EP2202839A1 - Compact feed system for the generation of circular polarisation in an antenna and method of producing such system - Google Patents
Compact feed system for the generation of circular polarisation in an antenna and method of producing such system Download PDFInfo
- Publication number
- EP2202839A1 EP2202839A1 EP09169222A EP09169222A EP2202839A1 EP 2202839 A1 EP2202839 A1 EP 2202839A1 EP 09169222 A EP09169222 A EP 09169222A EP 09169222 A EP09169222 A EP 09169222A EP 2202839 A1 EP2202839 A1 EP 2202839A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- omt
- branch coupler
- coupling slots
- electric field
- slots
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims 4
- 230000008878 coupling Effects 0.000 claims abstract description 47
- 238000010168 coupling process Methods 0.000 claims abstract description 47
- 238000005859 coupling reaction Methods 0.000 claims abstract description 47
- 230000005684 electric field Effects 0.000 claims abstract description 34
- 230000010287 polarization Effects 0.000 claims abstract description 23
- 230000005284 excitation Effects 0.000 claims abstract description 20
- 238000005192 partition Methods 0.000 claims abstract description 13
- 230000003071 parasitic effect Effects 0.000 claims description 14
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 10
- 230000006798 recombination Effects 0.000 description 7
- 238000005215 recombination Methods 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 6
- 238000005457 optimization Methods 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/16—Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
- H01P1/161—Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/213—Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
- H01P1/2131—Frequency-selective devices, e.g. filters combining or separating two or more different frequencies with combining or separating polarisations
Definitions
- the present invention relates to a compact excitation unit for generating a circular polarization in an antenna, to an antenna comprising such a compact excitation assembly and to a method for producing such a compact excitation assembly. It applies in particular to the field of transmitting and / or receiving antennas and more particularly to antennas comprising an array of elementary radiating elements connected to an orthomode transducer device associated with a coupler, such as for example multibeam antennas.
- the development of a large number of contiguous beams involves producing an antenna comprising a large number of elementary radiating elements, placed in the focal plane of a parabolic reflector, the spacing of which depends directly on the angular difference between the beams.
- the volume allocated for the location of an RF radio frequency chain responsible for performing the circular bipolarization transmission and reception functions is limited by the radiative surface of a radiating element, in the case of a multibeam application.
- each source consisting of a radiating element coupled to a radiofrequency chain
- produces a beam also called a spot
- each formed beam is emitted for example by a dedicated horn constituting the elementary radiating element and the radiofrequency chain performs, for each beam, transmission / reception functions in mono-polarization or bi-polarization in a frequency band chosen according to the needs of users and / or operators.
- a radiofrequency chain mainly comprises an exciter and waveguide paths, also called recombination circuits, for connecting the radio frequency components.
- an exciter comprising an orthomode transducer known by the acronym OMT (in English: OrthoMode Transducer) connected to an elementary radiating element by example of cornet type.
- OMT orthomode transducer
- the OMT feeds the horn (in transmission), or is fed by the horn (in reception), selectively either with a first electromagnetic mode having a first polarization, or with a second electromagnetic mode having a second polarization orthogonal to the first.
- the first and second polarizations, to which two electric field components are associated are linear and called respectively horizontal polarization H and vertical polarization V.
- Circular polarization is achieved by associating the OMT with a branch coupler (in English: branch line coupler ) responsible for placing the electric field components H and V in quadrature phase.
- branch coupler in English: branch line coupler
- the search for a compact solution leads to grouping the radio frequency components and the recombination circuits of the radiofrequency chain on several levels stacked one below the other, as represented for example on the Figures 1a and 1b described below.
- the higher the number of beams the greater the complexity, the mass and the cost of the radiofrequency chain.
- the object of the present invention is to remedy this problem by proposing a new excitation unit operating in bi-polarization, not requiring adjustment and making it possible to simplify and make more compact the radiofrequency chain and thereby reduce its mass. and the cost.
- the invention relates to a compact excitation unit for generating a circular polarization in an antenna comprising a diplexant orthomode transducer and a branch coupler, characterized in that the orthomode transducer, called OMT, is asymmetrical and comprises a main waveguide with a square or circular cross section of longitudinal axis ZZ 'and two branches coupled to the main waveguide respectively by two parallel coupling slots, the two coupling slots being made in two orthogonal walls of the waveguide; wave, the two branches of the OMT being respectively connected to two waveguides of an unbalanced branch coupler, the branch coupler having two different partition coefficients and optimized to compensate for orthogonal spurious electric field components generated by the dissymmetry of the OMT.
- the orthomode transducer called OMT
- the branch coupler having two different partition coefficients and optimized to compensate for orthogonal spurious electric field components generated by the dissymmetry of the OMT.
- the section of the main waveguide of the OMT downstream of the coupling slots is smaller than the section of the main waveguide of the OMT upstream of the coupling slots, the section breaking forming a plane of short circuit.
- the coupling slots of the OMT having a length L1 and a width L2 are connected to the branch coupler by means of two stub filters placed at a distance D1 from the coupling slots, the distance D1, the length L1 and width L2 are chosen so as to achieve an orthogonality between the parasitic components of the electric field generated by the dissymmetry of the OMT.
- the invention also relates to an antenna characterized in that it comprises at least one such compact excitation unit.
- the invention also relates to a method for producing a compact excitation unit for generating a circular polarization in an antenna, characterized in that it consists in coupling an asymmetric OMT orthomode transducer to two branches with an unbalanced branch coupler having two different partition coefficients, to size the OMT so as to establish a phase quadrature between two components electrical field sparks generated by the dissymmetry of the OMT, and optimize the partition coefficients of the branch coupler to compensate for the two parasitic components of the electric field.
- the dimensioning of the OMT consists in determining a length L1 of the coupling slots of the OMT, in determining a distance D1 separating the coupling slots of two stub filters placed between the coupling slots and the branch coupler. placing a short-circuit plane in the main waveguide of the OMT downstream of the coupling slots, the distance D1, the length L1 and the width L2 being chosen so as to achieve orthogonality between the parasitic components of electric field generated by the dissymmetry of the OMT.
- the orthomode transducer 5 with four branches shown in FIG. figure 1a comprises a main waveguide 10 having a longitudinal axis ZZ ', with a square or circular cross-section for example, having a first end intended to be connected to a horn, not shown, and a second outlet end, the two ends being situated in the longitudinal axis of the body of the main waveguide.
- a group of four parallel, or parallel, longitudinal slots 11, 12, 13, 14 are formed in the wall of each of the four lateral faces of the main waveguide and arranged diametrically opposite in pairs. Between the horn and the coupling slots, the dimensions of the main waveguide 10 are adapted to the propagation of the fundamental electromagnetic modes associated with the H and V field components of the main waveguide in the transmit and transmit frequency bands. reception.
- the section of the main waveguide decreases which generates a short circuit plane for the low frequency band.
- the waveguide behaves like a high-pass filter that passes only the high frequency band.
- the H and V field components associated with the fundamental electromagnetic modes TE01 and TE10 of the square section waveguide, or the TE11H and TE11 V modes of the circular section waveguide are coupled in the low frequency band by for example, the transmission band, by the four parallel coupling slots 11, 12, 13, 14.
- the high frequency band for example the reception band, is rejected by four stub filters 15, 16, 17, 18 connected to the four parallel access slots and propagates in the main waveguide to its output end.
- the OMT and filters unit thus has six physical ports and its operation is compatible with an application in linear polarization or circular polarization.
- the low frequency band may, for example, be reserved for the transmission of RF radio frequency signals and the high frequency band may be reserved for receiving the RF signals.
- the development of a circular polarization is provided by a 3 dB balanced branch coupler 19 which supplies the four coupling slots 11, 12, 13, 14 in pairs in quadrature phase. Opposite slots are phase-fed via in-phase recombination circuits.
- the different components of the excitation assembly consisting of the diplexant OMT and the branch coupler are optimized separately and the overall transfer function results from the intrinsic performance of each component.
- the geometry of the four-pointed OMT 5 imposes, at the location of the coupling slots, a plane of symmetry to the electric field which propagates in the OMT which minimizes the amplitude of the cross-components of the electric field.
- the circular polarization purity does not depend on the OMT 5 but only the branch coupler 19 and recombination circuits 20 which perform power sharing and phase quadrature between the coupling slots.
- a septum polarizer is connected to the output end of the main waveguide of the OMT, the septum polarizer realizing the development of circular polarization on reception.
- the radio frequency components and recombination circuits of the radio frequency chain are stacked on several levels, two levels 1, 2 are represented on the figure 1b but there are usually three, arranged one below the other.
- the integration of the components is then maximal and to further reduce the mass, the volume and the cost of the radiofrequency chain, it is necessary to modify its architecture.
- the figure 2 represents an example of a simplified architecture of an RF chain comprising a compact excitation unit, according to the invention.
- the RF chain essentially comprises a diplexant orthomode transducer 21 with two branches represented on the Figures 3a and 3b and an unbalanced branch coupler 40.
- the OMT 21 comprises a main waveguide 22, for example of square or circular section, and of longitudinal axis ZZ ', comprising two ends 23, 24, the first end 23 coupled to a circular access 31 being intended to be connected to a horn, not shown, and having two parallel access coupling slots 25, 26 formed in the wall of the main waveguide and opening into the respective two branches of the OMT.
- the two parallel access slots 25, 26 are formed in two orthogonal sidewalls of the main waveguide and arranged, for example and preferably at the same height relative to the two ends 23, 24 of the waveguide main.
- the low frequency band may for example be reserved for the transmission of RF signals and the high frequency band may be reserved for receiving the RF signals.
- each of the two coupling slots 25, 26 is connected to the branch coupler 22 via a stub filter 27, 28 and recombination circuits 29, 30.
- the circular access 31 constitutes the common input and output port with two electric field components, respectively horizontal H and vertical V, corresponding to two orthogonally polarized electromagnetic modes propagating on transmission and reception.
- Each parallel access slot associated with a stub filter constitutes an input and output port of one of the electric field components, called a coupled port for this component, the other port being called an isolated port.
- a coupled port for this component the other port being called an isolated port.
- the vertical electric field component H passes through the coupled port 32, the port 33 being the isolated port for this component H.
- the coupled port is the port 33 and the isolated port is the port 32.
- the coupler 40 has two rectangular waveguides 35, 36 forming two main branches connected respectively by a first end at one of the OMT ports 32, 33, and at a second end at a respective power port 37, 38, the power ports 37, 38 having the same electrical length.
- Each supply port is connected to each of the two main branches 35, 36 of the branch coupler 40 to supply it with an electric field.
- the two main branches of the branch coupler are coupled together by means of coupling slots, not shown, opening into at least one transverse waveguide 39 constituting a transverse branch.
- the length of the transverse guides 39 in a predetermined number, for example equal to three on the figure 2 , is equal to ⁇ g / 4 so as to produce, at the output of the branch coupler 40, a phase shift of 90 ° between the two electric field components, ⁇ g being the guided wavelength of the fundamental mode propagating in the main branches 35, 36 of the coupler 40.
- a septum polarizer may be connected to the second end 24 of the main waveguide of the OMT.
- the diplexant OMT with two branches does not allow the natural decoupling of the horizontal and vertical electric field components V due to the absence of symmetry at the location of the coupling slots 25, 26
- the analysis of the parameters of the energy dispersion matrix between the common port 31 and the coupled port 32 corresponding to one of the components of the electric field, then between the common port and the isolated port 33 of the same component of the electric field shows, as shown on the Figures 4 and 5 , that there is an energy coupling, of the order of -20 dB, between the coupled port and the isolated port and that there is a frequency-dispersive phase difference between the two ports, the phase quadrature being obtained only for a particular frequency, although physically the lengths from the common port 31 to the two coupled and isolated ports 32, 33 are identical.
- the fundamental mode energy propagating in the main waveguide does not pass entirely into the coupled port but partly to the isolated port.
- the power distribution between the two ports is due to the fact that in addition to the coupling of the TE10 fundamental mode at -20 dB, there is a -20 dB coupling of the TE20 mode (or TE02 depending on whether the component is considered H or V of the electric field) between the coupled port and isolated port.
- the TE20 (or TE02) mode interferes with the power sharing and induces a phase insertion different from the electric field on the port coupled to the isolated port.
- the two-branched OMT does not allow to completely decouple the two components of the electric field when it is associated with a 3 dB balanced branch coupler which realizes the sharing of power in equal parts and the quadrature of phase between the coupling slots, it is not possible to obtain a circular polarization.
- the polarization obtained is elliptic, with an ellipticity ratio of the radiated field equal to 1.7 dB.
- the distance D1 between the slots 25, 26 and the beginning of the stub filters 27, 28 it is possible, as shown in the example of the figure 6 , to put the field component on the isolated port in phase quadrature with the field component on the coupled port and to make the differential phase behavior between these two coupled and isolated aperiodic field components over a bandwidth greater than 7% of the low total frequency band.
- the distance D1 acts on the frequency dispersion of the phase of the main field component on the coupled port relative to the parasitic cross-field component on the isolated port.
- the length L1 and the width L2 make it possible to adjust the absolute phase at -90 ° between the field component on the coupled port and the parasitic field component on the isolated port.
- the distance between the slot and the short circuit plane may for example be zero.
- the optimization of the OMT shape parameters is a multivariate optimization for which other parameters act in the second order, creating for example energy beats between radiofrequency discontinuities, and that it does not It is possible to optimize only by successive iterations and by an analysis of the electromagnetic modes that propagate.
- the figure 7 shows that the electric field resulting from a supply on the port of access 32, 33 of the horizontal polarization H, respectively vertical V, is then breaks down into two out of phase components of -90 °.
- Ey for the access port 33 of the vertical component V of the electric field Ey is added a parasitic horizontal component ⁇ y that is out of phase by -90 ° with respect to Ey and for the access port 32 of the horizontal component H of the field Ex electric is added a parasitic vertical component ⁇ x phase-shifted by -90 ° with respect to Ex.
- the spurious components ⁇ y and ⁇ x are attenuated by 20 dB with respect to the amplitude of Ex and Ey.
- the asymmetrical OMT associated with an unbalanced branched coupler, allows the compensation of the defect induced by the dissymmetry of the OMT and an operation of the antenna in mono-polarization and bi-polarization with excellent purity of polarization.
- the Figures 8a and 8b show a perspective view and a longitudinal sectional view of an example of unbalanced branch coupler 40, according to the invention.
- the branch coupler 40 has four ports 1 to 4 located at the four ends of the two main branches. Ports 1 and 4 are intended to be connected to the two power ports, the two ports 2 and 3 are respectively intended to be connected to the ports coupled and isolated from the OMT.
- ⁇ 1 - ⁇ 2
- the phase delay of 90 ° between the two electric field components at the output of the branch coupler on the ports 2 and 3 corresponds to the lengths of the transversal guides equal to a quarter of the wavelength ⁇ g / 4.
- the transverse guides have identical lengths but different widths.
- the number of transverse branches is chosen according to the bandwidth requirement.
- the widths of the transverse branches are defined according to the values of the coupling coefficient ⁇ and ⁇ to be produced.
- the sharing coefficients ⁇ and ⁇ are chosen so as to compensate for the parasitic defect related to the dissymmetry of the OMT.
- the ⁇ and ⁇ coefficients will no longer be equal as is the case in the balanced couplers usually used with a four-branch OMT, but will be different.
- the partition coefficients are optimized in the presence of the OMT and compensate the horizontal and vertical parasitic components ⁇ y and ⁇ x so as to obtain on each port 2 and 3 of output, half of the power received on the input port 1.
- the optimization of the sharing coefficients can be performed in reception, so as to compensate for the horizontal and vertical parasitic components ⁇ y and ⁇ x related to the dissymmetry of the OMT.
- the Figures 9a and 9b show that the ellipticity rate obtained by combining a two-branch OMT and an unbalanced branch coupler according to the invention, is less than 0.1 dB on the Ka band between 19.7GHz and 20.2 GHz.
- the ellipticity rate is less than 0.4 dB on 1.5 GHz bandwidth, which allows a use of this structure for a mission users but also for other applications regardless of the frequency bands.
- the new architecture has the advantages of being very compact, the bulk of the sources, consisting of the RF chain and the horn of emission and reception, thus realized is of 60mm of diameter and 100mm of height.
- an equivalent source assembly according to the prior art has a footprint of 150mm in height and 72mm in diameter.
- the cost of implementation is optimal compared to the number of components. Indeed, reducing the number of mechanical parts allows a gain in preparation time.
- the mass of the RF chain out of the horn is reduced by 60%.
- the structure is simplified and the number of electric layers is reduced to one instead of three since the OMT, the branch coupler and the recombination circuits are on the same level.
- the length of the guide paths is reduced by 50%, which allows a reduction in ohmic losses of 0.1 dB compared to the prior art with four-branched OMT whose ohmic losses were 0.25 dB.
Landscapes
- Waveguide Aerials (AREA)
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
L'ensemble d'excitation compact pour la génération d'une polarisation circulaire dans une antenne comporte un transducteur orthomode diplexant et un coupleur à branches, et est caractérisé en ce que le transducteur orthomode (21), appelé OMT, est dissymétrique et comporte un guide d'onde principal (22) à section carrée ou circulaire d'axe longitudinal ZZ' et deux branches couplées au guide d'onde principal (22) par respectivement deux fentes (25, 26) de couplage en parallèle, les deux fentes de couplage (25, 26) étant réalisées dans deux parois orthogonales du guide d'onde, les deux branches de l'OMT étant respectivement reliées à deux guides d'onde (35, 36) d'un coupleur à branches déséquilibré (40), le coupleur à branches (40) ayant deux coefficients de partage (±, ²) différents et optimisés de manière à compenser des composantes parasites orthogonales (´y, ´x) de champ électrique engendrées par la dissymétrie de l'OMT (21). Application en particulier aux antennes d'émission et/ou de réception tel que par exemple aux antennes multifaisceaux.The compact excitation unit for generating a circular polarization in an antenna comprises a diplexant orthomode transducer and a branch coupler, and is characterized in that the orthomode transducer (21), called OMT, is asymmetrical and comprises a main waveguide (22) with a square or circular cross-section of longitudinal axis ZZ 'and two branches coupled to the main waveguide (22) by two parallel coupling slots (25, 26) respectively, the two slots of coupling (25, 26) being formed in two orthogonal walls of the waveguide, the two branches of the OMT being respectively connected to two waveguides (35, 36) of an unbalanced branch coupler (40), the branch coupler (40) having two different partition coefficients (±, ²) and optimized to compensate for orthogonal spurious components ('y, x) of the electric field generated by the dissymmetry of the OMT (21). Application in particular to transmitting and / or receiving antennas such as, for example, multibeam antennas.
Description
La présente invention concerne un ensemble d'excitation compact pour la génération d'une polarisation circulaire dans une antenne, à une antenne comportant un tel ensemble d'excitation compact et à un procédé d'élaboration d'un tel ensemble d'excitation compact. Elle s'applique notamment au domaine des antennes d'émission et/ou de réception et plus particulièrement aux antennes comportant un réseau d'éléments rayonnants élémentaires reliés à un dispositif de transduction orthomode associé à un coupleur, tel que par exemple aux antennes multifaisceaux.The present invention relates to a compact excitation unit for generating a circular polarization in an antenna, to an antenna comprising such a compact excitation assembly and to a method for producing such a compact excitation assembly. It applies in particular to the field of transmitting and / or receiving antennas and more particularly to antennas comprising an array of elementary radiating elements connected to an orthomode transducer device associated with a coupler, such as for example multibeam antennas.
L'élaboration d'un grand nombre de faisceaux contigus implique de réaliser une antenne comportant un grand nombre d'éléments rayonnants élémentaires, placés dans le plan focal d'un réflecteur parabolique, dont l'espacement dépend directement de l'écart angulaire entre les faisceaux. Le volume alloué pour l'emplacement d'une chaîne radiofréquence RF chargée d'assurer les fonctions d'émission et de réception en bipolarisation circulaire est borné par la surface radiative d'un élément rayonnant, dans le cas d'une application multifaisceaux.The development of a large number of contiguous beams involves producing an antenna comprising a large number of elementary radiating elements, placed in the focal plane of a parabolic reflector, the spacing of which depends directly on the angular difference between the beams. The volume allocated for the location of an RF radio frequency chain responsible for performing the circular bipolarization transmission and reception functions is limited by the radiative surface of a radiating element, in the case of a multibeam application.
Dans la configuration la plus courante où chaque source, constituée d'un élément rayonnant couplé à une chaîne radiofréquence, élabore un faisceau, appelé aussi un spot, chaque faisceau formé est émis par exemple par un cornet dédié constituant l'élément rayonnant élémentaire et la chaîne radiofréquence réalise, pour chaque faisceau, les fonctions émission/réception en mono-polarisation ou en bi-polarisation dans une bande de fréquences choisie en fonction des besoins des utilisateurs et/ou des opérateurs. Généralement, une chaîne radiofréquence comporte principalement un excitateur et des chemins de guides d'ondes, appelés aussi circuits de recombinaison, permettant de relier les composants radiofréquences. Pour élaborer une polarisation circulaire, il est connu d'utiliser un excitateur comportant un transducteur orthomode connu sous l'acronyme OMT (en anglais : OrthoMode Transducer) connecté à un élément rayonnant élémentaire par exemple de type cornet. L'OMT alimente le cornet (en transmission), ou est alimenté par le cornet (en réception), sélectivement soit avec un premier mode électromagnétique présentant une première polarisation, soit avec un second mode électromagnétique présentant une seconde polarisation orthogonale à la première. Les première et seconde polarisations, auxquelles sont associées deux composantes de champs électriques, sont linéaires et appelées respectivement polarisation horizontale H et polarisation verticale V. La polarisation circulaire est réalisée en associant l'OMT à un coupleur à branches (en anglais : branch line coupler) chargé de placer les composantes de champs électriques H et V en quadrature de phase. La recherche d'une solution compacte conduit à regrouper les composants radiofréquences et les circuits de recombinaison de la chaîne radiofréquence sur plusieurs niveaux empilés les uns au-dessous des autres, comme représenté par exemple sur les
La présente invention a pour but de remédier à ce problème en proposant un nouvel ensemble d'excitation fonctionnant en bi-polarisation, ne nécessitant pas de réglage et permettant de simplifier et de rendre plus compacte la chaîne radiofréquence et d'en diminuer ainsi la masse et le coût.The object of the present invention is to remedy this problem by proposing a new excitation unit operating in bi-polarization, not requiring adjustment and making it possible to simplify and make more compact the radiofrequency chain and thereby reduce its mass. and the cost.
Pour cela, l'invention concerne un ensemble d'excitation compact pour la génération d'une polarisation circulaire dans une antenne comportant un transducteur orthomode diplexant et un coupleur à branches, caractérisé en ce que le transducteur orthomode, appelé OMT, est dissymétrique et comporte un guide d'onde principal à section carrée ou circulaire d'axe longitudinal ZZ' et deux branches couplées au guide d'onde principal par respectivement deux fentes de couplage en parallèle, les deux fentes de couplage étant réalisées dans deux parois orthogonales du guide d'onde, les deux branches de l'OMT étant respectivement reliées à deux guides d'onde d'un coupleur à branches déséquilibré, le coupleur à branches ayant deux coefficients de partage différents et optimisés de manière à compenser des composantes parasites orthogonales de champ électrique engendrées par la dissymétrie de l'OMT.For this, the invention relates to a compact excitation unit for generating a circular polarization in an antenna comprising a diplexant orthomode transducer and a branch coupler, characterized in that the orthomode transducer, called OMT, is asymmetrical and comprises a main waveguide with a square or circular cross section of longitudinal axis ZZ 'and two branches coupled to the main waveguide respectively by two parallel coupling slots, the two coupling slots being made in two orthogonal walls of the waveguide; wave, the two branches of the OMT being respectively connected to two waveguides of an unbalanced branch coupler, the branch coupler having two different partition coefficients and optimized to compensate for orthogonal spurious electric field components generated by the dissymmetry of the OMT.
Avantageusement, la section du guide d'onde principal de l'OMT en aval des fentes de couplage est inférieure à la section du guide d'onde principal de l'OMT en amont des fentes de couplage, la rupture de section formant un plan de court-circuit.Advantageously, the section of the main waveguide of the OMT downstream of the coupling slots is smaller than the section of the main waveguide of the OMT upstream of the coupling slots, the section breaking forming a plane of short circuit.
Avantageusement, les fentes de couplage de l'OMT, ayant une longueur L1 et une largeur L2, sont reliées au coupleur à branches par l'intermédiaire de deux filtres à stub placés à une distance D1 des fentes de couplage, la distance D1, la longueur L1 et la largeur L2 sont choisies de manière à réaliser une orthogonalité entre les composantes parasites de champ électrique engendrées par la dissymétrie de l'OMT.Advantageously, the coupling slots of the OMT, having a length L1 and a width L2, are connected to the branch coupler by means of two stub filters placed at a distance D1 from the coupling slots, the distance D1, the length L1 and width L2 are chosen so as to achieve an orthogonality between the parasitic components of the electric field generated by the dissymmetry of the OMT.
Avantageusement, les coefficients de partage du coupleur à branches sont déterminés à partir des trois relations suivantes :
- α2 + β2 = 1
-
-
- α 2 + β 2 = 1
-
-
L'invention concerne aussi une antenne caractérisée en ce qu'elle comporte au moins un tel ensemble d'excitation compact.The invention also relates to an antenna characterized in that it comprises at least one such compact excitation unit.
Enfin, l'invention concerne également un procédé d'élaboration d'un ensemble d'excitation compact pour la génération d'une polarisation circulaire dans une antenne, caractérisé en ce qu'il consiste à coupler un transducteur orthomode OMT dissymétrique à deux branches avec un coupleur à branches déséquilibré comportant deux coefficients de partage différents, à dimensionner l'OMT de façon à établir une quadrature de phase entre deux composantes parasites de champ électrique engendrées par la dissymétrie de l'OMT, et à optimiser les coefficients de partage du coupleur à branches pour compenser les deux composantes parasites de champ électrique.Finally, the invention also relates to a method for producing a compact excitation unit for generating a circular polarization in an antenna, characterized in that it consists in coupling an asymmetric OMT orthomode transducer to two branches with an unbalanced branch coupler having two different partition coefficients, to size the OMT so as to establish a phase quadrature between two components electrical field sparks generated by the dissymmetry of the OMT, and optimize the partition coefficients of the branch coupler to compensate for the two parasitic components of the electric field.
Avantageusement, le dimensionnement de l'OMT consiste à déterminer une longueur L1 des fentes de couplage de l'OMT, à déterminer une distance D1 séparant les fentes de couplage de deux filtres à stubs placés entre les fentes de couplage et le coupleur à branches, à placer un plan de court-circuit dans le guide d'onde principal de l'OMT en aval des fentes de couplage, la distance D1, la longueur L1 et la largeur L2 étant choisies de manière à réaliser une orthogonalité entre les composantes parasites de champ électrique engendrées par la dissymétrie de l'OMT.Advantageously, the dimensioning of the OMT consists in determining a length L1 of the coupling slots of the OMT, in determining a distance D1 separating the coupling slots of two stub filters placed between the coupling slots and the branch coupler. placing a short-circuit plane in the main waveguide of the OMT downstream of the coupling slots, the distance D1, the length L1 and the width L2 being chosen so as to achieve orthogonality between the parasitic components of electric field generated by the dissymmetry of the OMT.
Avantageusement, les coefficients de partage du coupleur à branches sont déterminés à partir des trois relations suivantes :
- α2 + β2 = 1
-
-
- α 2 + β 2 = 1
-
-
D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :
-
figure 1a : un schéma en vue de dessus d'un exemple d'OMT diplexant, selon l'art antérieur ; -
figure 1b : une vue en perspective d'un exemple de chaîne RF comportant un OMT diplexant de lafigure 1 a; -
figure 2 : une vue en coupe d'un exemple d'architecture simplifiée d'une chaine RF comportant un ensemble d'excitation compact, selon l'invention; -
figures 3a et 3b : deux vues, respectivement en perspective et en vue de dessus, d'un exemple d'OMT diplexant dissymétrique, selon l'invention; -
figure 4 : un exemple de couplage entre les deux ports couplé et isolé obtenu avec un OMT dissymétrique avant optimisation de la forme de l'OMT, selon l'invention ; -
figure 5 : un exemple de dispersion de phase entre les ports couplé et isolé d'un OMT avant optimisation de la forme de l'OMT, selon l'invention ; -
figure 6 : un exemple de dispersion de phase entre les ports couplé et isolé d'un OMT après optimisation des paramètres de forme de l'OMT, selon l'invention ; -
figure 7 : une vue schématique de dessus de l'OMT montrant les composantes de champ parasites après optimisation des paramètres de forme de l'OMT, selon l'invention. -
figures 8a et 8b : une vue en perspective et une vue en coupe longitudinale, d'un exemple de coupleur à branches déséquilibré, selon l'invention ; -
figures 9a et 9b : un exemple montrant le taux d'ellipticité obtenu en associant un OMT à deux branches et un coupleur à branches déséquilibré pour former un ensemble d'excitation compact, selon l'invention.
-
figure 1a : a diagram in top view of an example of OMT diplexant, according to the prior art; -
figure 1b : a perspective view of an exemplary RF chain including a diplexant OMT of thefigure 1 at; -
figure 2 : a sectional view of an example of simplified architecture of an RF chain comprising a compact excitation assembly, according to the invention; -
Figures 3a and 3b two views, respectively in perspective and in top view, of an example of OMT diplexant asymmetrical, according to the invention; -
figure 4 an example of coupling between the two coupled and isolated ports obtained with an asymmetrical OMT before optimizing the shape of the OMT, according to the invention; -
figure 5 an example of phase dispersion between the coupled and isolated ports of an OMT before optimizing the form of the OMT, according to the invention; -
figure 6 an example of phase dispersion between the coupled and isolated ports of an OMT after optimization of the shape parameters of the OMT, according to the invention; -
figure 7 : a schematic view from above of the OMT showing the parasitic field components after optimization of the shape parameters of the OMT, according to the invention. -
Figures 8a and 8b : a perspective view and a longitudinal sectional view of an example of unbalanced branch coupler according to the invention; -
Figures 9a and 9b an example showing the ellipticity ratio obtained by combining a two-branch OMT and an unbalanced branch coupler to form a compact excitation unit according to the invention.
Le transducteur orthomode 5 à quatre branches représenté sur la
Les composants radiofréquences et les circuits de recombinaison de la chaîne radiofréquence sont empilés sur plusieurs niveaux, deux niveaux 1, 2 sont représentés sur la
La
A la réception, un polariseur septum, non représenté peut être connecté à la deuxième extrémité 24 du guide d'onde principal de l'OMT.On reception, a septum polarizer, not shown, may be connected to the
D'un point de vue géométrique, l'OMT diplexant à deux branches ne permet pas le découplage naturel des composantes de champ électrique horizontale H et verticale V en raison de l'absence de symétrie à l'endroit des fentes de couplage 25, 26. L'analyse des paramètres de la matrice de dispersion de l'énergie entre le port commun 31 et le port couplé 32 correspondant à l'une des composantes du champ électrique, puis entre le port commun et le port isolé 33 de la même composante du champ électrique montre, comme représenté sur les
Selon l'invention, l'OMT à deux branches ne permettant pas de découpler totalement les deux composantes du champ électrique lorsqu'il est associé avec un coupleur à branches équilibré à 3 dB qui réalise le partage de puissance à parts égales et la quadrature de phase entre les fentes de couplage, il n'est pas possible d'obtenir une polarisation circulaire. La polarisation obtenue est elliptique, avec un taux d'ellipticité du champ rayonné égal à 1,7 dB.According to the invention, the two-branched OMT does not allow to completely decouple the two components of the electric field when it is associated with a 3 dB balanced branch coupler which realizes the sharing of power in equal parts and the quadrature of phase between the coupling slots, it is not possible to obtain a circular polarization. The polarization obtained is elliptic, with an ellipticity ratio of the radiated field equal to 1.7 dB.
Cependant, en agissant sur les paramètres de forme de l'OMT tels que la longueur L1 et la largeur L2 des fentes de couplage 25, 26, la distance entre la fente et le plan de court-circuit pour la bande de fréquence basse correspondant aux changements de section du guide principal, la distance D1 entre les fentes 25, 26 et le début des filtres à stubs 27, 28, il est possible, comme représenté sur l'exemple de la
La
L'OMT dissymétrique, selon l'invention, associé à un coupleur à branches déséquilibré, permet la compensation du défaut induit par la dissymétrie de l'OMT et un fonctionnement de l'antenne en mono-polarisation et en bi-polarisation avec une excellente pureté de polarisation.The asymmetrical OMT, according to the invention, associated with an unbalanced branched coupler, allows the compensation of the defect induced by the dissymmetry of the OMT and an operation of the antenna in mono-polarization and bi-polarization with excellent purity of polarization.
Pour avoir une bonne pureté de polarisation circulaire, les composantes H et V du champ électrique doivent avoir la même amplitude et être en quadrature de phase. Les
Selon l'invention, les coefficients de partage α et β sont choisis de façon à compenser le défaut parasite lié à la dissymétrie de l'OMT. Ainsi les coefficients α et β ne vont plus être égaux comme c'est le cas dans les coupleurs équilibrés utilisés habituellement avec un OMT à quatre branches, mais vont être différents.According to the invention, the sharing coefficients α and β are chosen so as to compensate for the parasitic defect related to the dissymmetry of the OMT. Thus the α and β coefficients will no longer be equal as is the case in the balanced couplers usually used with a four-branch OMT, but will be different.
Les coefficients de partage sont optimisés en présence de l'OMT et compensent les composantes parasites horizontale et verticale δy et δx de manière à obtenir sur chaque port 2 et 3 de sortie, la moitié de la puissance reçue sur le port d'entrée 1.The partition coefficients are optimized in the presence of the OMT and compensate the horizontal and vertical parasitic components δy and δx so as to obtain on each
Le fonctionnement du coupleur étant symétrique en réception et en transmission, l'optimisation des coefficients de partage peut être réalisée en réception, de manière à compenser les composantes parasites horizontale et verticale δy et δx liées à la dissymétrie de l'OMT.Since the operation of the coupler is symmetrical in reception and transmission, the optimization of the sharing coefficients can be performed in reception, so as to compensate for the horizontal and vertical parasitic components δy and δx related to the dissymmetry of the OMT.
Ainsi, en réception, à la traversée du coupleur, les composantes de champ entrant sur le port 2, Ex et δy.e-j90° deviennent respectivement, en sortie sur le port 1 : α.Ex et α.δx.e-j90°.Thus, in reception, at the crossing of the coupler, the field components entering on the
De même, les composantes de champ entrant sur le port 3, Ey et δy.e-j90°, deviennent respectivement en sortie sur le port 1 : β.Ey.e-j90° et β.δy.e-j180°.Similarly, the input field components on
Les projections de ces composantes de champ suivant les axes orthogonaux X et Y sont alors les suivantes :
- Suivant l'axe X : α.β.Ex +β.δy.e-j180°
- Suivant l'axe Y : β.Ey.e-j90° et α.δy.e-j90°
- Along the X axis: α.β.Ex + β.δy.e -j180 °
- Along the Y axis: β.Ey.e -j90 ° and α.δy.e -j90 °
Suivant l'axe X les composantes de champ Ex et δy se somment en opposition de phase et la compensation est destructive. Suivant l'axe Y, les composantes de champ Ey et δx se somment en phase et la compensation est constructive. Pour que la compensation permettent d'obtenir sur chaque port 2 et 3 de sortie, la moitié de la puissance reçue sur le port d'entrée 1, les coefficients de partage α et β sont tels que les trois relations suivantes soient respectées :
- α2 + β2 = 1
-
-
- α 2 + β 2 = 1
-
-
Les
La nouvelle architecture présente les avantages d'être très compacte, l'encombrement des sources, constituées de la chaîne RF et du cornet d'émission et de réception, ainsi réalisées est de 60mm de diamètre et 100mm de hauteur. A titre de comparaison, un assemblage de source équivalente selon l'art antérieur présente un encombrement de 150mm de hauteur et de 72mm de diamètre. Le coût de réalisation est optimal par rapport au nombre de composants. En effet, la réduction du nombre de pièces mécaniques permet un gain en temps de préparation. La masse de la chaîne RF hors cornet est diminuée de 60%. La structure est simplifiée et le nombre de couches électriques est réduite à une seule au lieu de trois puisque l'OMT, le coupleur à branches et les circuits de recombinaison sont sur un même niveau. La longueur des chemins de guide est diminuée de 50% ce qui permet une réduction des pertes ohmiques de 0,1 dB par rapport à l'art antérieur avec OMT à quatre branches dont les pertes ohmiques étaient de 0,25 dB.The
The new architecture has the advantages of being very compact, the bulk of the sources, consisting of the RF chain and the horn of emission and reception, thus realized is of 60mm of diameter and 100mm of height. For comparison, an equivalent source assembly according to the prior art has a footprint of 150mm in height and 72mm in diameter. The cost of implementation is optimal compared to the number of components. Indeed, reducing the number of mechanical parts allows a gain in preparation time. The mass of the RF chain out of the horn is reduced by 60%. The structure is simplified and the number of electric layers is reduced to one instead of three since the OMT, the branch coupler and the recombination circuits are on the same level. The length of the guide paths is reduced by 50%, which allows a reduction in ohmic losses of 0.1 dB compared to the prior art with four-branched OMT whose ohmic losses were 0.25 dB.
Bien que l'invention ait été décrite en relation avec un mode de réalisation particulier, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with a particular embodiment, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention.
Claims (8)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0807063A FR2939971B1 (en) | 2008-12-16 | 2008-12-16 | COMPACT EXCITATION ASSEMBLY FOR GENERATING CIRCULAR POLARIZATION IN AN ANTENNA AND METHOD FOR PRODUCING SUCH AN EXCITATION ASSEMBLY |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2202839A1 true EP2202839A1 (en) | 2010-06-30 |
EP2202839B1 EP2202839B1 (en) | 2019-05-22 |
Family
ID=40672289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09169222.8A Active EP2202839B1 (en) | 2008-12-16 | 2009-09-02 | Compact feed system for the generation of circular polarisation in an antenna and method of producing such system |
Country Status (7)
Country | Link |
---|---|
US (1) | US8493161B2 (en) |
EP (1) | EP2202839B1 (en) |
JP (1) | JP5678314B2 (en) |
CN (1) | CN101752632B (en) |
CA (1) | CA2678530C (en) |
FR (1) | FR2939971B1 (en) |
RU (1) | RU2511488C2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2688142A1 (en) * | 2012-07-20 | 2014-01-22 | Thales | Multi-beam transmission and reception antenna with a plurality of sources per beam, antenna system and satellite telecommunication system comprising such an antenna |
EP3086409A1 (en) * | 2015-04-24 | 2016-10-26 | Thales | Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module |
CN108847521A (en) * | 2018-05-04 | 2018-11-20 | 杭州电子科技大学 | Broadband fed microstrip filter antenna |
EP3583661A4 (en) * | 2017-02-16 | 2020-12-23 | Lockheed Martin Corporation | COMPACT DUAL CIRCULAR POLARIZATION MULTI-BAND FOOD NETWORK |
CN112510339A (en) * | 2020-12-22 | 2021-03-16 | 华南理工大学 | High-selectivity gain dual-polarized filtering patch antenna |
FR3110290A1 (en) | 2020-05-15 | 2021-11-19 | Thales | Wideband orthomode transducer |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2938347B1 (en) * | 2008-11-07 | 2010-11-12 | Thales Sa | METHOD OF ESTIMATING THE POLARIZATION ELLIPTICITY OF AN ANTENNA RESPONSE SIGNAL TO AN INCIDENTAL ELECTROMAGNETIC WAVE |
US9112255B1 (en) * | 2012-03-13 | 2015-08-18 | L-3 Communications Corp. | Radio frequency comparator waveguide system |
CN103138036B (en) | 2013-02-05 | 2015-10-07 | 广东通宇通讯股份有限公司 | Microwave communication system and compact four-way transducer thereof |
FR3012917B1 (en) * | 2013-11-04 | 2018-03-02 | Thales | COMPACT POWER DISTRIBUTION BIPOLARIZATION, NETWORK OF SEVERAL DISTRIBUTORS, COMPACT RADIATION ELEMENT AND FLAT ANTENNA HAVING SUCH A DISTRIBUTOR |
FR3029018B1 (en) | 2014-11-26 | 2016-12-30 | Thales Sa | COMPACT RADIOFREQUENCY EXCITATION MODULE WITH INTEGRATED CINEMATIC AND COMPACT BIAXE ANTENNA COMPRISING LESS SUCH COMPACT MODULE |
FR3030907B1 (en) * | 2014-12-19 | 2016-12-23 | Thales Sa | ORTHOGONAL MODE JUNCTION COUPLER AND POLARIZATION AND FREQUENCY SEPARATOR THEREFOR |
FR3035287B1 (en) | 2015-04-15 | 2017-05-12 | Thales Sa | BROADBAND MULTI-STAGE SATELLITE SATELLITE RADIOCOMMUNICATION SYSTEM WITH IMPROVED FREQUENCY REUSE, AND REUSE METHOD THEREOF |
FR3035548B1 (en) | 2015-04-24 | 2017-05-05 | Thales Sa | MULTI-SOURCE ANTENNA ARCHITECTURE BY BEAM AND COMPRISING A MODULAR FOCAL NETWORK |
CN104868205B (en) * | 2015-05-28 | 2018-05-08 | 成都赛纳赛德科技有限公司 | Y-shaped structure directrix plane orthogonal mode adapter |
RU2647203C2 (en) * | 2016-08-09 | 2018-03-14 | Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" | Frequency-polarization selector |
CN106299554B (en) * | 2016-08-31 | 2019-05-14 | 电子科技大学 | Wideband rectangular waveguide TEn, 0 mode exciter |
FR3071363B1 (en) | 2017-09-19 | 2019-09-06 | Thales | ROTATING ANTENNA FOR ROTARY ANTENNA AND ROTARY ANTENNA COMPRISING SUCH A JOINT |
FR3071365B1 (en) | 2017-09-19 | 2019-09-06 | Thales | BIAXE ANTENNA COMPRISING A FIRST FIXED PART, A SECOND ROTARY PART AND A ROTATING GASKET |
WO2020062293A1 (en) * | 2018-09-30 | 2020-04-02 | 华为技术有限公司 | Antenna and terminal |
US11228116B1 (en) * | 2018-11-06 | 2022-01-18 | Lockhead Martin Corporation | Multi-band circularly polarized waveguide feed network |
US10763593B1 (en) * | 2018-11-07 | 2020-09-01 | Lockheed Martin Corporation | Broadband single pol TX, dual pol RX, circular polarization waveguide network |
JP7252054B2 (en) * | 2019-05-15 | 2023-04-04 | 日本無線株式会社 | Turnstile polarization demultiplexer |
US11658379B2 (en) * | 2019-10-18 | 2023-05-23 | Lockheed Martin Corpora Tion | Waveguide hybrid couplers |
US12142803B2 (en) * | 2019-10-29 | 2024-11-12 | European Space Agency | Waveguide component for use in an orthomode junction or an orthomode transducer |
US11710907B1 (en) * | 2020-01-09 | 2023-07-25 | Lockheed Martin Corporation | Clone carousel waveguide feed network |
CN111613857B (en) * | 2020-05-25 | 2022-02-01 | 南京师范大学 | Double-passband filtering coupler adopting double-layer slotted circular patch |
CN111900513B (en) * | 2020-09-04 | 2021-11-19 | 北京邮电大学 | Orthogonal mode converter, antenna device and communication system |
CN112103656A (en) * | 2020-09-17 | 2020-12-18 | 成都天锐星通科技有限公司 | Double-linear polarization feed source loudspeaker |
US11728553B1 (en) * | 2020-10-19 | 2023-08-15 | Lockheed Martin Corporation | Dual-band waveguide feed network |
CN112563710B (en) * | 2020-12-07 | 2022-02-01 | 江苏亨通太赫兹技术有限公司 | E-band orthogonal mode coupler |
CN113036387B (en) * | 2021-04-21 | 2021-10-22 | 中国电子科技集团公司第五十四研究所 | Method for processing orthogonal mode converter |
CN114256581B (en) * | 2021-12-06 | 2023-02-28 | 电子科技大学 | Radial waveguide power divider/synthesizer based on high-isolation network |
CN115295983B (en) * | 2022-07-26 | 2024-01-02 | 武汉凡谷电子技术股份有限公司 | Filter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4060808A (en) * | 1976-06-30 | 1977-11-29 | Rca Corporation | Antenna system with automatic depolarization correction |
DE3111106A1 (en) * | 1981-03-20 | 1982-09-30 | Siemens AG, 1000 Berlin und 8000 München | Polarisation filter |
WO2000016431A1 (en) * | 1998-09-11 | 2000-03-23 | Channel Master Llc | Planar ortho-mode transducer |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2090963C1 (en) * | 1993-06-11 | 1997-09-20 | Федор Федорович Дубровка | Method of adaptive conversion of polarization of radio signals |
RU2118020C1 (en) * | 1995-12-28 | 1998-08-20 | Акционерное общество открытого типа "Радиотехнический институт им.академика А.Л.Минца" | Waveguide radiator |
US6166610A (en) * | 1999-02-22 | 2000-12-26 | Hughes Electronics Corporation | Integrated reconfigurable polarizer |
US7408427B1 (en) * | 2004-11-12 | 2008-08-05 | Custom Microwave, Inc. | Compact multi-frequency feed with/without tracking |
FR2904478B1 (en) | 2006-07-28 | 2010-04-23 | Cit Alcatel | ORTHOMODE TRANSDUCTION DEVICE COMPRISING OPTIMIZED IN THE MESH PLAN FOR AN ANTENNA |
-
2008
- 2008-12-16 FR FR0807063A patent/FR2939971B1/en active Active
-
2009
- 2009-09-02 EP EP09169222.8A patent/EP2202839B1/en active Active
- 2009-09-07 RU RU2009133480/08A patent/RU2511488C2/en active
- 2009-09-17 CA CA2678530A patent/CA2678530C/en active Active
- 2009-10-12 US US12/577,515 patent/US8493161B2/en active Active
- 2009-11-16 CN CN200910225207.8A patent/CN101752632B/en active Active
- 2009-12-16 JP JP2009285280A patent/JP5678314B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4060808A (en) * | 1976-06-30 | 1977-11-29 | Rca Corporation | Antenna system with automatic depolarization correction |
DE3111106A1 (en) * | 1981-03-20 | 1982-09-30 | Siemens AG, 1000 Berlin und 8000 München | Polarisation filter |
WO2000016431A1 (en) * | 1998-09-11 | 2000-03-23 | Channel Master Llc | Planar ortho-mode transducer |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2993716A1 (en) * | 2012-07-20 | 2014-01-24 | Thales Sa | MULTIFUNCTIONAL MULTI-SOURCE SENDING AND RECEIVING ANTENNA BY BEAM, ANTENNA SYSTEM AND SATELLITE TELECOMMUNICATION SYSTEM COMPRISING SUCH ANTENNA |
US9306295B2 (en) | 2012-07-20 | 2016-04-05 | Thales | Multibeam transmitting and receiving antenna with multiple feeds per beam, system of antennas and satellite telecommunication system containing such an antenna |
EP2688142A1 (en) * | 2012-07-20 | 2014-01-22 | Thales | Multi-beam transmission and reception antenna with a plurality of sources per beam, antenna system and satellite telecommunication system comprising such an antenna |
EP3086409A1 (en) * | 2015-04-24 | 2016-10-26 | Thales | Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module |
FR3035546A1 (en) * | 2015-04-24 | 2016-10-28 | Thales Sa | STRUCTURAL ANTENNA MODULE INTEGRATING ELEMENTARY RADIANT SOURCES WITH INDIVIDUAL ORIENTATION, RADIANT PANEL, RADIANT ARRAY AND MULTI-STAGE ANTENNA COMPRISING AT LEAST ONE SUCH MODULE |
US9859623B2 (en) | 2015-04-24 | 2018-01-02 | Thales | Structural antenna module incorporating elementary radiating feeds with individual orientation, radiating panel, radiating array and multibeam antenna comprising at least one such module |
EP3583661A4 (en) * | 2017-02-16 | 2020-12-23 | Lockheed Martin Corporation | COMPACT DUAL CIRCULAR POLARIZATION MULTI-BAND FOOD NETWORK |
CN108847521A (en) * | 2018-05-04 | 2018-11-20 | 杭州电子科技大学 | Broadband fed microstrip filter antenna |
CN108847521B (en) * | 2018-05-04 | 2020-03-17 | 杭州电子科技大学 | Broadband differential feed microstrip filter antenna |
FR3110290A1 (en) | 2020-05-15 | 2021-11-19 | Thales | Wideband orthomode transducer |
US11476553B2 (en) | 2020-05-15 | 2022-10-18 | Thales | Wideband orthomode transducer |
CN112510339A (en) * | 2020-12-22 | 2021-03-16 | 华南理工大学 | High-selectivity gain dual-polarized filtering patch antenna |
CN112510339B (en) * | 2020-12-22 | 2021-10-15 | 华南理工大学 | A dual-polarized filter patch antenna with high selective gain |
Also Published As
Publication number | Publication date |
---|---|
JP2010148109A (en) | 2010-07-01 |
RU2511488C2 (en) | 2014-04-10 |
EP2202839B1 (en) | 2019-05-22 |
FR2939971B1 (en) | 2011-02-11 |
CN101752632A (en) | 2010-06-23 |
US20100149058A1 (en) | 2010-06-17 |
JP5678314B2 (en) | 2015-03-04 |
CA2678530C (en) | 2017-03-21 |
RU2009133480A (en) | 2011-03-20 |
CN101752632B (en) | 2014-05-21 |
CA2678530A1 (en) | 2010-06-16 |
FR2939971A1 (en) | 2010-06-18 |
US8493161B2 (en) | 2013-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2202839B1 (en) | Compact feed system for the generation of circular polarisation in an antenna and method of producing such system | |
CA2869652C (en) | Power distributor comprising a "t" coupler in plane e, radiating network and antenna comprising such a radiating network | |
EP2047564B1 (en) | Compact orthomode transduction device optimized in the mesh plane, for an antenna | |
EP3179551B1 (en) | Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies | |
EP2869400B1 (en) | Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor | |
FR3034262A1 (en) | COMPACT BUTLER MATRIX, PLANAR BIDIMENSIONAL BEAM FORMER AND FLAT ANTENNA COMPRISING SUCH A BUTLER MATRIX | |
EP3726642B1 (en) | Polarising screen with wideband polarising radiofrequency cell(s) | |
EP3180816B1 (en) | Multiband source for a coaxial horn used in a monopulse radar reflector antenna. | |
EP3462532B1 (en) | Power divider for antenna comprising four identical orthomode transducers | |
EP3664214B1 (en) | Multiple access radiant elements | |
EP0004215B1 (en) | Multimode microwave source and monopulse antenna incorporating such a source | |
EP1305846B1 (en) | Active dual-polarization microwave reflector, in particular for electronically scanning antenna | |
EP3910729B1 (en) | Broadband orthomode transducer | |
EP2281320B1 (en) | Coupler for a multiband radiofrequency system | |
FR3083014A1 (en) | RADIO FREQUENCY EXCITER IN RECEIVING AND TRANSMISSION | |
EP0192186B1 (en) | Polarisation duplexer | |
EP0520919B1 (en) | Filtering device for electromagnetic waves in a waveguide with symmetry around the rotational axis, and inserted pieces of rectangular waveguide | |
EP3306746B1 (en) | Cavity radiating element and radiating network comprising at least two radiating elements | |
EP3035445B1 (en) | Orthogonal mode junction coupler and associated polarization and frequency separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20101125 |
|
17Q | First examination report despatched |
Effective date: 20110118 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180320 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181219 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THALES |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009058444 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1137212 Country of ref document: AT Kind code of ref document: T Effective date: 20190615 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190522 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190922 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190823 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190822 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1137212 Country of ref document: AT Kind code of ref document: T Effective date: 20190522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009058444 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
26N | No opposition filed |
Effective date: 20200225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190902 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190902 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190522 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240814 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240815 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240821 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240830 Year of fee payment: 16 |