[go: up one dir, main page]

JP4402928B2 - Oxide superconductor conducting element - Google Patents

Oxide superconductor conducting element Download PDF

Info

Publication number
JP4402928B2
JP4402928B2 JP2003329871A JP2003329871A JP4402928B2 JP 4402928 B2 JP4402928 B2 JP 4402928B2 JP 2003329871 A JP2003329871 A JP 2003329871A JP 2003329871 A JP2003329871 A JP 2003329871A JP 4402928 B2 JP4402928 B2 JP 4402928B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
thermal expansion
electrode terminal
joint
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003329871A
Other languages
Japanese (ja)
Other versions
JP2005100683A (en
Inventor
英一 手嶋
芳生 平野
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003329871A priority Critical patent/JP4402928B2/en
Publication of JP2005100683A publication Critical patent/JP2005100683A/en
Application granted granted Critical
Publication of JP4402928B2 publication Critical patent/JP4402928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、電流リードや限流器、永久電流スイッチ等の酸化物超電導体を用いた通電素子に関する。   The present invention relates to a current-carrying element using an oxide superconductor such as a current lead, a current limiter, and a permanent current switch.

酸化物超電導体を電流リード等の通電素子に応用する場合、通電素子としての機械強度を改善することが重要であり、様々な補強手段が提案されている。主な手段として、(A)酸化物超電導体と、酸化物超電導体を支持する支持体との複合体を用いて通電素子を形成する手段と、(B)支持体との複合体でない酸化物超電導体を用いて通電素子を形成し、その後被覆層を設けて補強する手段がある。   When an oxide superconductor is applied to an energization element such as a current lead, it is important to improve the mechanical strength of the energization element, and various reinforcing means have been proposed. The main means is (A) a means for forming a current-carrying element using a composite of an oxide superconductor and a support that supports the oxide superconductor, and (B) an oxide that is not a composite of the support. There is a means for forming a current-carrying element using a superconductor and then reinforcing it by providing a coating layer.

まず最初に、上記(A)の、酸化物超電導体と、酸化物超電導体を支持する支持体との複合体で通電素子を形成する手段の例として、例えば、特許文献1には、酸化物超電導体と絶縁体や非磁性金属体からなる支持体との複合体よりなる電流リードが提案されており、特許文献2には、酸化物超電導体と電気良導体からなる支持体との複合体よりなる電流リードが提案されている。   First, as an example of means for forming a current-carrying element using a composite of the oxide superconductor (A) and a support that supports the oxide superconductor, for example, Patent Document 1 discloses an oxide. A current lead made of a composite of a superconductor and a support made of an insulator or a nonmagnetic metal has been proposed. Patent Document 2 discloses a composite of an oxide superconductor and a support made of a good electrical conductor. A current lead has been proposed.

酸化物超電導体と支持体との複合体にて通電素子を形成した場合には、冷却した際に酸化物超電導体と支持体の間に熱膨張率差による熱応力が作用するので、特許文献3に「支持部材の線膨張係数は、酸化物超電導体の線膨張係数にできるだけ近いことが好ましい」と記載があるように、支持体の熱膨張率を酸化物超電導体の熱膨張率にできるだけ近くすることが提案されている。   When a current-carrying element is formed of a composite of an oxide superconductor and a support, a thermal stress due to a difference in thermal expansion coefficient acts between the oxide superconductor and the support when cooled. As described in FIG. 3, “the thermal expansion coefficient of the support member is preferably as close as possible to the linear expansion coefficient of the oxide superconductor”. Proposed to be close.

しかし、特許文献1や特許文献2に記載の電流リードのような構造では、外部と接続するための電極端子がなく、外部との接続が難しいという問題があった。   However, the structure such as the current lead described in Patent Document 1 and Patent Document 2 has a problem that there is no electrode terminal for connection to the outside, and connection to the outside is difficult.

さらに、外部と接続するための電極端子を取り付けることが難しく、仮に電極端子を取り付けることができたとしても、電極端子と酸化物超電導体の接合部で酸化物超電導体が破損するという問題があった。   Further, it is difficult to attach an electrode terminal for connection to the outside, and even if the electrode terminal can be attached, there is a problem that the oxide superconductor is damaged at the joint between the electrode terminal and the oxide superconductor. It was.

次に、上記(B)の、酸化物超電導体を用いて通電素子を形成し、その後被覆層を設けて補強する手段の例として、例えば、特許文献4には、酸化物超電導体の両端に低抵抗金属で被覆した部分を設けた後、金属被覆されていない部分を高電気抵抗物質又は絶縁物質で外周被覆して機械的強度を向上させた電流リードが提案されている。   Next, as an example of the means for forming a current-carrying element using the oxide superconductor (B) and then reinforcing it by providing a coating layer, for example, Patent Document 4 discloses that both ends of the oxide superconductor are provided. There has been proposed a current lead in which a portion coated with a low resistance metal is provided, and then a portion not coated with metal is coated with a high electrical resistance material or an insulating material to improve the mechanical strength.

特許文献4に記載の電流リードのような構造にすると、酸化物超電導体の両端部の金属被覆部に外部と接続するための電極端子を付け易く、外部との接続が容易になる。しかし、酸化物超電導体と電極端子の接合部が被覆されていないため、電極端子との接合部付近で酸化物超電導体が破損するという問題があった。   With a structure like the current lead described in Patent Document 4, it is easy to attach electrode terminals for connecting to the outside to the metal covering portions at both ends of the oxide superconductor, and the connection to the outside becomes easy. However, since the junction between the oxide superconductor and the electrode terminal is not covered, there is a problem that the oxide superconductor is damaged in the vicinity of the junction with the electrode terminal.

しかしながら、酸化物超電導体と電極端子との接合部を十分に補強することは難しかった。   However, it has been difficult to sufficiently reinforce the junction between the oxide superconductor and the electrode terminal.

例えば、特許文献5には、従来の補強技術として、樹脂を塗布する方法とFRP(繊維強化プラスチックス)で被覆する方法が挙げられており、樹脂塗布補強に関しては、「酸化物超電導体と樹脂との熱膨張率が異なるため冷却したときに、応力が集中する電極との接続部領域において、酸化物超電導体側あるいは樹脂側に亀裂が発生し、超電導特性を劣化させたり、強度低下を引き起こしていた」、また、FRPによる被覆補強に関しては、「FRPで酸化物超電導体を密着被覆すると前記同様冷却時に熱膨張率の相違により酸化物超電導体に熱応力がかかり、酸化物超電導体に亀裂を発生させるために、密着被覆して強固に固定することができず、酸化物超電導体に満足な補強を施すことができない」と記載されている。   For example, Patent Document 5 includes a method of applying a resin and a method of coating with FRP (fiber reinforced plastics) as conventional reinforcing techniques. Because of the difference in thermal expansion coefficient, the oxide superconductor side or the resin side cracks in the connection area with the electrode where stress is concentrated when cooling, causing deterioration of superconducting properties and reducing strength. In addition, regarding the coating reinforcement by FRP, “If the oxide superconductor is coated tightly with FRP, thermal stress is applied to the oxide superconductor due to the difference in the coefficient of thermal expansion during cooling, and the oxide superconductor is cracked. In order to generate this, it cannot be tightly coated and firmly fixed, and the oxide superconductor cannot be satisfactorily reinforced.

そこで、特許文献5では、有効な補強手段として、酸化物超電導体及び電極端子の表面に補強繊維層を介在させ、補強繊維層の表面に樹脂層を形成させることが提案されている。補強繊維層の表面部分に樹脂が含浸しており、FRPのような構造となるため、強度向上に寄与していると考えられている。   Therefore, in Patent Document 5, as an effective reinforcing means, it is proposed that a reinforcing fiber layer is interposed on the surfaces of the oxide superconductor and the electrode terminal, and a resin layer is formed on the surface of the reinforcing fiber layer. Since the surface portion of the reinforcing fiber layer is impregnated with resin and has a structure like FRP, it is considered that it contributes to strength improvement.

特開昭63−245909号公報JP 63-245909 A 特開昭63−245910号公報JP-A 63-245910 特開平4−218215号公報JP-A-4-218215 特開平1−133308号公報JP-A-1-133308 特開2001−76924号公報JP 2001-76924 A

酸化物超電導体及び電極端子の表面に補強繊維層を介在させ、補強繊維層の表面に樹脂層を形成させるという製作工程は、酸化物超電導体通電素子の製作プロセス的には煩雑になる。被覆層が最終的にFRPのような構造になるのであれば、最初からFRPを用いて被覆層を形成できれば、プロセス的には簡単である。   The manufacturing process of interposing the reinforcing fiber layer on the surfaces of the oxide superconductor and the electrode terminal and forming the resin layer on the surface of the reinforcing fiber layer is complicated in the manufacturing process of the oxide superconductor energization element. If the coating layer finally has a structure like FRP, the process is simple if the coating layer can be formed from the beginning using FRP.

しかし、上述したように、従来は、FRPで被覆層を形成すると、酸化物超電導体と電極端子の接合部を十分に補強することができなかった。FRPのような高強度、高剛性の材料を用いて、酸化物超電導体と電極端子の接合部を十分に、しかも簡単に補強することができれば、工業的な価値も向上する。   However, as described above, conventionally, when the coating layer is formed of FRP, the junction between the oxide superconductor and the electrode terminal cannot be sufficiently reinforced. If the joint between the oxide superconductor and the electrode terminal can be sufficiently and easily reinforced using a material having high strength and high rigidity such as FRP, the industrial value is also improved.

