JP2003324013A - Oxide superconductor current lead - Google Patents
Oxide superconductor current leadInfo
- Publication number
- JP2003324013A JP2003324013A JP2002129841A JP2002129841A JP2003324013A JP 2003324013 A JP2003324013 A JP 2003324013A JP 2002129841 A JP2002129841 A JP 2002129841A JP 2002129841 A JP2002129841 A JP 2002129841A JP 2003324013 A JP2003324013 A JP 2003324013A
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconductor
- electrode terminal
- current lead
- cross
- sectional area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 104
- 230000003014 reinforcing effect Effects 0.000 claims description 9
- 230000000694 effects Effects 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 238000005476 soldering Methods 0.000 description 5
- 230000020169 heat generation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- 241000954177 Bangana ariza Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 102100040287 GTP cyclohydrolase 1 feedback regulatory protein Human genes 0.000 description 1
- 101710185324 GTP cyclohydrolase 1 feedback regulatory protein Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超電導マグネット
等の極低温機器に電流を供給するための電流リードに関
する。TECHNICAL FIELD The present invention relates to a current lead for supplying a current to a cryogenic device such as a superconducting magnet.
【0002】[0002]
【従来の技術】電流リードとは、室温の電流供給源から
極低温の超電導マグネットに電流を供給する導体のこと
である。従来は、電気伝導率が高いCu製の電流リード
が一般的であった。しかし、Cuは電気伝導率が高いも
のの電気抵抗が存在するためジュール発熱が生じ、さら
にCuは熱伝導率が高いために外部から侵入する熱も大
きいので、超電導マグネットを冷却している高価な液体
ヘリウムの消費量が大きいという問題があった。そこ
で、酸化物超電導体を利用した電流リードが提案されて
いる。酸化物超電導体は超電導体であるためジュール発
熱がなく、さらに酸化物超電導体は酸化物であるため熱
伝導率が比較的低いので、酸化物超電導体電流リードを
用いるとCu製電流リードに比べて熱侵入量を小さくでき
る。2. Description of the Related Art A current lead is a conductor that supplies a current from a room temperature current supply source to a cryogenic superconducting magnet. Conventionally, a Cu current lead having a high electric conductivity has been generally used. However, since Cu has high electric conductivity but electric resistance is present, Joule heat is generated, and since Cu has high heat conductivity, a large amount of heat is introduced from the outside. Therefore, an expensive liquid for cooling the superconducting magnet is used. There was a problem that the consumption of helium was large. Therefore, a current lead using an oxide superconductor has been proposed. Since oxide superconductors do not generate Joule heat because they are superconductors, and because oxide superconductors are oxides, their thermal conductivity is relatively low. The amount of heat penetration can be reduced.
【0003】酸化物超電導体を電流リードとして利用す
るためには、酸化物超電導体に外部と接続するための電
極端子を取り付ける必要がある。酸化物超電導体電流リ
ードの電極端子構造や接続方法の従来例としては、例え
ば、特開平7−297025号公報に記載されているよ
うなものがあり、その簡略化した構造断面図を図5に従
来例として示すように、酸化物超電導体1の片面が、断
面積が一様な電極端子10の片面と電気的に接続してい
る。また、別の従来例として、電極端子に酸化物超電導
体の断面形状と同じ穴を設け、その穴に酸化物超電導体
を挿入し電気的に接続するというものが知られている。
図5のような電極端子構造や接続方法は、電極端子の穴
に酸化物超電導体を挿入し電気的に接続する方法に比べ
て、片側から押し付けながら半田付け等の電気的接続作
業を行えるので組立作業が非常に簡便になる。In order to use the oxide superconductor as a current lead, it is necessary to attach an electrode terminal to the oxide superconductor for external connection. As a conventional example of an electrode terminal structure of an oxide superconductor current lead and a connection method, there is, for example, one described in Japanese Patent Application Laid-Open No. 7-297025, and a simplified structural sectional view thereof is shown in FIG. As shown as a conventional example, one surface of the oxide superconductor 1 is electrically connected to one surface of the electrode terminal 10 having a uniform cross-sectional area. Further, as another conventional example, it is known that a hole having the same sectional shape as that of the oxide superconductor is provided in the electrode terminal, and the oxide superconductor is inserted into the hole to be electrically connected.
The electrode terminal structure and connection method as shown in FIG. 5 can perform electrical connection work such as soldering while pressing from one side, as compared with the method of inserting an oxide superconductor into the hole of the electrode terminal and electrically connecting. Assembly work becomes very simple.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、断面積
の一様な電極端子を有する酸化物超電導体電流リードに
は、臨界電流が低くなるという問題があった。すなわ
ち、酸化物超電導体自身には抵抗がなくジュール発熱は
生じないが、酸化物超電導体と電極端子の接続部分には
接触抵抗が存在し、接続部分のジュール発熱によって酸
化物超電導体の温度が局部的に上昇し、臨界電流が低く
なるのである。この問題を防ぐためには、接続部分のジ
ュール発熱を速やかに抜熱する必要がある。抜熱だけな
ら、単に一様な断面積の電極端子の厚さを厚くすればよ
いが、電流リード全体が大型化してかさばったものにな
り、さらに必要以上に厚くすると機械的強度が小さい酸
化物超電導体への機械的負担が大きくなり、酸化物超電
導体が割れやすくなるという別の問題が生じる。本発明
は、上記の問題を解決し、組立が簡便で、小型で、臨界
電流が大きい酸化物超電導体電流リードを提供すること
である。However, the oxide superconductor current lead having electrode terminals with a uniform cross-sectional area has a problem that the critical current becomes low. That is, there is no resistance in the oxide superconductor itself and Joule heat does not occur, but contact resistance exists in the connection portion between the oxide superconductor and the electrode terminal, and the temperature of the oxide superconductor is increased by Joule heat generation in the connection portion. It rises locally and the critical current goes down. In order to prevent this problem, it is necessary to quickly remove the Joule heat generation at the connection part. For heat removal, it is enough to simply increase the thickness of the electrode terminal with a uniform cross-sectional area, but the entire current lead becomes large and bulky, and if it is thicker than necessary, the oxide will have low mechanical strength. Another problem arises in that the mechanical load on the superconductor becomes large and the oxide superconductor is easily cracked. SUMMARY OF THE INVENTION It is an object of the present invention to provide an oxide superconductor current lead which solves the above problems, is easy to assemble, is compact, and has a large critical current.
【0005】[0005]
【課題を解決するための手段】本発明による酸化物超電
導体電流リードは、酸化物超電導体と、該酸化物超電導
体の両端に接続された電極端子とからなる酸化物超電導
体電流リードにおいて、前記酸化物超電導体の端面以外
の一面と前記電極端子の端面以外の一面とを電気的に接
続する接続部を有する電流リードであって、前記電極端
子が、前記接続部の断面積よりも大きな断面積を有する
部位を有する電極端子であることを特徴とする酸化物超
電導体電流リードである。また、前記部位が接続部に隣
接して設けられていること、前記電極端子の前記酸化物
超電導体との接続部の断面形状が凹状であること、前記
酸化物超電導体の端面も前記電極端子に電気的に接続さ
れていること、前記酸化物超電導体電流リードの少なく
とも酸化物超電導体及び酸化物超電導体と電極端子との
接続部が補強支持体で補強されてなることを特徴とす
る。An oxide superconductor current lead according to the present invention is an oxide superconductor current lead comprising an oxide superconductor and electrode terminals connected to both ends of the oxide superconductor, A current lead having a connecting portion electrically connecting one surface other than the end surface of the oxide superconductor and one surface other than the end surface of the electrode terminal, wherein the electrode terminal is larger than a cross-sectional area of the connecting portion. The oxide superconductor current lead is an electrode terminal having a portion having a cross-sectional area. Further, the portion is provided adjacent to the connection portion, the cross-sectional shape of the connection portion of the electrode terminal with the oxide superconductor is concave, the end surface of the oxide superconductor is also the electrode terminal. Are electrically connected to each other, and at least the oxide superconductor of the current lead of the oxide superconductor and a connecting portion between the oxide superconductor and the electrode terminal are reinforced by a reinforcing support.
【0006】本発明において、電極端子の断面積とは、
基本的には通電方向に垂直な断面での断面積のことであ
るが、電極端子と酸化物超電導体との接続部での電極端
子の断面積に関しては、電極端子の通電方向に垂直な断
面の中で、接続面の法線方向から見て酸化物超電導体と
重複する部分のみの断面積と定義する。すなわち、電極
端子接続部に関しては、酸化物超電導体より幅広の部分
や凹状の部分になっている電極端子接続部の全断面積を
含むものではない。In the present invention, the cross-sectional area of the electrode terminal means
Basically, it is the cross-sectional area perpendicular to the current-carrying direction.However, regarding the cross-sectional area of the electrode terminal at the connection between the electrode terminal and the oxide superconductor, the cross-section perpendicular to the current-carrying direction of the electrode terminal , The cross-sectional area of only the portion that overlaps with the oxide superconductor when viewed from the direction normal to the connection surface is defined. That is, the electrode terminal connecting portion does not include the entire cross-sectional area of the electrode terminal connecting portion which is wider or concave than the oxide superconductor.
【0007】本発明の酸化物超電導体電流リードによる
と、酸化物超電導体と電極端子との接続部の電極端子断
面積よりも断面積が大きな部位を有する電極端子である
ため、接続部において生じるジュール発熱を速やかに抜
熱できるので、酸化物超電導体の局所的な温度上昇を抑
制でき、その結果、臨界電流の低下も抑制できる。電極
端子の断面積が大きい部位を接続部に隣接して設けるこ
と、電極端子形状を凹形状にすること、酸化物超電導体
の端面も電気的に電極端子に接続することによって、よ
り大きな抑制効果を得ることができる。According to the oxide superconductor current lead of the present invention, since it is an electrode terminal having a portion having a larger cross-sectional area than the electrode terminal cross-sectional area of the connection portion between the oxide superconductor and the electrode terminal, it occurs at the connection portion. Since Joule heat can be quickly removed, a local temperature rise in the oxide superconductor can be suppressed, and as a result, a decrease in critical current can also be suppressed. Greater suppression effect by providing a part with a large cross-sectional area of the electrode terminal adjacent to the connection part, making the electrode terminal shape concave, and electrically connecting the end surface of the oxide superconductor to the electrode terminal Can be obtained.
【0008】さらに、本発明の酸化物超電導体電流リー
ドによると、電極端子に接続部断面積よりも大きな断面
積を有する部位を設けることにより、接続部に生じるジ
ュール発熱の抜熱効果を高めるために、電流リード全体
の厚さを厚くする必要はなく、電流リード全体が大型化
してかさばったものになることを避けることができる。
例えば、電極端子に接続部断面積よりも大きな断面積を
有する部位を設けた具体的な構造例として、段差構造を
有する電極端子があるが、段差の低い面に酸化物超電導
体を接続することで、電流リード全体の厚さを厚くする
ことを避けることができる。このとき、電極端子に設け
る段差の厚さを酸化物超電導体の厚さと同程度とするこ
とが、電流リード全体の厚さを厚くすることなく、抜熱
効果を最大化できるので好ましい。同様の理由で、電極
端子の断面形状が凹形状の場合には、凹形状の内部に酸
化物超電導体を接続した方が好ましく、また凹形状の壁
の高さを酸化物超電導体の厚さと同程度にした方が好ま
しい。Furthermore, according to the oxide superconductor current lead of the present invention, by providing the electrode terminal with a portion having a cross-sectional area larger than that of the connecting portion, the effect of removing Joule heat generated in the connecting portion is enhanced. In addition, it is not necessary to increase the thickness of the entire current lead, and it is possible to prevent the entire current lead from becoming large and bulky.
For example, as a specific structural example in which the electrode terminal is provided with a portion having a larger cross-sectional area than the connecting portion, there is an electrode terminal having a step structure, but an oxide superconductor should be connected to a surface with a low step. Therefore, it is possible to avoid increasing the thickness of the entire current lead. At this time, it is preferable that the thickness of the step provided on the electrode terminal is approximately the same as the thickness of the oxide superconductor, because the heat removal effect can be maximized without increasing the thickness of the entire current lead. For the same reason, when the cross-sectional shape of the electrode terminal is a concave shape, it is preferable to connect the oxide superconductor inside the concave shape, and the height of the wall of the concave shape is equal to the thickness of the oxide superconductor. It is preferable to set the same level.
【0009】さらに、本発明の酸化物超電導体電流リー
ドによると、電極端子に接続部断面積よりも大きな断面
積を有する部位を設けるような電極端子構造ではある
が、酸化物超電導体の端面以外の一面と電極端子の端面
以外の一面が電気的に接続する接続部を有するものであ
るため、片側から押し付けながら半田付け等の電気的接
続作業を行うことができるので、組立作業が非常に簡便
になる。また、電極端子に設けた段差部や凹形状部が酸
化物超電導体を電気的に接続する位置のガイドになるた
め、組立作業がますます簡便になる。Further, according to the oxide superconductor current lead of the present invention, the electrode terminal structure is such that the electrode terminal is provided with a portion having a larger cross-sectional area than the connecting portion, but other than the end surface of the oxide superconductor. Since the one surface and one surface other than the end surface of the electrode terminal have a connecting portion for electrically connecting, it is possible to perform electrical connection work such as soldering while pressing from one side, so the assembly work is very simple become. Also, the stepped portion or the concave portion provided on the electrode terminal serves as a guide for the position to electrically connect the oxide superconductor, so that the assembling work becomes easier.
【0010】さらに、本発明の酸化物超電導体電流リー
ドによると、酸化物超電導体電流リードの少なくとも酸
化物超電導体及び酸化物超電導体と電極端子との接続部
が補強支持体で補強されているので、機械的強度の小さ
い酸化物超電導体を効果的に補強することができる。ま
た、電極端子の断面積が大きな部位が接続部に隣接して
設けられている場合には、電極端子の断面積が大きな部
位も併せて補強支持体で補強することが、より強固に補
強することになり好ましい。以上により、本発明の酸化
物超電導体電流リードは、組立が簡便で、小型で、臨界
電流が高い酸化物超電導体電流リードであることが分か
る。Further, according to the oxide superconductor current lead of the present invention, at least the oxide superconductor and the connection between the oxide superconductor and the electrode terminal of the oxide superconductor current lead are reinforced by the reinforcing support. Therefore, the oxide superconductor having low mechanical strength can be effectively reinforced. Further, when a portion having a large cross-sectional area of the electrode terminal is provided adjacent to the connecting portion, it is possible to reinforce the portion having a large cross-sectional area of the electrode terminal together with the reinforcing support so as to reinforce more strongly. It is preferable because it will happen. From the above, it can be seen that the oxide superconductor current lead of the present invention is an oxide superconductor current lead that is easy to assemble, is small in size, and has a high critical current.
【0011】[0011]
【発明の実施の形態】以下、本発明の実施の形態を添付
の図面に基づいて詳述する。図1は、本発明に基づいた
酸化物超電導体電流リードの一実施形態を示す構造断面
図である。図1では、酸化物超電導体1の両端に電極端
子2が接続しており、機械的強度改善のため補強支持体
3でカバーされている。酸化物超電導体1と電極端子2
は端面以外の1つの面で接続されている。電極端子は段
差を有する構造となっており、電極端子の段差の低い部
分で酸化物超電導体と電極端子が電気的に接続してい
る。図1では、電極端子の外部と接続する部分で再び段
差が低くなっている。電極端子の外部接続部分は、冷媒
または冷凍機によって直接冷却される部分であり、電流
容量から要求される電極端子の断面積に戻してもよいこ
とから段差を再び低くしている。図1のような構造の酸
化物超電導体電流リードにすることによって、図5に示
す従来例の酸化物超電導体電流リードに比べて、外見上
は同じサイズであるのに、酸化物超電導体と電極端子の
接続部分の抜熱効果を高め、臨界電流を高くできる。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a structural sectional view showing one embodiment of an oxide superconductor current lead according to the present invention. In FIG. 1, electrode terminals 2 are connected to both ends of an oxide superconductor 1 and are covered with a reinforcing support 3 for improving mechanical strength. Oxide superconductor 1 and electrode terminal 2
Are connected by one surface other than the end surface. The electrode terminal has a structure having a step, and the oxide superconductor and the electrode terminal are electrically connected at a portion of the electrode terminal having a low step. In FIG. 1, the step is again low at the portion connected to the outside of the electrode terminal. The external connection portion of the electrode terminal is a portion that is directly cooled by the refrigerant or the refrigerator, and since the cross-sectional area of the electrode terminal required from the current capacity may be restored, the step is lowered again. The oxide superconductor current lead having the structure as shown in FIG. 1 has the same size as the oxide superconductor current lead of the conventional example shown in FIG. It is possible to enhance the heat removal effect of the connection portion of the electrode terminal and increase the critical current.
【0012】本発明に用いる酸化物超電導体は、酸化物
超電導体であればよく、Y系、Bi系等適宜用いること
ができるが、ピンニング力の強い酸化物超電導体の方が
より強い漏洩磁場中でも動作可能であるので好ましい。
ピンニング力の強い酸化物超電導体の例としては、QM
G材と呼ばれるもので、単結晶状のREBa2Cu3Ox相(REは
Yまたは希土類元素およびその組み合わせ)中にRE2BaCu
O5相が微細分散している酸化物超電導体がある。The oxide superconductor used in the present invention may be any oxide superconductor, such as Y-type or Bi-type, but an oxide superconductor having a strong pinning force has a stronger leakage magnetic field. Among them, it is preferable because it can operate.
As an example of oxide superconductor with strong pinning force, QM
It is called G material, and has a single crystal REBa 2 Cu 3 O x phase (RE is
RE 2 BaCu in Y or rare earth elements and their combinations)
There is an oxide superconductor in which the O 5 phase is finely dispersed.
【0013】また、本発明に用いる電極端子としては、
CuやAg等の電気的良導体が好ましく、半田付け作業
を簡便にするため表面をSnやNi等でメッキしたもの
が好ましい。また、図1に示した補強支持体は必ず必要
なものではないが、機械的強度改善のためには補強支持
体を用いた方が好ましい。補強支持体としては、剛性が
あり熱伝導率が比較的小さいものであればよく、繊維強
化プラスチック、ステンレス、チタンおよびチタン合
金、銅合金、フィラー配合樹脂、ベークライト等が好ま
しい。The electrode terminals used in the present invention include:
Electrically good conductors such as Cu and Ag are preferable, and those whose surface is plated with Sn or Ni are preferable in order to simplify the soldering work. Further, the reinforcing support shown in FIG. 1 is not always necessary, but it is preferable to use the reinforcing support for improving the mechanical strength. As the reinforcing support, one having rigidity and relatively low thermal conductivity may be used, and fiber-reinforced plastic, stainless steel, titanium and titanium alloys, copper alloys, filler-containing resin, bakelite and the like are preferable.
【0014】図2は、本発明に基づいた電流リードの別
の実施形態を示す構造断面図である。図1では電極端子
1の段差を2ヶ所設けて、電極端子の外部接続部分の厚
さを元の厚さに戻しているが、図2では電極端子4の段
差は1箇所で、電極端子の外部接続部分でも厚さは一定
のままである。このような電極端子形状にすることによ
って、電流リード全体の厚さを変化させずに、電極端子
の製作をより容易にできるという利点がある。FIG. 2 is a structural sectional view showing another embodiment of the current lead according to the present invention. In FIG. 1, two steps of the electrode terminal 1 are provided and the thickness of the external connection portion of the electrode terminal is returned to the original thickness. However, in FIG. The thickness remains constant even at the external connection. Such an electrode terminal shape has an advantage that the electrode terminal can be manufactured more easily without changing the thickness of the entire current lead.
【0015】図3は、本発明に基づいた電流リードの別
の実施形態を示す構造断面図である。図1では酸化物超
電導体1と電極端子2は端面以外の1つの面で接続され
ているが、図3では電極端子2の段差を利用して酸化物
超電導体1の端面も電極端子に接続されている。電極端
子の段差を利用することで、片側から押し付けながら半
田付け等の電気的接続作業を行うことができるという組
立作業の簡便性を維持しながら、2つの面で接続するこ
とで、接続部で生じるジュール発熱の抜熱効果を高める
とともに、酸化物超電導体と電極端子の接続部の接触抵
抗を小さくしジュール発熱自体を小さくすることができ
るという利点がある。FIG. 3 is a structural sectional view showing another embodiment of the current lead according to the present invention. In FIG. 1, the oxide superconductor 1 and the electrode terminal 2 are connected on one surface other than the end surface, but in FIG. 3, the end surface of the oxide superconductor 1 is also connected to the electrode terminal by utilizing the step of the electrode terminal 2. Has been done. By utilizing the steps of the electrode terminals, while maintaining the simplicity of the assembly work such that the electrical connection work such as soldering can be performed while pressing from one side, by connecting the two surfaces, There is an advantage that the heat removal effect of the generated Joule heat can be enhanced and the contact resistance of the connection portion between the oxide superconductor and the electrode terminal can be reduced to reduce the Joule heat itself.
【0016】図4は、本発明に基づいた電流リードの別
の実施形態を示す構造断面図である。図4では、酸化物
超電導体6と電極端子7との接続部における電極端子の
断面形状が、A−A’断面図に示しているように、凹形
状になっている。凹形状の壁の高さと酸化物超電導体の
厚さを同程度にすることによって、電流リード全体を大
型化してかさばるものになることを避けることができ
る。また、凹形状の溝部のサイズを酸化物超電導体と同
程度にすることにより、酸化物超電導体の端面や側面も
電極端子に電気的に接続させることができ、接続部の抜
熱効果を高めるとともにジュール発熱を小さくすること
ができる。FIG. 4 is a structural sectional view showing another embodiment of the current lead according to the present invention. In FIG. 4, the cross-sectional shape of the electrode terminal in the connecting portion between the oxide superconductor 6 and the electrode terminal 7 is a concave shape as shown in the AA ′ cross-sectional view. By making the height of the concave wall and the thickness of the oxide superconductor to be approximately the same, it is possible to avoid making the entire current lead large and bulky. Further, by making the size of the concave groove part similar to that of the oxide superconductor, the end faces and side faces of the oxide superconductor can be electrically connected to the electrode terminals, and the heat removal effect of the connection part is enhanced. At the same time, Joule heat generation can be reduced.
【0017】本発明の効果を調べるため、図1に示した
本発明の酸化物超電導体電流リード(試料A)と、図5
に示した従来例の酸化物超電導体電流リード(試料B)
に関して、臨界電流を比較した。試料Aと試料Bの製作
においては、酸化物超電導体としてはY系酸化物超電導
体を用い、電極端子としては無酸素銅を用い、補強支持
体としてはGFRPを用いた。また、酸化物超電導体と
電極端子との接続は半田付けで行った。酸化物超電導体
1のサイズは、幅3mm、厚さ2mm、長さ40mmで
あった。試料B用の電極端子10のサイズは、幅4m
m、厚さ2mm、長さ30mmであった。試料A用の電
極端子2のサイズは、段差の高い部分は長さ10mm、厚
さ4mmで、それ以外は試料B用の電極端子と同じであ
った。In order to examine the effect of the present invention, the oxide superconductor current lead of the present invention (Sample A) shown in FIG. 1 and FIG.
Conventional oxide superconductor current lead shown in (Sample B)
, The critical currents were compared. In the production of Sample A and Sample B, a Y-based oxide superconductor was used as the oxide superconductor, oxygen-free copper was used as the electrode terminals, and GFRP was used as the reinforcing support. The connection between the oxide superconductor and the electrode terminals was made by soldering. The size of the oxide superconductor 1 was 3 mm in width, 2 mm in thickness, and 40 mm in length. The size of the electrode terminal 10 for the sample B is 4 m in width.
m, thickness 2 mm, and length 30 mm. The size of the electrode terminal 2 for the sample A was 10 mm in length and 4 mm in thickness in the high step portion, and was otherwise the same as the electrode terminal for the sample B.
【0018】臨界電流の測定は、試料に永久磁石を用い
て0.5Tの磁場を印加した状態で、液体窒素に浸漬し
て直流電流を通電することで行った。測定結果は、試料
Bは600Aの通電で溶断したが、試料Aは800Aの
通電でも溶断しなかった。すなわち、同じ断面積の酸化
物超電導体を用いているにもかかわらず、従来例の試料
Bの臨界電流は600Aであるのに対し、本発明の試料
Aの臨界電流は800A以上であった。本実験の結果、
本発明によって臨界電流が3割以上改善することが分か
った。以上の結果から、本発明の酸化物超電導体電流リ
ードにおいては、組立が簡便で、小型で、かつ臨界電流
が大きいことが分かった。The critical current was measured by immersing the sample in liquid nitrogen and applying a direct current while applying a magnetic field of 0.5 T using a permanent magnet. As a result of the measurement, Sample B was melted by applying a current of 600 A, but Sample A was not melted by supplying a current of 800 A. That is, although the oxide superconductor having the same cross-sectional area was used, the critical current of Sample B of the conventional example was 600 A, whereas the critical current of Sample A of the present invention was 800 A or more. As a result of this experiment,
It was found that the present invention improves the critical current by 30% or more. From the above results, it was found that the oxide superconductor current lead of the present invention was easy to assemble, was small, and had a large critical current.
【0019】[0019]
【発明の効果】本発明の酸化物超電導体電流リードによ
れば、組立が容易で接続抵抗の小さい酸化物超電導体電
流リードを提供できるので工業上顕著な効果を奏するこ
とができる。According to the oxide superconductor current lead of the present invention, it is possible to provide an oxide superconductor current lead which is easy to assemble and has a low connection resistance, and therefore, it is possible to achieve a remarkable industrial effect.
【図1】本発明の酸化物超電導体電流リードの一実施例
の構造断面図FIG. 1 is a structural cross-sectional view of an embodiment of an oxide superconductor current lead of the present invention.
【図2】本発明の酸化物超電導体電流リードの別の実施
例の構造断面図FIG. 2 is a structural cross-sectional view of another embodiment of the oxide superconductor current lead of the present invention.
【図3】本発明の酸化物超電導体電流リードの別の実施
例の構造断面図FIG. 3 is a structural cross-sectional view of another embodiment of the oxide superconductor current lead of the present invention.
【図4】本発明の酸化物超電導体電流リードの別の実施
例の構造断面図FIG. 4 is a structural cross-sectional view of another embodiment of the oxide superconductor current lead of the present invention.
【図5】従来の酸化物超電導体電流リードの一例を示す
構造断面図FIG. 5 is a structural cross-sectional view showing an example of a conventional oxide superconductor current lead.
1 酸化物超電導体 2 電極端子 3 補強支持体 4 電極端子 6 酸化物超電導体 7 電極端子 8 補強支持体 10 電極端子(従来例) 11 補強支持体 1 Oxide superconductor 2 electrode terminals 3 Reinforcement support 4 electrode terminals 6 Oxide superconductor 7 electrode terminals 8 Reinforcement support 10 electrode terminals (conventional example) 11 Reinforcement support
───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤村 充 千葉県富津市新富20−1 新日本製鐵株式 会社先端技術研究所内 Fターム(参考) 4M114 AA02 AA11 CC03 CC18 DA54 DB62 5G321 AA01 BA05 CA46 DA08 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Mitsuru Sawamura 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares Company Advanced Technology Research Center F-term (reference) 4M114 AA02 AA11 CC03 CC18 DA54 DB62 5G321 AA01 BA05 CA46 DA08
Claims (5)
両端に接続された電極端子とからなる酸化物超電導体電
流リードにおいて、前記酸化物超電導体の端面以外の一
面と前記電極端子の端面以外の一面とを電気的に接続す
る接続部を有する電流リードであって、前記電極端子
が、前記接続部の断面積よりも大きな断面積を有する部
位を有する電極端子であることを特徴とする酸化物超電
導体電流リード。1. An oxide superconductor current lead comprising an oxide superconductor and electrode terminals connected to both ends of the oxide superconductor. A current lead having a connecting portion for electrically connecting to one surface other than the end surface, wherein the electrode terminal is an electrode terminal having a portion having a cross-sectional area larger than the cross-sectional area of the connecting portion. Oxide superconductor current lead.
ている請求項1に記載の酸化物超電導体電流リード。2. The oxide superconductor current lead according to claim 1, wherein the portion is provided adjacent to the connection portion.
接続部の断面形状が凹状である請求項1又は2に記載の
酸化物超電導体電流リード。3. The oxide superconductor current lead according to claim 1, wherein the connecting portion of the electrode terminal with the oxide superconductor has a concave cross-sectional shape.
子に電気的に接続されている請求項1〜3のいずれかに
記載の酸化物超電導体電流リード。4. The oxide superconductor current lead according to claim 1, wherein an end face of the oxide superconductor is also electrically connected to the electrode terminal.
とも酸化物超電導体及び酸化物超電導体と電極端子との
接続部が、補強支持体で補強されてなる請求項1〜4の
いずれかに記載の酸化物超電導体電流リード。5. The oxide superconductor current lead according to claim 1, wherein at least an oxide superconductor and a connecting portion between the oxide superconductor and the electrode terminal are reinforced with a reinforcing support. Oxide superconductor current lead.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002129841A JP2003324013A (en) | 2002-05-01 | 2002-05-01 | Oxide superconductor current lead |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002129841A JP2003324013A (en) | 2002-05-01 | 2002-05-01 | Oxide superconductor current lead |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003324013A true JP2003324013A (en) | 2003-11-14 |
Family
ID=29543129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002129841A Pending JP2003324013A (en) | 2002-05-01 | 2002-05-01 | Oxide superconductor current lead |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003324013A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005183941A (en) * | 2003-11-28 | 2005-07-07 | Dowa Mining Co Ltd | Composite conductor, superconducting equipment system, and method of manufacturing composite conductor |
JP2008117734A (en) * | 2006-11-08 | 2008-05-22 | Toshiba Corp | High temperature superconductive thin film wire, superconductive current lead, and its manufacturing method |
KR100855034B1 (en) * | 2007-06-14 | 2008-08-29 | 한국전기연구원 | Superconducting Current Lead Connection |
JP2010238792A (en) * | 2009-03-30 | 2010-10-21 | Nippon Steel Corp | Oxide superconductor conducting element |
KR101013844B1 (en) | 2008-08-29 | 2011-02-14 | 한국전기연구원 | Capacitively variable phase conducting current leads |
JP2011211110A (en) * | 2010-03-30 | 2011-10-20 | Toshiba Corp | Superconductive current lead |
JP2020136637A (en) * | 2019-02-26 | 2020-08-31 | 株式会社東芝 | High-temperature superconducting magnet device |
-
2002
- 2002-05-01 JP JP2002129841A patent/JP2003324013A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005183941A (en) * | 2003-11-28 | 2005-07-07 | Dowa Mining Co Ltd | Composite conductor, superconducting equipment system, and method of manufacturing composite conductor |
JP4568894B2 (en) * | 2003-11-28 | 2010-10-27 | Dowaエレクトロニクス株式会社 | Composite conductor and superconducting equipment system |
JP2008117734A (en) * | 2006-11-08 | 2008-05-22 | Toshiba Corp | High temperature superconductive thin film wire, superconductive current lead, and its manufacturing method |
KR100855034B1 (en) * | 2007-06-14 | 2008-08-29 | 한국전기연구원 | Superconducting Current Lead Connection |
KR101013844B1 (en) | 2008-08-29 | 2011-02-14 | 한국전기연구원 | Capacitively variable phase conducting current leads |
JP2010238792A (en) * | 2009-03-30 | 2010-10-21 | Nippon Steel Corp | Oxide superconductor conducting element |
JP2011211110A (en) * | 2010-03-30 | 2011-10-20 | Toshiba Corp | Superconductive current lead |
JP2020136637A (en) * | 2019-02-26 | 2020-08-31 | 株式会社東芝 | High-temperature superconducting magnet device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4058920B2 (en) | Superconducting connection structure | |
US5742217A (en) | High temperature superconductor lead assembly | |
JP2003324013A (en) | Oxide superconductor current lead | |
JP2009230913A (en) | Oxide superconductive current lead | |
US7531750B2 (en) | Power supply line for cryogenic electrical systems | |
JP2756551B2 (en) | Conduction-cooled superconducting magnet device | |
JP4402928B2 (en) | Oxide superconductor conducting element | |
JP5011181B2 (en) | Oxide superconducting current lead | |
JP5778064B2 (en) | Superconducting current lead and superconducting magnet device using the superconducting current lead | |
JPS599809A (en) | Superconductive conductor | |
JP2004111581A (en) | Superconducting magnet unit | |
JP2012099573A (en) | Superconductive current lead and superconducting magnet device | |
US11972877B2 (en) | Superconducting wire connector and method of connecting superconducting wires | |
US6531233B1 (en) | Superconducting joint between multifilamentary superconducting wires | |
JP3125532B2 (en) | Current lead using oxide superconductor | |
JP3127705B2 (en) | Current lead using oxide superconductor | |
JP2008130860A (en) | Superconductive device, and current lead | |
JP4734004B2 (en) | Superconducting current lead | |
JP4901585B2 (en) | Oxide superconducting current lead | |
JP2981810B2 (en) | Current lead of superconducting coil device | |
JP2012235008A (en) | Superconductive lead and superconducting magnet device | |
JP6125350B2 (en) | Superconducting wire connection and superconducting current lead | |
JPH06333738A (en) | Current lead using oxide superconductor | |
JPH0955545A (en) | Current leads for superconducting devices | |
JP2007250269A (en) | Oxide superconductor conducting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040901 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050908 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070720 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080520 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080722 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080730 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20080919 |