure in which the portion 9 having a low filler density does not exist (that is, the structure shown in the first embodiment).
[0039]
Further, since the sealing resin 6 can be forcibly injected using the pressure difference, the injection time can be shortened, and the efficiency of the manufacturing process can be improved. Further, even when the sealing resin 6 having a relatively high viscosity is used, the resin can be easily injected, so that the selection range of the sealing resin 6 is widened.
[0040]
If it is not necessary to reduce the void diameter, it is needless to say that there is no need to perform a step of increasing the atmospheric pressure after returning to the atmospheric pressure or the vicinity of the atmospheric pressure after evacuation.
[0041]
In the step of injecting the liquid sealing resin 6, by simultaneously heating the sealing resin 6 at a temperature at which the viscosity of the sealing resin 6 becomes low, for example, 50 ° C., the injection property is further improved, and the injection time is reduced. Shortening and stabilization can be achieved.
[0042]
In addition, as the reduced pressure injection method, a step of applying a sealing resin over the entire circumference of the semiconductor element 1 at atmospheric pressure and then evacuating was used. Needless to say, the same effect can be obtained even when the application step is used.
[0043]
After the above steps, the sealing resin 6 is subsequently cured using the pressure curing device 13 as shown in FIG. The film 14 is placed on the substrate 2 and the upper part of the semiconductor element 1, and the gas is injected from the supply valve 15 to increase the pressure on the upper part of the film 14. Is heat-cured.
[0044]
Since the sealing resin 6 is cured by heating while applying pressure from the back surface of the semiconductor element 1, even when the sealing resin 6 is cured in a short time, the connection portion of the conductive adhesive 4 may be damaged by thermal expansion of the sealing resin 6. The sealing resin 6 can be cured by heating without causing any trouble. Therefore, when this curing method is used, it is possible to perform stable short-time curing using the fast-curing sealing resin 6, for example, at 150 to 160 ° C. for 5 minutes, thereby improving productivity.
[0045]
The film 14 may be a PPS (polyphenylene sulfide) film, a polyimide film, or the like, but is not limited thereto.
[0046]
The thickness of the film 14 is preferably 25 μm or more. This is because if the thickness is 25 μm or less, the film is too thin and the strength is low, which may cause a problem such as breakage of the film during the process.
[0047]
The pressure at which the film 14 is pressed is preferably 200 kPa or less. When the pressure is 200 kPa or more, there is a possibility that the pressing force is too large and damages the semiconductor element 1.
[0048]
If the surface of the film corresponding to the semiconductor element is coated in advance with a release agent or the like and subjected to a release treatment, the film can be easily removed after the sealing resin is cured, thereby improving the productivity.
[0049]
It is needless to say that a similar effect can be obtained by reducing the pressure of the lower portion of the film 14, that is, to 1 atm or less, and pressing the semiconductor element 1 and simultaneously curing the sealing resin 6.
[0050]
The same effect can be obtained by a method in which the semiconductor element 1 is pressurized and the sealing resin 6 is cured at the same time as the pressure is applied from above the film 14 and the area under the film 14 is depressurized at the same time.
[0051]
Although the manufacturing method using the temporary fixing resin 5 has been described, when the semiconductor element 1 and the circuit board 2 are sufficiently fixed by using the conductive adhesive 4 having a strong adhesive force, the temporary fixing resin is used. The step 5 is unnecessary, and the step of applying the temporary fixing resin 5 and the step of curing the temporary fixing resin 5 may be omitted.
[0052]
Although the manufacturing method using the protruding electrode 3 and the conductive adhesive 4 has been described for the electrical connection between the semiconductor element 1 and the substrate 2, the connection method between the semiconductor element 1 and the substrate 2 is changed to another manufacturing method such as soldering. It goes without saying that the same effect can be obtained by using a joining method or a metal joining method.
[0053]
Although the method of heating and curing the sealing resin 6 has been described using a pressure curing device, the same effect can be obtained even when the curing is performed in an oven furnace for a long time without using pressure. Needless to say,
[0054]
If it is desired to further reduce the voids 10 contained in the sealing resin 6, the sealing resin 6 may be cured while exposing the semiconductor device to a high pressure state. Specifically, a pressure oven or the like can be used.