そこで、本発明は、上記の問題を解決し、簡単な構造で酸化物超電導体と電極端子の接合部を十分に補強でき、冷却時に破損し難い酸化物超電導体通電素子を提供することを目的とする。   Therefore, the present invention has an object to provide an oxide superconductor energization element that solves the above problems, can sufficiently reinforce the junction between the oxide superconductor and the electrode terminal with a simple structure, and is not easily damaged during cooling. And

本発明による酸化物超電導体通電素子は、以下のとおりである。   The oxide superconductor energization element according to the present invention is as follows.

(1) 棒状の酸化物超電導体と、該酸化物超電導体の両端に電気的に接合した電極端子と、該酸化物超電導体と該電極端子との接合部を被覆する接合部被覆体からななり、前記接合部被覆体が接着部材を介して前記酸化物超電導体と前記電極端子の接合部を密着被覆し、前記接合部被覆体の通電方向の熱膨張率の絶対値が、前記酸化物超電導体のab軸方向の熱膨張率の絶対値よりも大きいことを特徴とする酸化物超電導体通電素子。 (1) A rod-shaped oxide superconductor, electrode terminals electrically joined to both ends of the oxide superconductor, and a joint covering body that covers the joint between the oxide superconductor and the electrode terminal. Do Ri, the joint covering body comes into close contact covers the joint portion of the electrode terminal and the oxide superconductor through an adhesive member, the absolute value of the thermal expansion coefficient of the current direction of the joint cover body, the oxide An oxide superconductor energization element characterized by being larger than the absolute value of the coefficient of thermal expansion in the ab axis direction of the superconductor.

) 前記接合部被覆体が熱膨張率に関して異方性のある材料であり、かつ、少なくとも1方向の熱膨張率の絶対値が前記電極端子の熱膨張率の絶対値よりも大きく、前記方向と直角方向の熱膨張率の絶対値が前記電極端子の熱膨張率の絶対値よりも小さいことを特徴とする()に記載の酸化物超電導体通電素子。 ( 2 ) The joint cover is an anisotropic material with respect to the coefficient of thermal expansion, and the absolute value of the coefficient of thermal expansion in at least one direction is larger than the absolute value of the coefficient of thermal expansion of the electrode terminal, The absolute value of the coefficient of thermal expansion in the direction perpendicular to the direction is smaller than the absolute value of the coefficient of thermal expansion of the electrode terminal. ( 1 ) The oxide superconductor energization element according to ( 1 ).

) 前記接合部被覆体の熱膨張率の絶対値の大きい方向を、前記酸化物超電導体と前記電極端子の通電方向に平行な接合面に対して垂直な方向としたことを特徴とする()に記載の酸化物超電導体通電素子。 ( 3 ) The direction in which the absolute value of the coefficient of thermal expansion of the joint covering body is large is the direction perpendicular to the joint surface parallel to the energization direction of the oxide superconductor and the electrode terminal. The oxide superconductor energizing element according to ( 2 ).

) 前記接合部被覆体が、繊維強化材料、金属材料、又は、セラミックス材料から選ばれる1種以上あることを特徴とする(1)〜()のいずれかに記載の酸化物超電導体通電素子。 ( 4 ) The oxide superconductor according to any one of (1) to ( 3 ), wherein the joint covering body is at least one selected from a fiber reinforced material, a metal material, or a ceramic material. Current-carrying element.

) 前記電極端子が、電気良導体であることを特徴とする(1)に記載の酸化物超電導体通電素子。 ( 5 ) The oxide superconductor energization element according to (1), wherein the electrode terminal is a good electric conductor.

) 前記酸化物超電導体が、単結晶状のREBa2Cu3x相(REはY又は希土類元素から選ばれる1種又は2種以上)中にRE2BaCuO5相が微細分散した酸化物超電導体であることを特徴とする(1)に記載の酸化物超電導体通電素子。 ( 6 ) The oxide superconductor is an oxide in which a RE 2 BaCuO 5 phase is finely dispersed in a single-crystal REBa 2 Cu 3 O x phase (RE is one or more selected from Y or a rare earth element). The oxide superconductor energization element according to (1), which is a physical superconductor.

) 両端にある2つの前記接合部被覆体が、前記棒状の酸化物超電導体より長い接続体で接続されてなることを特徴とする(1)〜()のいずれかに記載の酸化物超電導体通電素子。 ( 7 ) The oxidation according to any one of (1) to ( 6 ) , wherein the two joint covering bodies at both ends are connected by a connector longer than the rod-shaped oxide superconductor. Superconductor conducting element.

) 両端にある2つの前記電極端子が、前記棒状の酸化物超電導体より長い接続体で接続されてなることを特徴とする(1)〜()のいずれかに記載の酸化物超電導体通電素子。
(9) 前記接続体が、電気導電性材料であることを特徴とする(7)又は(8)記載の酸化物超電導体通電素子。
( 8 ) The oxide superconductivity according to any one of (1) to ( 7 ) , wherein the two electrode terminals at both ends are connected by a connection body longer than the rod-shaped oxide superconductor. Body energization element.
(9) The oxide superconductor energization element according to (7) or (8), wherein the connection body is an electrically conductive material.

(1) 前記酸化物超電導体の表面が前記接着部材で被覆されてなることを特徴とする(1)〜()のいずれかに記載の酸化物超電導体通電素子。 (1 0 ) The oxide superconductor energization element according to any one of (1) to ( 9 ), wherein a surface of the oxide superconductor is covered with the adhesive member.

(1) 両端にある2つの前記接合部被覆体を一体化し、前記接合被覆体が前記棒状の酸化物超電1導体より長いものであることを特徴とする(1)〜(1)のいずれかに記載の酸化物超電導体通電素子。 (1 1 ) (1) to (1 0 ) characterized in that two joint covering bodies at both ends are integrated, and the joint covering body is longer than the rod-shaped oxide superconductor 1 conductor . The oxide superconductor energizing element according to any one of the above.

(1) 前記接合部被覆体が電気導電性材料であることを特徴とする(1)に記載の酸化物超電導体通電素子。 (1 2 ) The oxide superconductor energization element according to (1 1 ), wherein the joint covering body is an electrically conductive material.

(1) 前記接合部被覆体の電気抵抗率が10μΩcm以上、1000Ωcm以下であり、前記酸化物超電導体通電素子が電流リードであることを特徴とする(1)に記載の酸化物超電導体通電素子。 (1 3 ) The oxide superconductor according to (1 2 ), wherein the electrical resistance of the joint covering body is 10 μΩcm or more and 1000 Ωcm or less, and the oxide superconductor energization element is a current lead. Current-carrying element.

(1) 前記接合部被覆体が樹脂と電気良導体との複合体であることを特徴とする(1)に記載の酸化物超電導体通電素子。 (1 4 ) The oxide superconductor energization element according to (1 3 ), wherein the joint covering body is a composite of a resin and a good electric conductor.

(1) 前記電気良導体が炭素繊維であることを特徴とする(1)に記載の酸化物超電導体通電素子。 (1 5 ) The oxide superconductor energization element according to (1 4 ), wherein the good electric conductor is carbon fiber.

本発明により、構造が簡単で、冷却時に破損しにくい酸化物超電導体通電素子を提供できる。   According to the present invention, it is possible to provide an oxide superconductor energization element that has a simple structure and is not easily damaged during cooling.

以下に、本発明の実施の形態について図に沿って説明する。図1は、本発明における酸化物超電導体通電素子の構造を示す断面図、図2は、酸化物超電導体通電素子の外観図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing the structure of an oxide superconductor energization element according to the present invention, and FIG. 2 is an external view of the oxide superconductor energization element.

図1及び図2では、酸化物超電導体1の両端に電極端子3を電気的に接合し、酸化物超電導体1と電極端子3の接合部を含む領域を、接着部材2を介して接合部被覆体5で密着被覆した構造を示す。図1や図2のような構造は、2分割した接合部被覆体5で、接合部を上下方向から挟み込むことで製作することができる。   1 and 2, the electrode terminal 3 is electrically joined to both ends of the oxide superconductor 1, and the region including the joint portion between the oxide superconductor 1 and the electrode terminal 3 is joined via the adhesive member 2. A structure in which the covering 5 is in close contact with the covering 5 is shown. The structure as shown in FIG. 1 or FIG. 2 can be manufactured by sandwiching the joint portion from above and below with the joint cover 5 divided into two parts.

2分割した接合部被覆体5は、接着部材2で接着固定すると共に、ボルト4で機械的に固定することで、より強固に被覆することができる。本発明における酸化物超電導体通電素子は、図1や図2に示すように、外部と接続するための電極端子3を有しているので、外部と接続することが容易になる。   The joint cover 5 divided into two parts can be covered more firmly by being fixedly bonded by the bonding member 2 and mechanically fixed by the bolt 4. As shown in FIG. 1 and FIG. 2, the oxide superconductor energization element in the present invention has the electrode terminal 3 for connection to the outside, so that it is easy to connect to the outside.

本発明における酸化物超電導体素子は、酸化物超電導体と電極端子との接合部が接合部被覆体により被覆されているので、電極端子との接合部付近で酸化物超電導体が破損し難くなる。   In the oxide superconductor element according to the present invention, since the junction between the oxide superconductor and the electrode terminal is covered with the junction covering body, the oxide superconductor is hardly damaged near the junction with the electrode terminal. .

ここで、酸化物超電導体と電極端子と接合部を被覆するとは、酸化物超電導体と電極端子とを接合している部分の境界部を被覆するだけでなく、その接合境界部の酸化物超電導体側の酸化物超電導体表面、及び、その接合境界部の電極端子側の電極端子表面も被覆することを意味する。   Here, covering the oxide superconductor, the electrode terminal, and the joint does not only cover the boundary portion where the oxide superconductor and the electrode terminal are joined, but also the oxide superconductor at the joint boundary portion. It means that the surface of the oxide superconductor on the body side and the electrode terminal surface on the electrode terminal side of the junction boundary are also covered.

従来は、FRP等で被覆層を形成すると、熱膨張率の相違により酸化物超電導体に熱応力がかかり、酸化物超電導体と電極端子との接合部を十分補強することができないと考えられていたが、本発明では、接着部材を介して接合部被覆体と酸化物超電導体が接触しているので、接着部材が、酸化物超電導体と接合部被覆体との熱膨張率の相違による熱応力を緩和する緩衝材の役割を担い、十分な強度を得ることができる。   Conventionally, when a coating layer is formed of FRP or the like, it is considered that thermal stress is applied to the oxide superconductor due to the difference in thermal expansion coefficient, and the joint between the oxide superconductor and the electrode terminal cannot be sufficiently reinforced. However, in the present invention, since the joint covering body and the oxide superconductor are in contact with each other through the adhesive member, the adhesive member is heated by the difference in thermal expansion coefficient between the oxide superconductor and the joint covering body. It plays the role of a cushioning material that relieves stress and can provide sufficient strength.

さらに、本発明者らは、酸化物超電導体と電極端子との接合部強度に関して鋭意調査した結果、酸化物超電導体と被覆層との熱膨張率の差による熱応力よりも、酸化物超電導体と電極端子との熱膨張率の差による熱応力が、より重要であることを解明した。   Furthermore, as a result of earnest investigation on the joint strength between the oxide superconductor and the electrode terminal, the present inventors have found that the oxide superconductor is more than the thermal stress due to the difference in thermal expansion coefficient between the oxide superconductor and the coating layer. It was clarified that the thermal stress due to the difference in thermal expansion coefficient between the electrode terminal and the electrode terminal is more important.

酸化物超電導体通電素子において、酸化物超電導体と電極端子との熱膨張率の差により、酸化物超電導体と電極端子の通電方向(図1中、X参照)に平行な接合面(図1中、6参照)が、接合面に対して垂直な方向(図1中、Y参照)の電極端子側に向かって歪もうとするため、酸化物超電導体の接合部付近の表面で引張応力が発生する。   In the oxide superconductor energization element, a joint surface (see FIG. 1) parallel to the energization direction of the oxide superconductor and the electrode terminal (see X in FIG. 1) due to the difference in thermal expansion coefficient between the oxide superconductor and the electrode terminal. 6) tends to distort toward the electrode terminal side in the direction perpendicular to the bonding surface (see Y in FIG. 1), so that the tensile stress is applied to the surface near the bonding portion of the oxide superconductor. appear.

酸化物超電導体は、圧縮応力に対しては比較的強いものの、引張応力に対しては非常に弱い。このような熱膨張率の差による電極端子との接合面の熱歪みを抑制するためには、接合部被覆体を密着被覆させた方が好ましい。   An oxide superconductor is relatively weak against compressive stress, but very weak against tensile stress. In order to suppress the thermal distortion of the joint surface with the electrode terminal due to such a difference in the coefficient of thermal expansion, it is preferable to cover the joint covering body closely.

接合部被覆体だけで密着被覆しても、ミクロ的にみれば、接合部被覆体と酸化物超電導体や電極端子の接合面には隙間があり、酸化物超電導体に発生する引張応力を抑制するという効果は小さくなる。   Even if tightly covering only the joint cover, there is a gap between the joint cover and the interface of the oxide superconductor or electrode terminal from a microscopic viewpoint, suppressing the tensile stress generated in the oxide superconductor. The effect of doing becomes smaller.

従って、酸化物超電導体に発生する引張応力を抑制するという効果を確実にするには、接着部材を介して接合部被覆体を隙間なく密着接合させる必要がある。   Therefore, in order to ensure the effect of suppressing the tensile stress generated in the oxide superconductor, it is necessary to closely bond the bonded portion covering body with no gap through the adhesive member.

本発明における接合部被覆体には、単純に接合部を被覆することで補強するということだけでなく、上述したように、電極端子との接合面の熱歪みを抑制する効果が求められる。   The joint covering body in the present invention is required not only to reinforce by simply covering the joint, but also to suppress the thermal distortion of the joint surface with the electrode terminal as described above.

従って、本発明における接合部被覆体としては、GFRP(ガラス繊維強化プラスチックス)やCFRP(炭素繊維強化プラスチックス)等の繊維強化材料、ステンレスやNiCr合金、Ti合金等の金属材料、アルミナや窒化珪素等のセラミックス材料等、強度、剛性のある材料が好ましく、それらの材料を組み合わせて用いてもよい。   Accordingly, the joint covering in the present invention includes fiber reinforced materials such as GFRP (glass fiber reinforced plastics) and CFRP (carbon fiber reinforced plastics), metal materials such as stainless steel, NiCr alloy, Ti alloy, alumina, and nitride. A material having strength and rigidity, such as a ceramic material such as silicon, is preferable, and these materials may be used in combination.

また、本発明における接着部材には、エポキシ系等の樹脂材料、導電性ペースト材料等が好ましい。また、本発明における電極端子としては、銅、銀、アルミニウム等の電気良導体が、電極端子自体のジュール発熱を小さくできるので、好ましい。   The adhesive member in the present invention is preferably an epoxy-based resin material, a conductive paste material, or the like. Moreover, as an electrode terminal in this invention, electrical good conductors, such as copper, silver, aluminum, are preferable since the Joule heat_generation | fever of electrode terminal itself can be made small.

また、本発明における酸化物超電導体としては、Y系、Bi系、Tl系等のいずれの酸化物超電導体でも用いることができる。それらの中でも、通電素子に用いる酸化物超電導体としては、単結晶状のREBa2Cu3x相(REはY又は希土類元素から選ばれる1種又は2種以上)中にRE2BaCuO5相が微細分散した酸化物超電導体が、磁場中での臨界電流密度が高いので好ましい。 In addition, as the oxide superconductor in the present invention, any oxide superconductor such as Y-based, Bi-based, and Tl-based can be used. Among these, as the oxide superconductor used for the energization element, the RE 2 BaCuO 5 phase in a single crystal REBa 2 Cu 3 O x phase (RE is one or more selected from Y or rare earth elements). An oxide superconductor finely dispersed in is preferable because of its high critical current density in a magnetic field.

また、接合部被覆体の熱膨張率に関しては、従来の被覆層や支持体の場合、その熱膨張率は、できるだけ酸化物超電導体の熱膨張率に近い方が好ましいとされていたが、本発明の場合、接合部の強度補強が目的なので、接合部被覆体の熱膨張率の絶対値は、酸化物超電導体の熱膨張率の絶対値よりも大きい方が好ましい。   As for the thermal expansion coefficient of the joint covering body, in the case of the conventional coating layer or support, the thermal expansion coefficient is preferably as close as possible to the thermal expansion coefficient of the oxide superconductor. In the case of the invention, since the purpose is to reinforce the strength of the joint, the absolute value of the coefficient of thermal expansion of the joint cover is preferably larger than the absolute value of the coefficient of thermal expansion of the oxide superconductor.

酸化物超電導体は、ab軸方向とc軸方向で異方性がある材料であり、単結晶状の酸化物超電導体を用いた場合、超電導電流が流れ易いab軸方向を通電方向に向けることが好ましく、接合部被覆体の熱膨張率の絶対値は、酸化物超電導体のab軸方向の熱膨張率の絶対値よりも大きい方が好ましい。   The oxide superconductor is an anisotropy material in the ab axis direction and the c axis direction, and when the single crystal oxide superconductor is used, the ab axis direction in which the superconducting current easily flows is directed to the energization direction. It is preferable that the absolute value of the coefficient of thermal expansion of the joint covering body is larger than the absolute value of the coefficient of thermal expansion in the ab axis direction of the oxide superconductor.

通電方向の熱膨張率に関しては、接合部被覆体の熱膨張率の絶対値が電極端子の熱膨張率の絶対値よりも大きいと、接合部被覆体と酸化物超電導体の境界部において、より大きな引張応力が発生する恐れがあるので、接合部被覆体の熱膨張率の絶対値は、電極端子の熱膨張率の絶対値よりも小さい方が好ましい。   Regarding the thermal expansion coefficient in the energization direction, when the absolute value of the thermal expansion coefficient of the joint covering body is larger than the absolute value of the thermal expansion coefficient of the electrode terminal, at the boundary between the joint covering body and the oxide superconductor, Since a large tensile stress may occur, it is preferable that the absolute value of the thermal expansion coefficient of the bonded portion covering is smaller than the absolute value of the thermal expansion coefficient of the electrode terminal.

一方、酸化物超電導体と電極端子の通電方向に平行な接合面に対して垂直な方向の熱膨張率に関しては、上述したような電極端子との接合面の熱歪みを抑制するために、接合部被覆体の熱膨張率の絶対値は、電極端子の熱膨張率の絶対値よりも大きい方が好ましい。   On the other hand, regarding the coefficient of thermal expansion in the direction perpendicular to the joint surface parallel to the energization direction of the oxide superconductor and the electrode terminal, in order to suppress the thermal distortion of the joint surface with the electrode terminal as described above, The absolute value of the coefficient of thermal expansion of the part covering body is preferably larger than the absolute value of the coefficient of thermal expansion of the electrode terminal.

従って、接合部被覆体を熱膨張率に関して異方性のある材料を用いて形成し、少なくとも1方向の熱膨張率の絶対値を電極端子の熱膨張率の絶対値よりも大きく、前記方向と垂直方向の熱膨張率の絶対値を酸化物超電導体のab軸方向の熱膨張率の絶対値よりも大きく、電極端子の熱膨張率の絶対値よりも小さくした方が好ましく、さらに、接合部被覆体の熱膨張率の絶対値が大きい方向を電極端子との接合面が歪む方向に、即ち、接合面に対して垂直な方向に配置し、接合部被覆体の熱膨張率の絶対値が小さい方向を通電方向に配置することが好ましい。   Therefore, the joint cover is formed using a material having anisotropy with respect to the coefficient of thermal expansion, and the absolute value of the coefficient of thermal expansion in at least one direction is larger than the absolute value of the coefficient of thermal expansion of the electrode terminal, The absolute value of the thermal expansion coefficient in the vertical direction is preferably larger than the absolute value of the thermal expansion coefficient in the ab axis direction of the oxide superconductor, and smaller than the absolute value of the thermal expansion coefficient of the electrode terminal. The direction in which the absolute value of the coefficient of thermal expansion of the covering is large is arranged in the direction in which the joint surface with the electrode terminal is distorted, that is, in the direction perpendicular to the joint surface, and the absolute value of the coefficient of thermal expansion of the joint covering is It is preferable to arrange the small direction in the energization direction.

なお、酸化物超電導体通電素子の場合、室温から冷却されて使用されるので、熱収縮することになり、熱膨張率の符号は負になるが、熱膨張率の大小関係は符号のない絶対値で比較することにする。例えば、室温から液体窒素温度に冷却した時の酸化物超電導体のab軸方向の熱膨張率は−0.16%で、電極端子に銅を使用したとすると、銅の熱膨張率は−0.32%である。   In the case of an oxide superconductor energization element, since it is used after being cooled from room temperature, it will be thermally contracted, and the sign of the coefficient of thermal expansion will be negative, but the magnitude relationship of the coefficient of thermal expansion will be absolute without a sign. We will compare by value. For example, when the oxide superconductor has a coefficient of thermal expansion in the ab-axis direction of −0.16% when cooled from room temperature to liquid nitrogen temperature, and copper is used for the electrode terminal, the coefficient of thermal expansion of copper is −0. .32%.

この場合、接合部被覆体の通電方向の熱膨張率の絶対値は、0.16%以上で0.32%以下が好ましく、さらに0.2%以上で0.25%以下がより好ましい。即ち、熱膨張率としては、−0.32%以上で−0.16%以下が好ましく、さらに−0.25%以上で−0.2%以下がより好ましい。接合部被覆体の通電方向に対して直角方向の熱膨張率は、−0.5%や−0.7%等、−0.32%以上が好ましい。   In this case, the absolute value of the coefficient of thermal expansion in the energizing direction of the joint covering body is preferably 0.16% or more and 0.32% or less, and more preferably 0.2% or more and 0.25% or less. That is, the coefficient of thermal expansion is preferably −0.32% or more and −0.16% or less, more preferably −0.25% or more and −0.2% or less. The coefficient of thermal expansion in the direction perpendicular to the energization direction of the bonded portion covering is preferably -0.32% or more, such as -0.5% or -0.7%.

本発明における酸化物超電導体通電素子においては、図3に示すように、2つの接合部被覆体5を接続体7で接続してもよい。2つの接合部被覆体5を接続することで、通電素子の機械的強度がさらに向上し、取り扱い易さが改善される。   In the oxide superconductor energization element according to the present invention, as shown in FIG. By connecting the two joint covering bodies 5, the mechanical strength of the energization element is further improved and the ease of handling is improved.

また、本発明における酸化物超電導体通電素子においては、図4に示すように、2つの電極端子3を接続体8で接続してもよい。2つの電極端子3を接続することで、通電素子の機械的強度がさらに向上し、取り扱い易さが改善される。   Moreover, in the oxide superconductor energization element in the present invention, two electrode terminals 3 may be connected by a connection body 8 as shown in FIG. By connecting the two electrode terminals 3, the mechanical strength of the energization element is further improved, and the ease of handling is improved.

また、本発明における酸化物超電導体通電素子においては、図5に示すように、接着部材2を、酸化物超電導体1と接合部被覆体5の接合部以外の酸化物超電導体表面に、例えば、酸化物超電導体表面全面に被覆してもよい。接合面以外の酸化物超電導体表面に被覆することで、通電素子の機械的強度がさらに向上し、取り扱いやすさが改善される。   Further, in the oxide superconductor energization element according to the present invention, as shown in FIG. 5, the adhesive member 2 is placed on the surface of the oxide superconductor other than the joint portion of the oxide superconductor 1 and the joint cover 5, for example. The entire surface of the oxide superconductor may be coated. By covering the surface of the oxide superconductor other than the bonding surface, the mechanical strength of the current-carrying element is further improved, and the ease of handling is improved.

図3、図4、及び、図5に示す構造は、単独で用いても良いが、それらを組み合わせることで通電素子の機械的強度がさらに向上し、取り扱い易さが改善される。   The structures shown in FIGS. 3, 4, and 5 may be used singly, but by combining them, the mechanical strength of the energization element is further improved and the handling is improved.

また、通常、酸化物超電導体の両端に電極端子を接合するため、接合部被覆体は、酸化物超電導体の両端に2箇所設ける必要があるが、本発明の酸化物超電導体通電素子において、図6に示すように、両端にある2つの接合部被覆体を一体化してもよい。   In addition, usually, in order to join the electrode terminals to both ends of the oxide superconductor, it is necessary to provide the joint covering body at two places on both ends of the oxide superconductor. In the oxide superconductor energization element of the present invention, As shown in FIG. 6, the two joint covering bodies at both ends may be integrated.

図6に示す構造は、2つの接合部被覆体を最初から一体もので製作しておき、酸化物超電導体と電極端子を電気的に接合した後、一体ものの接合部被覆体を、エポキシ樹脂等の接着部材を介して、酸化物超電導体と電極端子の接合部に密着被覆させたものである。   In the structure shown in FIG. 6, two joint covering bodies are manufactured from the beginning, and the oxide superconductor and the electrode terminal are electrically joined, and then the integral joint covering body is made of an epoxy resin or the like. The adhesive superconductor is tightly coated on the junction between the oxide superconductor and the electrode terminal.

このように、最初から一体化した接合部被覆体を用いることにより、製作工程を簡略化できる。このように一体化しても、接合部被覆体は、酸化物超電導体と電極端子の接合部を補強するものであり、酸化物超電導体を支持する支持体ではないので、その熱膨張率の絶対値は、上述したように酸化物超電導体のab軸方向の熱膨張率の絶対値よりも大きい方が好ましい。   Thus, the manufacturing process can be simplified by using the joint covering body integrated from the beginning. Even if integrated in this way, the joint covering body reinforces the joint between the oxide superconductor and the electrode terminal, and is not a support that supports the oxide superconductor. As described above, the value is preferably larger than the absolute value of the coefficient of thermal expansion in the ab-axis direction of the oxide superconductor.

一体化した接合部被覆体の熱膨張率の絶対値が、酸化物超電導体のab軸方向の熱膨張率の絶対値よりも大きいと、冷却した際に、酸化物超電導体全体に熱膨張率差により圧縮応力が作用することになるが、酸化物超電導体は、引張応力に対しては非常に弱いものの、圧縮応力に対しては比較的強く、さらに、酸化物超電導体と接合部被覆体の間には接着部材が存在し、接着部材が応力緩衝材の役割を担うので、一体化した接合部被覆体を用いても、十分な強度を得ることができ、破損し難い酸化物超電導体素子を得ることが可能となる。   When the absolute value of the coefficient of thermal expansion of the integrated joint covering is larger than the absolute value of the coefficient of thermal expansion in the ab-axis direction of the oxide superconductor, the coefficient of thermal expansion of the entire oxide superconductor is reduced when cooled. Although the compressive stress acts due to the difference, the oxide superconductor is relatively strong against the compressive stress although it is very weak against the tensile stress. Since there is an adhesive member between them, the adhesive member plays the role of a stress buffer, so even if an integrated joint covering is used, sufficient strength can be obtained and the oxide superconductor is not easily damaged An element can be obtained.

図3で、接合部被覆体5と接合部被覆体5を接続する接続体7を電気導電性材料で製作すれば、あるいは、図4で、電極端子3を接続する接続体8を電気導電性材料で製作すれば、酸化物超電導体のクエンチや破損等の異常事態が発生した場合に、接続体がバイパス回路の役割を担うこともできる。   In FIG. 3, if the connection body 7 that connects the joint cover 5 and the joint cover 5 is made of an electrically conductive material, or the connection body 8 that connects the electrode terminal 3 in FIG. 4 is electrically conductive. If it is made of a material, the connection body can also serve as a bypass circuit when an abnormal situation such as quenching or breakage of the oxide superconductor occurs.

同じように、図6に示すような、一体化した接合部被覆体5を有する構造において、接合部被覆体を電気導電性材料で製作すれば、酸化物超電導体のクエンチや破損等の異常事態が発生した場合に、接続体がバイパス回路の役割を担うこともできる。   Similarly, in a structure having an integrated joint cover 5 as shown in FIG. 6, if the joint cover is made of an electrically conductive material, an abnormal situation such as quenching or breakage of the oxide superconductor When this occurs, the connection body can also serve as a bypass circuit.

このようなバイパス回路の役割を持たせるためには、接合部被覆体と電極端子との間を密着させる接着部材として、エポキシ系樹脂等の電気絶縁性のものではなく、電気導電性のもの、例えば、銀ペースト等を用いる必要がある。   In order to have the role of such a bypass circuit, as an adhesive member that closely adheres between the joint covering body and the electrode terminal, not an electrically insulating material such as an epoxy resin, but an electrically conductive material, For example, it is necessary to use silver paste or the like.

酸化物超電導体通電素子の中で、電流リードは、大電流を通電するという機能以外に、熱侵入量を抑制するという機能が求められるが、図6に示すような、一体化した接合部被覆体を有する構造とした場合、接合部被覆体を伝わって侵入する熱流も抑制することが好ましい。   Among oxide superconductor energization elements, the current lead is required to have a function of suppressing the amount of heat penetration in addition to the function of energizing a large current. In the case of a structure having a body, it is preferable to suppress the heat flow that enters through the joint covering body.

電気導電性材料では、電気抵抗率と熱伝導率が反比例の関係にあることが知られており、銅や銀等の電気良導体は、熱の良導体でもあるので、電流リード用の一体化した接合部被覆体の材料としては好ましくない。   Electrically conductive materials are known to have an inverse relationship between electrical resistivity and thermal conductivity, and good electrical conductors such as copper and silver are also good thermal conductors, so an integrated joint for current leads It is not preferable as a material for the partial covering.

銅や銀等の電気良導体の電気抵抗率は、1〜10μΩcm程度であり、電流リード用の一体化した接合部被覆体の材料の電気抵抗率としては、10μΩcm以上が好ましい。   The electrical resistivity of a good electrical conductor such as copper or silver is about 1 to 10 μΩcm, and the electrical resistivity of the material of the integrated joint covering for current leads is preferably 10 μΩcm or more.

しかし、GFRPのような電気抵抗率が1012Ωcm程度である絶縁体では、バイパス回路の役割を担うことはできず、電気抵抗率が1000Ωcm以下の適度な電気導電性を有する材料が好ましい。 However, an insulator having an electrical resistivity of about 10 12 Ωcm such as GFRP cannot play the role of a bypass circuit, and a material having an appropriate electrical conductivity with an electrical resistivity of 1000 Ωcm or less is preferable.

従って、電流リード用の一体化した接合部被覆体の材料の電気抵抗率としては、10μΩcm以上、1000Ωcm以下が好ましい。このような電気抵抗率を有する材料としては、ステンレス、チタン合金、ニクロム(NiCr)合金等の合金系の金属材料、樹脂と電気良導体との複合体、導電性プラスチックスがある。   Accordingly, the electrical resistivity of the material of the integrated joint covering for the current lead is preferably 10 μΩcm or more and 1000 Ωcm or less. Examples of the material having such electric resistivity include alloy metal materials such as stainless steel, titanium alloy, and nichrome (NiCr) alloy, composites of resin and good electric conductors, and conductive plastics.

樹脂と電気良導体との複合体の例としては、電気絶縁性材料のエポキシ系樹脂と電気良導体の炭素繊維との複合体である炭素繊維強化プラスチックス(CFRP)がある。   An example of a composite of a resin and a good electrical conductor is carbon fiber reinforced plastics (CFRP), which is a composite of an epoxy resin, which is an electrically insulating material, and a carbon fiber, which is a good electrical conductor.

(実施例1)
断面積4mm×3mm、長さ40mmの単結晶状のYBa2Cu3x相中にY2BaCuO5相が微細分散した酸化物超電導体の両端に、無酸素銅製の電極端子を半田付けにて電気的に接合し、厚さ3mmのGFRPをエポキシ系樹脂であるスタイキャスト2850FT(日本エイブルスティック株式会社製)を用いて、酸化物超電導体と電極端子の接合部を密着被覆することで、図1に示すような接合部被覆体を製作した。
Example 1
Oxygen-free copper electrode terminals are soldered to both ends of an oxide superconductor in which the Y 2 BaCuO 5 phase is finely dispersed in a single-crystal YBa 2 Cu 3 O x phase having a cross-sectional area of 4 mm x 3 mm and a length of 40 mm By using stycast 2850FT (manufactured by Nippon Able Stick Co., Ltd.) which is an epoxy resin, GFRP having a thickness of 3 mm is coated tightly on the junction of the oxide superconductor and the electrode terminal, A joint covering as shown in FIG. 1 was produced.

GFRP製の接合部被覆体は上下方向2分割したものを、スタイキャスト2850FTで接着固定し、さらにステンレス製のボルトで機械的にも固定した。   The joint covering body made of GFRP, which was divided into two in the vertical direction, was bonded and fixed with stycast 2850FT and further mechanically fixed with a stainless steel bolt.

室温から液体窒素温度間の熱膨張率は、酸化物超電導体のab軸方向、電極端子、GFRPの熱膨張率が小さい方向、及び、GFRPの熱膨張率が大きい方向で、それぞれ、−0.16%、−0.32%、−0.24%、及び、−0.7%であった。GFRPの熱膨張率の絶対値の小さい方向を通電方向に向け、GFRPの熱膨張率の絶対値の大きい方向を酸化物超電導体と電極端子の通電方向に平行な接合面に対して垂直な方向に向けた。   The coefficient of thermal expansion between room temperature and liquid nitrogen temperature is −0... In the ab axis direction of the oxide superconductor, the electrode terminal, the direction in which the thermal expansion coefficient of GFRP is small, and the direction in which the thermal expansion coefficient of GFRP is large. 16%, -0.32%, -0.24%, and -0.7%. The direction in which the absolute value of the thermal expansion coefficient of GFRP is small is directed to the energizing direction, and the direction in which the absolute value of the thermal expansion coefficient of GFRP is large is perpendicular to the joint surface parallel to the energizing direction of the oxide superconductor and the electrode terminal. Towards.

上記構造の酸化物超電導体通電素子を室温状態から液体窒素に浸漬するという急冷工程を10回繰り返し実施したが、酸化物超電導体にクラック等の破損は見られなかった。急冷工程を実施する前後で、臨界電流を測定したが、急冷工程の前後とも液体窒素温度での臨界電流は2400Aと同じであった。   Although the rapid cooling process of immersing the oxide superconductor conducting element having the above structure in liquid nitrogen from room temperature was repeated 10 times, no breakage such as cracks was found in the oxide superconductor. The critical current was measured before and after the quenching step, and the critical current at the liquid nitrogen temperature was the same as 2400 A before and after the quenching step.

(比較例1)
比較のため、図7に示すような構造の酸化物超電導体通電素子を製作した。酸化物超電導体と電極端子は、実施例1と同じ材料を用いたが、接合部被覆体は上記GFRPよりも低収縮性のものを使用し、酸化物超電導体と電極端子との接合部を除く酸化物超電導体の外周部をスタイキャスト2850FTで接着固定した。
(Comparative Example 1)
For comparison, an oxide superconductor energization element having a structure as shown in FIG. 7 was manufactured. The oxide superconductor and the electrode terminal were made of the same material as in Example 1, but the joint cover was made of a material having a lower shrinkage than the GFRP, and the joint between the oxide superconductor and the electrode terminal was used. The outer peripheral portion of the oxide superconductor except for this was bonded and fixed by stycast 2850FT.

室温から液体窒素温度間の低収縮性GFRPの通電方向、及び、通電方向に対して直角方向の熱膨張率は、それぞれ、−0.16%、及び、−0.28%であった。この比較のための通電素子に対しても、実施例1と同様の実験を実施したが、急冷3回目で酸化物超電導体にクラックが見られ、さらに急冷を2回繰り返すと、電極端子の接合部境界で酸化物超電導体が破損した。   The energization direction of the low-shrinkage GFRP between room temperature and liquid nitrogen temperature and the thermal expansion coefficient in the direction perpendicular to the energization direction were −0.16% and −0.28%, respectively. The same experiment as in Example 1 was performed for the energization element for comparison, but cracks were observed in the oxide superconductor in the third rapid cooling, and when the rapid cooling was repeated twice, the electrode terminals were joined. The oxide superconductor was damaged at the boundary.

(実施例2)
断面積3mm×3mm、長さ40mmの単結晶状のHoBa2Cu3x相中にHo2BaCuO5相が微細分散した酸化物超電導体の両端に、錫めっきした無酸素銅製の電極端子を半田付けにて電気的に接合し、厚さ3mmのNiCr合金をエポキシ系樹脂であるスタイキャスト2850FTと銀ペーストを接着部材として用いて、酸化物超電導体と電極端子の接合部を密着被覆することで、図3に示すような接合部被覆体を有する酸化物超電導体通電素子を製作した。
(Example 2)
Electrode terminals made of oxygen-free copper plated with tin are attached to both ends of an oxide superconductor in which a Ho 2 BaCuO 5 phase is finely dispersed in a single crystal HoBa 2 Cu 3 O x phase having a cross-sectional area of 3 mm × 3 mm and a length of 40 mm. Electrically bonded by soldering and tightly covering the junction between the oxide superconductor and the electrode terminal using NiCr alloy with a thickness of 3 mm and stycast 2850FT, which is an epoxy resin, and silver paste as an adhesive member Thus, an oxide superconductor energizing element having a joint covering as shown in FIG. 3 was produced.

NiCr製の接合部被覆体は上下方向2分割したものを、スタイキャスト2850FTで接着固定し、さらにステンレス製のボルトで機械的にも固定した。接着部材の銀ペーストは、接合部被覆体と電極端子の接合面を接着するために用いた。   The NiCr joint part covering body divided in the vertical direction was bonded and fixed with stycast 2850FT, and further mechanically fixed with stainless steel bolts. The silver paste of the adhesive member was used for adhering the joint surface between the joint cover and the electrode terminal.

また、接合部被覆体を接続する接続体上も同じNiCr合金で製作し、ボルト締めにて接続した。室温から液体窒素温度間の熱膨張率は、酸化物超電導体のab軸方向、電極端子、及び、NiCr合金で、それぞれ、−0.16%、−0.32%、及び、−0.23%であった。   Moreover, the same NiCr alloy was also manufactured on the connection body to which the joint covering body was connected, and was connected by bolting. The coefficient of thermal expansion between room temperature and liquid nitrogen temperature is −0.16%, −0.32%, and −0.23 for the ab axis direction of the oxide superconductor, the electrode terminal, and the NiCr alloy, respectively. %Met.

上記構造の酸化物超電導体通電素子を室温状態から液体窒素に浸漬するという急冷工程を50回繰り返し実施した。急冷工程を実施する前後で臨界電流を測定したが、急冷工程の前後とも液体窒素温度での臨界電流は1800Aと同じであった。   The rapid cooling process of immersing the oxide superconductor conducting element having the above structure in liquid nitrogen from room temperature was repeated 50 times. The critical current was measured before and after the quenching step, and the critical current at the liquid nitrogen temperature was the same as 1800 A before and after the quenching step.

(実施例3)
断面積4mm×3mm、長さ40mmの単結晶状のYBa2Cu3x相中にY2BaCuO5相が微細分散した酸化物超電導体の両端に、銀めっきしたアルミニウム製の電極端子を半田付けにて電気的に接合し、厚さ5mmのGFRPをエポキシ系樹脂であるスタイキャスト2850GT(商品名)を用いて、酸化物超電導体と電極端子の接合部を密着被覆した。
(Example 3)
Silver-plated aluminum electrode terminals are soldered to both ends of an oxide superconductor in which a Y 2 BaCuO 5 phase is finely dispersed in a single crystal YBa 2 Cu 3 O x phase having a cross-sectional area of 4 mm × 3 mm and a length of 40 mm The GFRP having a thickness of 5 mm was coated tightly on the junction between the oxide superconductor and the electrode terminal using stycast 2850GT (trade name) which is an epoxy resin.

GFRP製の接合部被覆体は上下方向2分割したものを、スタイキャスト2850GTで接着固定し、さらにステンレス製のボルトで機械的にも固定した。その後、ステンレス製の電極端子間接続体を半田付けにて電極端子に接続し、図3に示すような酸化物超電導体通電素子を製作した。   The joint covering body made of GFRP, which was divided into two in the vertical direction, was bonded and fixed with stycast 2850GT, and further mechanically fixed with a bolt made of stainless steel. Thereafter, the connection body between the electrode terminals made of stainless steel was connected to the electrode terminals by soldering to produce an oxide superconductor energization element as shown in FIG.

室温から液体窒素温度間の熱膨張率は、酸化物超電導体のab軸方向、電極端子、GFRPの熱膨張率が小さい方向、及び、GFRPの熱膨張率が大きい方向で、それぞれ、−0.14%、−0.34%、−0.2%、及び、−0.55%であった。   The coefficient of thermal expansion between room temperature and liquid nitrogen temperature is −0... In the ab axis direction of the oxide superconductor, the electrode terminal, the direction in which the thermal expansion coefficient of GFRP is small, and the direction in which the thermal expansion coefficient of GFRP is large. 14%, -0.34%, -0.2%, and -0.55%.

GFRPの熱膨張率の絶対値の小さい方向を通電方向に向け、GFRPの熱膨張率の絶対値の大きい方向を酸化物超電導体と電極端子の通電方向に平行な接合面に対して垂直な方向に向けた。上記構造の酸化物超電導体通電素子を室温状態から液体窒素に浸漬するという急冷工程を50回繰り返し実施したが、酸化物超電導体にクラック等の破損は見られなかった。   The direction in which the absolute value of the thermal expansion coefficient of GFRP is small is directed to the energizing direction, and the direction in which the absolute value of the thermal expansion coefficient of GFRP is large is perpendicular to the joint surface parallel to the energizing direction of the oxide superconductor and the electrode terminal. Towards. A rapid cooling process of immersing the oxide superconductor conducting element having the above structure in liquid nitrogen from room temperature was repeated 50 times, but no breakage such as cracks was found in the oxide superconductor.

急冷工程を実施する前後で臨界電流を測定したが、急冷工程の前後とも液体窒素温度での臨界電流は2400Aと同じであった。   The critical current was measured before and after the quenching step, but the critical current at the liquid nitrogen temperature was the same as 2400 A before and after the quenching step.

(実施例4)
断面積3mm×3mm、長さ40mmの単結晶状のGdBa2Cu3x相中にGd2BaCuO5相が微細分散した酸化物超電導体の両端に、銀製の電極端子を半田付けにて電気的に接合し、厚さ2mmのGFRPをエポキシ系樹脂であるスタイキャスト2850FTを用いて、酸化物超電導体と電極端子の接合部を密着被覆し、さらに、その後、2つの接合部被覆体間の酸化物超電導体表面を同じスタイキャスト2850FTで1mm厚さに塗布することで、図5に示すような酸化物超電導体通電素子を製作した。
Example 4
A silver electrode terminal is electrically connected to both ends of an oxide superconductor in which a Gd 2 BaCuO 5 phase is finely dispersed in a single crystalline GdBa 2 Cu 3 O x phase having a cross-sectional area of 3 mm × 3 mm and a length of 40 mm. Then, GFRP with a thickness of 2 mm is tightly coated on the junction between the oxide superconductor and the electrode terminal using Stycast 2850FT, which is an epoxy resin, and then between the two junction coverages. An oxide superconductor energization element as shown in FIG. 5 was manufactured by applying the oxide superconductor surface to the thickness of 1 mm with the same stycast 2850FT.

室温から液体窒素温度間の熱膨張率は、酸化物超電導体のab軸方向、電極端子、GFRPの熱膨張率が小さい方向、及び、GFRPの熱膨張率が大きい方向で、それぞれ、−0.16%、−0.33%、−0.22%、及び、−0.6%であった。GFRPの熱膨張率の絶対値の小さい方向を通電方向に向け、GFRPの熱膨張率の絶対値の大きい方向を酸化物超電導体と電極端子の通電方向に平行な接合面に対して垂直な方向に向けた。   The coefficient of thermal expansion between room temperature and liquid nitrogen temperature is −0... In the ab axis direction of the oxide superconductor, the electrode terminal, the direction in which the thermal expansion coefficient of GFRP is small, and the direction in which the thermal expansion coefficient of GFRP is large. 16%, -0.33%, -0.22%, and -0.6%. The direction in which the absolute value of the thermal expansion coefficient of GFRP is small is directed to the energizing direction, and the direction in which the absolute value of the thermal expansion coefficient of GFRP is large is perpendicular to the joint surface parallel to the energizing direction of the oxide superconductor and the electrode terminal. Towards.

上記構造の酸化物超電導体通電素子を室温状態から液体窒素に浸漬するという急冷工程を50回繰り返し実施したが、酸化物超電導体通電素子の外観にクラック等の破損は見られなかった。急冷工程を実施する前後で臨界電流を測定したが、急冷工程の前後とも液体窒素温度での臨界電流は1900Aと同じであった。   Although the rapid cooling process of immersing the oxide superconductor conducting element having the above structure in liquid nitrogen from room temperature was repeated 50 times, no damage such as cracks was observed in the appearance of the oxide superconductor conducting element. The critical current was measured before and after the quenching step, and the critical current at the liquid nitrogen temperature was the same as 1900A before and after the quenching step.

(実施例5)
断面積4mm×4mm、長さ60mmの単結晶状の(Dy,Ho)Ba2Cu3x相中に(Dy,Ho)2BaCuO5相が微細分散した酸化物超電導体の両端に、錫めっきした無酸素銅製の電極端子を半田付けにて電気的に接合し、厚さ3mmのGFRPをエポキシ系樹脂であるスタイキャスト2850FTを用いて、酸化物超電導体と電極端子の接合部を密着被覆することで、図6に示すような一体化した接合部被覆体を有する酸化物超電導体通電素子を製作した。
(Example 5)
At both ends of an oxide superconductor in which (Dy, Ho) 2 BaCuO 5 phase is finely dispersed in a single crystal (Dy, Ho) Ba 2 Cu 3 O x phase having a cross-sectional area of 4 mm × 4 mm and a length of 60 mm, The plated oxygen-free copper electrode terminals are electrically joined by soldering, and the joint between the oxide superconductor and the electrode terminals is tightly coated with GFRP having a thickness of 3 mm using stycast 2850FT which is an epoxy resin. Thus, an oxide superconductor energization element having an integrated joint covering as shown in FIG. 6 was manufactured.

両端に2個所ある接合部被覆体を一体化したGFRP製の接合部被覆体は、上下方向2分割したものを、スタイキャスト2850FTで接着固定し、さらにステンレス製のボルトで機械的にも固定した。   The joint cover made of GFRP, in which the joint covers at two locations are integrated, is divided into two parts in the vertical direction, bonded and fixed with stycast 2850FT, and further mechanically fixed with a stainless steel bolt. .

室温から液体窒素温度間の熱膨張率は、酸化物超電導体のab軸方向、電極端子、GFRPの熱膨張率が小さい方向、及び、GFRPの熱膨張率が大きい方向で、それぞれ、−0.16%、−0.32%、−0.24%、及び、−0.7%であった。   The coefficient of thermal expansion between room temperature and liquid nitrogen temperature is −0... In the ab axis direction of the oxide superconductor, the electrode terminal, the direction in which the thermal expansion coefficient of GFRP is small, and the direction in which the thermal expansion coefficient of GFRP is large. 16%, -0.32%, -0.24%, and -0.7%.

GFRPの熱膨張率の絶対値の小さい方向を通電方向に向け、GFRPの熱膨張率の絶対値の大きい方向を酸化物超電導体と電極端子の通電方向に平行な接合面に対して垂直な方向に向けた。   The direction in which the absolute value of the thermal expansion coefficient of GFRP is small is directed to the energizing direction, and the direction in which the absolute value of the thermal expansion coefficient of GFRP is large is perpendicular to the joint surface parallel to the energizing direction of the oxide superconductor and the electrode terminal. Towards.

上記構造の酸化物超電導体通電素子を室温状態から液体窒素に浸漬するという急冷工程を50回繰り返し実施したが、酸化物超電導体通電素子の外観にクラック等の破損は見られなかった。急冷工程を実施する前後で臨界電流を測定したが、急冷工程の前後とも液体窒素温度での臨界電流は3200Aと同じであった。   Although the rapid cooling process of immersing the oxide superconductor conducting element having the above structure in liquid nitrogen from room temperature was repeated 50 times, no damage such as cracks was observed in the appearance of the oxide superconductor conducting element. The critical current was measured before and after the quenching step, and the critical current at the liquid nitrogen temperature was the same as 3200A before and after the quenching step.

(実施例6)
断面積4mm×4mm、長さ60mmの単結晶状の(Dy,Ho)Ba2Cu3x相中に(Dy,Ho)2BaCuO5相が微細分散した酸化物超電導体の両端に、錫めっきした無酸素銅製の電極端子を半田付けにて電気的に接合し、厚さ3mmのCFRPをエポキシ系樹脂であるスタイキャスト2850FTと銀ペーストを用いて、酸化物超電導体と電極端子の接合部を密着被覆することで、図6に示すような一体化した接合部被覆体を有する酸化物超電導体通電素子を製作した。
(Example 6)
At both ends of an oxide superconductor in which (Dy, Ho) 2 BaCuO 5 phase is finely dispersed in a single crystal (Dy, Ho) Ba 2 Cu 3 O x phase having a cross-sectional area of 4 mm × 4 mm and a length of 60 mm, The plated oxygen-free copper electrode terminals are electrically joined by soldering, and a 3 mm thick CFRP is bonded to the oxide superconductor and electrode terminals using stycast 2850FT epoxy resin and silver paste. As a result, the oxide superconductor energization element having an integrated joint covering as shown in FIG. 6 was produced.

両端に2個所ある接合部被覆体を一体化したCFRP製の接合部被覆体は、上下方向2分割したものを、スタイキャスト2850FTで接着固定し、さらにステンレス製のボルトで機械的にも固定した。接着部材の銀ペーストは、接合部被覆体と電極端子の接合面を接着するために用いた。   The CFRP joint cover, which is a joint of the two joint cover bodies at the two ends, is bonded and fixed by stycast 2850FT, which is divided into two in the vertical direction, and is also mechanically fixed with a stainless steel bolt. . The silver paste of the adhesive member was used for adhering the joint surface between the joint cover and the electrode terminal.

室温から液体窒素温度間の熱膨張率は、酸化物超電導体のab軸方向、電極端子、CFRPの熱膨張率が小さい方向、及び、CFRPの熱膨張率が大きい方向で、それぞれ、−0.16%、−0.32%、−0.25%、及び、−0.72%であった。CFRPの熱膨張率の絶対値の小さい方向を通電方向に向け、CFRPの熱膨張率の絶対値の大きい方向を酸化物超電導体と電極端子の通電方向に平行な接合面に対して垂直な方向に向けた。   The coefficient of thermal expansion between room temperature and liquid nitrogen temperature is −0... In the ab axis direction of the oxide superconductor, the electrode terminal, the direction in which the thermal expansion coefficient of CFRP is small, and the direction in which the thermal expansion coefficient of CFRP is large. 16%, -0.32%, -0.25%, and -0.72%. The direction in which the absolute value of the coefficient of thermal expansion of CFRP is small is directed to the energizing direction, and the direction in which the absolute value of the coefficient of thermal expansion of CFRP is large is perpendicular to the joint surface parallel to the energizing direction of the oxide superconductor and electrode terminal Towards.

上記構造の酸化物超電導体通電素子を室温状態から液体窒素に浸漬するという急冷工程を50回繰り返し実施したが、酸化物超電導体通電素子の外観にクラック等の破損は見られなかった。急冷工程を実施する前後で臨界電流を測定したが、急冷工程の前後とも液体窒素温度での臨界電流は3150Aと同じであった。   Although the rapid cooling process of immersing the oxide superconductor conducting element having the above structure in liquid nitrogen from room temperature was repeated 50 times, no damage such as cracks was observed in the appearance of the oxide superconductor conducting element. The critical current was measured before and after the quenching step, and the critical current at the liquid nitrogen temperature was the same as 3150A before and after the quenching step.

また、実施例5のGFRPの電気抵抗率は1012Ωcm、実施例6のCFRPの電気抵抗率は0.8Ωcmであった。実施例5と実施例6の酸化物超電導体通電素子を液体窒素に浸漬させた状態で、臨界電流以上の電流を通電することでクエンチさせ、クエンチ直後に電流電源をOFFし、通電電流を遮断した。 Further, the electrical resistivity of GFRP of Example 5 was 10 12 Ωcm, and the electrical resistivity of CFRP of Example 6 was 0.8 Ωcm. In the state where the oxide superconductor energization element of Example 5 and Example 6 is immersed in liquid nitrogen, it is quenched by energizing a current higher than the critical current, and immediately after the quench, the current power supply is turned off and the energization current is cut off. did.

この実験で、実施例5の通電素子は、溶断したため再度通電することはできなかったが、実施例6の通電素子は、溶断せず再度通電することができた。   In this experiment, the energization element of Example 5 could not be energized again because it was melted, but the energization element of Example 6 could be energized again without being melted.

本発明によれば、構造が簡単で、冷却時に破損しにくい酸化物超電導体通電素子を提供できるので、酸化物超電導体の工業上の利用範囲が拡大する。   According to the present invention, an oxide superconductor energization element that has a simple structure and is not easily damaged during cooling can be provided, so that the industrial application range of the oxide superconductor is expanded.

本発明の酸化物超電導体通電素子の一実施例の構造を示す断面図である。It is sectional drawing which shows the structure of one Example of the oxide superconductor energization element of this invention. 本発明の酸化物超電導体通電素子の一実施例の外観図である。It is an external view of one Example of the oxide superconductor energizing element of the present invention. 本発明の酸化物超電導体通電素子の別の実施例の構造を示す断面図である。It is sectional drawing which shows the structure of another Example of the oxide superconductor energization element of this invention. 本発明の酸化物超電導体通電素子の別の実施例の構造を示す断面図である。It is sectional drawing which shows the structure of another Example of the oxide superconductor energization element of this invention. 本発明の酸化物超電導体通電素子の別の実施例の構造を示す断面図である。It is sectional drawing which shows the structure of another Example of the oxide superconductor energization element of this invention. 本発明の酸化物超電導体通電素子の別の実施例の構造を示す断面図である。It is sectional drawing which shows the structure of another Example of the oxide superconductor energization element of this invention. 従来の酸化物超電導体通電素子の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional oxide superconductor energization element.

符号の説明Explanation of symbols

1…酸化物超電導体
2…接着部材
3…電極端子
4…ボルト
5…接合被膜体
6…酸化物超電導体と電極端子の通電方向に平行な接合面
7…接合部被膜体間の接続体
8…電極端子間の接続体
9…被膜体
DESCRIPTION OF SYMBOLS 1 ... Oxide superconductor 2 ... Adhesive member 3 ... Electrode terminal 4 ... Bolt 5 ... Joining film body 6 ... Joining surface 7 parallel to the energization direction of an oxide superconductor and an electrode terminal ... Connection body 8 between junction film bodies ... Connector 9 between electrode terminals ... Coating body

Claims (15)

棒状の酸化物超電導体と、該酸化物超電導体の両端に電気的に接合した電極端子と、該酸化物超電導体と該電極端子との接合部を被覆する接合部被覆体からなり、前記接合部被覆体が接着部材を介して前記酸化物超電導体と前記電極端子の接合部を密着被覆し、前記接合部被覆体の通電方向の熱膨張率の絶対値が、前記酸化物超電導体のab軸方向の熱膨張率の絶対値よりも大きいことを特徴とする酸化物超電導体通電素子。 An oxide superconductor rod-shaped, and the electrode terminal electrically joined at both ends of the oxide superconductor, Ri Do junction cover member for covering the joint between the oxide superconductor and the electrode terminal, wherein A junction covering body tightly coats the junction between the oxide superconductor and the electrode terminal via an adhesive member, and the absolute value of the coefficient of thermal expansion in the energizing direction of the junction covering is the oxide superconductor An oxide superconductor energization element characterized by being larger than the absolute value of the coefficient of thermal expansion in the ab axis direction . 前記接合部被覆体が熱膨張率に関して異方性のある材料であり、かつ、少なくとも1方向の熱膨張率の絶対値が前記電極端子の熱膨張率の絶対値よりも大きく、前記方向と直角方向の熱膨張率の絶対値が前記電極端子の熱膨張率の絶対値よりも小さいことを特徴とする請求項に記載の酸化物超電導体通電素子。 The joint cover is an anisotropic material with respect to the coefficient of thermal expansion, and the absolute value of the coefficient of thermal expansion in at least one direction is greater than the absolute value of the coefficient of thermal expansion of the electrode terminal and is perpendicular to the direction. 2. The oxide superconductor energization element according to claim 1 , wherein an absolute value of a coefficient of thermal expansion in a direction is smaller than an absolute value of a coefficient of thermal expansion of the electrode terminal. 前記接合部被覆体の熱膨張率の絶対値の大きい方向を、前記酸化物超電導体と前記電極端子の通電方向に平行な接合面に対して垂直な方向としたことを特徴とする請求項に記載の酸化物超電導体通電素子。 Claim 2, wherein the large direction of the absolute value of the thermal expansion of the bonding portion covering member and a direction perpendicular to the parallel bonding surface conduction direction of the electrode terminal and the oxide superconductor The oxide superconductor energizing element described in 1. 前記接合部被覆体が、繊維強化材料、金属材料、又は、セラミックス材料から選ばれる1種以上であることを特徴とする請求項1〜のいずれかに記載の酸化物超電導体通電素子。 The oxide superconductor energization element according to any one of claims 1 to 3 , wherein the joint covering body is at least one selected from a fiber reinforced material, a metal material, or a ceramic material. 前記電極端子が、電気良導体であることを特徴とする請求項1に記載の酸化物超電導体通電素子。   The oxide superconductor energization element according to claim 1, wherein the electrode terminal is a good electrical conductor. 前記酸化物超電導体が、単結晶状のREBa2Cu3x相(REはY又は希土類元素から選ばれる1種又は2種以上)中にRE2BaCuO5相が微細分散した酸化物超電導体であることを特徴とする請求項1に記載の酸化物超電導体通電素子。 The oxide superconductor is an oxide superconductor in which a RE 2 BaCuO 5 phase is finely dispersed in a single-crystal REBa 2 Cu 3 O x phase (RE is one or more selected from Y or a rare earth element). The oxide superconductor energization element according to claim 1, wherein: 両端にある2つの前記接合部被覆体が、前記棒状の酸化物超電導体より長い接続体で接続されてなることを特徴とする請求項1〜のいずれかに記載の酸化物超電導体通電素子。 The oxide superconductor energization element according to any one of claims 1 to 6 , wherein the two joint covering bodies at both ends are connected by a connection body longer than the rod-shaped oxide superconductor. . 両端にある2つの前記電極端子が、前記棒状の酸化物超電導体より長い接続体で接続されてなることを特徴とする請求項1〜のいずれかに記載の酸化物超電導体通電素子。 The oxide superconductor energization element according to any one of claims 1 to 7 , wherein the two electrode terminals at both ends are connected by a connector longer than the rod-shaped oxide superconductor . 前記接続体が、電気導電性材料であることを特徴とする請求項7又は8記載の酸化物超電導体通電素子。The oxide superconductor energizing element according to claim 7 or 8, wherein the connection body is an electrically conductive material. 前記酸化物超電導体の表面が前記接着部材で被覆されてなることを特徴とする請求項1〜のいずれかに記載の酸化物超電導体通電素子。 The oxide superconductor energization element according to any one of claims 1 to 9 , wherein a surface of the oxide superconductor is covered with the adhesive member. 両端にある2つの前記接合部被覆体を一体化し、前記接合被覆体が前記棒状の酸化物超電導体より長いものであることを特徴とする請求項1〜1のいずれかに記載の酸化物超電導体通電素子。 Integrating two of the joint covering body at both ends, an oxide superconductor according to any of claims 1 to 1 0, wherein the bond coat material is equal to or is longer than the oxide superconductor of the rod-shaped Body energization element. 前記接合部被覆体が電気導電性材料であることを特徴とする請求項1に記載の酸化物超電導体通電素子。 Oxide superconductor current device according to claim 1 1, wherein the joint portion covering member is an electrical conductive material. 前記接合部被覆体の電気抵抗率が10μΩcm以上、1000Ωcm以下であり、前記酸化物超電導体通電素子が電流リードであることを特徴とする請求項1に記載の酸化物超電導体通電素子。 The electrical resistivity of the bonding portion covering member is higher 10 .mu..OMEGA.cm, at most 1000 .OMEGA.cm, the oxide superconductor current device according to Claim 1 2, wherein the oxide superconductor current element is a current lead. 前記接合部被覆体が樹脂と電気良導体との複合体であることを特徴とする請求項1に記載の酸化物超電導体通電素子。 Oxide superconductor current device according to claim 1 3, characterized in that the joint cover body is a composite of a resin and the electric conductor. 前記電気良導体が炭素繊維であることを特徴とする請求項1に記載の酸化物超電導体通電素子。 Oxide superconductor current device according to claim 1 4 wherein the electrical conductor is characterized in that it is a carbon fiber.
JP2003329871A 2003-09-22 2003-09-22 Oxide superconductor conducting element Expired - Fee Related JP4402928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329871A JP4402928B2 (en) 2003-09-22 2003-09-22 Oxide superconductor conducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329871A JP4402928B2 (en) 2003-09-22 2003-09-22 Oxide superconductor conducting element

Publications (2)

Publication Number Publication Date
JP2005100683A JP2005100683A (en) 2005-04-14
JP4402928B2 true JP4402928B2 (en) 2010-01-20

Family

ID=34459004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329871A Expired - Fee Related JP4402928B2 (en) 2003-09-22 2003-09-22 Oxide superconductor conducting element

Country Status (1)

Country Link
JP (1) JP4402928B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813986B2 (en) * 2006-06-26 2011-11-09 株式会社神戸製鋼所 Superconducting coil and method for preventing quenching of superconducting coil
JP5005582B2 (en) * 2008-03-04 2012-08-22 富士電機株式会社 Superconducting current lead manufacturing method
JP5065102B2 (en) * 2008-03-07 2012-10-31 公益財団法人鉄道総合技術研究所 Manufacturing method of high-temperature superconducting current lead
JP5233391B2 (en) * 2008-04-28 2013-07-10 新日鐵住金株式会社 Oxide superconductor conducting element
JP2010257687A (en) * 2009-04-23 2010-11-11 Junkosha Co Ltd Coiled electric wire
JP5693915B2 (en) * 2010-10-29 2015-04-01 住友重機械工業株式会社 Superconducting current lead and superconducting magnet device
JP6172979B2 (en) * 2013-03-11 2017-08-02 株式会社神戸製鋼所 Superconducting device
JP2015185423A (en) * 2014-03-25 2015-10-22 昭和電線ケーブルシステム株式会社 Superconductive current lead
GB2622799B (en) * 2022-09-27 2025-02-19 United Kingdom Atomic Energy Authority A superconductor connector assembly and methods of assembly and disassembly

Also Published As

Publication number Publication date
JP2005100683A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP4744248B2 (en) RE oxide superconducting wire joining method
JP4402928B2 (en) Oxide superconductor conducting element
US20190172612A1 (en) Oxide superconducting wire
JP5022279B2 (en) Oxide superconducting current lead
Ito et al. Comparison of heat assisted lap joints of high-temperature superconducting tapes with inserted indium foils
JP6471625B2 (en) Superconducting conductive element
JP5037193B2 (en) Oxide superconducting conductor conducting element
JPS6262001B2 (en)
JP2003324013A (en) Oxide superconductor current lead
Luo et al. A comparative study of silver-epoxy and tin-lead solder in their joints with copper, through mechanical and electrical measurements during debonding
JP3887277B2 (en) Oxide superconductor conducting element
JP3783518B2 (en) Superconducting wire connection structure
JP4728847B2 (en) Oxide superconductor conducting element
JP5233391B2 (en) Oxide superconductor conducting element
JP3125532B2 (en) Current lead using oxide superconductor
JP5278109B2 (en) Oxide superconductor conducting element
JP4171253B2 (en) Low resistance composite conductor and method of manufacturing the same
JP2008177245A (en) Oxide superconductor energization element and manufacturing method thereof
US20110045988A1 (en) High-temperature superconducting ribbon conductor composite provided with a cooling layer
JP4857436B2 (en) Oxide superconducting current lead, superconducting system, and method for connecting metal conductor to metal superconducting conductor
JP2770247B2 (en) Method for producing superconducting composite with electrode
JPH0645141A (en) Electrode of oxide superconductor current lead
JP4012422B2 (en) Oxide superconductor current lead
JP2898713B2 (en) Current lead
JPH06333738A (en) Current lead using oxide superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091030

R151 Written notification of patent or utility model registration

Ref document number: 4402928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees