[go: up one dir, main page]

JPH0955545A - Current leads for superconducting devices - Google Patents

Current leads for superconducting devices

Info

Publication number
JPH0955545A
JPH0955545A JP7208619A JP20861995A JPH0955545A JP H0955545 A JPH0955545 A JP H0955545A JP 7208619 A JP7208619 A JP 7208619A JP 20861995 A JP20861995 A JP 20861995A JP H0955545 A JPH0955545 A JP H0955545A
Authority
JP
Japan
Prior art keywords
conductor
superconducting
current lead
current
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7208619A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takita
清 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7208619A priority Critical patent/JPH0955545A/en
Publication of JPH0955545A publication Critical patent/JPH0955545A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

(57)【要約】 【目的】低温ヘリウムガスを用いなくとも熱侵入量を微
小に抑えて運転できるものとし、また、交流電流の通電
にも適するものとする。 【構成】良導電性導体11を内蔵した高温側リード2の
外筒12Aに設けた注入口21より減圧された液体窒素
を供給して、中間接続導体15と良導電性導体11を冷
却する。低温側リード3は、円柱状酸化物超電導導体2
0Aと、その外周に配置した円筒状酸化物超電導導体2
0Bとを中間接続導体15と低温端子4に導電接続し、
外筒13に収納して構成する。また、高温側リード2の
常温端子1と電源の電源端子51とを導電接続する接続
導体30を、断熱容器中に収納した酸化物超電導体31
と、これに接続された端子リード35Aおよび35Bに
より構成し、注入口36より減圧された液体窒素を供給
して、酸化物超電導体31を超電導状態に冷却して使用
する。
(57) [Summary] [Purpose] It should be possible to operate with a minimal amount of heat penetration without the use of low-temperature helium gas, and it should also be suitable for carrying an alternating current. [Structure] Liquid nitrogen reduced in pressure is supplied from an inlet 21 provided in an outer cylinder 12A of a high temperature side lead 2 having a built-in good conductive conductor 11 to cool the intermediate connection conductor 15 and the good conductive conductor 11. The low temperature side lead 3 is a columnar oxide superconducting conductor 2.
0A and a cylindrical oxide superconducting conductor 2 arranged on the periphery thereof
0B is conductively connected to the intermediate connection conductor 15 and the low temperature terminal 4,
It is housed in the outer cylinder 13 and configured. Further, an oxide superconductor 31 in which a connection conductor 30 for conductively connecting the room temperature terminal 1 of the high temperature side lead 2 and the power supply terminal 51 of the power supply is housed in a heat insulating container.
And the terminal leads 35A and 35B connected thereto, and the reduced pressure liquid nitrogen is supplied from the injection port 36 to cool the oxide superconductor 31 to the superconducting state for use.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁気浮上列車や核融
合装置等に用いられる超電導コイル装置において、真空
断熱容器内に収納され液体ヘリウムに浸漬された超電導
コイルに、外部電源から励磁電流を通電する超電導装置
用電流リードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil device used in a magnetic levitation train, a nuclear fusion device, etc., and a magnetizing current is supplied from an external power source to a superconducting coil housed in a vacuum heat insulation container and immersed in liquid helium. The present invention relates to a current lead for a superconducting device that conducts electricity.

【0002】[0002]

【従来の技術】超電導装置の超電導コイルは、液体ヘリ
ウム等の極低温冷媒により冷却されることによって超電
導状態として使用されるため、通常、低温の輻射シール
ドや多層断熱層を備えた真空断熱容器中に、液体ヘリウ
ムに浸漬した状態で収納されている。
2. Description of the Related Art Since a superconducting coil of a superconducting device is used in a superconducting state by being cooled by a cryogenic refrigerant such as liquid helium, it is usually used in a vacuum insulation container equipped with a low-temperature radiation shield and a multilayer insulation layer. It is stored in a state of being immersed in liquid helium.

【0003】この超電導コイルを励磁するためには、真
空断熱容器に電流リードを組み込み、外部電源と接続し
て励磁電流を通電する必要がある。このとき電流リード
は常温部と極低温部とを連結することになるので、この
電流リードを介して極低温側へ熱が侵入することとな
り、この侵入熱が多いと高価な液体ヘリウムが多量に気
化することとなる。したがって、電流リードは、侵入熱
により気化した低温のヘリウムガスを有効に使用するこ
とが必要であり、極低温端から気化した低温のヘリウム
ガスを導体部に導き、導体を冷却して、ジュール発熱、
伝導熱を除去し、極低温端に至る侵入熱を極力低減して
いるのが通例である。
In order to excite this superconducting coil, it is necessary to incorporate a current lead in the vacuum heat insulation container and connect it to an external power source to supply an exciting current. At this time, since the current lead connects the room temperature part and the cryogenic part, heat enters into the cryogenic side through the current lead, and if this penetration heat is large, a large amount of expensive liquid helium is produced. It will vaporize. Therefore, it is necessary for the current lead to effectively use the low temperature helium gas vaporized by the invasion heat, and the low temperature helium gas vaporized from the cryogenic end is guided to the conductor portion to cool the conductor and cause Joule heat generation. ,
It is customary to remove conduction heat and reduce the heat entering the cryogenic end as much as possible.

【0004】常温部から極低温部への熱伝導による侵入
熱を低減するには、電流リードの導体の断面積を小さく
することが有効であるが、導体の断面積を小さくすると
電気抵抗が大きくなりジュール発熱が増大する。したが
って、冷却効果を勘案して、電流値に対して導体断面積
および長さのバランスのとれた構成となるように選定す
ることが重要である。
It is effective to reduce the cross-sectional area of the conductor of the current lead in order to reduce the invasion heat due to heat conduction from the room temperature portion to the cryogenic portion. However, if the cross-sectional area of the conductor is reduced, the electric resistance increases. The Joule heating increases. Therefore, in consideration of the cooling effect, it is important to select such that the conductor cross-section area and length are well balanced with respect to the current value.

【0005】電流リードの導体には、一般に銅あるいは
銅合金等の良導電性の金属が採用されているが、酸化物
超電導体が発見されるとともに、その極めて高い臨界温
度を有効に活用すればジュール発熱がゼロとなること、
また熱伝導率が銅の約 1/100と小さく伝導熱も抑制でき
ることが期待され、近年、酸化物超電導体を用いた電流
リードの開発が進められている。
Generally, a metal having good conductivity such as copper or copper alloy is adopted as the conductor of the current lead. However, when an oxide superconductor is discovered and its extremely high critical temperature is effectively utilized. Zero Joule heat generation,
In addition, it is expected that the thermal conductivity will be small, about 1/100 that of copper, and conduction heat can be suppressed. In recent years, development of current leads using oxide superconductors has been advanced.

【0006】図9は、従来の超電導装置用電流リードを
組み込んだ超電導装置を簡略化して示した基本構成図で
ある。図において、一対の電流リードは、それぞれ一端
に常温端子1を組み込んだ高温側リード2と一端に低温
端子4を組み込んだ低温側リード3とからなり、取り付
けフランジ10により真空断熱容器7に結合されてい
る。常温端子1には、外部の電源50の電源端子51に
導電接続された接続導体52が導電接続され、低温端子
4には、真空断熱容器7の内部に収納され液体ヘリウム
に浸漬冷却される超電導コイル5が、低温接続導体6を
介して導電接続されている。液体ヘリウムが侵入熱によ
り蒸発して生じた低温のヘリウムガスは、低温端子4に
設置されているHeガス入口8より低温側リード3の内
部へと導入され、さらに高温側リード2の内部へと導か
れて各導体を冷却したのち常温端子1の近傍に設けられ
たHeガス出口9より外部へと排出される。
FIG. 9 is a basic configuration diagram showing a simplified superconducting device incorporating a conventional current lead for a superconducting device. In the figure, a pair of current leads is composed of a high temperature side lead 2 having a room temperature terminal 1 incorporated at one end and a low temperature side lead 3 having a low temperature terminal 4 incorporated at one end, and is connected to a vacuum heat insulating container 7 by a mounting flange 10. ing. A connection conductor 52, which is conductively connected to a power supply terminal 51 of an external power supply 50, is conductively connected to the room temperature terminal 1, and a superconducting body which is housed inside a vacuum heat insulation container 7 and immersed and cooled in liquid helium is connected to the low temperature terminal 4. The coil 5 is conductively connected via the low temperature connection conductor 6. The low-temperature helium gas generated by evaporation of liquid helium due to the invasion heat is introduced into the inside of the low temperature side lead 3 through the He gas inlet 8 installed in the low temperature terminal 4, and further into the inside of the high temperature side lead 2. After being guided and cooled, each conductor is discharged to the outside from a He gas outlet 9 provided in the vicinity of the room temperature terminal 1.

【0007】図10は、図9に示した超電導装置用電流
リードの要部断面図で、(a)は高温側リード2の一部
と低温側リード3の縦断面、(b)は高温側リード2の
横断面、(c)は低温側リード3の横断面を示したもの
である。高温側リード2は、(b)に示したように、円
形断面をもつ多数の良導電性導体11を円筒状の外筒1
2の中に組み込んで構成されており、内部の隙間にHe
ガスを流して冷却している。良導電性導体11には通常
銅あるいは銅合金等が使用されている。
FIG. 10 is a sectional view of the main part of the current lead for the superconducting device shown in FIG. 9, where (a) is a vertical cross section of a part of the high temperature side lead 2 and low temperature side lead 3, and (b) is the high temperature side. The cross section of the lead 2 is shown, and (c) shows the cross section of the low temperature side lead 3. As shown in (b), the high temperature side lead 2 includes a large number of good conductive conductors 11 having a circular cross section and a cylindrical outer cylinder 1.
It is configured by being incorporated into the inside of the 2
Cooling by flowing gas. Copper or a copper alloy is usually used for the good conductive conductor 11.

【0008】低温側リード3は、(c)に示したよう
に、円形断面の酸化物超電導導体14を外筒13の中に
組み込んで構成されており、内部の空隙に低温のHeガ
スを流して冷却している。酸化物超電導導体14には、
例えば臨界温度の高いBi2223( Bi2Sr2Ca2Cu
3OX )が使用されている。酸化物超電導導体14の一端
は、(a)に示したように、多数本の良導電性導体11
が電気的に接続された中間接続導体15にはんだ付け等
により、電気的、機械的に接続されており、他端は低温
端子4に同様な方法により電気的、機械的に接続されて
いる。液体ヘリウムが蒸発して生じた低温のヘリウムガ
スは、低温端子4に設置されているHeガス入口8より
低温側リード3の内部へと導入され、酸化物超電導導体
14を冷却して超電導状態に保持するとともに、さら
に、中間接続導体15に設けられたガス流通孔16を通
じて高温側リード2の内部へと導かれ、良導電性導体1
1を冷却している。
As shown in (c), the low temperature side lead 3 is constructed by incorporating an oxide superconducting conductor 14 having a circular cross section into an outer cylinder 13, and flowing a low temperature He gas into an internal void. Is cooling. In the oxide superconducting conductor 14,
For example, Bi2223 (Bi 2 Sr 2 Ca 2 Cu, which has a high critical temperature)
3 O X ) is used. One end of the oxide superconducting conductor 14 has a large number of good conductive conductors 11 as shown in (a).
Are electrically and mechanically connected to the intermediate connection conductor 15 electrically connected thereto by soldering or the like, and the other end is electrically and mechanically connected to the low temperature terminal 4 by a similar method. The low temperature helium gas generated by the evaporation of liquid helium is introduced into the inside of the low temperature side lead 3 through the He gas inlet 8 installed in the low temperature terminal 4, and cools the oxide superconducting conductor 14 to be in a superconducting state. While being held, it is guided to the inside of the high temperature side lead 2 through the gas flow hole 16 provided in the intermediate connection conductor 15, and the good conductive conductor 1
1 is cooling.

【0009】図11は、図9における常温端子1と電源
50の電源端子51の接続部の構成図で、(a)は平面
図、(b)は側面図である。常温端子1と電源端子51
とは、良導電性金属からなる接続導体52によって連結
され、ボルト54によって電気的、機械的に接続、結合
されている。
FIG. 11 is a configuration diagram of a connecting portion between the room temperature terminal 1 and the power source terminal 51 of the power source 50 in FIG. 9, (a) is a plan view, and (b) is a side view. Room temperature terminal 1 and power supply terminal 51
Are connected by a connecting conductor 52 made of a highly conductive metal, and are electrically and mechanically connected and coupled by a bolt 54.

【0010】[0010]

【発明が解決しようとする課題】従来の超電導装置用電
流リードは、上述のように構成することによって、極低
温部への侵入熱を抑え、液体ヘリウムの消費量を低減し
たものとしている。しかしながら、このように構成され
た超電導装置用電流リードにおいても、 (1) 低温側リード3および高温側リード2の各導体の冷
却には低温のヘリウムガスを用いているため、高価な液
体ヘリウムの使用が本質的に避けられない。
The conventional current lead for a superconducting device is configured as described above to suppress the heat entering the cryogenic portion and reduce the consumption of liquid helium. However, even in the current lead for the superconducting device configured as described above, (1) low-temperature helium gas is used to cool each conductor of the low-temperature side lead 3 and the high-temperature side lead 2, so that expensive liquid helium Use is essentially unavoidable.

【0011】(2) また、大気中に配置された常温端子1
およびこれに接続される接続導体52は、特別に冷却装
置を備えていないので、通電によるジュール発熱により
温度が上昇する。したがって高温側リード2の常温端部
の温度が高くなり、常温部から極低温部への侵入熱が増
大する。その結果、高価な液体ヘリウムの蒸発量が増大
することとなる。
(2) Further, the room temperature terminal 1 arranged in the atmosphere
Since the connecting conductor 52 connected to this and the connecting conductor 52 are not provided with a special cooling device, the temperature rises due to Joule heat generation due to energization. Therefore, the temperature at the room temperature end of the high temperature side lead 2 becomes high, and the heat entering from the room temperature part to the cryogenic part increases. As a result, the amount of evaporation of expensive liquid helium increases.

【0012】(3) さらにまた、円形断面の酸化物超電導
導体14を外筒13の中に組み込んで構成された低温側
リード3の構成においては、交流電流を通電する場合、
表皮効果により外周部にのみ電流が流れることとなるた
め、直流通電に比較して大幅に通電容量が低下してしま
う。 等の難点があった。
(3) Furthermore, in the structure of the low temperature side lead 3 constructed by incorporating the oxide superconducting conductor 14 having a circular cross section into the outer cylinder 13, when an alternating current is applied,
Due to the skin effect, a current flows only in the outer peripheral portion, so that the current-carrying capacity is significantly reduced as compared with the DC current-carrying. There were some difficulties.

【0013】この発明は、このような現状を考慮してな
されたもので、その目的は、 (1) 高価な液体ヘリウムを使用することなく冷却が可能
な超電導装置用電流リードを提供する。 (2) また、常温端子1の温度上昇を抑え、常温部から極
低温部への侵入熱を低減し、液体ヘリウムの蒸発量を軽
減した超電導装置用電流リードを提供する。
The present invention has been made in view of the above circumstances, and an object thereof is to provide (1) a current lead for a superconducting device which can be cooled without using expensive liquid helium. (2) Further, the current lead for a superconducting device is provided in which the temperature rise of the room temperature terminal 1 is suppressed, the heat entering from the room temperature section to the cryogenic section is reduced, and the evaporation amount of liquid helium is reduced.

【0014】(3) さらにまた、交流電流を通電する場合
にあっても、十分な通電容量をもつ超電導装置用電流リ
ードを提供する。 ことにある。
(3) Further, the present invention provides a current lead for a superconducting device, which has a sufficient current-carrying capacity even when an alternating current is applied. It is in.

【0015】[0015]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明においては、真空断熱容器内に収納され
液体ヘリウムに浸漬された超電導コイルに外部電源から
励磁電流を通電する超電導装置用電流リードにおいて、
付設する導体の一部を減圧された液体窒素で冷却される
導体とすることとする。
In order to achieve the above-mentioned object, in the present invention, a superconducting device for supplying an exciting current from an external power source to a superconducting coil housed in a vacuum heat insulation container and immersed in liquid helium. In the current lead,
A part of the attached conductor is a conductor cooled with decompressed liquid nitrogen.

【0016】さらに、高温側電流リードに内蔵する良導
電性導体と低温側リードに内蔵する酸化物超電導導体と
を中間接続導体を介して直列に導電接続してなる超電導
装置用電流リードにあって、中間接続導体および良導電
性導体を、減圧された液体窒素で冷却することとする。
さらにまた、超電導装置用電流リードの常温端に設けら
れた常温端子と外部電源の電源端子とを接続する接続導
体を、断熱容器内に配置し減圧された液体窒素で冷却す
ることとする。
Further, there is provided a current lead for a superconducting device, wherein a good conductive conductor contained in a high temperature side current lead and an oxide superconducting conductor contained in a low temperature side lead are conductively connected in series through an intermediate connecting conductor. , The intermediate connection conductor and the good conductive conductor are cooled with decompressed liquid nitrogen.
Furthermore, the connection conductor connecting the room temperature terminal provided at the room temperature end of the current lead for the superconducting device and the power supply terminal of the external power supply is placed in a heat insulating container and cooled with decompressed liquid nitrogen.

【0017】さらに、上記の常温端子と外部電源の電源
端子とを接続する接続導体を、1本または並列接続され
た複数本の酸化物超電導体を用いて形成し、減圧された
液体窒素で冷却することとする。またさらに、同一の超
電導コイルに連結される一対の超電導装置用電流リード
の常温端子に接続する一対の接続導体を、同一の断熱容
器内に配置して減圧された液体窒素で冷却することとす
る。
Further, a connection conductor for connecting the above-mentioned normal temperature terminal and the power supply terminal of the external power supply is formed by using one or a plurality of oxide superconductors connected in parallel, and cooled by decompressed liquid nitrogen. I decided to. Furthermore, a pair of connecting conductors connected to the room temperature terminals of a pair of current leads for superconducting devices connected to the same superconducting coil are placed in the same heat insulating container and cooled by decompressed liquid nitrogen. .

【0018】さらに、上記の接続導体の断熱容器が、減
圧された液体窒素を収納する液体窒素容器とその外側に
配される真空容器を備えてなるものにおいて、液体窒素
容器と真空容器のうち少なくとも液体窒素容器を、電気
絶縁性材料により形成することとする。また、真空断熱
容器内に収納され液体ヘリウムに浸漬された超電導コイ
ルに外部電源から励磁電流を通電する超電導装置用電流
リードで、高温側電流リードに内蔵する良導電性導体と
低温側リードに内蔵する酸化物超電導導体を中間接続導
体を介して直列に導電接続してなる超電導装置用電流リ
ードにおいて、酸化物超電導導体を、円柱状導体あるい
は円筒状導体とその外周に同軸状に配置された円筒状導
体との並列接続体からなるものとする。
Further, in the above-mentioned heat insulating container for connecting conductors, which comprises a liquid nitrogen container for storing decompressed liquid nitrogen and a vacuum container arranged outside thereof, at least one of the liquid nitrogen container and the vacuum container is provided. The liquid nitrogen container is made of an electrically insulating material. In addition, it is a current lead for superconducting devices that energizes an exciting current from an external power source to a superconducting coil that is housed in a vacuum insulation container and immersed in liquid helium. In a current lead for a superconducting device in which oxide superconducting conductors are conductively connected in series via an intermediate connecting conductor, the oxide superconducting conductor is a cylindrical conductor or a cylindrical conductor and a cylinder coaxially arranged around the conductor. It shall consist of a parallel connection with the conductor.

【0019】また、真空断熱容器内に収納され液体ヘリ
ウムに浸漬された超電導コイルに外部電源から励磁電流
を通電する超電導装置用電流リードで、高温側電流リー
ドに内蔵する良導電性導体と低温側リードに内蔵する酸
化物超電導導体を中間接続導体を介して直列に導電接続
してなる超電導装置用電流リードにおいて、酸化物超電
導導体を、円柱状導体あるいは円筒状導体とその外周に
配置された複数の同軸円筒状導体とを、互いに隙間を設
けて径方向に折重ねて接続した直列接続体からなるもの
とする。
Further, in a current lead for a superconducting device for supplying an exciting current from an external power source to a superconducting coil housed in a vacuum heat insulation container and immersed in liquid helium, a good conductive conductor and a low temperature side incorporated in the high temperature side current lead. In a current lead for a superconducting device in which an oxide superconducting conductor contained in a lead is conductively connected in series through an intermediate connecting conductor, a plurality of oxide superconducting conductors are arranged in a cylindrical conductor or a cylindrical conductor and an outer periphery thereof. And the coaxial cylindrical conductor of (1) are connected in series with each other with a gap provided therebetween and are folded and connected in the radial direction.

【0020】また、真空断熱容器内に収納され液体ヘリ
ウムに浸漬された超電導コイルに外部電源から励磁電流
を通電する超電導装置用電流リードで、高温側電流リー
ドに内蔵する良導電性導体と低温側リードに内蔵する酸
化物超電導導体を中間接続導体を介して直列に導電接続
してなる超電導装置用電流リードにおいて、酸化物超電
導導体の外周部分に、酸化物超電導導体の両端が導電接
続される中間接続導体と低温端子に接続して配置される
外筒を、複数の同軸円筒状部材を互いに隙間を設けて径
方向に折重ねて接続した直列接続体からなるものとす
る。
Further, in a current lead for a superconducting device for supplying an exciting current from an external power source to a superconducting coil housed in a vacuum heat insulation container and immersed in liquid helium, a good conductive conductor and a low temperature side incorporated in a high temperature side current lead. In a current lead for a superconducting device in which an oxide superconducting conductor contained in a lead is conductively connected in series via an intermediate connecting conductor, an intermediate portion in which both ends of the oxide superconducting conductor are conductively connected to an outer peripheral portion of the oxide superconducting conductor. The outer cylinder connected to the connection conductor and the low temperature terminal is composed of a series connection body in which a plurality of coaxial cylindrical members are radially folded and connected to each other with a gap therebetween.

【0021】[0021]

【作用】液体窒素の沸点は大気圧では約77Kである
が、減圧すると沸点は下がり、約100 Torrでは約65
K、すなわち約−208℃の低温度となる。したがっ
て、減圧した液体窒素を用いて超電導装置用電流リード
に付設する導体の一部を冷却すれば、高価なヘリウムを
用いて冷却しなくても低熱損失の超電導装置用電流リー
ドを得ることができる。
[Function] The boiling point of liquid nitrogen is about 77K at atmospheric pressure, but when it is decompressed, the boiling point decreases to about 65K at about 100 Torr.
K, that is, a low temperature of about −208 ° C. Therefore, if a part of the conductor attached to the current lead for the superconducting device is cooled by using the reduced pressure liquid nitrogen, it is possible to obtain the current lead for the superconducting device with low heat loss without cooling with expensive helium. .

【0022】特に、酸化物超電導導体の超電導状態での
通電許容限界である臨界電流値は、温度下降とともに増
大し、例えばビスマス系酸化物超電導体などの酸化物超
電導導体においては、温度が約65Kのときの臨界電流
値は約77Kのときの臨界電流値の2倍以上となる。し
たがって、高温側電流リードに内蔵する良導電性導体と
低温側リードに内蔵する酸化物超電導導体とを中間接続
導体を介して直列に導電接続してなる超電導装置用電流
リードにあって、中間接続導体および良導電性導体を、
減圧された液体窒素で冷却すれば、高温端が中間接続導
体に接続された酸化物超電導導体は、超電導状態にあっ
てジュール熱を生じない限り、減圧液体窒素の温度以下
に保持される。したがって、従来のように冷却用に高価
な低温ヘリウムガスを用いなくても、酸化物超電導導体
を超電導状態に保持することができ、低温端への侵入熱
を微量とし、超電導コイルを冷却している液体ヘリウム
の蒸発量を微量に抑えることができる。
In particular, the critical current value, which is the allowable current-carrying limit of the oxide superconducting conductor in the superconducting state, increases as the temperature decreases. For example, in an oxide superconducting conductor such as a bismuth oxide superconducting conductor, the temperature is about 65K. The critical current value at that time is more than twice the critical current value at about 77K. Therefore, in the current lead for the superconducting device in which the good conductive conductor built in the high temperature side current lead and the oxide superconducting conductor built in the low temperature side lead are conductively connected in series through the intermediate connecting conductor, the intermediate connecting Conductor and good conductive conductor,
When cooled with the reduced pressure liquid nitrogen, the oxide superconducting conductor having the high temperature end connected to the intermediate connecting conductor is kept at a temperature equal to or lower than the pressure of the reduced pressure liquid nitrogen unless Joule heat is generated in the superconducting state. Therefore, the oxide superconducting conductor can be maintained in a superconducting state without using an expensive low-temperature helium gas for cooling as in the conventional case, and the amount of heat penetrating into the low-temperature end can be made small to cool the superconducting coil. The amount of liquid helium vaporized can be suppressed to a very small amount.

【0023】さらにまた、超電導装置用電流リードの常
温端に設けられた常温端子と外部電源の電源端子とを接
続する接続導体を断熱容器内に配置して減圧された液体
窒素で冷却すれば、常温端子は、電流リード内部の冷却
された導体と、減圧された液体窒素で冷却された接続導
体とにより両端を冷却されるので、通電時の温度上昇が
抑制され、その結果、低温部への侵入熱が低減される。
Furthermore, if a connection conductor for connecting the room temperature terminal provided at the room temperature end of the current lead for the superconducting device and the power supply terminal of the external power supply is placed in the heat insulating container and cooled by the decompressed liquid nitrogen, Since both ends of the room temperature terminal are cooled by the cooled conductor inside the current lead and the connection conductor cooled by depressurized liquid nitrogen, the temperature rise during energization is suppressed, and as a result, the temperature rise to the low temperature part is suppressed. Invasion heat is reduced.

【0024】特に、接続導体を酸化物超電導体を用いて
形成すれば、接続導体でのジュール発熱が皆無となるの
で、常温端子の温度上昇が効果的に抑制され、低温部へ
の侵入熱の低減に特に有効である。また、交流電流を通
電するものにおいては表皮効果により導体の表面にのみ
電流が流れるので、並列接続した複数本の酸化物超電導
体を用いて接続導体を形成することとすれば、表面積の
割合が相対的に増大するので、所要断面寸法が低減され
小型化されることとなる。
In particular, if the connecting conductor is formed of an oxide superconductor, Joule heat generation in the connecting conductor is eliminated, so that the temperature rise of the room temperature terminal is effectively suppressed and the heat entering the low temperature portion is prevented. It is especially effective for reduction. Further, in the case of passing an alternating current, the current flows only on the surface of the conductor due to the skin effect, so if the connecting conductor is formed using a plurality of oxide superconductors connected in parallel, the surface area ratio is Since the size increases relatively, the required cross-sectional size is reduced and the size is reduced.

【0025】またさらに、同一の超電導コイルに連結さ
れる一対の超電導装置用電流リードの常温端子に接続す
る一対の接続導体を、同一の断熱容器内に配置して減圧
された液体窒素で冷却すれば、小型で軽量の断熱冷却装
置で効果的に冷却することができる。さらに、上記の接
続導体の断熱容器が、減圧された液体窒素を収納する液
体窒素容器とその外側に配される真空容器を備えてなる
ものにおいて、液体窒素容器を電気絶縁性材料により形
成することとすれば、接続導体に交流電流が通電され断
熱容器が交流磁界に曝される場合にあっても、液体窒素
容器で生じる渦電流損失が極めて微量に抑えられるの
で、液体窒素容器に供給される減圧された液体窒素への
熱負荷の増大を抑制することができる。また、液体窒素
容器に加えて真空容器も電気絶縁性材料により形成する
こととすれば、真空容器の渦電流損失による温度上昇が
抑止されることとなるので、真空容器から液体窒素容器
への熱侵入量の増大も抑えられることとなる。
Furthermore, a pair of connecting conductors connected to the room temperature terminals of a pair of superconducting device current leads connected to the same superconducting coil are placed in the same adiabatic container and cooled with decompressed liquid nitrogen. For example, a compact and lightweight adiabatic cooling device can be used for effective cooling. Further, in the heat insulating container for the connecting conductor, which comprises a liquid nitrogen container for storing decompressed liquid nitrogen and a vacuum container arranged outside thereof, the liquid nitrogen container is formed of an electrically insulating material. If so, even when an AC current is applied to the connecting conductor and the heat insulating container is exposed to an AC magnetic field, the eddy current loss that occurs in the liquid nitrogen container can be suppressed to an extremely small amount, so that it is supplied to the liquid nitrogen container. It is possible to suppress an increase in heat load on the decompressed liquid nitrogen. If the vacuum container is made of an electrically insulating material in addition to the liquid nitrogen container, the temperature rise due to the eddy current loss of the vacuum container is suppressed, so the heat from the vacuum container to the liquid nitrogen container is reduced. The increase in the invasion amount can also be suppressed.

【0026】また、高温側電流リードの良導電性導体と
低温側リードの酸化物超電導導体を中間接続導体を介し
て直列に導電接続してなる超電導装置用電流リードにお
いて、酸化物超電導導体を、円柱状導体あるいは円筒状
導体とその外周に同軸状に配置された円筒状導体との並
列接続体から構成すれば、交流電流通電時には最外周の
径の大きい円筒状導体に流れるので、従来に比べて交流
電流通電時の通電容量が大幅に増大する。
Further, in a current lead for a superconducting device in which a good conductive conductor of a high temperature side current lead and an oxide superconducting conductor of a low temperature side lead are conductively connected in series through an intermediate connecting conductor, the oxide superconducting conductor is If it is composed of a parallel connection body of a cylindrical conductor or a cylindrical conductor and a cylindrical conductor coaxially arranged on the outer periphery of the conductor, it flows to the outermost outer cylindrical conductor when an AC current is applied, As a result, the current-carrying capacity when an alternating current is applied greatly increases.

【0027】また、高温側電流リードの良導電性導体と
低温側リードの酸化物超電導導体を中間接続導体を介し
て直列に導電接続してなる超電導装置用電流リードにお
いて、酸化物超電導導体を、円柱状導体あるいは円筒状
導体とその外周に配置された複数の同軸円筒状導体と
を、互いに隙間を設けて径方向に折重ねて接続した直列
接続体からなるものとすれば、中間接続導体と低温端子
との間の導体部分の接続長が長くなるので熱抵抗が増大
し、侵入熱が低減されることとなる。
Further, in a current lead for a superconducting device in which a good conductive conductor of a high temperature side current lead and an oxide superconducting conductor of a low temperature side lead are conductively connected in series via an intermediate connecting conductor, the oxide superconducting conductor is If a columnar conductor or a cylindrical conductor and a plurality of coaxial cylindrical conductors arranged on the outer periphery of the conductor are connected in series by being folded and connected in the radial direction with a gap therebetween, an intermediate connection conductor is obtained. Since the connection length of the conductor portion with the low temperature terminal is increased, the thermal resistance is increased and the invasion heat is reduced.

【0028】また、高温側電流リードの良導電性導体と
低温側リードの酸化物超電導導体を中間接続導体を介し
て直列に導電接続してなる超電導装置用電流リードにお
いて、酸化物超電導導体の外周部分に、酸化物超電導導
体の両端が導電接続される中間接続導体と低温端子に接
続して配置される外筒を、複数の同軸円筒状部材を互い
に隙間を設けて径方向に折重ねて接続した直列接続体か
らなるものとすれば、中間接続導体と低温端子との間の
支持部材の接続長が長くなるので熱抵抗が増大し、侵入
熱が低減されることとなる。
Further, in the current lead for a superconducting device in which the good conductive conductor of the high temperature side current lead and the oxide superconducting conductor of the low temperature side lead are conductively connected in series through the intermediate connecting conductor, the outer periphery of the oxide superconducting conductor In the part, an intermediate connecting conductor to which both ends of the oxide superconducting conductor are conductively connected and an outer cylinder arranged to be connected to the low temperature terminal are connected by folding a plurality of coaxial cylindrical members in the radial direction with a gap between them. In the case of using the above-mentioned series connection body, the connection length of the supporting member between the intermediate connection conductor and the low temperature terminal is increased, so that the thermal resistance is increased and the penetration heat is reduced.

【0029】[0029]

【実施例】以下に、本発明の実施例を図面を用いて説明
する。図1は、本発明の超電導装置用電流リードの第1
の実施例を示す基本構成図で、高温側リードと低温側リ
ードからなる電流リードと、電源との間に接続される接
続導体を示したものである。従来例と同一の機能を有す
る構成部品には同一符号を付し、説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first current lead for a superconducting device of the present invention.
FIG. 3 is a basic configuration diagram showing the embodiment of FIG. 3B, showing a current conductor including a high temperature side lead and a low temperature side lead, and a connection conductor connected between a power source. Components having the same functions as those of the conventional example are designated by the same reference numerals, and the description thereof will be omitted.

【0030】本実施例の従来例との第1の相違点は、従
来例では各導体が低温のヘリウムガスにより冷却されて
いたのに対して、本実施例では、中間接続導体15、お
よび高温側リード2に収納された良導電性導体11が、
外筒12Aの下端に設けられた注入口21から供給され
上端に設けられた排出口22から排出される減圧された
液体窒素により冷却される構成である点にある。本構成
では、中間接続導体15が減圧された液体窒素により冷
却され、それより低温側に位置する酸化物超電導導体2
0A、20Bが臨界温度より十分低い温度に冷却される
ので、低温のヘリウムガスを流さずとも超電導状態に保
持されることとなる。
The first difference between this embodiment and the conventional example is that in the conventional example, each conductor was cooled by low-temperature helium gas, whereas in this embodiment, the intermediate connecting conductor 15 and the high temperature were used. The good conductive conductor 11 housed in the side lead 2 is
The point is that it is cooled by the decompressed liquid nitrogen supplied from the inlet 21 provided at the lower end of the outer cylinder 12A and discharged from the outlet 22 provided at the upper end. In this configuration, the intermediate connecting conductor 15 is cooled by the depressurized liquid nitrogen, and the oxide superconducting conductor 2 located on the lower temperature side than that is cooled.
Since 0A and 20B are cooled to a temperature sufficiently lower than the critical temperature, they will be maintained in the superconducting state without flowing low-temperature helium gas.

【0031】第2の相違点は、高温側リード2の上端に
設置の常温端子1と電源端子51とを導電接続する接続
導体にあり、従来例では大気中に配置した接続導体52
であったのに対して、本実施例では、円柱状の酸化物超
電導体31を減圧した液体窒素で冷却する方式の接続導
30が用いられている点にある。本方式の接続導体
は、図2に縦断面図、図3に図2のA−A断面での横
断面図を示したように、円柱状の酸化物超電導体31
を、断熱用の金属製の真空容器33に収納された金属製
の液体窒素容器34の内部に間隔片38により支持し収
納している。酸化物超電導体31の両端には、絶縁管3
2A、32Bにより液体窒素容器34および真空容器3
3と電気絶縁された端子リード35A、35Bが接続さ
れて大気中へと導かれ、それぞれ常温端子1と電源端子
51とに導電接続されている。酸化物超電導体31の冷
却に用いられる液体窒素は、液体窒素タンク40をバル
ブ42を介して接続した減圧装置41により減圧し、ポ
ンプ43によって注入口36から液体窒素容器34へと
供給され、放出口37から外部へと排出される構成であ
る。本構成では、酸化物超電導体31が減圧された液体
窒素により冷却されて超電導状態に保持され、ジュール
発熱が皆無となるので、常温端子1の温度が低く抑えら
れ、超電導装置用電流リードの侵入熱が低減される。な
お、酸化物超電導体31に用いられる材料としては、ビ
スマス系酸化物超電導体、イットリウム系酸化物超電導
体、タリウム系酸化物超電導体のいずれを用いてもよ
い。また、実施例の酸化物超電導体31は1本の円柱状
の酸化物超電導体として表示されているが、その形状は
円柱状に限るものではなく、円筒柱状、多角形柱状、あ
るいは中空多角形柱状等であってもよく、また1本のみ
でなく複数本の並列接続体として構成されていてもよ
い。さらにまた、酸化物超電導体31は酸化物超電導材
料のみによって構成されるものに限らず、機械的強度を
付与するための補強材、熱的あるいは電気的安定性を付
与するための安定化材を付加して構成されるものであっ
てもよい。
The second difference lies in the connection conductor for conductively connecting the room temperature terminal 1 installed on the upper end of the high temperature side lead 2 and the power supply terminal 51. In the conventional example, the connection conductor 52 is placed in the atmosphere.
In contrast to this, in the present embodiment, the connection conductor 30 of the system in which the columnar oxide superconductor 31 is cooled by the decompressed liquid nitrogen is used. Connection conductor 3 of this method
0 is a columnar oxide superconductor 31 as shown in the longitudinal sectional view in FIG. 2 and the transverse sectional view taken along the line AA in FIG.
Is supported and stored by a space piece 38 inside a metallic liquid nitrogen container 34 housed in a metallic vacuum container 33 for heat insulation. At both ends of the oxide superconductor 31, the insulating tube 3 is provided.
Liquid nitrogen container 34 and vacuum container 3 by 2A and 32B
3 and the electrically insulated terminal leads 35A and 35B are connected to and guided to the atmosphere, and electrically connected to the room temperature terminal 1 and the power supply terminal 51, respectively. The liquid nitrogen used for cooling the oxide superconductor 31 is decompressed by a decompression device 41 connected to a liquid nitrogen tank 40 via a valve 42, supplied from a filling port 36 to a liquid nitrogen container 34 by a pump 43, and discharged. It is configured to be discharged from the outlet 37 to the outside. In this configuration, since the oxide superconductor 31 is cooled by the decompressed liquid nitrogen and kept in the superconducting state, and Joule heat is completely eliminated, the temperature of the room temperature terminal 1 is suppressed to a low level, and the current lead for the superconducting device penetrates. Heat is reduced. As the material used for the oxide superconductor 31, any of a bismuth-based oxide superconductor, a yttrium-based oxide superconductor, and a thallium-based oxide superconductor may be used. Further, although the oxide superconductor 31 of the embodiment is shown as a single columnar oxide superconductor, the shape is not limited to the columnar shape, and it may be a cylindrical columnar shape, a polygonal columnar shape, or a hollow polygonal shape. It may have a columnar shape or the like, and may be configured as a plurality of parallel connection bodies instead of only one. Furthermore, the oxide superconductor 31 is not limited to one made of only an oxide superconducting material, but a reinforcing material for imparting mechanical strength and a stabilizing material for imparting thermal or electrical stability. It may be configured additionally.

【0032】第3の相違点は、低温側リード3に内蔵さ
れた導体が、従来例では円柱状の酸化物超電導導体14
のみであったのに対して、本実施例では、円柱状酸化物
超電導導体20Aとその外周に配置した薄肉の円筒状酸
化物超電導導体20Bとの並列接続体として構成されて
いる点にある。本構成においては、直流電流を通電する
場合には断面積の大きい円柱状酸化物超電導導体20A
に過半の電流が流れるが、交流電流を通電する場合、最
外層となる円筒状酸化物超電導導体20Bの外層に流れ
ることとなり、従来の円柱状の酸化物超電導導体14の
みの場合に比し周長が大幅に増大しているので、交流電
流の通電容量が大幅に上昇することとなる。
The third difference is that the conductor incorporated in the low temperature side lead 3 is a columnar oxide superconducting conductor 14 in the conventional example.
In contrast to this, the present embodiment is configured as a parallel connection body of the columnar oxide superconducting conductor 20A and the thin cylindrical oxide superconducting conductor 20B arranged on the outer periphery thereof. In this configuration, when a direct current is applied, a columnar oxide superconducting conductor 20A having a large cross section is provided.
Although a majority of the current flows through the outer surface of the cylindrical oxide superconducting conductor 20B, when an alternating current is applied, it flows in the outer layer of the cylindrical oxide superconducting conductor 20B, which is the outermost layer. Since the length is significantly increased, the current carrying capacity of the alternating current is significantly increased.

【0033】図4は、本発明の超電導装置用電流リード
の第2の実施例の接続導体の横断面図で、酸化物超電導
体を減圧した液体窒素で冷却する方式の接続導体の他の
実施例を示したものである。本実施例の接続導体30A
においては、液体窒素容器34の内部に2本の酸化物超
電導体31Aおよび31Bが収納されており、それぞ
れ、互いに電気絶縁された図示しない2本の端子リード
に接続されて大気中へと導かれるよう構成されており、
超電導コイルに接続される一対の電流リードの2個の常
温端子へと導電接続して使用される。本構成では、一対
の接続導体を1個の液体窒素容器34の内部に収納して
いるので、小型、軽量の構成で、常温端子1の温度を低
く抑え、超電導装置用電流リードの侵入熱を低減させる
ことができる。なお、酸化物超電導体31Aおよび31
Bは、上記の図3に示した酸化物超電導体31と同様
に、上述の各種の材料、形状、構成より選択して形成す
ることができる。
FIG. 4 is a cross-sectional view of the connecting conductor of the second embodiment of the current lead for the superconducting device of the present invention. Another embodiment of the connecting conductor of the system in which the oxide superconductor is cooled by decompressed liquid nitrogen is shown. This is an example. Connection conductor 30A of this embodiment
In FIG. 2, two oxide superconductors 31A and 31B are housed inside the liquid nitrogen container 34, respectively connected to two terminal leads (not shown) that are electrically insulated from each other, and are guided to the atmosphere. Is configured as
It is used by conductively connecting to two room temperature terminals of a pair of current leads connected to the superconducting coil. In this configuration, since the pair of connecting conductors are housed inside the single liquid nitrogen container 34, the temperature of the room temperature terminal 1 can be kept low and the intrusion heat of the current lead for the superconducting device can be suppressed with a compact and lightweight configuration. Can be reduced. The oxide superconductors 31A and 31A
Similar to the oxide superconductor 31 shown in FIG. 3 described above, B can be formed by selecting from the above-mentioned various materials, shapes and configurations.

【0034】図5は、本発明の超電導装置用電流リード
の第3の実施例の接続導体の縦断面図である。本実施例
の接続導体30Bと図2に示した第1の実施例の接続導
30との相違点は、酸化物超電導体31を収納する容
器を形成する材料にあり、本実施例の真空容器33およ
び液体窒素容器34は、いずれも電気絶縁性材料の繊維
強化樹脂(FRP)を用いて形成されている。したがっ
て、交流電流を通電する場合においても、真空容器33
および液体窒素容器34での渦電流損失は微小に抑えら
れるので、酸化物超電導体31の冷却に供給される減圧
液体窒素への熱負荷の増大が軽微に抑制されることとな
る。
FIG. 5 is a longitudinal sectional view of a connecting conductor of a third embodiment of the current lead for a superconducting device of the present invention. Differences between the connection conductor 30 of the first embodiment shown in connection conductors 30B and FIG. 2 of the present embodiment is in the material forming the container for storing the oxide superconductor 31, the vacuum container of the present embodiment Both 33 and the liquid nitrogen container 34 are formed by using a fiber reinforced resin (FRP) which is an electrically insulating material. Therefore, even when an alternating current is applied, the vacuum container 33
Also, since the eddy current loss in the liquid nitrogen container 34 is suppressed to a small extent, an increase in the heat load on the reduced pressure liquid nitrogen supplied for cooling the oxide superconductor 31 is suppressed to a slight extent.

【0035】図6は、本発明の超電導装置用電流リード
の第4の実施例による低温側リードの基本構成図で、
(a)は高温側リードおよび低温側リードの縦断面図、
(b)は低温側リードの横断面図である。本構成では、
酸化物超電導体からなる導体が、同心円状に配置された
2本の円筒状の酸化物超電導導体20Cならびに20D
の並列接続体により構成されている。本実施例において
も、図1に示した第1の実施例の場合と同様に、交流電
流通電時の通電容量を大幅に増大させることができる。
FIG. 6 is a basic block diagram of a low temperature side lead according to a fourth embodiment of the current lead for a superconducting device of the present invention.
(A) is a vertical cross-sectional view of the high temperature side lead and the low temperature side lead,
(B) is a cross-sectional view of the low temperature side lead. In this configuration,
Two cylindrical oxide superconducting conductors 20C and 20D in which conductors made of an oxide superconductor are concentrically arranged.
It is composed of a parallel connection body. Also in this embodiment, as in the case of the first embodiment shown in FIG. 1, it is possible to greatly increase the current carrying capacity when an alternating current is applied.

【0036】図7は、本発明の超電導装置用電流リード
の第5の実施例による低温側リードの基本構成図で、
(a)は高温側リードおよび低温側リードの縦断面図、
(b)は(a)のB−B断面における低温側リードの横
断面図である。本構成では酸化物超電導体からなる導体
が、複数の同軸円筒状導体を互いに隙間を設けて径方向
に折重ねて接続した直列接続体として形成された酸化物
超電導導体20Eから構成されている。本構成において
は、中間接続導体15と低温端子4をつなぐ導体の実効
的な長さが長くなるので、熱抵抗が高くなり、導体を介
しての侵入熱を効果的に低減できる。
FIG. 7 is a basic block diagram of a low temperature side lead according to a fifth embodiment of the current lead for a superconducting device of the present invention.
(A) is a vertical cross-sectional view of the high temperature side lead and the low temperature side lead,
(B) is a cross-sectional view of the low temperature side lead in the BB cross section of (a). In this configuration, the conductor made of the oxide superconductor is made of the oxide superconductor 20E formed as a series connection body in which a plurality of coaxial cylindrical conductors are folded and connected in the radial direction with a gap therebetween. In this configuration, since the effective length of the conductor connecting the intermediate connection conductor 15 and the low temperature terminal 4 becomes long, the thermal resistance becomes high, and the heat entering through the conductor can be effectively reduced.

【0037】図8は、本発明の超電導装置用電流リード
の第6の実施例による低温側リードの基本構成図で、
(a)は高温側リードおよび低温側リードの縦断面図、
(b)は(a)のB−B断面における低温側リードの横
断面図である。本構成では酸化物超電導導体14を支持
するステンレス鋼からなる外筒13Aが、複数の同軸円
筒を互いに隙間を設けて径方向に折重ねて接続した直列
接続体として形成されており、中間接続導体15と低温
端子4をつなぐ実効的な長さが長くなるので、支持体を
介しての侵入熱が効果的に低減されることとなる。
FIG. 8 is a basic configuration diagram of a low temperature side lead according to a sixth embodiment of the current lead for a superconducting device of the present invention.
(A) is a vertical cross-sectional view of the high temperature side lead and the low temperature side lead,
(B) is a cross-sectional view of the low temperature side lead in the BB cross section of (a). In this configuration, the outer cylinder 13A made of stainless steel that supports the oxide superconducting conductor 14 is formed as a series connection body in which a plurality of coaxial cylinders are folded and connected in the radial direction with a gap between each other. Since the effective length connecting the low temperature terminal 15 and the low temperature terminal 4 becomes long, the heat entering through the support can be effectively reduced.

【0038】なお、図1に示した第1の実施例の超電導
装置用電流リードにおいては、前述のように、高温側
リードの減圧液体窒素での冷却、常温端子に接続する
接続導体の減圧液体窒素での冷却、ならびに低温側リ
ードに内蔵する導体への円筒状の酸化物超電導導体の導
入、の3点を同時に取り入れているが、これらの内、1
または2点を取り入れた超電導装置用電流リードにあっ
ても、それぞれ、侵入熱の低減、交流電流の通電等に有
効であることは言うまでもない。
In the current lead for the superconducting device of the first embodiment shown in FIG. 1, as described above, the high temperature side lead is cooled with the reduced pressure liquid nitrogen, and the reduced pressure liquid of the connecting conductor connected to the room temperature terminal is used. At the same time, three points were adopted: cooling with nitrogen, and introduction of a cylindrical oxide superconducting conductor into the conductor built in the low temperature side lead.
Alternatively, it goes without saying that even the current leads for superconducting devices incorporating two points are effective for reducing intrusion heat, conducting alternating current, and the like.

【0039】[0039]

【発明の効果】上述のように、本発明においては、真空
断熱容器内に収納され液体ヘリウムに浸漬された超電導
コイルに外部電源から励磁電流を通電する超電導装置用
電流リードにおいて、付設する導体の一部を減圧された
液体窒素で冷却される導体とすることとしたので、導体
が効果的に冷却、除熱され、高価な低温ヘリウムガスを
用いなくても液体ヘリウムの蒸発量が少ない超電導装置
用電流リードが得られることとなった。
As described above, according to the present invention, in the current lead for the superconducting device for supplying the exciting current from the external power source to the superconducting coil housed in the vacuum heat insulating container and immersed in the liquid helium, Since we decided to use a part of the conductor to be cooled with decompressed liquid nitrogen, the conductor is effectively cooled and removed, and the evaporation amount of liquid helium is small without using expensive low-temperature helium gas. It is now possible to obtain a current lead for use.

【0040】さらに、高温側電流リードに内蔵する良導
電性導体と低温側リードに内蔵する酸化物超電導導体と
を中間接続導体を介して直列に導電接続してなる超電導
装置用電流リードにあって、中間接続導体および良導電
性導体を減圧された液体窒素で冷却することとすれば、
低温側リードに内蔵する酸化物超電導導体を超電導状態
に保持してジュール発熱を皆無とすることができること
となり、高価な低温ヘリウムガスを用いなくても超電導
コイルを冷却する液体ヘリウムの蒸発量が微量な超電導
装置用電流リードを得ることができることとなる。
Further, in a current lead for a superconducting device, a good conductive conductor built in a high temperature side current lead and an oxide superconducting conductor built in a low temperature side lead are conductively connected in series through an intermediate connecting conductor. , If the intermediate connection conductor and the good conductive conductor are cooled with depressurized liquid nitrogen,
The oxide superconducting conductor built in the low temperature side lead can be kept in a superconducting state to eliminate Joule heat generation, and the evaporation amount of liquid helium that cools the superconducting coil is very small even without using expensive low temperature helium gas. It is possible to obtain a current lead for a superconducting device.

【0041】また、超電導装置用電流リードの常温端に
設けられた常温端子と外部電源の電源端子とを接続する
接続導体を断熱容器内に配置し減圧された液体窒素で冷
却することとすれば、接続導体のジュール発熱量が減少
し、かつ除熱されるので、常温端の温度上昇が抑制され
て、低温部への侵入熱量が低減された超電導装置用電流
リードが得られることとなる。
Further, if a connection conductor for connecting the room temperature terminal provided at the room temperature end of the current lead for the superconducting device and the power supply terminal of the external power supply is arranged in a heat insulating container and cooled by decompressed liquid nitrogen. Since the Joule's calorific value of the connection conductor is reduced and the heat is removed, the temperature rise at the room temperature end is suppressed, and the current lead for the superconducting device in which the amount of heat entering the low temperature part is reduced can be obtained.

【0042】さらに、上記の接続導体を酸化物超電導体
を用いて形成することとすれば、接続導体でのジュール
発熱が皆無となるので、常温端の温度上昇が効果的に抑
制されて低温部への侵入熱量が微小となり、液体ヘリウ
ムの蒸発量が低減された超電導装置用電流リードが得ら
れることとなる。また、並列接続された複数本の酸化物
超電導体より形成すれば、小型化された交流通電用の超
電導装置用電流リードが得られることとなる。
Furthermore, if the above-mentioned connecting conductor is formed by using an oxide superconductor, Joule heat generation in the connecting conductor is eliminated, so that the temperature rise at the room temperature end is effectively suppressed and the low temperature portion is suppressed. The amount of heat penetrating into the superconducting device becomes small, and the current lead for the superconducting device in which the evaporation amount of liquid helium is reduced can be obtained. Further, by forming a plurality of oxide superconductors connected in parallel, a miniaturized current lead for a superconducting device for alternating current can be obtained.

【0043】またさらに、同一の超電導コイルに連結さ
れる一対の超電導装置用電流リードの常温端子に接続す
る一対の接続導体を、同一の断熱容器内に配置して減圧
された液体窒素で冷却することとすれば、小型で軽量の
断熱冷却装置で効果的に冷却される侵入熱量が微小な超
電導装置用電流リードが得られることとなる。さらに、
接続導体の断熱容器が、減圧された液体窒素を収納する
液体窒素容器とその外側に配される真空容器を備えてな
るものにおいて、液体窒素容器と真空容器のうち少なく
とも液体窒素容器を、電気絶縁性材料により形成するこ
ととすれば、交流電流通電時の容器の渦電流損失が抑制
されるので、低熱侵入量の交流通電用の超電導装置用電
流リードが得られることとなる。
Furthermore, a pair of connecting conductors connected to the room temperature terminals of a pair of current leads for superconducting devices connected to the same superconducting coil are placed in the same heat insulating container and cooled with decompressed liquid nitrogen. In this case, a current lead for a superconducting device, which has a small amount of intruding heat and is effectively cooled by a small and lightweight adiabatic cooling device, can be obtained. further,
In a case where the heat insulating container of the connection conductor comprises a liquid nitrogen container for storing decompressed liquid nitrogen and a vacuum container arranged outside thereof, at least the liquid nitrogen container and the vacuum container are electrically insulated. If it is made of a conductive material, the eddy current loss of the container during energization of an alternating current is suppressed, so that a current lead for a superconducting device for energizing an alternating current with a low heat penetration amount can be obtained.

【0044】また、高温側電流リードの良導電性導体と
低温側リードの酸化物超電導導体を中間接続導体を介し
て直列に導電接続してなる超電導装置用電流リードにお
いて、酸化物超電導導体を、円柱状導体あるいは円筒状
導体と、その外周に同軸状に配置された円筒状導体との
並列接続体から構成することとすれば、交流電流通電時
には最外周の径の大きい円筒状導体に流れることとなる
ので、従来に比べて交流電流の通電容量が大幅に向上し
た超電導装置用電流リードが得られることとなる。
Further, in a current lead for a superconducting device in which a good conductive conductor of a high temperature side current lead and an oxide superconducting conductor of a low temperature side lead are conductively connected in series through an intermediate connecting conductor, the oxide superconducting conductor is If it is composed of a parallel connection of a cylindrical conductor or a cylindrical conductor and a cylindrical conductor arranged coaxially on the outer periphery of the conductor, it will flow to the outermost cylindrical conductor with a large diameter when an AC current is applied. Therefore, it is possible to obtain a current lead for a superconducting device in which the current-carrying capacity of an alternating current is significantly improved as compared with the conventional one.

【0045】また、高温側電流リードの良導電性導体と
低温側リードの酸化物超電導導体を中間接続導体を介し
て直列に導電接続してなる超電導装置用電流リードにお
いて、酸化物超電導導体を、円柱状導体あるいは円筒状
導体とその外周に配置された複数の同軸円筒状導体とを
互いに隙間を設けて径方向に折重ねて接続した直列接続
体から構成することとすれば、中間接続導体と低温端子
との間の実効的な長さが長くなり熱抵抗が増大するの
で、侵入熱が低減された超電導装置用電流リードが得ら
れることとなる。
Further, in a current lead for a superconducting device in which a good conductive conductor of a high temperature side current lead and an oxide superconducting conductor of a low temperature side lead are conductively connected in series through an intermediate connecting conductor, the oxide superconducting conductor is If a columnar conductor or a cylindrical conductor and a plurality of coaxial cylindrical conductors arranged on the outer periphery of the conductor are connected in series by fold-folding them in the radial direction with a gap between them, an intermediate connecting conductor Since the effective length between the low temperature terminal and the thermal resistance is increased, the current lead for the superconducting device in which the intrusion heat is reduced can be obtained.

【0046】また、高温側電流リードの良導電性導体と
低温側リードの酸化物超電導導体を中間接続導体を介し
て直列に導電接続してなる超電導装置用電流リードにお
いて、酸化物超電導導体の外周部分に、酸化物超電導導
体の両端が導電接続される中間接続導体と低温端子に接
続して配置される外筒を、複数の同軸円筒状部材を互い
に隙間を設けて径方向に折重ねて接続した直列接続体か
らなるものとすれば、中間接続導体と低温端子との間の
支持部材の熱的な実効長が長くなり、熱抵抗が増大する
ので、侵入熱が低減された超電導装置用電流リードが得
られることとなる。
Further, in the current lead for a superconducting device in which the good conductive conductor of the high temperature side current lead and the oxide superconducting conductor of the low temperature side lead are conductively connected in series through the intermediate connecting conductor, the outer periphery of the oxide superconducting conductor is In the part, an intermediate connecting conductor to which both ends of the oxide superconducting conductor are conductively connected and an outer cylinder arranged to be connected to the low temperature terminal are connected by folding a plurality of coaxial cylindrical members in the radial direction with a gap between them. If it is made up of a series connected body, the effective thermal length of the supporting member between the intermediate connection conductor and the low temperature terminal is increased, and the thermal resistance is increased. Leads will be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超電導装置用電流リードの第1の実施
例の基本構成図
FIG. 1 is a basic configuration diagram of a first embodiment of a current lead for a superconducting device of the present invention.

【図2】図1に示した本発明の超電導装置用電流リード
の第1の実施例の接続導体の縦断面図
FIG. 2 is a vertical sectional view of a connection conductor of a first embodiment of the current lead for a superconducting device of the present invention shown in FIG.

【図3】図1に示した本発明の超電導装置用電流リード
の第1の実施例の接続導体の横断面図
FIG. 3 is a transverse cross-sectional view of the connection conductor of the first embodiment of the current lead for the superconducting device of the present invention shown in FIG.

【図4】本発明の超電導装置用電流リードの第2の実施
例の接続導体の横断面図
FIG. 4 is a cross-sectional view of a connection conductor of a second embodiment of a current lead for a superconducting device of the present invention.

【図5】本発明の超電導装置用電流リードの第3の実施
例の接続導体の縦断面図
FIG. 5 is a vertical sectional view of a connecting conductor of a third embodiment of a current lead for a superconducting device of the present invention.

【図6】本発明の超電導装置用電流リードの第4の実施
例の低温側リードの基本構成図で、(a)は高温側リー
ドおよび低温側リードの縦断面図、(b)は低温側リー
ドの横断面図
FIG. 6 is a basic configuration diagram of a low temperature side lead of a fourth embodiment of a current lead for a superconducting device of the present invention, (a) is a vertical sectional view of a high temperature side lead and a low temperature side lead, and (b) is a low temperature side. Lead cross section

【図7】本発明の超電導装置用電流リードの第5の実施
例の低温側リードの基本構成図で、(a)は高温側リー
ドおよび低温側リードの縦断面図、(b)は低温側リー
ドの横断面図
FIG. 7 is a basic configuration diagram of a low temperature side lead of a fifth embodiment of a current lead for a superconducting device of the present invention, (a) is a vertical sectional view of a high temperature side lead and a low temperature side lead, and (b) is a low temperature side. Lead cross section

【図8】本発明の超電導装置用電流リードの第6の実施
例の低温側リードの基本構成図で、(a)は高温側リー
ドおよび低温側リードの縦断面図、(b)は低温側リー
ドの横断面図
FIG. 8 is a basic configuration diagram of a low temperature side lead of a sixth embodiment of a current lead for a superconducting device of the present invention, (a) is a vertical sectional view of a high temperature side lead and a low temperature side lead, and (b) is a low temperature side. Lead cross section

【図9】従来の超電導装置用電流リードを組み込んだ超
電導装置を簡略化して示した基本構成図
FIG. 9 is a basic configuration diagram showing a simplified superconducting device incorporating a conventional current lead for a superconducting device.

【図10】図9に示した従来の超電導装置用電流リード
の要部断面図で、(a)は高温側リードの一部と低温側
リードの縦断面、(b)は高温側リードの横断面、
(c)は低温側リードの横断面
FIG. 10 is a cross-sectional view of a main part of the conventional current lead for a superconducting device shown in FIG. 9, where (a) is a vertical cross section of a part of the high temperature side lead and the low temperature side lead, and (b) is a cross section of the high temperature side lead. surface,
(C) Cross section of low temperature side lead

【図11】図9に示した従来の超電導装置用電流リード
の常温端子と電源の電源端子の接続部の構成図で、
(a)は平面図、(b)は側面図
FIG. 11 is a configuration diagram of a connection portion between a room temperature terminal of the conventional superconducting device current lead shown in FIG. 9 and a power supply terminal of a power supply;
(A) is a plan view, (b) is a side view

【符号の説明】[Explanation of symbols]

1 常温端子 2 高温側リード 3 低温側リード 4 低温端子 5 超電導コイル 6 低温接続導体 7 真空断熱容器 11 良導電性導体 12,12A 外筒 13 外筒 14 酸化物超電導導体 15 中間接続導体 20A 円柱状酸化物超電導導体 20B 円筒状酸化物超電導導体 20C,20D,20E 酸化物超電導導体 21 注入口 22 排出口3030A30B 接続導体 31,31A,31B 酸化物超電導体 32A,32B 絶縁管 33,33A 真空容器 34,34A 液体窒素容器 35A,35B 端子リード 36 注入口 37 放出口 38 間隔片 40 液体窒素タンク 41 減圧装置 50 電源 51 電源端子 52 接続導体1 normal temperature terminal 2 high temperature side lead 3 low temperature side lead 4 low temperature terminal 5 superconducting coil 6 low temperature connecting conductor 7 vacuum insulation container 11 good conductive conductor 12, 12A outer cylinder 13 outer cylinder 14 oxide superconducting conductor 15 intermediate connecting conductor 20A columnar Oxide superconducting conductor 20B Cylindrical oxide superconducting conductor 20C, 20D, 20E Oxide superconducting conductor 21 Injection port 22 Discharge port 30 , 30A , 30B Connection conductor 31, 31A, 31B Oxide superconductor 32A, 32B Insulation pipe 33, 33A Vacuum container 34, 34A Liquid nitrogen container 35A, 35B Terminal lead 36 Injection port 37 Discharge port 38 Spacing piece 40 Liquid nitrogen tank 41 Pressure reducer 50 Power supply 51 Power supply terminal 52 Connection conductor

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】真空断熱容器内に収納され液体ヘリウムに
浸漬された超電導コイルに外部電源から励磁電流を通電
する超電導装置用電流リードにおいて、付設された導体
の一部が減圧された液体窒素で冷却される導体よりなる
ことを特徴とする超電導装置用電流リード。
1. A current lead for a superconducting device in which an exciting current is passed from an external power source to a superconducting coil housed in a vacuum heat insulation container and immersed in liquid helium, and a part of an attached conductor is decompressed liquid nitrogen. A current lead for a superconducting device, which is made of a conductor to be cooled.
【請求項2】高温側電流リードに内蔵する良導電性導体
と低温側リードに内蔵する酸化物超電導導体とを中間接
続導体を介して直列に導電接続してなる超電導装置用電
流リードで、前記中間接続導体および良導電性導体が、
減圧された液体窒素で冷却される導体であることを特徴
とする請求項1記載の超電導装置用電流リード。
2. A current lead for a superconducting device, wherein a good conductive conductor built in a high temperature side current lead and an oxide superconducting conductor built in a low temperature side lead are conductively connected in series through an intermediate connecting conductor, Intermediate connection conductor and good conductive conductor,
The current lead for a superconducting device according to claim 1, wherein the current lead is a conductor cooled with decompressed liquid nitrogen.
【請求項3】常温端に設けられた常温端子と外部電源の
電源端子とを接続する接続導体が、断熱容器内に配置さ
れ減圧された液体窒素で冷却される導体であることを特
徴とする請求項1記載の超電導装置用電流リード。
3. A connecting conductor for connecting a room temperature terminal provided at a room temperature end to a power supply terminal of an external power supply is a conductor arranged in a heat insulating container and cooled by decompressed liquid nitrogen. The current lead for a superconducting device according to claim 1.
【請求項4】常温端に設けられた常温端子と外部電源の
電源端子とを接続する前記接続導体が、1本または並列
接続された複数本の酸化物超電導体を用いて形成されて
いることを特徴とする請求項3記載の超電導装置用電流
リード。
4. The connection conductor for connecting a room temperature terminal provided at a room temperature end to a power supply terminal of an external power supply is formed by using one oxide superconductor or a plurality of oxide superconductors connected in parallel. A current lead for a superconducting device according to claim 3.
【請求項5】同一の超電導コイルに連結される一対の超
電導装置用電流リードの常温端子に接続する一対の接続
導体が、同一の断熱容器内に配置され減圧された液体窒
素で冷却される導体であることを特徴とする請求項3ま
たは4記載の超電導装置用電流リード。
5. A conductor in which a pair of connecting conductors connected to room temperature terminals of a pair of current leads for a superconducting device connected to the same superconducting coil are placed in the same heat insulating container and cooled by decompressed liquid nitrogen. The current lead for a superconducting device according to claim 3 or 4, wherein
【請求項6】前記接続導体の断熱容器が、減圧された液
体窒素を収納する液体窒素容器とその外側に配される真
空容器を備えてなるものにおいて、液体窒素容器と真空
容器のうち少なくとも液体窒素容器が、電気絶縁性材料
により形成されていることを特徴とする請求項3、4ま
たは5記載の超電導装置用電流リード。
6. The heat insulating container for the connecting conductor comprises a liquid nitrogen container for storing decompressed liquid nitrogen and a vacuum container arranged outside the liquid nitrogen container, wherein at least the liquid nitrogen container and the vacuum container are liquid. The current lead for a superconducting device according to claim 3, 4 or 5, wherein the nitrogen container is made of an electrically insulating material.
【請求項7】真空断熱容器内に収納され液体ヘリウムに
浸漬された超電導コイルに外部電源から励磁電流を通電
する超電導装置用電流リードで、高温側電流リードに内
蔵する良導電性導体と低温側リードに内蔵する酸化物超
電導導体を中間接続導体を介して直列に導電接続してな
るものにおいて、前記酸化物超電導導体が、円柱状導体
あるいは円筒状導体とその外周に同軸状に配置された円
筒状導体との並列接続体からなることを特徴とする超電
導装置用電流リード。
7. A current lead for a superconducting device in which an exciting current is supplied from an external power source to a superconducting coil housed in a vacuum heat insulation container and immersed in liquid helium. A structure in which oxide superconducting conductors contained in leads are conductively connected in series via an intermediate connecting conductor, wherein the oxide superconducting conductor is a columnar conductor or a cylindrical conductor and a cylinder coaxially arranged around the conductor. A current lead for a superconducting device, comprising a parallel connection body with a conductor.
【請求項8】真空断熱容器内に収納され液体ヘリウムに
浸漬された超電導コイルに外部電源から励磁電流を通電
する超電導装置用電流リードで、高温側電流リードに内
蔵する良導電性導体と低温側リードに内蔵する酸化物超
電導導体を中間接続導体を介して直列に導電接続してな
るものにおいて、前記酸化物超電導導体が、円柱状導体
あるいは円筒状導体とその外周に配置された複数の同軸
円筒状導体とを、互いに隙間を設けて径方向に折重ねて
接続した直列接続体からなることを特徴とする超電導装
置用電流リード。
8. A current lead for a superconducting device, wherein an exciting current is supplied from an external power source to a superconducting coil housed in a vacuum heat insulation container and immersed in liquid helium. In a structure in which oxide superconducting conductors contained in leads are conductively connected in series through an intermediate connecting conductor, the oxide superconducting conductor is a columnar conductor or a cylindrical conductor and a plurality of coaxial cylinders arranged around the conductor. A current lead for a superconducting device, characterized in that the current lead comprises a series connection body in which the conductors are folded and connected in a radial direction with a gap therebetween.
【請求項9】真空断熱容器内に収納され液体ヘリウムに
浸漬された超電導コイルに外部電源から励磁電流を通電
する超電導装置用電流リードで、高温側電流リードに内
蔵する良導電性導体と低温側リードに内蔵する酸化物超
電導導体を中間接続導体を介して直列に導電接続してな
るものにおいて、前記酸化物超電導導体の外周部分に、
酸化物超電導導体の両端が導電接続される中間接続導体
と低温端子に接続して配置される外筒が、複数の同軸円
筒状部材を互いに隙間を設けて径方向に折重ねて接続し
た直列接続体からなることを特徴とする超電導装置用電
流リード。
9. A current lead for a superconducting device in which an exciting current is supplied from an external power source to a superconducting coil housed in a vacuum heat insulation container and immersed in liquid helium. In the one in which the oxide superconducting conductor contained in the lead is conductively connected in series via the intermediate connecting conductor, in the outer peripheral portion of the oxide superconducting conductor,
A series connection in which an intermediate connecting conductor in which both ends of the oxide superconducting conductor are conductively connected and an outer cylinder connected to the low temperature terminal are connected by folding a plurality of coaxial cylindrical members in the radial direction with a gap between them. A current lead for a superconducting device, which is composed of a body.
JP7208619A 1994-11-25 1995-08-16 Current leads for superconducting devices Withdrawn JPH0955545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7208619A JPH0955545A (en) 1994-11-25 1995-08-16 Current leads for superconducting devices

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP29078994 1994-11-25
JP6-290789 1995-06-08
JP14146495 1995-06-08
JP7-141464 1995-06-08
JP7208619A JPH0955545A (en) 1994-11-25 1995-08-16 Current leads for superconducting devices

Publications (1)

Publication Number Publication Date
JPH0955545A true JPH0955545A (en) 1997-02-25

Family

ID=27318254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7208619A Withdrawn JPH0955545A (en) 1994-11-25 1995-08-16 Current leads for superconducting devices

Country Status (1)

Country Link
JP (1) JPH0955545A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720031B1 (en) * 2005-12-14 2007-05-18 한국기초과학지원연구원 Overload current lead wire for large current application
CN103616623A (en) * 2013-11-28 2014-03-05 上海三原电缆附件有限公司 Superconductive terminal current lead testing device
CN110415911A (en) * 2019-08-26 2019-11-05 西南交通大学 A pluggable binary current lead device and its cooling container
CN113936883A (en) * 2020-07-14 2022-01-14 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Dynamic low-temperature superconducting magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720031B1 (en) * 2005-12-14 2007-05-18 한국기초과학지원연구원 Overload current lead wire for large current application
CN103616623A (en) * 2013-11-28 2014-03-05 上海三原电缆附件有限公司 Superconductive terminal current lead testing device
CN110415911A (en) * 2019-08-26 2019-11-05 西南交通大学 A pluggable binary current lead device and its cooling container
CN110415911B (en) * 2019-08-26 2024-03-22 西南交通大学 Pluggable binary current lead device and cooling container thereof
CN113936883A (en) * 2020-07-14 2022-01-14 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Dynamic low-temperature superconducting magnet
CN113936883B (en) * 2020-07-14 2023-09-12 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Dynamic low temperature superconducting magnet

Similar Documents

Publication Publication Date Title
US5774032A (en) Cooling arrangement for a superconducting coil
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
JPH0561762B2 (en)
US4688132A (en) Superconducting magnet system for operation at 13k
US5298679A (en) Current lead for cryostat using composite high temperature superconductors
EP0285147B2 (en) Current-carrying lead
WO2003103094A1 (en) Current lead for superconducting apparatus
JPH0955545A (en) Current leads for superconducting devices
JP2004111581A (en) Superconducting magnet unit
JPH06132567A (en) Conduction cooling type superconducting magnet apparatus
JPH07297455A (en) Current lead for superconducting equipment
JPH11112043A (en) Current leads for superconducting devices
JPH07131079A (en) High-temperature superconductor current lead
JP2003324013A (en) Oxide superconductor current lead
JP3450318B2 (en) Thermoelectric cooling type power lead
JP2581283B2 (en) Current lead for superconducting coil
JP2734171B2 (en) Current lead of superconducting magnet device
US5880068A (en) High-temperature superconductor lead
JP3715002B2 (en) Current lead for superconducting device and operation method thereof
JP2515813B2 (en) Current lead for superconducting equipment
JP3127705B2 (en) Current lead using oxide superconductor
JPH03283678A (en) Current lead of superconducting magnet device
Ballarino et al. Design of 12.5 kA current leads for the Large Hadron Collider using high temperature superconductor material
JPH10247532A (en) Current leads for superconducting devices
JPH0548156A (en) Current lead for superconducting magnet device

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040105