[0055]
By using the above manufacturing method, a semiconductor device in which the portion 9 having a low filler density is radially distributed from the center of the semiconductor element 1 in the sealing resin 6 can be manufactured. Since the filler has a role of controlling the thermal expansion coefficient of the sealing resin 6, a portion having a low filler density is symmetrical in the plane of the semiconductor device, so that when a thermal history is added, the semiconductor device is uniformly deformed. In addition, since there is no portion where stress concentrates, good reliability can be obtained. Further, since the filler also has a role of suppressing the water absorption of the sealing resin 6, since there is no portion 9 having a low filler density near the protruding electrode 3, a favorable result can be obtained even in a moisture resistance test.
[0056]
(Embodiment 3)
Next, another example of the method for manufacturing the semiconductor device described in Embodiment 1 will be described with reference to FIGS.
[0057]
First, the protruding electrode 3 is formed on the electrode 7 of the semiconductor element 1. Next, as shown in FIGS. 7A and 7B, after the conductive adhesive 4 is applied to the bump electrodes 3, the semiconductor element 1 is mounted on the substrate 2 face-down by flip-chip mounting. Then, the conductive adhesive 4 is heated and dried. Examples of the heating device include a reflow oven, a stationary reflow oven, and an oven oven.
[0058]
Subsequently, as shown in FIG. 7C, a liquid sealing resin 6 is injected from a through hole provided in the vicinity of the center of the semiconductor element in advance by using, for example, a sealing resin coating device 17, and a gap between the circuit board and the semiconductor element is formed. Fill. When this sealing resin injection method is used, the sealing resin 6 is injected from the center direction of the semiconductor element 1, so that the portion 9 having a low filler density of the sealing resin is distributed radially from the center of the semiconductor element 1. become.
[0059]
In the present embodiment, the distribution state of the filler density is different from that of the first embodiment, and a part having a low filler concentration is present around the semiconductor element. Also in this case, the portion where the filler density is low can be distributed concentrically from the center of the semiconductor element, and the distribution of the filler density can be made substantially symmetrical in the plane of the semiconductor device.
[0060]
In the step of injecting the liquid sealing resin 6, by simultaneously heating the sealing resin 6 at a temperature at which the viscosity of the sealing resin 6 becomes low, for example, 50 ° C., the injection property is further improved, and the injection time is reduced. The time can be reduced.
[0061]
Subsequently, the sealing resin 6 is heated and cured to complete the semiconductor device (FIG. 7D). As a sealing resin heating method, heating is performed using an oven furnace.
[0062]
Although the manufacturing method using the protruding electrode 3 and the conductive adhesive 4 has been described for the electrical connection between the semiconductor element 1 and the substrate 2, the connection method between the semiconductor element 1 and the substrate 2 is changed to another manufacturing method such as soldering. It goes without saying that a similar effect can be obtained by using a joining method or a metal joining method.
[0063]
If the bonding between the semiconductor element 1 and the circuit board 2 is weak during the manufacturing process, a step of applying the temporary fixing resin on the circuit board, mounting the semiconductor element 1, and curing the temporary fixing resin is provided. Needless to say, the connection between the semiconductor element 1 and the circuit board 2 can be kept stable during the manufacturing process.
[0064]
By using the above manufacturing method, a semiconductor device in which the portion 9 having a low filler density is radially distributed from the center of the semiconductor element 1 in the sealing resin 6 can be manufactured. Since the filler has a role of controlling the thermal expansion coefficient of the sealing resin, the portion 9 having a low filler density has a symmetric shape in the plane of the semiconductor device, so that when a thermal history is added, the semiconductor device is uniformly deformed. In addition, since there is no portion where stress concentrates, good reliability can be obtained.
[0065]
(Embodiment 4)
Next, another example of the method for manufacturing the semiconductor device described in Embodiment 1 will be described with reference to FIGS.
[0066]
First, the protruding electrode 3 is formed on the electrode 7 of the semiconductor element 1. Next, as shown in FIGS. 8A and 8B, after the conductive adhesive 4 is applied to the bump electrodes 3, the semiconductor element 1 is mounted on the substrate 2, and then the conductive adhesive 4 is heated. And let it dry. Examples of the heating device include a reflow oven, a stationary reflow oven, and an oven oven.
[0067]
Subsequently, as shown in FIG. 8C, a liquid sealing resin is injected from a through hole provided in the vicinity of the center of the circuit board portion on which the semiconductor element is mounted in advance, and the gap between the circuit board and the semiconductor element is filled. . When this sealing resin injection method is used, the sealing resin 6 is injected from the center direction of the semiconductor element 1, so that the portion 9 having a low filler density of the sealing resin is distributed radially from the center of the semiconductor element 1. become.
