[go: up one dir, main page]

JP2012235008A - Superconductive lead and superconducting magnet device - Google Patents

Superconductive lead and superconducting magnet device Download PDF

Info

Publication number
JP2012235008A
JP2012235008A JP2011103559A JP2011103559A JP2012235008A JP 2012235008 A JP2012235008 A JP 2012235008A JP 2011103559 A JP2011103559 A JP 2011103559A JP 2011103559 A JP2011103559 A JP 2011103559A JP 2012235008 A JP2012235008 A JP 2012235008A
Authority
JP
Japan
Prior art keywords
temperature side
superconductor
plate
superconducting
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011103559A
Other languages
Japanese (ja)
Inventor
Takenao Tsurutome
武尚 鶴留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2011103559A priority Critical patent/JP2012235008A/en
Publication of JP2012235008A publication Critical patent/JP2012235008A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive current lead which can prevent decline in the critical current value of a superconductor or damage on the superconductor when a force acts on the superconductor in a direction rotating about the axis along the extension direction of the superconductor.SOLUTION: The superconductive current lead 10 has a superconductor 12 extending in one direction, two electrode terminals 13, 14 connected, respectively, with both ends 12a, 12b of the superconductor 12, and two support members 15, 16 which support, respectively, the both ends 12a, 12b of the superconductor 12 via the two electrode terminals 13, 14, respectively. The end of the superconductor 12 at least on one side thereof is supported rotatably about the axis along one direction by the support member on the same side as the end.

Description

本発明は、超電導体を用いた超電導電流リード及び超電導マグネット装置に関する。   The present invention relates to a superconducting current lead and a superconducting magnet device using a superconductor.

超電導マグネット装置等の超電導機器には、超電導コイル等の超電導体に電力を供給するための電流リードが用いられている。例えば超電導マグネット装置では、電流リードを介して、室温側又は高温側に設置された電源と、低温側に設置された超電導コイルとが電気的に接続される。このような電流リードとして、電流が流れる際にジュール熱を発生させないように、超電導体、中でも臨界温度の高いY系、Bi系等の酸化物超電導材料を用いるのが一般的である。以下、超電導体を用いた電流リードを超電導電流リードという。   In a superconducting device such as a superconducting magnet device, a current lead for supplying power to a superconductor such as a superconducting coil is used. For example, in a superconducting magnet device, a power source installed on a room temperature side or a high temperature side and a superconducting coil installed on a low temperature side are electrically connected via a current lead. As such a current lead, it is common to use a superconductor, in particular, an oxide superconducting material such as a Y-based or Bi-based material having a high critical temperature so as not to generate Joule heat when a current flows. Hereinafter, a current lead using a superconductor is referred to as a superconducting current lead.

また、超電導電流リードの超電導体として、最近は、超電導材料を金属材料と複合化し、線材状に加工した超電導線材、特に超電導テープ線材が、用いられるようになってきている。超電導線材又は超電導テープ線材は、比較的容易に製造することができるため、例えばバルク状超電導体等の他の超電導体と比較して製造コストが低いという利点を有する。   Further, as a superconductor of a superconducting current lead, recently, a superconducting wire obtained by combining a superconducting material with a metal material and processed into a wire shape, particularly a superconducting tape wire, has come to be used. Since the superconducting wire or the superconducting tape wire can be manufactured relatively easily, it has an advantage that the manufacturing cost is low as compared with other superconductors such as a bulk superconductor.

超電導電流リードの超電導体として超電導テープ線材を用いた超電導マグネット装置では、超電導コイルが発生する磁場が、超電導テープ線材に流れる電流と交差する方向に印加されることがある。すると、超電導電流リードに流れる電流と超電導コイルが発生する磁場とにより生ずるローレンツ力が、超電導テープ線材に作用する。   In a superconducting magnet device using a superconducting tape wire as a superconductor of a superconducting current lead, the magnetic field generated by the superconducting coil may be applied in a direction crossing the current flowing through the superconducting tape wire. Then, the Lorentz force generated by the current flowing through the superconducting current lead and the magnetic field generated by the superconducting coil acts on the superconducting tape wire.

また、例えば超電導マグネット装置を冷却する際に、超電導体テープ線材を固定する部材の収縮に伴って、超電導体テープ線材が延在する方向に圧縮する力が作用し、超電導体テープ線材に歪が発生することがある。   In addition, for example, when cooling the superconducting magnet device, as the member for fixing the superconductor tape wire contracts, a compressive force acts in the direction in which the superconductor tape wire extends, and the superconductor tape wire is distorted. May occur.

例えば超電導マグネット装置を冷却する際に電流リードに歪が発生するのを防止するために、電流リードを、導電性薄板を重ねて形成されたフレキシブルを介して高温側の端子に接続する方法がある(例えば特許文献1参照。)。   For example, there is a method of connecting a current lead to a terminal on the high temperature side through a flexible formed by stacking conductive thin plates in order to prevent distortion of the current lead when cooling the superconducting magnet device. (For example, refer to Patent Document 1).

特開平04−351460号公報Japanese Patent Laid-Open No. 04-351460

ところが、超電導電流リードを、上記したような、導電性薄板を重ねて形成されたフレキシブルを介して高温側の端子に接続する方法には、次のような問題がある。   However, the method of connecting the superconducting current lead to the terminal on the high temperature side through the flexible formed by overlapping the conductive thin plates as described above has the following problems.

特許文献1に開示される方法では、超電導テープ線材のテープ面に垂直な方向にローレンツ力が作用する場合には、歪の発生を防止することができる。そして、歪の発生に伴う超電導テープ線材の臨界電流値の低下又は超電導体テープ線材の破損を防止することができる。   In the method disclosed in Patent Document 1, when Lorentz force acts in a direction perpendicular to the tape surface of the superconducting tape wire, generation of distortion can be prevented. And the fall of the critical current value of the superconducting tape wire accompanying generation | occurrence | production of a distortion, or the failure | damage of a superconductor tape wire can be prevented.

しかし、超電導マグネットとの位置関係又はその他の部材との位置関係によっては、超電導テープ線材が延在する方向に直交する方向であって、かつ、テープ面に平行な方向以外の方向に磁場が印加されることがある。このような方向に磁場が印加されると、超電導テープ線材に対し、超電導テープ線材が延在する方向に沿った軸を中心として回動する方向にローレンツ力が作用することがある。通常、超電導体テープ線材は、超電導体テープ線材が延在する方向に沿った軸を中心として回動する方向には変位できないため、超電導テープ線材に歪みが発生し、超電導テープ線材の臨界電流値の低下又は超電導テープ線材の破損を引き起こすおそれがある。   However, depending on the positional relationship with the superconducting magnet or other members, a magnetic field is applied in a direction perpendicular to the direction in which the superconducting tape wire extends and other than the direction parallel to the tape surface. May be. When a magnetic field is applied in such a direction, Lorentz force may act on the superconducting tape wire in a direction that rotates about an axis along the direction in which the superconducting tape wire extends. Normally, superconducting tape wire cannot be displaced in the direction of rotation about the axis along the direction in which the superconductor tape wire extends, so that distortion occurs in the superconducting tape wire, and the critical current value of the superconducting tape wire There is a risk of lowering the temperature or causing damage to the superconducting tape wire.

また、上記した課題は、超電導電流リードの超電導体として超電導テープ線材以外の超電導体を用いた場合、あるいは、ローレンツ力に代え、冷却の際、収縮に伴う力が作用する場合にも、共通する課題である。   The above-mentioned problems are common even when a superconductor other than the superconducting tape wire is used as the superconductor of the superconducting current lead, or when a force accompanying shrinkage acts upon cooling instead of the Lorentz force. It is a problem.

本発明は上記の点に鑑みてなされたものであり、超電導体に対し、超電導体が延在する方向に沿った軸を中心として回動する方向に力が作用したときに、超電導体の臨界電流値の低下又は超電導体の破損を防止することができる超電導電流リードを提供する。   The present invention has been made in view of the above points. When a force is applied to a superconductor in a direction rotating around an axis along the direction in which the superconductor extends, the criticality of the superconductor is determined. A superconducting current lead capable of preventing a decrease in current value or damage to a superconductor is provided.

上記の課題を解決するために本発明では、次に述べる手段を講じたことを特徴とするものである。   In order to solve the above problems, the present invention is characterized by the following measures.

本発明は、一の方向に沿って延在する超電導体と、各々が前記超電導体の両端部の各々に接続された2つの電極端子と、各々が前記2つの電極端子の各々を介して前記超電導体の両端部の各々を支持する2つの支持部材とを有し、前記超電導体の少なくとも一方の側の端部は、前記端部と同一側の支持部材に、前記一の方向に沿った軸を中心として回動可能に支持されている、超電導電流リードである。   The present invention provides a superconductor extending along one direction, two electrode terminals each connected to each of both ends of the superconductor, and each via the two electrode terminals. Two support members for supporting each of both ends of the superconductor, and at least one end of the superconductor is along the one direction with the support member on the same side as the end. A superconducting current lead supported so as to be rotatable about an axis.

また、本発明は、上述の超電導電流リードにおいて、前記一方の側の端部に接続された電極端子は、可撓性部材よりなる接続部材であり、回動可能な前記端部は、前記接続部材を介して前記端部と同一側の支持部材に支持されている。   Further, in the present invention, in the above-described superconducting current lead, the electrode terminal connected to the end on the one side is a connection member made of a flexible member, and the end that can be rotated is connected to the connection It is supported by a support member on the same side as the end through a member.

また、本発明は、上述の超電導電流リードにおいて、可撓性部材よりなる接続部材を有し、回動可能な前記端部に接続された電極端子は、前記接続部材を介して前記端部と同一側の支持部材に支持されている。   In the superconducting current lead described above, the present invention has a connecting member made of a flexible member, and the electrode terminal connected to the rotatable end is connected to the end through the connecting member. It is supported by the support member on the same side.

また、本発明は、上述の超電導電流リードにおいて、前記接続部材は、前記超電導体側から前記支持部材側に向かう方向を長手方向として形成された板状部材を含み、前記板状部材は、前記超電導体側から前記支持部材側に向かう途中に、他の部分より板幅が狭い幅狭部を有する。   Further, the present invention provides the above-described superconducting current lead, wherein the connection member includes a plate-like member formed with a direction from the superconductor side toward the support member as a longitudinal direction, and the plate-like member includes the superconducting member. On the way from the body side to the support member side, a narrow portion having a narrower plate width than other portions is provided.

また、本発明は、上述の超電導電流リードにおいて、前記接続部材は、前記超電導体側から前記支持部材側に向かう方向を長手方向として形成された2つの板状部材と、各々が、前記2つの板状部材を、前記超電導体側から前記支持部材側に向かう方向に沿って直列に接続するとともに、前記板状部材の板幅方向に沿って互いに離隔して設けられた複数の細板部材よりなる細板部とを有し、前記複数の細板部材の前記板幅方向の幅寸法の総和が、前記板幅より狭い。   The present invention is also directed to the above-described superconducting current lead, wherein the connecting member includes two plate-like members formed with the direction from the superconductor side to the support member side as a longitudinal direction, and each of the two plates. Are connected in series along the direction from the superconductor side to the support member side, and are formed of a plurality of thin plate members provided apart from each other along the plate width direction of the plate-like member. A sum of width dimensions of the plurality of thin plate members in the plate width direction is narrower than the plate width.

また、本発明は、上述の超電導電流リードと、前記超電導電流リードの低温側に接続されている超電導コイルとを有する、超電導マグネット装置である。   The present invention is also a superconducting magnet device having the superconducting current lead described above and a superconducting coil connected to the low temperature side of the superconducting current lead.

本発明によれば、超電導電流リードの超電導体に対し、超電導体が延在する方向に沿った軸を中心として回動する方向に力が作用したときに、超電導体の臨界電流値の低下又は超電導体の破損を防止することができる。   According to the present invention, when a force acts on the superconductor of the superconducting current lead in the direction of rotation about the axis along the direction in which the superconductor extends, the critical current value of the superconductor decreases or It is possible to prevent damage to the superconductor.

実施の形態に係る超電導マグネット装置の構成を示す断面図である。It is sectional drawing which shows the structure of the superconducting magnet apparatus which concerns on embodiment. 実施の形態に係る超電導電流リードの斜視図である。It is a perspective view of a superconducting current lead according to an embodiment. 可撓性部材よりなる板状部材の一例について、一部を拡大して示す斜視図である。It is a perspective view which expands and shows a part about an example of the plate-shaped member which consists of a flexible member. 可撓性部材よりなる板状部材の他の例について、一部を拡大して示す斜視図である。It is a perspective view which expands and shows a part about the other example of the plate-shaped member which consists of a flexible member. 可撓性部材よりなる板状部材の他の例について、一部を拡大して示す斜視図である。It is a perspective view which expands and shows a part about the other example of the plate-shaped member which consists of a flexible member. 可撓性部材よりなる板状部材の他の例について、一部を拡大して示す斜視図である。It is a perspective view which expands and shows a part about the other example of the plate-shaped member which consists of a flexible member. 比較例に係る超電導電流リードの斜視図(その1)である。It is a perspective view (the 1) of the superconducting current lead concerning a comparative example. 比較例に係る超電導電流リードの斜視図(その2)である。It is a perspective view (the 2) of the superconducting current lead concerning a comparative example. 比較例に係る超電導電流リードの斜視図(その3)である。It is a perspective view (the 3) of the superconducting electric current lead concerning a comparative example. 実施の形態の変形例に係る超電導電流リードの斜視図である。It is a perspective view of a superconducting current lead according to a modification of the embodiment.

次に、本発明を実施するための形態について図面と共に説明する。
(実施の形態)
<超電導マグネット装置>
次に、図1を参照し、実施の形態に係る超電導マグネット装置1について説明する。図1は、超電導マグネット装置1の構成を示す断面図である。
Next, a mode for carrying out the present invention will be described with reference to the drawings.
(Embodiment)
<Superconducting magnet device>
Next, the superconducting magnet device 1 according to the embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view showing the configuration of the superconducting magnet device 1.

本実施の形態に係る超電導マグネット装置1は、図2を用いて後述する超電導電流リード10を冷凍機冷却型超電導マグネット装置に適用したものである。冷凍機として、例えば1段式又は2段式のギフォード・マクマホン(Gifford-McMahon:GM)冷凍機を用いることができる。   The superconducting magnet device 1 according to the present embodiment is obtained by applying a superconducting current lead 10 described later with reference to FIG. 2 to a refrigerator-cooled superconducting magnet device. As the refrigerator, for example, a one-stage or two-stage Gifford-McMahon (GM) refrigerator can be used.

超電導マグネット装置1は、真空容器2、超電導コイル3、伝熱部材4、荷重支持体5、熱シールド板6、GM冷凍機7、電流導入端子8、1段電流ライン9、超電導電流リード10、及び2段電流ライン11を有する。   The superconducting magnet device 1 includes a vacuum vessel 2, a superconducting coil 3, a heat transfer member 4, a load support 5, a heat shield plate 6, a GM refrigerator 7, a current introduction terminal 8, a first stage current line 9, a superconducting current lead 10, And a two-stage current line 11.

真空容器2は、例えば略円筒状の形状を有している。真空容器2の上面には、GM冷凍機7が固定されている。   The vacuum vessel 2 has, for example, a substantially cylindrical shape. A GM refrigerator 7 is fixed on the upper surface of the vacuum vessel 2.

超電導コイル3は、超電導線材により形成されている。超電導コイル3は、熱シールド板6で囲まれた空間に設けられている。超電導コイル3は、伝熱部材4を介して後述する低温側冷却ステージ7dに接続されており、GM冷凍機7により冷却されて超電導状態となる。   Superconducting coil 3 is formed of a superconducting wire. The superconducting coil 3 is provided in a space surrounded by the heat shield plate 6. The superconducting coil 3 is connected to a later-described low-temperature side cooling stage 7d via the heat transfer member 4, and is cooled by the GM refrigerator 7 to be in a superconducting state.

超電導コイル3は、後述する超電導電流リード10の低温側に接続されている。そして、超電導コイル3は、真空容器2の外部に設けられた電源8aから、後述する1段電流ライン9、超電導電流リード10、及び2段電流ライン11を介して電力が供給される。   The superconducting coil 3 is connected to a low temperature side of a superconducting current lead 10 described later. The superconducting coil 3 is supplied with electric power from a power source 8 a provided outside the vacuum vessel 2 through a first-stage current line 9, a superconducting current lead 10, and a two-stage current line 11 described later.

図1に示す例では、超電導コイル3が囲繞する空間は熱シールド板6で囲まれた空間に含まれている。しかし、真空容器2及び熱シールド板6に円筒状の形状を有する凹部を設け、超電導コイル3が、凹部により画成される空間を囲繞するようにしてもよい。   In the example shown in FIG. 1, the space surrounded by the superconducting coil 3 is included in the space surrounded by the heat shield plate 6. However, a recess having a cylindrical shape may be provided in the vacuum vessel 2 and the heat shield plate 6 so that the superconducting coil 3 surrounds a space defined by the recess.

伝熱部材4は、超電導コイル3と後述する低温側冷却ステージ7dとの間に設けられている。伝熱部材4は、超電導コイル3と低温側冷却ステージ7dと熱的に接続し、低温側冷却ステージ7dの冷熱を超電導コイル3に伝熱するものである。   The heat transfer member 4 is provided between the superconducting coil 3 and a low-temperature side cooling stage 7d described later. The heat transfer member 4 is thermally connected to the superconducting coil 3 and the low temperature side cooling stage 7 d, and transfers the cold heat of the low temperature side cooling stage 7 d to the superconducting coil 3.

荷重支持体5は、真空容器2と伝熱部材4との間に設けられている。荷重支持体5は、伝熱部材4を真空容器2に取り付けることによって、伝熱部材4に取り付けられた超電導コイル3の荷重を支持するためのものである。   The load support 5 is provided between the vacuum vessel 2 and the heat transfer member 4. The load support 5 is for supporting the load of the superconducting coil 3 attached to the heat transfer member 4 by attaching the heat transfer member 4 to the vacuum vessel 2.

熱シールド板6は、真空容器2の内部に設けられている。熱シールド板6は、超電導コイル3へ侵入する輻射熱を抑制するためのものである。熱シールド板6は、銅、アルミニウム等の電気伝導率の大きい材料により形成されており、例えば略円筒状の形状を有している。   The heat shield plate 6 is provided inside the vacuum vessel 2. The heat shield plate 6 is for suppressing radiant heat entering the superconducting coil 3. The heat shield plate 6 is made of a material having a high electric conductivity such as copper or aluminum, and has, for example, a substantially cylindrical shape.

GM冷凍機7は、1段目冷却シリンダ7a及び2段目冷却シリンダ7bよりなる多段冷却シリンダ構造を有している。1段目冷却シリンダ7aは、真空容器2の内部に挿入されており、2段目冷却シリンダ7bは、熱シールド板6で囲まれた空間に挿入されている。   The GM refrigerator 7 has a multi-stage cooling cylinder structure including a first-stage cooling cylinder 7a and a second-stage cooling cylinder 7b. The first-stage cooling cylinder 7 a is inserted into the vacuum vessel 2, and the second-stage cooling cylinder 7 b is inserted into a space surrounded by the heat shield plate 6.

熱シールド板6の天板の上部には、高温側冷却ステージ7cが固定されており、高温側冷却ステージ7cには、1段目冷却シリンダ7aが接続されている。高温側冷却ステージ7cは、1段目冷却シリンダ7aにより冷却される。熱シールド板6の天板の下部には、高温側冷却ステージ7cと接続するように2段目冷却シリンダ7bが設けられている。2段目冷却シリンダ7bの下側先端には、低温側冷却ステージ7dが接続されている。低温側冷却ステージ7dは、2段目冷却シリンダ7bにより冷却される。高温側冷却ステージ7c及び低温側冷却ステージ7dは、銅、アルミニウム等の高熱伝導率部材で形成されている。   A high temperature side cooling stage 7c is fixed to the top of the top plate of the heat shield plate 6, and a first stage cooling cylinder 7a is connected to the high temperature side cooling stage 7c. The high temperature side cooling stage 7c is cooled by the first stage cooling cylinder 7a. A second stage cooling cylinder 7b is provided below the top plate of the heat shield plate 6 so as to be connected to the high temperature side cooling stage 7c. A low temperature side cooling stage 7d is connected to the lower end of the second stage cooling cylinder 7b. The low temperature side cooling stage 7d is cooled by the second stage cooling cylinder 7b. The high temperature side cooling stage 7c and the low temperature side cooling stage 7d are formed of a high thermal conductivity member such as copper or aluminum.

電流導入端子8、1段電流ライン9、超電導電流リード10、及び2段電流ライン11は、電源8aから超電導コイル3に電流を流すためのものである。電源8aは、電流導入端子8と接続され、更に、1段電流ライン9を通り、熱シールド板6に接触させて冷却した後、超電導電流リード10の高温側と接続される。そして、超電導電流リード10の低温側は、伝熱部材4を介し、超電導コイル3の図示しないコイル電極と接続される。   The current introduction terminal 8, the first stage current line 9, the superconducting current lead 10, and the second stage current line 11 are for flowing current from the power source 8a to the superconducting coil 3. The power source 8 a is connected to the current introduction terminal 8, further passes through the first-stage current line 9, is brought into contact with the heat shield plate 6, is cooled, and is then connected to the high temperature side of the superconducting current lead 10. The low temperature side of the superconducting current lead 10 is connected to a coil electrode (not shown) of the superconducting coil 3 through the heat transfer member 4.

1段電流ライン9として、銅、アルミニウム等の電気伝導率の大きい材料を用いることができる。2段電流ライン11として、銅、アルミニウム等の電気伝導率の大きい材料を用いることができ、あるいは、これらの電気伝導率の大きい材料と併せてBi2223、Bi2212、Y123、MgB等の高温超電導材料を用いることができる。 As the first stage current line 9, a material having a high electrical conductivity such as copper or aluminum can be used. As the two-stage current line 11, a material having a high electrical conductivity such as copper or aluminum can be used, or a high-temperature superconducting material such as Bi2223, Bi2212, Y123, or MgB 2 in combination with a material having a high electrical conductivity. Can be used.

本実施の形態では、冷凍機冷却型超電導マグネット装置について説明した。しかし、冷凍機冷却型超電導マグネット装置に代え、例えば液体ヘリウムを冷媒とする液体冷却型超電導マグネット装置でもよく、あるいは、例えば液体ヘリウムの蒸発ガスを冷媒とするガス冷却型超電導マグネット装置でもよい。
<超電導電流リード>
次に、図2を参照し、実施の形態に係る超電導電流リード10について説明する。
In the present embodiment, the refrigerator cooled superconducting magnet device has been described. However, instead of the refrigerator-cooled superconducting magnet device, for example, a liquid-cooled superconducting magnet device using liquid helium as a coolant may be used, or a gas-cooled superconducting magnet device using evaporating gas of liquid helium as a coolant, for example.
<Superconducting current lead>
Next, the superconducting current lead 10 according to the embodiment will be described with reference to FIG.

図2は、超電導電流リード10の斜視図である。   FIG. 2 is a perspective view of the superconducting current lead 10.

図2に示すように、本実施の形態に係る超電導電流リード10は、超電導体12、高温側電極端子13、低温側電極端子14、高温側支持部材15及び低温側支持部材16を有する。   As shown in FIG. 2, the superconducting current lead 10 according to the present embodiment includes a superconductor 12, a high temperature side electrode terminal 13, a low temperature side electrode terminal 14, a high temperature side support member 15, and a low temperature side support member 16.

高温側電極端子13は、超電導電流リード10の一端に設けられた電極端子である。高温側電極端子13の低温側は、超電導体12の高温側端部12aに接続されており、高温側電極端子13の高温側は、高温側支持部材15に接続されている。すなわち高温側支持部材15は、高温側電極端子13を介して超電導体12の高温側端部12aを支持する。高温側電極端子13は、電気の良導体である銅、アルミニウム、真鍮等の金属により構成されている。また、高温側電極端子13と超電導体12の高温側端部12aとの間は、例えば半田、インジウム、導電性樹脂等の導電性材料により接合されている。   The high temperature side electrode terminal 13 is an electrode terminal provided at one end of the superconducting current lead 10. The low temperature side of the high temperature side electrode terminal 13 is connected to the high temperature side end 12 a of the superconductor 12, and the high temperature side of the high temperature side electrode terminal 13 is connected to the high temperature side support member 15. That is, the high temperature side support member 15 supports the high temperature side end portion 12 a of the superconductor 12 through the high temperature side electrode terminal 13. The high temperature side electrode terminal 13 is comprised with metals, such as copper, aluminum, and brass, which are good electrical conductors. Further, the high temperature side electrode terminal 13 and the high temperature side end portion 12a of the superconductor 12 are joined by a conductive material such as solder, indium, or conductive resin.

高温側支持部材15は、高温側電極端子13を介して超電導体12の高温側端部12aと電気的に接続されていてもよい。このとき、高温側支持部材15と高温側電極端子13との間は、例えば半田、インジウム、導電性樹脂等の導電性材料により接合されている。また、高温側支持部材15の高温側は、超電導電流リード10の高温側(1段電流ライン9側)に接続されている。なお、高温側支持部材15は、熱シールド板6を介して、又は直接に、高温側冷却ステージ7cに熱的に接続されている。   The high temperature side support member 15 may be electrically connected to the high temperature side end portion 12 a of the superconductor 12 via the high temperature side electrode terminal 13. At this time, the high temperature side support member 15 and the high temperature side electrode terminal 13 are joined by a conductive material such as solder, indium, or conductive resin. Further, the high temperature side of the high temperature side support member 15 is connected to the high temperature side (one-stage current line 9 side) of the superconducting current lead 10. The high temperature side support member 15 is thermally connected to the high temperature side cooling stage 7c via the heat shield plate 6 or directly.

低温側電極端子14は、超電導電流リード10の他端に設けられた電極端子である。低温側電極端子14の高温側は、超電導体12の低温側端部12bに接続されており、低温側電極端子14の低温側は、低温側支持部材16に接続されている。すなわち低温側支持部材16は、低温側電極端子14を介して超電導体12の低温側端部12bを支持する。低温側電極端子14は、電気の良導体である銅、アルミニウム、真鍮等の金属により構成されている。また、低温側電極端子14と超電導体12の低温側端部12bとの間は、例えば半田、インジウム、導電性樹脂等の導電性材料により接合されている。   The low temperature side electrode terminal 14 is an electrode terminal provided at the other end of the superconducting current lead 10. The high temperature side of the low temperature side electrode terminal 14 is connected to the low temperature side end 12 b of the superconductor 12, and the low temperature side of the low temperature side electrode terminal 14 is connected to the low temperature side support member 16. That is, the low temperature side support member 16 supports the low temperature side end portion 12 b of the superconductor 12 via the low temperature side electrode terminal 14. The low temperature side electrode terminal 14 is comprised with metals, such as copper, aluminum, and brass, which are good electrical conductors. Further, the low temperature side electrode terminal 14 and the low temperature side end portion 12b of the superconductor 12 are joined by a conductive material such as solder, indium, conductive resin, or the like.

低温側支持部材16は、低温側電極端子14を介して超電導体12の低温側端部12bと電気的に接続されていてもよい。このとき、低温側支持部材16と低温側電極端子14との間は、例えば半田、インジウム、導電性樹脂等の導電性材料により接合されている。また、低温側支持部材16の低温側は、超電導電流リード10の低温側(2段電流ライン11側)に接続されている。なお、低温側支持部材16は、伝熱部材4を介して低温側冷却ステージ7dに熱的に接続されている。   The low temperature side support member 16 may be electrically connected to the low temperature side end portion 12 b of the superconductor 12 through the low temperature side electrode terminal 14. At this time, the low temperature side support member 16 and the low temperature side electrode terminal 14 are joined by a conductive material such as solder, indium, conductive resin, or the like. The low temperature side of the low temperature side support member 16 is connected to the low temperature side (two-stage current line 11 side) of the superconducting current lead 10. The low temperature side support member 16 is thermally connected to the low temperature side cooling stage 7d through the heat transfer member 4.

超電導体12は、高温側電極端子13と低温側電極端子14とを接続するように設けられている。また、超電導体12は、高温側電極端子13から低温側電極端子14に向かって延在するように設けられている。   The superconductor 12 is provided so as to connect the high temperature side electrode terminal 13 and the low temperature side electrode terminal 14. The superconductor 12 is provided so as to extend from the high temperature side electrode terminal 13 toward the low temperature side electrode terminal 14.

以下、本実施の形態では、超電導体12が超電導テープ線材よりなる例について説明する(以下の変形例でも同様。)。そして、後述する図7から図9も含め、図2において、超電導テープ線材よりなる超電導体12(以下「超電導テープ線材12」という。)が延在する方向をX方向とする。そして、超電導テープ線材12が延在する方向に直交する方向であって、かつ、超電導テープ線材12のテープ面(以下、単に「テープ面」という。)に平行な方向をY方向とし、超電導テープ線材12が延在する方向に直交する方向であって、かつ、テープ面に垂直な方向をZ方向とする。また、超電導テープ線材12が延在する方向に垂直な面(YZ面)においてY方向からZ方向に回転する方向をθ方向とする。   Hereinafter, in this embodiment, an example in which the superconductor 12 is made of a superconducting tape wire will be described (the same applies to the following modifications). In FIG. 2 including FIGS. 7 to 9 described later, the direction in which the superconductor 12 made of the superconducting tape wire (hereinafter referred to as “superconducting tape wire 12”) extends is defined as the X direction. Then, the direction perpendicular to the direction in which the superconducting tape wire 12 extends and parallel to the tape surface of the superconducting tape wire 12 (hereinafter simply referred to as “tape surface”) is defined as the Y direction, and the superconducting tape. The direction perpendicular to the direction in which the wire 12 extends and perpendicular to the tape surface is taken as the Z direction. Further, the direction rotating from the Y direction to the Z direction on the plane (YZ plane) perpendicular to the direction in which the superconducting tape wire 12 extends is defined as the θ direction.

ただし、超電導体12が超電導テープ線材により構成される場合のみならず、超電導体12が延在する方向に垂直な断面の形状が、その断面に平行な異なる二つの方向に沿った幅寸法のうち一方が他方に比べて短い場合、例えば矩形形状であってもよい。   However, not only when the superconductor 12 is composed of a superconducting tape wire, but the shape of the cross section perpendicular to the direction in which the superconductor 12 extends is out of the width dimensions along two different directions parallel to the cross section. When one is shorter than the other, for example, it may be rectangular.

超電導体12として、例えばBi2223、Bi2212、Y123、MgB等の高温超電導材料を用いることができる。また、超電導体12が超電導テープ線材であるときは、例えば、銀等の金属を母材としてBi2223、Bi2212等の多芯線が被覆されてなる高温超電導線材、あるいは、ハステロイ等の金属テープ基材上にY123等の薄膜を堆積してなる高温超電導線材、等の各種の超電導テープ線材を用いることができる。 As the superconductor 12 can be used, for example Bi-2223-based, Bi2212, Y123, high-temperature superconducting material MgB 2, or the like. Further, when the superconductor 12 is a superconducting tape wire, for example, on a high temperature superconducting wire covered with a multi-core wire such as Bi2223 or Bi2212 using a metal such as silver as a base material or a metal tape base material such as Hastelloy Various superconducting tape wires such as a high-temperature superconducting wire obtained by depositing a thin film such as Y123 on the surface can be used.

図2に示すように、超電導体12は、高温側電極端子13及び低温側電極端子14に形成された溝部31aに、例えば半田接合により、埋め込まれている。具体的には、高温側電極端子13及び低温側電極端子14に形成された溝部31aに半田めっきを施すことによって、溝部31aの表面を半田により薄く被覆する。そして、薄く半田により被覆された溝部31aに、超電導体12を装填し、超電導体12が装填された状態の溝部31aに溶融された半田を充填し、半田を固化することによって、超電導体12を半田接合する。このような方法により、超電導体12を確実に高温側電極端子13及び低温側電極端子14に固定することができる。   As shown in FIG. 2, the superconductor 12 is embedded in the groove 31a formed in the high temperature side electrode terminal 13 and the low temperature side electrode terminal 14 by, for example, solder bonding. Specifically, the surface of the groove 31a is thinly covered with solder by performing solder plating on the groove 31a formed in the high temperature side electrode terminal 13 and the low temperature side electrode terminal 14. Then, the superconductor 12 is loaded into the groove 31a thinly covered with the solder, the melted solder is filled into the groove 31a in the state in which the superconductor 12 is loaded, and the solder is solidified, whereby the superconductor 12 is Solder joint. By such a method, the superconductor 12 can be reliably fixed to the high temperature side electrode terminal 13 and the low temperature side electrode terminal 14.

以下、本実施の形態では、高温側端部12aが高温側支持部材15に、図2に示すθ方向に回動可能に支持されており、低温側端部12bが低温側支持部材16に、図2に示すθ方向に回動可能に支持されている例について、説明する。また、高温側電極端子13及び低温側電極端子14がともに可撓性部材よりなる接続部材である例について、説明する。   Hereinafter, in the present embodiment, the high temperature side end 12a is supported by the high temperature side support member 15 so as to be rotatable in the θ direction shown in FIG. 2, and the low temperature side end 12b is supported by the low temperature side support member 16. An example in which it is supported so as to be rotatable in the θ direction shown in FIG. 2 will be described. An example in which the high temperature side electrode terminal 13 and the low temperature side electrode terminal 14 are both connecting members made of a flexible member will be described.

ただし、超電導体12の少なくとも一方の側の端部が、その端部と同一側の支持部材に、超電導体12が延在する方向に沿った軸を中心として回動可能に支持されていればよい。また、超電導体12が延在する方向に沿った軸を中心として回動可能な端部に接続された電極端子が、可撓性部材よりなる接続部材であればよい。   However, if the end of at least one side of the superconductor 12 is supported by the support member on the same side as the end so as to be rotatable about an axis along the direction in which the superconductor 12 extends. Good. Moreover, the electrode terminal connected to the edge part which can be rotated centering | focusing on the axis | shaft along the direction where the superconductor 12 extends should just be a connection member which consists of a flexible member.

本実施の形態では、超電導体12の高温側端部12aは、可撓性部材よりなる高温側電極端子13を介して高温側支持部材15に、X軸に沿った軸X1を中心としてθ方向に回動可能に支持されている。また、超電導体12の低温側端部12bは、可撓性部材よりなる低温側電極端子14を介して低温側支持部材16に、X軸に沿った軸X1を中心としてθ方向に回動可能に支持されている。   In the present embodiment, the high temperature side end portion 12a of the superconductor 12 is directed to the high temperature side support member 15 via the high temperature side electrode terminal 13 made of a flexible member in the θ direction about the axis X1 along the X axis. Is rotatably supported. Further, the low temperature side end portion 12b of the superconductor 12 can be rotated in the θ direction about the axis X1 along the X axis to the low temperature side support member 16 via the low temperature side electrode terminal 14 made of a flexible member. It is supported by.

高温側電極端子13は、端子部材31と板状部材32を含む。端子部材31は、溝部31aが形成されており、前述したように、溝部31aに超電導体12の高温側端部12aが例えば半田、インジウム、導電性樹脂等の導電性材料により接合されている。板状部材32は、端子部材31と高温側支持部材15との間に設けられている。板状部材32は、超電導体12側から高温側支持部材15側に向かう方向を長手方向として形成されている。図2に示すように、板状部材32は、超電導体12側から高温側支持部材15側に向かう途中で2回屈曲し、S字形状を有していてもよい。また、板状部材32は、可撓性部材よりなる。なお、高温側電極端子13では、板状部材32は、端子部材31と接合されていてもよく、端子部材31と一体に形成されていてもよい。   The high temperature side electrode terminal 13 includes a terminal member 31 and a plate member 32. The terminal member 31 has a groove portion 31a. As described above, the high temperature side end portion 12a of the superconductor 12 is joined to the groove portion 31a by a conductive material such as solder, indium, or conductive resin. The plate member 32 is provided between the terminal member 31 and the high temperature side support member 15. The plate-like member 32 is formed with the direction from the superconductor 12 side toward the high temperature side support member 15 as the longitudinal direction. As shown in FIG. 2, the plate-like member 32 may be bent twice in the middle from the superconductor 12 side to the high temperature side support member 15 side, and may have an S-shape. The plate-like member 32 is made of a flexible member. In the high temperature side electrode terminal 13, the plate member 32 may be joined to the terminal member 31 or may be formed integrally with the terminal member 31.

低温側電極端子14は、端子部材31と板状部材32を含む。端子部材31は、溝部31aが形成されており、前述したように、溝部31aに超電導体12の低温側端部12bが例えば半田、インジウム、導電性樹脂等の導電性材料により接合されている。板状部材32は、超電導体12側から低温側支持部材16側に向かう方向を長手方向として形成されている。図2に示すように、板状部材32は、超電導体12側から低温側支持部材16側に向かう途中で2回屈曲し、S字形状を有していてもよい。また、板状部材32は、可撓性部材よりなる。なお、低温側電極端子14でも、板状部材32は、端子部材31と接合されていてもよく、端子部材31と一体に形成されていてもよい。   The low temperature side electrode terminal 14 includes a terminal member 31 and a plate member 32. The terminal member 31 has a groove 31a. As described above, the low temperature side end 12b of the superconductor 12 is joined to the groove 31a by a conductive material such as solder, indium, or conductive resin. The plate-like member 32 is formed with the direction from the superconductor 12 side toward the low temperature side support member 16 as the longitudinal direction. As shown in FIG. 2, the plate-like member 32 may be bent twice in the middle from the superconductor 12 side toward the low temperature side support member 16 side, and may have an S shape. The plate-like member 32 is made of a flexible member. In the low temperature side electrode terminal 14, the plate member 32 may be joined to the terminal member 31 or may be formed integrally with the terminal member 31.

図3は、可撓性部材よりなる板状部材32の一例について、一部を拡大して示す斜視図である。   FIG. 3 is a partially enlarged perspective view showing an example of the plate-like member 32 made of a flexible member.

高温側電極端子13の板状部材32は、超電導体12側から高温側支持部材15側に向かう途中に、他の部分より板幅が狭い幅狭部33を有していてもよい。同様に、低温側電極端子14の板状部材32は、超電導体12側から低温側支持部材16側に向かう途中に、他の部分より板幅が狭い幅狭部33を有していてもよい。   The plate-like member 32 of the high-temperature side electrode terminal 13 may have a narrow portion 33 whose plate width is narrower than other portions on the way from the superconductor 12 side to the high-temperature side support member 15 side. Similarly, the plate-like member 32 of the low temperature side electrode terminal 14 may have a narrow portion 33 whose plate width is narrower than other portions on the way from the superconductor 12 side to the low temperature side support member 16 side. .

幅狭部33は、S字形状を構成するために板状部材32が2回屈曲する2つの屈曲部分のいずれかに設けられていてもよく、2つの屈曲部分以外の部分に設けられていてもよい。また、図3に示す例では、幅狭部33は、板状部材32の板幅方向であるY方向に沿ってY方向正負両側からスリット状に切り込みが形成され、板幅方向中央において板幅が狭くなって括れた部分である。   The narrow portion 33 may be provided in one of two bent portions where the plate-like member 32 is bent twice in order to form an S shape, and is provided in a portion other than the two bent portions. Also good. Further, in the example shown in FIG. 3, the narrow portion 33 is formed with slits from both the positive and negative sides in the Y direction along the Y direction which is the plate width direction of the plate member 32, and the plate width at the center in the plate width direction. Is a narrowed part.

このように、幅狭部33を設けることによって、板状部材32に可撓性を付与することができる。そして、板状部材32の長手方向に沿って両側から幅狭部33を挟む部分を33a、33bとするとき、部分33aが部分33bに対して、超電導体12が延在する方向に沿った軸を中心として回動可能にすることができる。   Thus, by providing the narrow portion 33, the plate-like member 32 can be provided with flexibility. And when the part which pinches | interposes the narrow part 33 from both sides along the longitudinal direction of the plate-shaped member 32 is set to 33a, 33b, the axis | shaft along the direction in which the superconductor 12 extends with respect to the part 33b is 33a. It can be made to be rotatable around the center.

なお、図3に示すように、部分33a、33bは、他の部分より板幅が広い幅広部33c、33dを有していてもよい。   As shown in FIG. 3, the portions 33 a and 33 b may have wide portions 33 c and 33 d that are wider than other portions.

図4は、可撓性部材よりなる板状部材の他の例32aについて、一部を拡大して示す斜視図である。   FIG. 4 is a partially enlarged perspective view showing another example 32a of a plate-like member made of a flexible member.

高温側電極端子13の板状部材32aは、長手方向に沿って途中に、他の部分より板幅が狭い幅狭部34、35を2つ直列に有していてもよい。同様に、低温側電極端子14の板状部材32aは、長手方向に沿って途中に、他の部分より板幅が狭い幅狭部34、35を2つ直列に有していてもよい。   The plate-like member 32a of the high temperature side electrode terminal 13 may have two narrow portions 34 and 35 having a narrower plate width than other portions in series along the longitudinal direction. Similarly, the plate-like member 32a of the low temperature side electrode terminal 14 may have two narrow portions 34, 35 having a narrower plate width than other portions in series along the longitudinal direction.

2つの幅狭部34、35は、S字形状を構成するために板状部材32aが2回屈曲する2つの屈曲部分のいずれかに設けられていてもよく、2つの屈曲部分以外の部分に設けられていてもよい。また、図4に示す例では、幅狭部34は、板状部材32aの板幅方向であるY方向に沿って+Y方向側からスリット状の切込部34aが形成され、板幅方向−Y方向側に残った部分である。また、幅狭部35は、板状部材32aの板幅方向であるY方向に沿って−Y方向側からスリット状の切込部35aが形成され、板幅方向+Y方向側に残った部分である。   The two narrow portions 34 and 35 may be provided in one of two bent portions where the plate-like member 32a is bent twice in order to form an S-shape, and may be provided in a portion other than the two bent portions. It may be provided. In the example shown in FIG. 4, the narrow portion 34 is formed with a slit-shaped cut portion 34 a from the + Y direction side along the Y direction which is the plate width direction of the plate member 32 a, and the plate width direction −Y. This is the part left on the direction side. Further, the narrow portion 35 is a portion where a slit-like cut portion 35a is formed from the −Y direction side along the Y direction which is the plate width direction of the plate member 32a, and remains on the plate width direction + Y direction side. is there.

このように、切込部34a、35aを設けることによって、板状部材32aに可撓性を付与することができる。そして、板状部材32aの長手方向に沿って両側から幅狭部34、35を挟む部分を34b、35bとするとき、部分34bが部分35bに対して、超電導体12が延在する方向に沿った軸を中心として回動可能にすることができる。   Thus, by providing the notches 34a and 35a, flexibility can be imparted to the plate member 32a. And when the part which pinches | interposes the narrow parts 34 and 35 from both sides along the longitudinal direction of the plate-shaped member 32a is set to 34b and 35b, the part 34b is along the direction where the superconductor 12 extends with respect to the part 35b. It can be made to be rotatable around the axis.

なお、板状部材32aの長手方向に沿って切込部34a、35aを交互に多数形成していてもよい。切込部34a、35aを多数形成することによって、板状部材32aの可撓性を高めることができる。   In addition, many notches 34a and 35a may be formed alternately along the longitudinal direction of the plate-shaped member 32a. By forming a large number of the notches 34a and 35a, the flexibility of the plate-like member 32a can be enhanced.

図5は、可撓性部材よりなる板状部材の他の例32bについて、一部を拡大して示す斜視図である。   FIG. 5 is a partially enlarged perspective view showing another example 32b of a plate-like member made of a flexible member.

高温側電極端子13の板状部材32bは、超電導体12側から高温側支持部材15側に向かう方向を長手方向として形成された2つの板状部材36、37を有していてもよい。また、高温側電極端子13の板状部材32bは、2つの板状部材36、37を長手方向に沿って直列に接続するとともに、2つの板状部材36、37の板幅方向に沿って互いに離隔して並列に設けられた複数の細板部材38aよりなる細板部38を有していてもよい。   The plate-like member 32b of the high-temperature side electrode terminal 13 may have two plate-like members 36 and 37 formed with the direction from the superconductor 12 side toward the high-temperature side support member 15 as the longitudinal direction. Further, the plate-like member 32b of the high-temperature side electrode terminal 13 connects the two plate-like members 36 and 37 in series along the longitudinal direction and is connected to each other along the plate width direction of the two plate-like members 36 and 37. You may have the thin-plate part 38 which consists of several thin-plate member 38a spaced apart and provided in parallel.

低温側電極端子14の板状部材32bも、超電導体12側から低温側支持部材16側に向かう方向を長手方向として形成された2つの板状部材36、37を有していてもよい。また、低温側電極端子14の板状部材32bは、2つの板状部材36、37を長手方向に沿って直列に接続するとともに、2つの板状部材36、37の板幅方向に沿って互いに離隔して並列に設けられた複数の細板部材38aよりなる細板部38を有していてもよい。   The plate-like member 32b of the low-temperature side electrode terminal 14 may also have two plate-like members 36 and 37 formed with the direction from the superconductor 12 side toward the low-temperature side support member 16 as the longitudinal direction. Further, the plate-like member 32b of the low temperature side electrode terminal 14 connects the two plate-like members 36 and 37 in series along the longitudinal direction and is connected to each other along the plate width direction of the two plate-like members 36 and 37. You may have the thin-plate part 38 which consists of several thin-plate member 38a spaced apart and provided in parallel.

細板部38は、S字形状を構成するために板状部材32bが2回屈曲する2つの屈曲部分のいずれかに設けられていてもよく、2つの屈曲部分以外の部分に設けられていてもよい。また、複数の細板部材38aの、板状部材36、37の板幅方向の幅寸法の総和は、板状部材36、37の板幅より狭い。   The thin plate portion 38 may be provided in one of two bent portions where the plate-like member 32b is bent twice in order to form an S shape, and is provided in a portion other than the two bent portions. Also good. Further, the sum of the width dimensions of the plate-like members 36 and 37 in the plate width direction of the plurality of thin plate members 38 a is narrower than the plate width of the plate-like members 36 and 37.

なお、細板部材38aも、電気の良導体である銅、アルミニウム、真鍮等の金属により構成されている。また、細板部材38aと、板状部材36、37との間は、例えば半田、インジウム、導電性樹脂等の導電性材料により接合されている。   The thin plate member 38a is also made of a metal such as copper, aluminum or brass, which is a good electrical conductor. Further, the thin plate member 38a and the plate-like members 36 and 37 are joined by a conductive material such as solder, indium, or conductive resin.

このように、細板部38を設けることによって、板状部材32bに可撓性を付与することができる。そして、板状部材36を板状部材37に対して、超電導体12が延在する方向に沿った軸を中心として回動可能にすることができる。   Thus, by providing the thin plate portion 38, flexibility can be imparted to the plate-like member 32b. The plate-like member 36 can be rotated with respect to the plate-like member 37 around an axis along the direction in which the superconductor 12 extends.

図6は、可撓性部材よりなる板状部材の他の例32cについて、一部を拡大して示す斜視図である。   FIG. 6 is a partially enlarged perspective view showing another example 32c of a plate-like member made of a flexible member.

高温側電極端子13の板状部材32cは、超電導体12側から高温側支持部材15側に向かう途中に、網線よりなる網線部39を有していてもよい。同様に、低温側電極端子14の板状部材32cは、超電導体12側から低温側支持部材16側に向かう途中に、網線よりなる網線部39を有していてもよい。網線部39は、S字形状を構成するために板状部材32cが2回屈曲する2つの屈曲部分のいずれかに設けられていてもよく、2つの屈曲部分以外の部分に設けられていてもよい。   The plate-like member 32c of the high temperature side electrode terminal 13 may have a net line portion 39 made of a net line on the way from the superconductor 12 side to the high temperature side support member 15 side. Similarly, the plate-like member 32c of the low temperature side electrode terminal 14 may have a net line portion 39 made of a net line on the way from the superconductor 12 side to the low temperature side support member 16 side. The mesh portion 39 may be provided in one of two bent portions where the plate-like member 32c is bent twice in order to form an S shape, and is provided in a portion other than the two bent portions. Also good.

このように、網線部39を設けることによって、板状部材32cに可撓性を付与することができる。そして、板状部材32cの長手方向に沿って両側から網線部39を挟む部分を39a、39bとするとき、部分39aが部分39bに対して、超電導体12が延在する方向に沿った軸を中心として回動可能にすることができる。   As described above, by providing the mesh portion 39, flexibility can be imparted to the plate-like member 32c. And when the part which pinches | interposes the mesh | network part 39 from both sides along the longitudinal direction of the plate-shaped member 32c is set to 39a, 39b, the axis | shaft along the direction where the superconductor 12 extends with respect to the part 39b is 39a. It can be made to be rotatable around the center.

なお、網線部39も、電気の良導体である銅、アルミニウム、真鍮等の金属の網線により構成されている。また、網線部39と部分39a、39bとの間は、例えば半田、インジウム、導電性樹脂等の導電性材料により接合されている。   The mesh line 39 is also composed of a metal mesh line such as copper, aluminum, or brass, which is a good electrical conductor. Further, the mesh portion 39 and the portions 39a and 39b are joined by a conductive material such as solder, indium, or conductive resin.

次に、図7から図9を参照し、超電導体に対し、超電導体が延在する方向に沿った軸を中心として回動する方向に力が作用したときに、超電導体の臨界電流値の低下又は超電導体の破損を防止できる作用効果について、比較例と対比しながら説明する。   Next, referring to FIG. 7 to FIG. 9, when a force is applied to the superconductor in the direction of rotation about the axis along the direction in which the superconductor extends, the critical current value of the superconductor is The effect that can prevent the decrease or the damage of the superconductor will be described in comparison with the comparative example.

図7から図9は、高温側電極端子及び低温側電極端子のいずれにも可撓性部材を含まない超電導電流リード(比較例)の斜視図である。   7 to 9 are perspective views of a superconducting current lead (comparative example) in which neither a high temperature side electrode terminal nor a low temperature side electrode terminal includes a flexible member.

図7に示すように、比較例に係る超電導電流リード110は、超電導体12、高温側電極端子113、低温側電極端子114、高温側支持部材15及び低温側支持部材16を有する。超電導体12、高温側支持部材15及び低温側支持部材16は、実施の形態に係る超電導電流リード10と同様にすることができ、説明を省略する。   As shown in FIG. 7, the superconducting current lead 110 according to the comparative example includes a superconductor 12, a high temperature side electrode terminal 113, a low temperature side electrode terminal 114, a high temperature side support member 15, and a low temperature side support member 16. The superconductor 12, the high temperature side support member 15, and the low temperature side support member 16 can be the same as the superconducting current lead 10 according to the embodiment, and the description thereof is omitted.

高温側電極端子113は、超電導電流リード110の一端に設けられた電極端子である。高温側電極端子113の低温側は、超電導体12の高温側端部に接続されており、高温側電極端子113の高温側は、高温側支持部材15に接続されている。しかし、高温側電極端子113は、可撓性部材を含んでいない。   The high temperature side electrode terminal 113 is an electrode terminal provided at one end of the superconducting current lead 110. The low temperature side of the high temperature side electrode terminal 113 is connected to the high temperature side end of the superconductor 12, and the high temperature side of the high temperature side electrode terminal 113 is connected to the high temperature side support member 15. However, the high temperature side electrode terminal 113 does not include a flexible member.

低温側電極端子114は、超電導電流リード110の一端に設けられた電極端子である。低温側電極端子114の高温側は、超電導体12の低温側端部に接続されており、低温側電極端子114の低温側は、低温側支持部材16に接続されている。しかし、低温側電極端子114は、可撓性部材を含んでいない。   The low temperature side electrode terminal 114 is an electrode terminal provided at one end of the superconducting current lead 110. The high temperature side of the low temperature side electrode terminal 114 is connected to the low temperature side end of the superconductor 12, and the low temperature side of the low temperature side electrode terminal 114 is connected to the low temperature side support member 16. However, the low temperature side electrode terminal 114 does not include a flexible member.

また、以下では、超電導テープ線材12に沿って上から下へ向かう方向(+X方向)に電流Iが流れるものとする。   In the following, it is assumed that the current I flows in the direction from the top to the bottom (+ X direction) along the superconducting tape wire 12.

図7は、超電導テープ線材12に電流Iが流れる際に、超電導コイル3が発生する磁場Bが、超電導テープ線材12が延在する方向に直交する方向であって、かつ、超電導テープ線材の幅広面(テープ面)に垂直な方向(+Z方向)に印加されるように配置した場合を示している。また、図8は、超電導テープ線材12に電流Iが流れる際に、超電導コイル3が発生する磁場Bが、超電導テープ線材12が延在する方向に直交する方向であって、かつ、テープ面に平行な方向(+Y方向)に印加されるように配置した場合を示している。   FIG. 7 shows that the magnetic field B generated by the superconducting coil 3 when the current I flows through the superconducting tape wire 12 is perpendicular to the direction in which the superconducting tape wire 12 extends, and the width of the superconducting tape wire is wide. The case where it arrange | positions so that it may apply in the direction (+ Z direction) perpendicular | vertical to a surface (tape surface) is shown. Further, FIG. 8 shows that the magnetic field B generated by the superconducting coil 3 when the current I flows through the superconducting tape wire 12 is perpendicular to the direction in which the superconducting tape wire 12 extends, and on the tape surface. The case where it arrange | positions so that it may apply in a parallel direction (+ Y direction) is shown.

通常、磁場Bがテープ面に対して平行に印加された場合(図8)の超電導テープ線材12の臨界電流値は、磁場Bがテープ面に対して垂直に印加された場合(図7)の超電導テープ線材12の臨界電流値に比べ、大きい。従って、図8に示すような配置で運用することが、超電導マグネット装置にとって有利である。   Normally, the critical current value of the superconducting tape wire 12 when the magnetic field B is applied parallel to the tape surface (FIG. 8) is the same as that when the magnetic field B is applied perpendicular to the tape surface (FIG. 7). It is larger than the critical current value of the superconducting tape wire 12. Therefore, it is advantageous for the superconducting magnet device to operate in the arrangement as shown in FIG.

しかし、超電導テープ線材12と超電導マグネットとの位置関係によっては、超電導テープ線材12に印加される磁場Bは、テープ面に対して垂直に印加される成分とテープ面に対して平行に印加される成分とを有することがある。このとき、超電導テープ線材12に印加されるローレンツ力Fにより、超電導テープ線材12が延在する方向(X方向)に沿った軸を中心として回動する方向(θ方向)に力が作用することがある。比較例では、超電導テープ線材12は、超電導テープ線材12が延在する方向(X方向)に沿った軸を中心として回動する方向(θ方向)には変位できない。そのため、超電導テープ線材12に歪みが発生し、超電導体の臨界電流値の低下又は超電導体の破損を引き起こすおそれがある。   However, depending on the positional relationship between the superconducting tape wire 12 and the superconducting magnet, the magnetic field B applied to the superconducting tape wire 12 is applied in parallel to the tape surface and the component applied perpendicular to the tape surface. May have ingredients. At this time, due to the Lorentz force F applied to the superconducting tape wire 12, a force acts in a direction (θ direction) rotating around an axis along the direction (X direction) in which the superconducting tape wire 12 extends. There is. In the comparative example, the superconducting tape wire 12 cannot be displaced in a direction (θ direction) that rotates around an axis along a direction (X direction) in which the superconducting tape wire 12 extends. Therefore, the superconducting tape wire 12 is distorted, which may cause a decrease in the critical current value of the superconductor or damage to the superconductor.

あるいは、図9に示すように、超電導コイル3をGM冷凍機7により常温から例えば4K程度の極低温まで冷却する際に、超電導テープ線材12を固定する部材の収縮に伴って、超電導テープ線材12が延在する方向に圧縮する圧縮力Fthが作用することがある。このとき、超電導テープ線材12に対し、超電導テープ線材12が延在する方向に直交する方向であって、かつ、テープ面に垂直な方向(Z方向)に力が作用することがある。そのため、圧縮力Fth及びローレンツ力Fにより、超電導テープ線材12が延在する方向に沿った軸を中心として回動する方向(θ方向)に力が作用することがある。このようなときも、比較例では、超電導テープ線材12に歪みが発生し、超電導体の臨界電流値の低下又は超電導体の破損を引き起こすおそれがある。   Alternatively, as shown in FIG. 9, when the superconducting coil 3 is cooled from room temperature to an extremely low temperature of about 4K, for example, by the GM refrigerator 7, the superconducting tape wire 12 is contracted with the contraction of the member that fixes the superconducting tape wire 12. Compressive force Fth that compresses in the direction in which the pressure extends may act. At this time, a force may act on the superconducting tape wire 12 in a direction perpendicular to the direction in which the superconducting tape wire 12 extends and in a direction perpendicular to the tape surface (Z direction). For this reason, the compression force Fth and the Lorentz force F may cause a force to act in the direction of rotation about the axis along the direction in which the superconducting tape wire 12 extends (θ direction). Even in such a case, in the comparative example, the superconducting tape wire 12 is distorted, which may cause a decrease in the critical current value of the superconductor or breakage of the superconductor.

一方、本実施の形態では、図2から図6を用いて説明したように、高温側電極端子13及び低温側電極端子14は、可撓性部材を含んでいる。そして、超電導体12の高温側端部12aは、高温側電極端子13を介して、超電導体12が延在する方向に沿った軸を中心として回動可能に、高温側支持部材15に支持されている。また、超電導体12の低温側端部12bは、低温側電極端子14を介して、超電導体12が延在する方向に沿った軸を中心として回動可能に、低温側支持部材16に支持されている。これにより、超電導体に対し、超電導体が延在する方向に沿った軸を中心として回動する方向に力が作用したときに、超電導体の臨界電流値の低下又は超電導体の破損を防止することができる。
(実施の形態の変形例)
次に、図10を参照し、実施の形態の変形例に係る超電導電流リード10aについて説明する。本変形例に係る超電導電流リード10aでは、電極端子は可撓性部材を含んでおらず、電極端子が可撓性部材よりなる接続部材を介して支持部材に支持されている。
On the other hand, in the present embodiment, as described with reference to FIGS. 2 to 6, the high temperature side electrode terminal 13 and the low temperature side electrode terminal 14 include a flexible member. The high-temperature side end 12a of the superconductor 12 is supported by the high-temperature side support member 15 via the high-temperature side electrode terminal 13 so as to be rotatable about an axis along the direction in which the superconductor 12 extends. ing. Further, the low temperature side end portion 12b of the superconductor 12 is supported by the low temperature side support member 16 through the low temperature side electrode terminal 14 so as to be rotatable about an axis along the direction in which the superconductor 12 extends. ing. As a result, when a force is applied to the superconductor in a direction that rotates about the axis along the direction in which the superconductor extends, it prevents a decrease in the critical current value of the superconductor or damage to the superconductor. be able to.
(Modification of the embodiment)
Next, a superconducting current lead 10a according to a modification of the embodiment will be described with reference to FIG. In the superconducting current lead 10a according to this modification, the electrode terminal does not include the flexible member, and the electrode terminal is supported by the support member via the connection member made of the flexible member.

本変形例に係る超電導電流リード10aも、実施の形態に係る超電導マグネット装置1と同様の超電導マグネット装置を構成することができる。従って、本変形例では、超電導マグネット装置についての説明を省略する。   The superconducting current lead 10a according to this modification can also constitute a superconducting magnet device similar to the superconducting magnet device 1 according to the embodiment. Therefore, in this modification, description about the superconducting magnet device is omitted.

図10は、超電導電流リード10aの斜視図である。   FIG. 10 is a perspective view of the superconducting current lead 10a.

図10に示すように、本変形例に係る超電導電流リード10aは、超電導体12、高温側電極端子13a、低温側電極端子14a、高温側支持部材15、低温側支持部材16、高温側接続部材23及び低温側接続部材24を有する。超電導体12、高温側支持部材15及び低温側支持部材16は、実施の形態に係る超電導電流リード10と同様にすることができ、説明を省略する。   As shown in FIG. 10, the superconducting current lead 10a according to the present modification includes a superconductor 12, a high temperature side electrode terminal 13a, a low temperature side electrode terminal 14a, a high temperature side support member 15, a low temperature side support member 16, and a high temperature side connection member. 23 and a low-temperature side connection member 24. The superconductor 12, the high temperature side support member 15, and the low temperature side support member 16 can be the same as the superconducting current lead 10 according to the embodiment, and the description thereof is omitted.

高温側電極端子13aは、超電導電流リード10aの一端に設けられた電極端子である。高温側電極端子13aは、電気の良導体である銅、アルミニウム、真鍮等の金属により構成されている。高温側電極端子13aの低温側は、超電導体12の高温側端部12aに接続されている。   The high temperature side electrode terminal 13a is an electrode terminal provided at one end of the superconducting current lead 10a. The high temperature side electrode terminal 13a is comprised with metals, such as copper, aluminum, and brass, which are good electrical conductors. The low temperature side of the high temperature side electrode terminal 13 a is connected to the high temperature side end 12 a of the superconductor 12.

しかし、本変形例では、高温側電極端子13aは、可撓性部材を含んでいない。すなわち、高温側電極端子13aは、比較例における高温側電極端子113と同様の構成を有する。   However, in this modification, the high temperature side electrode terminal 13a does not include a flexible member. That is, the high temperature side electrode terminal 13a has the same configuration as the high temperature side electrode terminal 113 in the comparative example.

低温側電極端子14aは、超電導電流リード10aの一端に設けられた電極端子である。低温側電極端子14aは、電気の良導体である銅、アルミニウム、真鍮等の金属により構成されている。低温側電極端子14aの高温側は、超電導体12の低温側端部12bに接続されている。   The low temperature side electrode terminal 14a is an electrode terminal provided at one end of the superconducting current lead 10a. The low temperature side electrode terminal 14a is comprised with metals, such as copper, aluminum, and brass, which are good electrical conductors. The high temperature side of the low temperature side electrode terminal 14 a is connected to the low temperature side end 12 b of the superconductor 12.

しかし、本変形例では、低温側電極端子14aは、可撓性部材を含んでいない。すなわち、低温側電極端子14aは、比較例における低温側電極端子114と同様の構成を有する。   However, in this modification, the low temperature side electrode terminal 14a does not include a flexible member. That is, the low temperature side electrode terminal 14a has the same configuration as the low temperature side electrode terminal 114 in the comparative example.

本変形例では、高温側電極端子13aは、可撓性部材よりなる高温側接続部材23を介して高温側支持部材15に支持されている。また、低温側電極端子14aは、可撓性部材よりなる低温側接続部材24を介して低温側支持部材16に支持されている。   In this modification, the high temperature side electrode terminal 13a is supported by the high temperature side support member 15 via the high temperature side connection member 23 made of a flexible member. Moreover, the low temperature side electrode terminal 14a is supported by the low temperature side support member 16 via the low temperature side connection member 24 which consists of a flexible member.

なお、本変形例でも、超電導体12の少なくとも一方の側の端部が、その端部と同一側の支持部材に、超電導体12が延在する方向に沿った軸を中心として回動可能に支持されていればよい。また、超電導体12が延在する方向に沿った軸を中心として回動可能な端部に接続された電極端子が、可撓性部材よりなる接続部材を介してその端部と同一側の支持部材に支持されていればよい。   In this modification as well, at least one end of the superconductor 12 can be rotated about a shaft along the direction in which the superconductor 12 extends to the support member on the same side as the end. It only has to be supported. In addition, the electrode terminal connected to the end portion rotatable about the axis along the direction in which the superconductor 12 extends is supported on the same side as the end portion via a connecting member made of a flexible member. What is necessary is just to be supported by the member.

高温側接続部材23の低温側は、高温側電極端子13aに接続されており、高温側接続部材23の高温側は、高温側支持部材15に接続されている。高温側接続部材23は、電気の良導体である銅、アルミニウム、真鍮等の金属により構成されている。高温側接続部材23と高温側電極端子13aとの間は、例えば半田、インジウム、導電性樹脂等の導電性材料よりなる接合材25により接合されている。また、高温側接続部材23と高温側支持部材15との間も、例えば半田、インジウム、導電性樹脂等の導電性材料により接合されている。   The low temperature side of the high temperature side connection member 23 is connected to the high temperature side electrode terminal 13 a, and the high temperature side of the high temperature side connection member 23 is connected to the high temperature side support member 15. The high temperature side connecting member 23 is made of a metal such as copper, aluminum, or brass that is a good electrical conductor. The high temperature side connection member 23 and the high temperature side electrode terminal 13a are bonded together by a bonding material 25 made of a conductive material such as solder, indium, or conductive resin. Further, the high temperature side connection member 23 and the high temperature side support member 15 are also joined by a conductive material such as solder, indium, or conductive resin.

低温側接続部材24の低温側は、低温側電極端子14aに接続されており、低温側接続部材24の高温側は、低温側支持部材16に接続されている。低温側接続部材24は、電気の良導体である銅、アルミニウム、真鍮等の金属により構成されている。低温側接続部材24と低温側電極端子14aとの間は、例えば半田、インジウム、導電性樹脂等の導電性材料よりなる接合材26により接合されている。また、低温側接続部材24と低温側支持部材16との間は、例えば半田、インジウム、導電性樹脂等の導電性材料により接合されている。   The low temperature side of the low temperature side connection member 24 is connected to the low temperature side electrode terminal 14 a, and the high temperature side of the low temperature side connection member 24 is connected to the low temperature side support member 16. The low temperature side connecting member 24 is made of a metal such as copper, aluminum, or brass that is a good electrical conductor. The low-temperature side connection member 24 and the low-temperature side electrode terminal 14a are bonded together by a bonding material 26 made of a conductive material such as solder, indium, or conductive resin. Further, the low temperature side connection member 24 and the low temperature side support member 16 are joined by a conductive material such as solder, indium, conductive resin, or the like.

高温側接続部材23は、板状部材32dを含む。板状部材32dは、高温側電極端子13a側から高温側支持部材15側に向かう方向を長手方向として形成されている。図10に示すように、板状部材32dは、高温側電極端子13a側から高温側支持部材15側に向かう途中で2回屈曲し、S字形状を有していてもよい。また、板状部材32dは、可撓性部材よりなる。   The high temperature side connecting member 23 includes a plate-like member 32d. The plate-like member 32d is formed with the direction from the high temperature side electrode terminal 13a side toward the high temperature side support member 15 as the longitudinal direction. As shown in FIG. 10, the plate-like member 32d may be bent twice in the middle from the high temperature side electrode terminal 13a side to the high temperature side support member 15 side, and may have an S shape. The plate-like member 32d is made of a flexible member.

低温側接続部材24は、板状部材32dを含む。板状部材32dは、低温側電極端子14a側から低温側支持部材16側に向かう方向を長手方向として形成されている。図10に示すように、板状部材32dは、低温側電極端子14a側から低温側支持部材16側に向かう途中で2回屈曲し、S字形状を有していてもよい。また、板状部材32dは、可撓性部材よりなる。   The low temperature side connection member 24 includes a plate-like member 32d. The plate-like member 32d is formed with the direction from the low temperature side electrode terminal 14a side to the low temperature side support member 16 side as the longitudinal direction. As shown in FIG. 10, the plate-like member 32d may be bent twice in the middle from the low temperature side electrode terminal 14a side to the low temperature side support member 16 side, and may have an S shape. The plate-like member 32d is made of a flexible member.

本変形例では、板状部材32dは、実施の形態において図3を用いて説明した板状部材32と同様に、長手方向に沿って途中に、他の部分より板幅が狭い幅狭部を有していてもよい。また、板状部材32dは、実施の形態において図4を用いて説明した板状部材32aと同様に、長手方向に沿って途中に、他の部分より板幅が狭い幅狭部を2つ直列に有していてもよい。また、板状部材32dは、実施の形態において図5を用いて説明した板状部材32bと同様に、長手方向に沿って途中に、互いに離隔して並列に設けられた複数の細板部材よりなる細板部を有していてもよい。また、板状部材32dは、実施の形態において図6を用いて説明した板状部材32cと同様に、長手方向に沿って途中に、網線よりなる網線部を有していてもよい。   In this modification, the plate-like member 32d has a narrow portion having a plate width narrower than that of other portions in the middle along the longitudinal direction, like the plate-like member 32 described with reference to FIG. 3 in the embodiment. You may have. Further, the plate-like member 32d has two narrow portions that are narrower than other portions in series along the longitudinal direction in the same way as the plate-like member 32a described with reference to FIG. 4 in the embodiment. You may have. Further, the plate-like member 32d is similar to the plate-like member 32b described with reference to FIG. 5 in the embodiment, and includes a plurality of thin plate members provided in parallel and spaced apart from each other along the longitudinal direction. It may have a thin plate portion. Moreover, the plate-like member 32d may have a mesh portion made of mesh wires in the middle along the longitudinal direction, like the plate-like member 32c described with reference to FIG. 6 in the embodiment.

本変形例では、高温側電極端子13aは、高温側接続部材23を介して、超電導体12が延在する方向に沿った軸X1を中心としてθ方向に回動可能に、高温側支持部材15に支持されている。また、超電導体12の低温側端部12bは、低温側電極端子14aを介して、超電導体12が延在する方向に沿った軸X1を中心としてθ方向に回動可能に、低温側支持部材16に支持されている。これにより、超電導体に対し、超電導体が延在する方向に沿った軸を中心として回動する方向に力が作用したときに、超電導体の臨界電流値の低下又は超電導体の破損を防止することができる。   In the present modification, the high temperature side electrode terminal 13a is pivotable in the θ direction about the axis X1 along the direction in which the superconductor 12 extends via the high temperature side connection member 23, so that the high temperature side support member 15 can rotate. It is supported by. Moreover, the low temperature side end portion 12b of the superconductor 12 can rotate in the θ direction about the axis X1 along the direction in which the superconductor 12 extends via the low temperature side electrode terminal 14a. 16 is supported. As a result, when a force is applied to the superconductor in a direction that rotates about the axis along the direction in which the superconductor extends, it prevents a decrease in the critical current value of the superconductor or damage to the superconductor. be able to.

更に、本変形例では、接続部材が可撓性部材よりなるため、高温側電極端子、低温側電極端子に可撓性を付与するために幅狭部や細板部を設ける必要がない。従って、高温側電極端子、低温側電極端子として、通常の部品を用いることができ、超電導電流リードの製造コストを低減できる。   Furthermore, in this modification, since the connection member is made of a flexible member, it is not necessary to provide a narrow portion or a thin plate portion in order to impart flexibility to the high temperature side electrode terminal and the low temperature side electrode terminal. Therefore, normal components can be used as the high temperature side electrode terminal and the low temperature side electrode terminal, and the manufacturing cost of the superconducting current lead can be reduced.

以上、本発明の好ましい実施の形態について記述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to such specific embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims. Can be modified or changed.

例えば、低温側電極端子の低温側支持部材と接続される部分を、超電導体が延在する方向に平行な中心軸を有する円板状に形成した回転部とし、低温側支持部材の低温側電極端子と接続される部分を、回転部を受けるために形成した凹部としてもよい。そして、回転部の下面が凹部の底面とインジウム等の柔らかい導電性材料により接合され、導電性材料が変形することによって、凹部に対し、回転部を、超電導体が延在する方向に沿った軸を中心として回動可能に支持してもよい。   For example, the portion connected to the low temperature side support member of the low temperature side electrode terminal is a rotating part formed in a disk shape having a central axis parallel to the direction in which the superconductor extends, and the low temperature side electrode of the low temperature side support member The portion connected to the terminal may be a recess formed to receive the rotating portion. Then, the lower surface of the rotating portion is joined to the bottom surface of the recess by a soft conductive material such as indium, and the conductive material is deformed, so that the rotating portion is connected to the recess along the axis along the direction in which the superconductor extends. You may support so that rotation is possible centering on.

あるいは、高温側電極端子の高温側支持部材と接続される部分を真空容器の外部まで延長し、延長した高温側電極端子と、真空容器の外部に設けられた高温側支持部材とを例えばベアリング等により相対回転可能に接続してもよい。そして、高温側電極端子を高温側支持部材に対して、超電導体が延在する方向に沿った軸を中心として回動可能に支持してもよい。   Alternatively, the portion connected to the high temperature side support member of the high temperature side electrode terminal is extended to the outside of the vacuum vessel, and the extended high temperature side electrode terminal and the high temperature side support member provided outside the vacuum vessel are, for example, a bearing or the like May be connected so as to be relatively rotatable. And you may support a high temperature side electrode terminal with respect to the high temperature side support member so that rotation is possible centering | focusing on the axis | shaft along the direction where a superconductor extends.

1 超電導マグネット装置
2 真空容器
3 超電導コイル
4 伝熱部材
5 荷重支持体
6 熱シールド板
7 GM冷凍機
7a 1段目冷却シリンダ
7b 2段目冷却シリンダ
7c 高温側冷却ステージ
7d 低温側冷却ステージ
8 電流導入端子
8a 電源
9 1段電流ライン
10 超電導電流リード
11 2段電流ライン
12 超電導体(超電導テープ線材)
12a 高温側端部
12b 低温側端部
13、13a 高温側電極端子
14、14a 低温側電極端子
15 高温側支持部材
16 低温側支持部材
23 高温側接続部材
24 低温側接続部材
32、32a、32b、32c 板状部材
33、34、35 幅狭部
38 細板部
38a 細板部材
39 網線部
DESCRIPTION OF SYMBOLS 1 Superconducting magnet apparatus 2 Vacuum container 3 Superconducting coil 4 Heat transfer member 5 Load support 6 Heat shield plate 7 GM refrigerator 7a First stage cooling cylinder 7b Second stage cooling cylinder 7c High temperature side cooling stage 7d Low temperature side cooling stage 8 Current Introduction terminal 8a Power source 9 First stage current line 10 Superconducting current lead 11 Second stage current line 12 Superconductor (superconducting tape wire)
12a High temperature side end 12b Low temperature side end 13, 13a High temperature side electrode terminal 14, 14a Low temperature side electrode terminal 15 High temperature side support member 16 Low temperature side support member 23 High temperature side connection member 24 Low temperature side connection member 32, 32a, 32b, 32c Plate-like members 33, 34, 35 Narrow portion 38 Narrow plate portion 38a Narrow plate member 39 Mesh portion

Claims (6)

一の方向に沿って延在する超電導体と、
各々が前記超電導体の両端部の各々に接続された2つの電極端子と、
各々が前記2つの電極端子の各々を介して前記超電導体の両端部の各々を支持する2つの支持部材と
を有し、
前記超電導体の少なくとも一方の側の端部は、前記端部と同一側の支持部材に、前記一の方向に沿った軸を中心として回動可能に支持されている、超電導電流リード。
A superconductor extending along one direction;
Two electrode terminals each connected to each of the ends of the superconductor;
Each having two support members for supporting each of both ends of the superconductor via each of the two electrode terminals;
An end portion on at least one side of the superconductor is supported on a support member on the same side as the end portion so as to be rotatable about an axis along the one direction.
前記一方の側の端部に接続された電極端子は、可撓性部材よりなる接続部材であり、
回動可能な前記端部は、前記接続部材を介して前記端部と同一側の支持部材に支持されている、請求項1に記載の超電導電流リード。
The electrode terminal connected to the end of the one side is a connection member made of a flexible member,
The superconducting current lead according to claim 1, wherein the rotatable end portion is supported by a support member on the same side as the end portion via the connection member.
可撓性部材よりなる接続部材を有し、
回動可能な前記端部に接続された電極端子は、前記接続部材を介して前記端部と同一側の支持部材に支持されている、請求項1に記載の超電導電流リード。
Having a connecting member made of a flexible member;
The superconducting current lead according to claim 1, wherein the electrode terminal connected to the rotatable end is supported by a support member on the same side as the end via the connection member.
前記接続部材は、前記超電導体側から前記支持部材側に向かう方向を長手方向として形成された板状部材を含み、
前記板状部材は、前記超電導体側から前記支持部材側に向かう途中に、他の部分より板幅が狭い幅狭部を有する、請求項2又は請求項3に記載の超電導電流リード。
The connection member includes a plate-like member formed with a direction from the superconductor side toward the support member as a longitudinal direction,
4. The superconducting current lead according to claim 2, wherein the plate-like member has a narrow portion having a narrower plate width than other portions in the middle from the superconductor side to the support member side. 5.
前記接続部材は、
前記超電導体側から前記支持部材側に向かう方向を長手方向として形成された2つの板状部材と、
各々が、前記2つの板状部材を、前記超電導体側から前記支持部材側に向かう方向に沿って直列に接続するとともに、前記板状部材の板幅方向に沿って互いに離隔して設けられた複数の細板部材よりなる細板部と
を有し、
前記複数の細板部材の前記板幅方向の幅寸法の総和が、前記板幅より狭い、請求項2又は請求項3に記載の超電導電流リード。
The connecting member is
Two plate-like members formed with the direction from the superconductor side toward the support member side as a longitudinal direction;
Each of the two plate-like members is connected in series along a direction from the superconductor side to the support member side, and a plurality of plates are provided apart from each other along the plate width direction of the plate-like member. A thin plate portion made of a thin plate member,
The superconducting current lead according to claim 2 or 3, wherein a sum of width dimensions of the plurality of thin plate members in the plate width direction is narrower than the plate width.
請求項1から請求項5のいずれかに記載の超電導電流リードと、
前記超電導電流リードの低温側に接続されている超電導コイルと
を有する、超電導マグネット装置。
The superconducting current lead according to any one of claims 1 to 5,
A superconducting magnet device having a superconducting coil connected to a low temperature side of the superconducting current lead.
JP2011103559A 2011-05-06 2011-05-06 Superconductive lead and superconducting magnet device Pending JP2012235008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011103559A JP2012235008A (en) 2011-05-06 2011-05-06 Superconductive lead and superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011103559A JP2012235008A (en) 2011-05-06 2011-05-06 Superconductive lead and superconducting magnet device

Publications (1)

Publication Number Publication Date
JP2012235008A true JP2012235008A (en) 2012-11-29

Family

ID=47435042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011103559A Pending JP2012235008A (en) 2011-05-06 2011-05-06 Superconductive lead and superconducting magnet device

Country Status (1)

Country Link
JP (1) JP2012235008A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012815A (en) * 2017-05-12 2019-01-24 ゼネラル・エレクトリック・カンパニイ Flexible superconducting lead assembly
WO2024072382A1 (en) * 2022-09-28 2024-04-04 General Electric Renovables España, S.L. Field charging system for a superconducting magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280212A (en) * 2001-03-21 2002-09-27 Sumitomo Heavy Ind Ltd Electrode structure of oxide superconducting current lead
JP2008251564A (en) * 2007-03-29 2008-10-16 Kyushu Univ High temperature superconducting current leads and methods for increasing critical current density

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280212A (en) * 2001-03-21 2002-09-27 Sumitomo Heavy Ind Ltd Electrode structure of oxide superconducting current lead
JP2008251564A (en) * 2007-03-29 2008-10-16 Kyushu Univ High temperature superconducting current leads and methods for increasing critical current density

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012815A (en) * 2017-05-12 2019-01-24 ゼネラル・エレクトリック・カンパニイ Flexible superconducting lead assembly
US10804017B2 (en) 2017-05-12 2020-10-13 GE Precision Healthcare LLC Flexibile superconducting lead assembly
WO2024072382A1 (en) * 2022-09-28 2024-04-04 General Electric Renovables España, S.L. Field charging system for a superconducting magnet

Similar Documents

Publication Publication Date Title
CN104854664B (en) Superconducting coil arrangement with coil windings and contacts
US10032549B2 (en) Superconducting coil device with coil winding and production method
JP5022279B2 (en) Oxide superconducting current lead
JP5693915B2 (en) Superconducting current lead and superconducting magnet device
JP5531664B2 (en) Superconducting current lead
US8275429B1 (en) High magnetic field gradient strength superconducting coil system
US8588876B1 (en) Electric joint design to be used in electromagnetic coils made with high-temperature superconducting tape, aspected wire, or cable
JP2010109287A (en) Superconducting coil apparatus
JP2012256744A (en) Superconductive coil
JP2012235008A (en) Superconductive lead and superconducting magnet device
JP2012038812A (en) Superconducting coil device
JP5940361B2 (en) Superconducting current lead manufacturing method, superconducting current lead, and superconducting magnet device
JP4838199B2 (en) Oxide superconducting current lead
JP5011181B2 (en) Oxide superconducting current lead
JP2012028041A (en) Superconducting current lead
JP5778064B2 (en) Superconducting current lead and superconducting magnet device using the superconducting current lead
JPH11260162A (en) Superconducting current lead
JP2003037303A (en) Superconducting coil with permanent current switch using magnesium diboride superconducting wire and method of manufacturing the same
JP4703545B2 (en) Superconducting devices and current leads
JP2003324013A (en) Oxide superconductor current lead
JP2004335160A (en) Current leads for superconducting devices
JP4901585B2 (en) Oxide superconducting current lead
JP3559550B2 (en) Superconducting current limiting module and superconducting current limiting unit
US12191073B2 (en) Magnet device based on the bitter principle and use of a magnet device based on the bitter principle
JP4734004B2 (en) Superconducting current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819