[0068]
In the step of injecting the liquid sealing resin 6, by simultaneously heating the sealing resin 6 at a temperature at which the viscosity of the sealing resin 6 becomes low, for example, 50 ° C., the injection property is further improved, and the injection time is reduced. The time can be reduced.
[0069]
Subsequently, the sealing resin 6 is heated and cured to complete the semiconductor device (FIG. 8D). As a sealing resin heating method, heating is performed using an oven furnace.
[0070]
Although the manufacturing method using the protruding electrode 3 and the conductive adhesive 4 has been described for the electrical connection between the semiconductor element 1 and the substrate 2, the connection method between the semiconductor element 1 and the substrate 2 is changed to another manufacturing method such as soldering. It goes without saying that the same effect can be obtained by using a joining method or a metal joining method.
[0071]
If the bonding between the semiconductor element 1 and the circuit board 2 is weak during the manufacturing process, a step of applying the temporary fixing resin on the circuit board, mounting the semiconductor element 1, and curing the temporary fixing resin is provided. Also, the connection between the semiconductor element 1 and the circuit board 2 can be kept stable during the manufacturing process.
[0072]
By using the above manufacturing method, a semiconductor device in which the portion 9 having a low filler density is radially distributed from the center of the semiconductor element 1 in the sealing resin 6 can be manufactured. Since the filler has a role of controlling the thermal expansion coefficient of the sealing resin, the portion 9 having a low filler density is symmetrical in the plane of the semiconductor device, so that when the thermal history is added, the semiconductor device is uniformly deformed. In addition, since there is no portion where stress concentrates, good reliability can be obtained.
[0073]
【The invention's effect】
As described above, according to the present invention, the filler distribution in the sealing resin has a configuration of a semiconductor device radially distributed from the center of the semiconductor element, and the filler distribution has a symmetric shape in the semiconductor device plane. be able to. Thereby, when a heat history is added, the semiconductor device can be uniformly deformed, and good reliability can be obtained.
[Brief description of the drawings]
FIG. 1 illustrates a configuration of a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a configuration of a first embodiment of the present invention.
FIG. 3 is a diagram illustrating a configuration according to the first embodiment of the present invention.
FIG. 4 is a diagram illustrating a configuration according to the first embodiment of the present invention.
FIG. 5 is a diagram illustrating a configuration according to the first embodiment of the present invention.
FIG. 6 is a diagram illustrating a manufacturing method according to a second embodiment of the present invention.
FIG. 7 illustrates a manufacturing method according to a third embodiment of the present invention.
FIG. 8 is a diagram illustrating a manufacturing method according to a fourth embodiment of the present invention.
FIG. 9 illustrates a conventional semiconductor device.
FIG. 10 is a diagram illustrating a conventional method for manufacturing a semiconductor device.
FIG. 11 is a diagram showing a conventional method of manufacturing a semiconductor device.
FIG. 12 illustrates a conventional semiconductor device.
FIG. 13 is a diagram showing a conventional method for manufacturing a semiconductor device.
[Explanation of symbols]
1 Semiconductor element
2 Circuit board
3 protruding electrodes
4 Conductive adhesive
5 Resin for temporary fixing
6 sealing resin
7 electrodes
8 electrodes
9 Part with low filler density
10 void
11 Sealing resin injection device
12 Supply valve
13 Pressure curing equipment
14 films
15 Supply valve
16 heater
17 Sealing resin coating device

Claims (16)

回路基板に半導体素子をフェイスダウンで実装したフリップチップ実装半導体装置において、前記半導体素子と前記回路基板の間隙にフィラが混在された封止樹脂が充填されており、前記封止樹脂中のフィラ濃度の低い部分が前記半導体素子中心部から同心円状に分布するように構成されていることを特徴とする半導体装置。In a flip-chip mounting semiconductor device in which a semiconductor element is mounted face down on a circuit board, a gap between the semiconductor element and the circuit board is filled with a sealing resin containing a filler, and a filler concentration in the sealing resin is filled. A lower portion of the semiconductor device is configured to be concentrically distributed from the center of the semiconductor element. 半導体素子中心部におけるフィラ濃度が、半導体素子周辺部におけるフィラ濃度よりも低い請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein a filler concentration in a central portion of the semiconductor element is lower than a filler concentration in a peripheral portion of the semiconductor element. 半導体素子と回路基板との間にボイド部分が形成されており、前記ボイド部分に前記半導体素子上に設けられた振動素子が配置されていることを特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein a void is formed between the semiconductor element and the circuit board, and a vibration element provided on the semiconductor element is arranged in the void. 半導体素子と回路基板との間にボイド部分が形成されており、前記ボイド部分に前記半導体素子と前記回路基板とを電気的に接続するための接合部が形成されている請求項1記載の半導体装置。2. The semiconductor according to claim 1, wherein a void portion is formed between the semiconductor element and the circuit board, and a bonding portion for electrically connecting the semiconductor element and the circuit board is formed in the void section. apparatus. 前記半導体素子と前記回路基板とが、導電性を有する金属からなる突起電極と導電性接着剤層とを介して電気的に接続されていることを特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein the semiconductor element and the circuit board are electrically connected via a protruding electrode made of a conductive metal and a conductive adhesive layer. 前記半導体素子と前記回路基板間には、仮固定用樹脂を備えている請求項1記載の半導体装置。The semiconductor device according to claim 1, further comprising a temporary fixing resin between the semiconductor element and the circuit board. 回路基板に半導体素子をフリップチップ実装する半導体装置の製造方法であって、半導体素子を基板上に搭載する工程と、液状の封止樹脂を大気圧中で半導体素子の辺全周に沿って塗布し、その後真空状態にし、再び大気圧に戻すことで、封止樹脂を回路基板と半導体素子の間隙に注入し、前記封止樹脂中のフィラ濃度の低い部分を前記半導体素子中心部から同心円状に分布させる工程と、前記封止樹脂を加熱し硬化させて、前記半導体素子と前記基板とを機械的に接合する工程と、を備えた半導体装置の製造方法。A method of manufacturing a semiconductor device in which a semiconductor element is flip-chip mounted on a circuit board, the step of mounting the semiconductor element on a substrate, and applying a liquid sealing resin along the entire periphery of the semiconductor element at atmospheric pressure. Then, a vacuum state is established, and the pressure is returned to the atmospheric pressure again, whereby the sealing resin is injected into the gap between the circuit board and the semiconductor element, and a portion having a low filler concentration in the sealing resin is concentric from the center of the semiconductor element. And a step of heating and curing the sealing resin to mechanically join the semiconductor element and the substrate. 回路基板に半導体素子をフリップチップ実装する半導体装置の製造方法であって、半導体素子を基板上に搭載する工程と、液状の封止樹脂を真空状態で半導体素子の辺全周に沿って塗布し、その後大気圧に戻すことで、封止樹脂を回路基板と半導体素子の間隙に注入し、前記封止樹脂中のフィラ濃度の低い部分を前記半導体素子中心部から同心円状に分布させる工程と、前記封止樹脂を加熱し硬化させて、前記半導体素子と前記基板とを機械的に接合する工程と、を備えた半導体装置の製造方法。A method of manufacturing a semiconductor device in which a semiconductor element is flip-chip mounted on a circuit board, the step of mounting the semiconductor element on a substrate, and applying a liquid sealing resin in a vacuum state along the entire periphery of the side of the semiconductor element. Then, by returning to atmospheric pressure, injecting the sealing resin into the gap between the circuit board and the semiconductor element, and distributing a portion having a low filler concentration in the sealing resin concentrically from the center of the semiconductor element, Heating and curing the sealing resin to mechanically join the semiconductor element and the substrate. 封止樹脂を回路基板と半導体素子の間隙に注入する工程において、大気圧から1000kPaに真空引きする工程を5秒以上かけて行うことを特徴とする請求項7記載の半導体装置の製造方法。8. The method of manufacturing a semiconductor device according to claim 7, wherein in the step of injecting the sealing resin into the gap between the circuit board and the semiconductor element, the step of evacuating from atmospheric pressure to 1000 kPa is performed over 5 seconds or more. 真空状態から大気圧に戻す工程において、10000kPaから大気圧に戻す工程を10秒以上かけて行なうことを特徴とする請求項7又は8記載の半導体装置の製造方法。9. The method of manufacturing a semiconductor device according to claim 7, wherein in the step of returning from a vacuum state to atmospheric pressure, the step of returning from 10,000 kPa to atmospheric pressure is performed over 10 seconds or more. 封止樹脂を回路基板と半導体素子の間隙に注入する工程において、真空状態から大気圧に戻した後に、さらに大気圧よりも気圧の高い状態にし、その後大気圧に戻すことを特徴とする請求項7又は8記載の半導体装置の製造方法。In the step of injecting the sealing resin into the gap between the circuit board and the semiconductor element, after returning from a vacuum state to atmospheric pressure, further bringing the state to a pressure higher than atmospheric pressure, and thereafter returning to atmospheric pressure. 9. The method for manufacturing a semiconductor device according to 7 or 8. 封止樹脂を回路基板と半導体素子の間隙に注入する工程において、真空状態から大気圧に戻した後に、さらに大気圧よりも気圧の高い状態にし、その状態で封止樹脂を硬化することを特徴とする請求項7又は8記載の半導体装置の製造方法。In the step of injecting the sealing resin into the gap between the circuit board and the semiconductor element, after returning from the vacuum state to the atmospheric pressure, the pressure is further increased to a pressure higher than the atmospheric pressure, and the sealing resin is cured in that state. 9. The method for manufacturing a semiconductor device according to claim 7, wherein: 回路基板に半導体素子をフリップチップ実装する半導体装置の製造方法であって、半導体素子を基板上に搭載する工程と、半導体素子中央部付近に設けた貫通穴より液状の封止樹脂を注入し、回路基板と半導体素子の間隙に充填し、前記封止樹脂中のフィラ濃度の分布を前記半導体素子中心部から同心円状に分布させる工程と、前記封止樹脂を加熱し硬化させて、前記半導体素子と前記基板とを機械的に接合する工程と、を備えた半導体装置の製造方法。A method for manufacturing a semiconductor device in which a semiconductor element is flip-chip mounted on a circuit board, wherein a step of mounting the semiconductor element on a substrate and a step of injecting a liquid sealing resin from a through hole provided near a center of the semiconductor element, Filling the gap between the circuit board and the semiconductor element, distributing the filler concentration distribution in the sealing resin concentrically from the semiconductor element center, and heating and curing the sealing resin to form the semiconductor element. And a step of mechanically joining the substrate and the substrate. 回路基板に半導体素子をフリップチップ実装する半導体装置の製造方法であって、半導体素子を基板上に搭載する工程と、半導体素子を搭載する回路基板部分の中心部に設けた貫通穴より液状の封止樹脂を注入し、回路基板と半導体素子の間隙に充填し、前記封止樹脂中のフィラ濃度の分布を前記半導体素子中心部から同心円状に分布させる工程と、前記封止樹脂を加熱し硬化させて、前記半導体素子と前記基板とを機械的に接合する工程と、を備えた半導体装置の製造方法。A method of manufacturing a semiconductor device in which a semiconductor element is flip-chip mounted on a circuit board, the method comprising: mounting a semiconductor element on a substrate; and sealing a liquid through a through hole provided in a central portion of the circuit board portion on which the semiconductor element is mounted. Injecting a sealing resin, filling the gap between the circuit board and the semiconductor element, distributing the distribution of the filler concentration in the sealing resin concentrically from the center of the semiconductor element, and heating and curing the sealing resin And mechanically bonding the semiconductor element and the substrate to each other. 半導体素子のパッドに形成された導電性を有する金属からなる突起電極に導電性接着剤を付着させる工程と、導電性接着剤を乾燥させる工程を含むことを特徴とする請求項7〜14のいずれかに記載の半導体装置の実装方法。The method according to any one of claims 7 to 14, further comprising a step of attaching a conductive adhesive to a conductive electrode formed on a pad of the semiconductor element and made of a metal having conductivity, and a step of drying the conductive adhesive. 13. A method for mounting a semiconductor device according to 回路基板上に仮固定用樹脂を塗布する工程と、仮固定用樹脂を硬化する工程を含むことを特徴とする請求項7〜15のいずれかに記載の半導体装置の実装方法。The method for mounting a semiconductor device according to claim 7, further comprising: applying a temporary fixing resin onto the circuit board; and curing the temporary fixing resin.
JP2002195484A 2002-07-04 2002-07-04 Manufacturing method of semiconductor device Expired - Fee Related JP3804586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195484A JP3804586B2 (en) 2002-07-04 2002-07-04 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195484A JP3804586B2 (en) 2002-07-04 2002-07-04 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004039886A true JP2004039886A (en) 2004-02-05
JP3804586B2 JP3804586B2 (en) 2006-08-02

Family

ID=31703845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195484A Expired - Fee Related JP3804586B2 (en) 2002-07-04 2002-07-04 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3804586B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687314B2 (en) 2007-12-28 2010-03-30 Fujitsu Limited Electronic apparatus manufacturing method
JP2010232671A (en) * 2010-06-03 2010-10-14 Texas Instr Japan Ltd Semiconductor device underfill filling method
JP2011040512A (en) * 2009-08-10 2011-02-24 Murata Mfg Co Ltd Method of manufacturing circuit board
JP2011061093A (en) * 2009-09-11 2011-03-24 Toray Eng Co Ltd Dispensing device and dispensing method
JP2019129258A (en) * 2018-01-25 2019-08-01 浜松ホトニクス株式会社 Semiconductor device and method for manufacturing semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687314B2 (en) 2007-12-28 2010-03-30 Fujitsu Limited Electronic apparatus manufacturing method
JP2011040512A (en) * 2009-08-10 2011-02-24 Murata Mfg Co Ltd Method of manufacturing circuit board
JP2011061093A (en) * 2009-09-11 2011-03-24 Toray Eng Co Ltd Dispensing device and dispensing method
JP2010232671A (en) * 2010-06-03 2010-10-14 Texas Instr Japan Ltd Semiconductor device underfill filling method
JP2019129258A (en) * 2018-01-25 2019-08-01 浜松ホトニクス株式会社 Semiconductor device and method for manufacturing semiconductor device
WO2019146244A1 (en) * 2018-01-25 2019-08-01 浜松ホトニクス株式会社 Semiconductor device and method for manufacturing semiconductor device
CN111630645A (en) * 2018-01-25 2020-09-04 浜松光子学株式会社 Semiconductor device and method of manufacturing the same
US11482555B2 (en) 2018-01-25 2022-10-25 Hamamatsu Photonics K.K. Semiconductor device and method for manufacturing semiconductor device
JP7236807B2 (en) 2018-01-25 2023-03-10 浜松ホトニクス株式会社 Semiconductor device and method for manufacturing semiconductor device
CN111630645B (en) * 2018-01-25 2023-10-17 浜松光子学株式会社 Semiconductor device, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3804586B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
US6651320B1 (en) Method for mounting semiconductor element to circuit board
JP3150347B2 (en) Method and apparatus for mounting electronic components on circuit board
JP3326382B2 (en) Method for manufacturing semiconductor device
JP2003332521A (en) Semiconductor device and manufacturing method therefor
JP3451987B2 (en) Functional element, substrate for mounting functional element, and method of connecting them
KR20010083235A (en) Mounting method and apparatus of bare chips
JP2000277649A (en) Semiconductor and manufacture of the same
WO2002073686A1 (en) Method of manufacturing semiconductor device
JP2004039886A (en) Semiconductor device and manufacturing method thereof
JP3343317B2 (en) Semiconductor unit and method of mounting semiconductor element
JP3520208B2 (en) Method of mounting semiconductor element on circuit board and semiconductor device
US6475829B2 (en) Semiconductor device and manufacturing method thereof
JP3509642B2 (en) Semiconductor device mounting method and mounting structure
JP2000150716A (en) Package structure and semiconductor device, manufacture of package and semiconductor device
JP3539528B2 (en) Semiconductor device and manufacturing method thereof
JP3525331B2 (en) Semiconductor chip mounting substrate and semiconductor device mounting method
JP3854979B2 (en) Electronic component mounting method and board module
JP2010153670A (en) Flip-chip mounting method and semiconductor device
JP3273556B2 (en) Mounting structure of functional element and method of manufacturing the same
JPH11288975A (en) Bonding method and device
JP2914569B1 (en) Semiconductor device mounting method and its mounting body
US20070194457A1 (en) Semiconductor package featuring thin semiconductor substrate and liquid crystal polymer sheet, and method for manufacturing such semiconductor package
JP3375477B2 (en) Semiconductor device and manufacturing method thereof
JP2001185580A (en) How to mount electronic components on circuit boards
JP2000183081A (en) Semiconductor manufacturing device and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees