EP3179551B1 - Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies - Google Patents
Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies Download PDFInfo
- Publication number
- EP3179551B1 EP3179551B1 EP16202268.5A EP16202268A EP3179551B1 EP 3179551 B1 EP3179551 B1 EP 3179551B1 EP 16202268 A EP16202268 A EP 16202268A EP 3179551 B1 EP3179551 B1 EP 3179551B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- omt
- compact
- waveguide
- connection
- waveguides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/16—Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
- H01P1/161—Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/165—Auxiliary devices for rotating the plane of polarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
- H01P1/182—Waveguide phase-shifters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/213—Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
- H01P1/2131—Frequency-selective devices, e.g. filters combining or separating two or more different frequencies with combining or separating polarisations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
- H01P3/12—Hollow waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/0208—Corrugated horns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
- H01Q21/245—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
Definitions
- the present invention relates to a compact bipolarization excitation assembly for an antenna radiating element and a compact array comprising at least four compact excitation assemblies. It applies to any multibeam antenna comprising a focal array operating in low frequency bands and more particularly to the field of space applications such as satellite communications in C band, or L band, or S band, as well as single-beam global coverage spatial antennas in C-band, L-band, or S-band. It also applies to radiating elements for array antennas, in particular in X-band or Ka-band.
- Radiant sources operating in low frequency bands generally comprise very bulky metal horns having a high mass.
- To reduce the size of the radiating source it is known from the document FR2959611 , to replace the metal horn with stacked Fabry-Pérot cavities.
- This solution makes it possible to reduce the size of the sources and has radiofrequency performance equivalent to that of a metal horn.
- this solution is limited to an opening diameter of less than 2.5 ⁇ , where ⁇ represents the central wavelength, in vacuum, of the frequency band of use.
- the document FR 3012917 proposes a solution comprising a compact bipolarization power distributor comprising four asymmetric OMT orthomode transducers, coupled in phase to a power source with double orthogonal polarization. These four OMTs are networked via two power distributors dedicated to each polarization. This power distributor has a very small thickness when the OMTs and the two power distributors are located in the same plane.
- this solution has the drawback of poor isolation, of the order of 15 dB, between the two orthogonal modes of each OMT, which results in insufficient performance for the power distributor.
- This lack of insulation between the two orthogonal modes of each OMT is essentially due to the asymmetry of each OMT which only has two side access ports spaced angularly 90 ° around a main waveguide.
- the document US 6037910 describes a phased array antenna.
- the aim of the invention is to solve the problems of existing solutions and to propose an alternative solution to existing radiating elements, having a diameter of radiating aperture of average size between 2.5 ⁇ and 5 ⁇ , comprising good insulation between the modes. orthogonal, low loss and compatible with high power applications.
- the invention relates to a compact bipolarization excitation assembly consisting of an orthomode OMT transducer comprising two transmission channels respectively dedicated to two orthogonal polarizations, a first and a second power distributors respectively connected to the two channels. of the OMT, and of a first and a second connection waveguide, the OMT consisting of a cross junction having a central waveguide parallel to a Z axis and four side ports respectively coupled to the central waveguide and oriented in two directions X and Y orthogonal to each other and to the Z axis, the first power distributor consisting of an input waveguide capable of be connected to a first power source operating in a first polarization P1 and two output ports respectively coupled to a first and a second side ports of the OMT, oriented in the X direction, through the first and the respective second connection waveguide.
- the first power distributor is located on a first lateral side of the OMT, the input waveguide having a side wall orthogonal to the X direction and extending in height parallel to the Z axis.
- the two ports output, respectively upper and lower, of the first power distributor are arranged one above the other, in the direction of the Z axis, in said side wall of the input waveguide, the port output being placed in front of the first side port of the OMT to which it is connected by the first connection waveguide, and the first and second connection waveguides have different electrical lengths, the difference in length electrical between the first and second connection waveguides being equal to a half wavelength ⁇ / 2, where ⁇ is the central operating wavelength.
- the excitation assembly can comprise several levels stacked parallel to the XY plane, the OMT and the first connection waveguide being located in a first level, the second connection waveguide consisting of a linear section located in a second level, under the orthomode transducer, and a section bent at 180 ° connected to the second side port of the OMT.
- the second power distributor may be identical to the first power distributor and located on a second lateral side of the OMT, orthogonally to the Y direction.
- the second power distributor can consist of an input waveguide capable of being connected to a second power source operating in a second polarization P2 and of two output ports arranged one above. on the other in a side wall of the input waveguide and respectively coupled to a third and a fourth side ports of the OMT, oriented in the Y direction, by through a third and a fourth respective connecting waveguides, and the third and fourth connecting waveguides have different electrical lengths, the difference in electrical length between the third and fourth guides of connection wave being equal to half a wavelength ⁇ / 2.
- the fourth connection waveguide can consist of a linear section located in a third level, under the orthomode transducer, and of a section bent at 180 ° connected to the fourth side port of the OMT.
- the OMT can include a symmetrical pyramid located at the center of the cross junction.
- the second power distributor can be a septum distributor consisting of an input waveguide provided with an internal wall, called a septum, delimiting two output waveguides parallel to the input waveguide. and stacked in a fourth level below the OMT, parallel to the XY plane, the two output waveguides of the septum power distributor being respectively connected to the first and second side ports of the OMT by fifth and sixth guides d respective connection wave located in a third level, below the OMT, the electrical lengths of the fifth and sixth connection waveguides being equal.
- the OMT can include an asymmetric pyramid located at the center of the cross junction.
- the invention also relates to a compact network comprising at least four compact excitation assemblies coupled to one another by two common power distributors, independent from one another, orthogonal to one another, and respectively dedicated to the two orthogonal polarizations.
- the figure 1 represents a first example of a compact bipolarization excitation assembly, according to the invention.
- the excitation assembly produced using waveguide technology, comprises several levels stacked one above the other, parallel to an XY plane.
- the excitation assembly comprises an orthomode OMT transducer 10 and two power distributors 20, 30 respectively connected to the orthomode transducer, by dedicated connection waveguides.
- the orthomode OMT transducer 10 located in a first level, consists of a cross junction, known by the term “turnstile” junction, comprising a central waveguide 11, for example of cylindrical geometry, having an axis of revolution parallel to a Z axis, and four lateral waveguides 12, for example of rectangular section, diametrically opposed two by two, in an XY plane orthogonal to the Z axis, and coupled perpendicularly to the waveguide central.
- the four lateral waveguides are respectively oriented in two orthogonal directions X, Y of the XY plane.
- the central waveguide 11 is provided with an axial access port 13 and the four side waveguides are respectively provided with four side ports oriented in the X or Y directions.
- the four side ports are input ports and the axial access port is an output port.
- the input and output ports are reversed and the operation of the OMT is reversed.
- the two lateral waveguides oriented in the X direction and the two lateral waveguides oriented in the Y direction constitute two channels of the OMT respectively dedicated to two orthogonal polarizations P1, P2.
- the two paths generate two different propagation modes in the central waveguide 11 of the OMT.
- the OMT may further include an adaptation element, for example in the form of a cone or pyramid 14, placed at the center of the cross junction and comprising an apex penetrating into the central waveguide 11, in order to to improve the adaptation of the junction over a predetermined operating frequency band and to improve the isolation between the two polarizations.
- the pyramid 14, or the cone makes it possible to accompany the electric field E transmitted by each lateral waveguide of the OMT to the central waveguide 11 and constitutes an obstacle to the passage of the electric field E towards the guides d perpendicular side waves.
- the two lateral waveguides of each channel of the OMT must be supplied by electric fields E of the same amplitude but in phase opposition as shown in the figures 2a, 2b , 3a, 3b .
- the first power distributor 20 comprises, on transmission, an input waveguide, with a rectangular section, comprising an input port 21 capable of being connected to a power source operating in a first polarization P1 and two output ports 22, 23, respectively upper and lower, arranged in a side wall of the input waveguide. Said side wall is orthogonal to the entry port 21 and extends in height parallel to the Z axis, the two output ports being respectively connected to a first and a second lateral ports 15, 16, diametrically opposed, of the orthomode transducer as shown in figure 2a .
- the two output ports of the first power distributor 20 are arranged one below the other, in the height of the side wall of the input waveguide which constitutes a first output plane parallel to the Z axis and orthogonal to the X direction. By construction, the electric fields E on the two output ports 22, 23 of the first power distributor 20 are in phase opposition.
- the first power distributor 20 is located on a lateral side of the orthomode transducer 10, so that the upper output port 22 is placed in the XY plane, opposite a first side port 15 of the orthomode transducer to which it is connected by a first connection waveguide 25.
- the lower output port 23 of the first power distributor 20 is connected to a second side port 16 of the orthomode transducer, diametrically opposite to the first lateral port, by a second connection waveguide 26.
- the second connection waveguide 26 consists of a linear section located in a second level, under the orthomode transducer, in a plane parallel to the XY plane, and a bent section, forming a 180 ° bend, connected to the second side port 16 of the OMT.
- the second connection waveguide 26 has a total electric length greater than the electric length of the first waveguide.
- connection 25 the difference in electrical length between the first and the second connection waveguide being equal to half a wavelength ⁇ / 2, where ⁇ is the central wavelength of the operating frequency band of the whole excitement.
- ⁇ is the central wavelength of the operating frequency band of the whole excitement.
- the structure of the second power distributor 30 is chosen according to the desired application. Either the two OMT channels operate in the same frequency band, for example transmitting Tx, or they operate in two different frequency bands, for example Tx transmission and Rx reception.
- the second power distributor 30 may be identical to the first power distributor 20, the two power distributors extending in height parallel to the Z axis and being respectively arranged perpendicular to the two directions X and Y.
- the second power distributor 30 then comprises an input waveguide and two output ports arranged one above the other in a side wall of said input waveguide.
- the two output ports 32, 33, upper and lower, are respectively connected to a third and fourth side ports 17, 18 of the OMT, dedicated to the second polarization P2, through a third and a fourth connection waveguides.
- the two output ports 32, 33 of the second power distributor 30 are arranged one below the other in the direction of the height of the second power distributor, in a second output plane parallel to the Z axis and orthogonal to the Y direction.
- the upper output port 32 of the second power distributor is placed in the XY plane, opposite a third lateral port 17 of the orthomode transducer to which it is connected by a third connection 27.
- the lower output port 33 of the second power distributor is connected to a fourth side port 18 of the orthomode transducer, diametrically opposed to the third side port, by a fourth connection waveguide 28.
- the fourth waveguide connection 28 is located in a third level located under the second connection waveguide 26, in a plane parallel to the XY plane, and comprises a first linear section and a second section bent at 180 ° connected to the fourth th side port 18 of the OMT.
- the fourth connection waveguide 28 has a total electric length greater than the electric length of the third guide d connection wave 27, the difference in electrical length between the third and the fourth connection waveguide being equal to a half wavelength ⁇ / 2.
- the two channels of the OMT operate in orthogonal polarizations P1, P2 and in the same frequency band.
- the geometry of the pyramid 14 of the OMT is symmetrical, its four faces being identical and having dimensions optimized as a function of the desired operating frequency.
- the waveguides, lateral and connection, with rectangular section have identical widths.
- This very compact excitation assembly made in metal waveguide technology, rectangular or cylindrical, allows, in a small footprint, to excite, in double polarization, a radiating element coupled to the axial access port 13 of the 'OMT and has the advantages of operating at high RF radiofrequency powers and having a bandwidth compatible with the transmission frequency band between 3.7 GHz and 4.2 GHz and corresponding to the C band.
- the compact excitation assembly according to this first embodiment can operate only in frequency bands close to one another for the two channels, or in a single frequency band common to the two channels of OMT.
- the second power distributor 30 may have a different structure from the first power distributor 20.
- the two frequency bands may correspond to a transmission band Tx and respectively to a reception band Rx.
- the second power distributor is a septum distributor 40 mounted in a fourth level, below the OMT.
- the septum distributor 40 comprises an input waveguide provided with an internal wall 41, called a septum, delimiting two output waveguides 42, 43.
- the septum 41 can be resistive to improve the insulation between the two. output waveguides.
- the two output waveguides 42, 43 are parallel to the input waveguide and stacked parallel to the XY plane.
- the two output waveguides of the septum power distributor are respectively connected to the third and fourth side ports 17, 18 of the OMT by respective fifth and sixth connection waveguides 47, 48 located in a third level, under OMT, the electrical lengths of the fifth and sixth connection waveguides being equal.
- the transmission frequency band being different from the reception frequency band
- the widths of the waveguides, lateral and connection, dedicated to transmission are different from the width of the waveguides dedicated to reception.
- the operating wavelength in reception is less than the transmission operating wavelength and the widths of the waveguides dedicated to the transmission channel are therefore greater than the widths of the waveguides dedicated to the reception channel.
- the geometry of the pyramid 14 of the OMT is asymmetrical, as shown by the figures 3a and 3b , two of its four faces having smaller dimensions, optimized for operation in the reception frequency band and the other two faces having larger dimensions, optimized for operation in the transmission frequency band.
- the pyramid is wider in transmission than in reception.
- Each compact excitation assembly can be used alone to power an individual radiating element coupled to the output of the axial waveguide of the OMT.
- several compact excitation sets can be coupled together in a network, for example by four or by sixteen, using two orthogonal power distributors, independent from each other, and nested one above the other, the two Power distributors being respectively dedicated to the two orthogonal polarizations P1 and P2 and common to all the OMTs of the network.
- FIG 5 is illustrated a first example of assembly of two orthogonal power distributors in which the two distributors power 51, 52 are not identical because they are dedicated to two different frequency bands, for example Rx and Tx.
- the figure 6 illustrates a second example of an assembly of two orthogonal power distributors in which the two power distributors 51, 55 are identical because they are dedicated to two identical frequency bands, for example Tx.
- the two different power distributors 51, 52, or identical 51, 55 are respectively connected to the four OMTs of the network via the connection waveguides and ensure the distribution and the division, or the combination, of the power. between the different OMTs of the compact network thus formed.
- the compact network comprises four distinct OMTs coupled together by two orthogonal power distributors, common to all OMTs, including eight power dividers / combiners.
- the various individual power distributors corresponding to the same polarization and dedicated to each OMT of the network are thus grouped together and integrated into the common power distributor corresponding to said polarization.
- Each power distributor is respectively connected to all the OMTs of the network by the respective connection waveguides dedicated to each of the corresponding compact excitation sets.
- the compact network can be intended to supply a radiating source 50 with four ports having an opening four times larger than an individual radiating element and operating in C-band or, alternatively, to supplying four individual radiating sources.
- Each power distributor 51, 52, 55 comprises a respective input port 53, 54, 56 adapted to be connected to a respective power source.
- the radiating source 50 coupled to the output ports of the central waveguides 11 of the OMTs of the different excitation assemblies of the network, can for example be a Fabry-Pérot cavity as on the figure 4 in the case of a network of four compact excitation sets.
- an even larger aperture compact excitation assembly can be achieved by connecting sixteen excitation assemblies in a network by two orthogonal power distributors including power dividers by thirty-two.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Description
La présente invention concerne un ensemble d'excitation compact bipolarisation pour un élément rayonnant d'antenne et un réseau compact comportant au moins quatre ensembles d'excitation compacts. Elle s'applique à toute antenne multifaisceaux comportant un réseau focal fonctionnant dans des bandes de fréquences basses et plus particulièrement au domaine des applications spatiales telles que les télécommunications par satellite en bande C, ou en bande L, ou en bande S, ainsi qu'aux antennes spatiales de couverture globale mono-faisceau en bande C, ou en bande L, ou en bande S. Elle s'applique également aux éléments rayonnants pour des antennes réseaux, notamment en bande X ou en bande Ka.The present invention relates to a compact bipolarization excitation assembly for an antenna radiating element and a compact array comprising at least four compact excitation assemblies. It applies to any multibeam antenna comprising a focal array operating in low frequency bands and more particularly to the field of space applications such as satellite communications in C band, or L band, or S band, as well as single-beam global coverage spatial antennas in C-band, L-band, or S-band. It also applies to radiating elements for array antennas, in particular in X-band or Ka-band.
Les sources rayonnantes fonctionnant dans des bandes de fréquences basses, par exemple en bande C, comportent généralement des cornets métalliques très volumineux et ayant une masse importante. Pour réduire la taille de la source rayonnante, il est connu du document
Pour réaliser des sources compactes de plus grande ouverture rayonnante, le document
Le document
Le document
Le document
Le document
Le but de l'invention est de résoudre les problèmes des solutions existantes et de proposer une solution alternative aux éléments rayonnants existants, ayant un diamètre d'ouverture rayonnante de taille moyenne comprise entre 2,5λ et 5λ, comportant une bonne isolation entre les modes orthogonaux, de faibles pertes et étant compatible des applications de forte puissance.The aim of the invention is to solve the problems of existing solutions and to propose an alternative solution to existing radiating elements, having a diameter of radiating aperture of average size between 2.5λ and 5λ, comprising good insulation between the modes. orthogonal, low loss and compatible with high power applications.
Pour cela, l'invention concerne un ensemble d'excitation compact bipolarisation constitué d'un transducteur orthomode OMT comportant deux voies de transmission respectivement dédiées à deux polarisations orthogonales, d'un premier et d'un deuxième répartiteurs de puissance respectivement connectés aux deux voies de l'OMT, et d'un premier et d'un deuxième guide d'onde de connexion, l'OMT étant constitué d'une jonction en croix comportant un guide d'onde central parallèle à un axe Z et quatre ports latéraux respectivement couplés au guide d'onde central et orientés selon deux directions X et Y orthogonales entre elles et à l'axe Z, le premier répartiteur de puissance étant constitué d'un guide d'onde d'entrée apte à être relié à une première source d'alimentation fonctionnant dans une première polarisation P1 et de deux ports de sortie respectivement couplés à un premier et un deuxième ports latéraux de l'OMT, orientés selon la direction X, par l'intermédiaire du premier et du deuxième guide d'onde de connexion respectif. Le premier répartiteur de puissance est localisé sur un premier côté latéral de l'OMT, le guide d'onde d'entrée ayant une paroi latérale orthogonale à la direction X et s'étendant en hauteur parallèlement à l'axe Z. Les deux ports de sortie, respectivement supérieur et inférieur, du premier répartiteur de puissance sont aménagés l'un au-dessus de l'autre, selon la direction de l'axe Z, dans ladite paroi latérale du guide d'onde d'entrée, le port de sortie supérieur étant placé en face du premier port latéral de l'OMT auquel il est connecté par le premier guide d'onde de connexion, et les premier et deuxième guides d'onde de connexion ont des longueurs électriques différentes, la différence de longueur électrique entre les premier et deuxième guides d'onde de connexion étant égale à une demie longueur d'onde λ/2, où λ est la longueur d'onde centrale de fonctionnement.For this, the invention relates to a compact bipolarization excitation assembly consisting of an orthomode OMT transducer comprising two transmission channels respectively dedicated to two orthogonal polarizations, a first and a second power distributors respectively connected to the two channels. of the OMT, and of a first and a second connection waveguide, the OMT consisting of a cross junction having a central waveguide parallel to a Z axis and four side ports respectively coupled to the central waveguide and oriented in two directions X and Y orthogonal to each other and to the Z axis, the first power distributor consisting of an input waveguide capable of be connected to a first power source operating in a first polarization P1 and two output ports respectively coupled to a first and a second side ports of the OMT, oriented in the X direction, through the first and the respective second connection waveguide. The first power distributor is located on a first lateral side of the OMT, the input waveguide having a side wall orthogonal to the X direction and extending in height parallel to the Z axis. The two ports output, respectively upper and lower, of the first power distributor are arranged one above the other, in the direction of the Z axis, in said side wall of the input waveguide, the port output being placed in front of the first side port of the OMT to which it is connected by the first connection waveguide, and the first and second connection waveguides have different electrical lengths, the difference in length electrical between the first and second connection waveguides being equal to a half wavelength λ / 2, where λ is the central operating wavelength.
Avantageusement, l'ensemble d'excitation peut comporter plusieurs niveaux empilés parallèlement au plan XY, l'OMT et le premier guide d'onde de connexion étant localisés dans un premier niveau, le deuxième guide d'onde de connexion étant constitué d'un tronçon linéaire localisé dans un deuxième niveau, sous le transducteur orthomode, et d'un tronçon coudé à 180° connecté au deuxième port latéral de l'OMT.Advantageously, the excitation assembly can comprise several levels stacked parallel to the XY plane, the OMT and the first connection waveguide being located in a first level, the second connection waveguide consisting of a linear section located in a second level, under the orthomode transducer, and a section bent at 180 ° connected to the second side port of the OMT.
Avantageusement, le deuxième répartiteur de puissance peut être identique au premier répartiteur de puissance et localisé sur un deuxième côté latéral de l'OMT, orthogonalement à la direction Y.Advantageously, the second power distributor may be identical to the first power distributor and located on a second lateral side of the OMT, orthogonally to the Y direction.
Avantageusement, le deuxième répartiteur de puissance peut être constitué d'un guide d'onde d'entrée apte à être relié à une deuxième source d'alimentation fonctionnant dans une deuxième polarisation P2 et de deux ports de sortie aménagés l'un au-dessus de l'autre dans une paroi latérale du guide d'onde d'entrée et respectivement couplés à un troisième et un quatrième ports latéraux de l'OMT, orientés selon la direction Y, par l'intermédiaire d'un troisième et d'un quatrième guides d'onde de connexion respectifs, et les troisième et quatrième guides d'onde de connexion ont des longueurs électriques différentes, la différence de longueur électrique entre les troisième et quatrième guides d'onde de connexion étant égale à une demie longueur d'onde λ/2.Advantageously, the second power distributor can consist of an input waveguide capable of being connected to a second power source operating in a second polarization P2 and of two output ports arranged one above. on the other in a side wall of the input waveguide and respectively coupled to a third and a fourth side ports of the OMT, oriented in the Y direction, by through a third and a fourth respective connecting waveguides, and the third and fourth connecting waveguides have different electrical lengths, the difference in electrical length between the third and fourth guides of connection wave being equal to half a wavelength λ / 2.
Avantageusement, le quatrième guide d'onde de connexion peut être constitué d'un tronçon linéaire localisé dans un troisième niveau, sous le transducteur orthomode, et d'un tronçon coudé à 180° connecté au quatrième port latéral de l'OMT.Advantageously, the fourth connection waveguide can consist of a linear section located in a third level, under the orthomode transducer, and of a section bent at 180 ° connected to the fourth side port of the OMT.
Avantageusement, l'OMT peut comporter une pyramide symétrique située au centre de la jonction en croix.Advantageously, the OMT can include a symmetrical pyramid located at the center of the cross junction.
Alternativement, le deuxième répartiteur de puissance peut être un répartiteur septum constitué d'un guide d'onde d'entrée muni d'une paroi interne, appelée septum, délimitant deux guides d'onde de sortie parallèles au guide d'onde d'entrée et empilés dans un quatrième niveau sous l'OMT, parallèlement au plan XY, les deux guides d'onde de sortie du répartiteur de puissance septum étant respectivement connectés au premier et au deuxième ports latéraux de l'OMT par des cinquième et sixième guides d'onde de connexion respectifs localisés dans un troisième niveau, sous l'OMT, les longueurs électriques des cinquième et sixième guides d'onde de connexion étant égales. Dans ce cas, avantageusement, l'OMT peut comporter une pyramide dissymétrique située au centre de la jonction en croix.Alternatively, the second power distributor can be a septum distributor consisting of an input waveguide provided with an internal wall, called a septum, delimiting two output waveguides parallel to the input waveguide. and stacked in a fourth level below the OMT, parallel to the XY plane, the two output waveguides of the septum power distributor being respectively connected to the first and second side ports of the OMT by fifth and sixth guides d respective connection wave located in a third level, below the OMT, the electrical lengths of the fifth and sixth connection waveguides being equal. In this case, advantageously, the OMT can include an asymmetric pyramid located at the center of the cross junction.
L'invention concerne aussi un réseau compact comportant au moins quatre ensembles d'excitation compacts couplés entre eux par deux répartiteurs de puissance communs, indépendants entre eux, orthogonaux entre eux, et respectivement dédiés aux deux polarisations orthogonales.The invention also relates to a compact network comprising at least four compact excitation assemblies coupled to one another by two common power distributors, independent from one another, orthogonal to one another, and respectively dedicated to the two orthogonal polarizations.
D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :
-
figure 1 : un schéma en perspective d'un exemple d'ensemble d'excitation compact, selon un premier mode de réalisation de l'invention ; -
figures 2a et 2b : deux schémas en sections, respectivement selon deux plans orthogonaux XZ et YZ, de l'ensemble d'excitation compact de lafigure 1 , selon l'invention; -
figures 3a et 3b : deux schémas en sections, respectivement selon deux plans orthogonaux XZ et YZ, d'un exemple d'ensemble d'excitation compact, selon un deuxième mode de réalisation de l'invention; -
figure 4 : un schéma en perspective d'un exemple de réseau compact de quatre ensembles d'excitation compacts, selon l'invention ; -
figure 5 : une vue schématique en perspective, d'un premier exemple d'assemblage de deux répartiteurs orthogonaux différents pouvant être utilisés pour alimenter quatre ensembles d'excitation compacts, selon l'invention ; -
figure 6 : une vue schématique en perspective, d'un deuxième exemple d'assemblage de deux répartiteurs orthogonaux identiques pouvant être utilisés pour alimenter quatre ensembles d'excitation compacts, selon l'invention.
-
figure 1 : a perspective diagram of an example of a compact excitation assembly, according to a first embodiment of the invention; -
figures 2a and 2b : two diagrams in sections, respectively according to two orthogonal planes XZ and YZ, of the compact excitation set of thefigure 1 , according to the invention; -
figures 3a and 3b : two diagrams in sections, respectively according to two orthogonal planes XZ and YZ, of an example of a compact excitation assembly, according to a second embodiment of the invention; -
figure 4 : a perspective diagram of an example of a compact network of four compact excitation assemblies, according to the invention; -
figure 5 : a schematic perspective view of a first example of assembly of two different orthogonal distributors that can be used to supply four compact excitation assemblies, according to the invention; -
figure 6 : a schematic perspective view of a second example of assembly of two identical orthogonal distributors which can be used to supply four compact excitation assemblies, according to the invention.
La
Les répartiteurs de puissance fonctionnent en diviseur à l'émission et inversement en combineur à la réception. Le fonctionnement de chaque répartiteur de puissance à la réception étant inversé par rapport à l'émission, la suite de la description est limitée au fonctionnement à l'émission. Le premier répartiteur de puissance 20 comporte, à l'émission, un guide d'onde d'entrée, à section rectangulaire, comportant un port d'entrée 21 apte à être relié à une source d'alimentation fonctionnant dans une première polarisation P1 et deux ports de sortie 22, 23, respectivement supérieur et inférieur, aménagés dans une paroi latérale du guide d'onde d'entrée. Ladite paroi latérale est orthogonale au port d'entrée 21 et s'étend en hauteur parallèlement à l'axe Z, les deux ports de sortie étant respectivement connectés à un premier et à un deuxième ports latéraux 15, 16, diamétralement opposés, du transducteur orthomode comme le montre la
Les deux ports de sortie du premier répartiteur de puissance 20 sont disposés l'un en-dessous de l'autre, dans la hauteur de la paroi latérale du guide d'onde d'entrée qui constitue un premier plan de sortie parallèle à l'axe Z et orthogonal à la direction X. Par construction, les champs électriques E sur les deux ports de sortie 22, 23 du premier répartiteur de puissance 20 sont en opposition de phase. Pour limiter l'encombrement de l'ensemble d'excitation, le premier répartiteur de puissance 20 est localisé sur un côté latéral du transducteur orthomode 10, de sorte que le port de sortie supérieur 22 soit placé dans le plan XY, en face d'un premier port latéral 15 du transducteur orthomode auquel il est connecté par un premier guide d'onde de connexion 25. Le port de sortie inférieur 23 du premier répartiteur de puissance 20 est relié à un deuxième port latéral 16 du transducteur orthomode, diamétralement opposé au premier port latéral, par un deuxième guide d'onde de connexion 26. Le deuxième guide d'onde de connexion 26 est constitué d'un tronçon linéaire localisé dans un deuxième niveau, sous le transducteur orthomode, dans un plan parallèle au plan XY, et d'un tronçon coudé, formant un virage à 180°, connecté au deuxième port latéral 16 de l'OMT. Pour que le premier et le deuxième ports latéraux de l'OMT soient alimentés par des champs électriques E en opposition de phase, le deuxième guide d'onde de connexion 26 a une longueur électrique totale supérieure à la longueur électrique du premier guide d'onde de connexion 25, la différence de longueur électrique entre le premier et le deuxième guide d'onde de connexion étant égale à une demie longueur d'onde λ/2, où λ est la longueur d'onde centrale de la bande de fréquence de fonctionnement de l'ensemble d'excitation. Ainsi, le déphasage cumulé dû à la différence de longueur électrique et au virage est égal à 360° et les champs électriques E sur les premier et deuxième ports latéraux, sont en opposition de phase.The two output ports of the
Concernant la deuxième voie de l'OMT dédiée à la deuxième polarisation P2, la structure du deuxième répartiteur de puissance 30 est choisie en fonction de l'application souhaitée. Soit les deux voies de l'OMT fonctionnent dans une même bande de fréquence, par exemple d'émission Tx, soit elles fonctionnent dans deux bandes de fréquence différentes, par exemple d'émission Tx et de réception Rx.Concerning the second channel of the OMT dedicated to the second polarization P2, the structure of the
Selon un premier mode de réalisation correspondant à un fonctionnement des deux voies dans la même bande de fréquence, comme représenté sur les
Dans ce premier mode de réalisation, les deux voies de l'OMT fonctionnent dans des polarisations orthogonales P1, P2 et dans la même bande de fréquence. La géométrie de la pyramide 14 de l'OMT est symétrique, ses quatre faces étant identiques et ayant des dimensions optimisées en fonction de la fréquence de fonctionnement souhaitée. Les guides d'onde, latéraux et de connexion, à section rectangulaire ont des largeurs identiques.In this first embodiment, the two channels of the OMT operate in orthogonal polarizations P1, P2 and in the same frequency band. The geometry of the
Cet ensemble d'excitation très compact, réalisé en technologie des guides d'onde métalliques, rectangulaires ou cylindriques, permet, dans un faible encombrement, d'exciter, en double polarisation, un élément rayonnant couplé au port d'accès axial 13 de l'OMT et présente les avantages de fonctionner à de fortes puissances radiofréquences RF et d'avoir une bande passante compatible de la bande de fréquence d'émission comprise entre 3.7 GHz et 4.2 GHz et correspondant à la bande C.This very compact excitation assembly, made in metal waveguide technology, rectangular or cylindrical, allows, in a small footprint, to excite, in double polarization, a radiating element coupled to the
Cependant, en raison des contraintes sur les longueurs électriques des guides d'ondes de connexion reliant les répartiteurs de puissance aux ports d'entrées de l'OMT et des contraintes sur les largeurs des guides d'onde métalliques en fonction de la fréquence de fonctionnement, l'ensemble d'excitation compact conforme à ce premier mode de réalisation, ne peut fonctionner que dans des bandes de fréquence proches l'une de l'autre pour les deux voies, ou dans une seule bande de fréquence commune aux deux voies de l'OMT.However, due to the constraints on the electrical lengths of the connection waveguides connecting the power distributors to the input ports of the OMT and the constraints on the widths of the metal waveguides as a function of the operating frequency , the compact excitation assembly according to this first embodiment, can operate only in frequency bands close to one another for the two channels, or in a single frequency band common to the two channels of OMT.
Selon un deuxième mode de réalisation représenté sur les
Chaque ensemble d'excitation compact peut être utilisé seul pour alimenter, un élément rayonnant individuel couplé en sortie du guide d'onde axial de l'OMT. Alternativement, comme illustré sur la
Bien que l'invention ait été décrite en liaison avec des modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend toutes les combinaisons techniques des moyens décrits si celles-ci entrent dans le cadre des revendications.Although the invention has been described in connection with particular embodiments, it is obvious that it is in no way limited thereto and that it includes all the technical combinations of the means described if these fall within the scope of the claims.
Claims (9)
- A compact bipolarization excitation assembly consisting of an orthomode transducer OMT (10) comprising two transmission pathways, respectively dedicated to two orthogonal polarizations, a first and a second power splitter (20, 30) respectively connected to the two transmission pathways of the OMT (10), and a first and a second connection waveguide (25, 26), the OMT consisting of a cross junction comprising a central waveguide (13) parallel to an axis Z and four lateral ports (15, 16, 17, 18) respectively coupled to the central waveguide (13) and oriented in two directions X and Y orthogonal to one another and to the axis Z, wherein the first power splitter (20) consists of an input waveguide (21) capable of being connected to a first power source working in a first polarization P1 and of two output ports (22, 23) respectively coupled to a first and a second lateral port (15, 16) of the OMT, oriented in the direction X, via the first and the second respective connection waveguide (25, 26), wherein the first power splitter (20) is located on a first lateral side of the OMT (10), the input waveguide (21) having a lateral wall orthogonal to the direction X and extending heightwise parallel to the axis Z, characterized in that the two output ports (22, 23), respectively upper and lower, of the first power splitter (20) are formed one above the other in the direction of the axis Z in the said lateral wall of the input waveguide (21), the upper output port (22) being placed facing the first lateral port (15) of the OMT to which it is connected by the first connection waveguide (25), and in that the first and second connection waveguides (25, 26) have different electrical lengths, the difference in electrical length between the first and second connection waveguides (25, 26) being equal to a half-wavelength λ/2, where λ is the central wavelength of operation.
- The compact excitation assembly according to claim 1, characterized in that it comprises several levels stacked parallel to the plane XY, the OMT and the first connection waveguide being located in a first level and in that the second connection waveguide (26) consists of a linear section located in a second level, under the orthomode transducer (10), and of a section bent to 180° connected to the second lateral port (16) of the OMT.
- The compact excitation assembly according to claim 2, characterized in that the second power splitter (30) is identical to the first power splitter (20) and located on a second lateral side of the OMT (10), orthogonally to the direction Y.
- The compact excitation assembly according to claim 3, characterized in that the second power splitter (30) consists of an input waveguide (31) capable to be connected to a second power source working in a second polarization P2 and of two output ports (32, 33) formed one above the other in a lateral wall of the input waveguide (31) and respectively coupled to a third and a fourth lateral port (17, 18) of the OMT, oriented in the direction Y, via a third and a fourth respective connection waveguide (27, 28), and in that the third and fourth connection waveguides (27, 28) have different electrical lengths, the difference in electrical length between the third and fourth connection waveguides being equal to a half-wavelength λ/2.
- The compact excitation assembly according to claim 4, characterized in that the fourth connection waveguide (28) consists of a linear section located in a third level, under the orthomode transducer (10), and of a section bent to 180° connected to the fourth lateral port (18) of the OMT.
- The compact excitation assembly according to claim 5, characterized in that the OMT (10) comprises a symmetrical pyramid (14) situated at the center of the cross junction.
- The compact excitation assembly according to claim 2, characterized in that the second power splitter (30) is a septum splitter (40) consisting of an input waveguide provided with an inner wall (41), called septum, delimiting two output waveguides (42, 43) parallel to the input waveguide and stacked in a fourth level under the OMT (10), parallel to the plane XY, the two output waveguides of the septum power splitter (40) being respectively connected to the first and second lateral ports (17, 18) of the OMT by fifth and sixth respective connection waveguides (47, 48) located in a third level, under the OMT, the electrical lengths of the fifth and sixth connection waveguides being equal.
- The compact excitation assembly according to claim 7, characterized in that the OMT comprises a dissymmetrical pyramid (14) situated at the center of the cross junction.
- A compact array comprising at least four compact excitation assemblies according to one of the preceding claims, the at least four compact excitation assemblies being coupled to one another by two common power splitters (51, 52), independent of one another, orthogonal to one another, and respectively dedicated to the two orthogonal polarizations.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1502571A FR3045220B1 (en) | 2015-12-11 | 2015-12-11 | COMPACT BIPOLARIZATION EXCITATION ASSEMBLY FOR A RADIANT ANTENNA ELEMENT AND COMPACT NETWORK COMPRISING AT LEAST FOUR COMPACT EXCITATION ASSEMBLIES |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3179551A1 EP3179551A1 (en) | 2017-06-14 |
EP3179551B1 true EP3179551B1 (en) | 2021-02-24 |
Family
ID=55971043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16202268.5A Active EP3179551B1 (en) | 2015-12-11 | 2016-12-05 | Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies |
Country Status (4)
Country | Link |
---|---|
US (1) | US10381699B2 (en) |
EP (1) | EP3179551B1 (en) |
CA (1) | CA2950993A1 (en) |
FR (1) | FR3045220B1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3071672B1 (en) * | 2017-09-28 | 2019-10-11 | Thales | POWER DISTRIBUTION FOR ANTENNA COMPRISING FOUR IDENTICAL ORTHOMOD TRANSDUCERS |
EP3480884B1 (en) * | 2017-11-06 | 2022-01-05 | SWISSto12 SA | An orthomode transducer |
CN108123202A (en) * | 2017-12-18 | 2018-06-05 | 中国电子科技集团公司第五十四研究所 | A kind of broadband equiphase exports orthomode coupler |
CN110380161B (en) * | 2019-07-23 | 2024-10-25 | 广东盛路通信科技股份有限公司 | OMT (open-air) with coaxial waveguide structure and microwave frequency band |
US11081766B1 (en) * | 2019-09-26 | 2021-08-03 | Lockheed Martin Corporation | Mode-whisperer linear waveguide OMT |
EP3866256B1 (en) * | 2020-02-12 | 2023-06-21 | European Space Agency | Waveguide power divider |
CN111293424B (en) * | 2020-02-25 | 2022-05-13 | 深圳大学 | High-isolation dual-polarized cavity radiation unit |
CN111799572B (en) * | 2020-09-08 | 2020-12-18 | 星展测控科技股份有限公司 | Dual-polarized open waveguide array antenna and communication device |
CN112290213B (en) * | 2020-09-10 | 2024-04-30 | 星展测控科技股份有限公司 | Dual-polarized open waveguide array antenna and communication device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19636850A1 (en) * | 1996-09-11 | 1998-03-12 | Daimler Benz Aerospace Ag | Phase controlled antenna |
US6087908A (en) * | 1998-09-11 | 2000-07-11 | Channel Master Llc | Planar ortho-mode transducer |
FR2831997B1 (en) * | 2001-11-07 | 2004-01-16 | Thomson Licensing Sa | DUAL CIRCULAR POLARIZATION FREQUENCY SEPARATOR WAVEGUIDE MODULE AND TRANSCEIVER COMPRISING SAME |
US7397323B2 (en) * | 2006-07-12 | 2008-07-08 | Wide Sky Technology, Inc. | Orthomode transducer |
ES2379756T3 (en) * | 2009-02-02 | 2012-05-03 | Centre National D'etudes Spatiales | Orthodontic waveguide transducer |
FR2959611B1 (en) | 2010-04-30 | 2012-06-08 | Thales Sa | COMPRISING RADIANT ELEMENT WITH RESONANT CAVITIES. |
US9287615B2 (en) * | 2013-03-14 | 2016-03-15 | Raytheon Company | Multi-mode signal source |
FR3012917B1 (en) * | 2013-11-04 | 2018-03-02 | Thales | COMPACT POWER DISTRIBUTION BIPOLARIZATION, NETWORK OF SEVERAL DISTRIBUTORS, COMPACT RADIATION ELEMENT AND FLAT ANTENNA HAVING SUCH A DISTRIBUTOR |
-
2015
- 2015-12-11 FR FR1502571A patent/FR3045220B1/en not_active Expired - Fee Related
-
2016
- 2016-12-05 US US15/369,630 patent/US10381699B2/en not_active Expired - Fee Related
- 2016-12-05 EP EP16202268.5A patent/EP3179551B1/en active Active
- 2016-12-08 CA CA2950993A patent/CA2950993A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20170170570A1 (en) | 2017-06-15 |
FR3045220A1 (en) | 2017-06-16 |
EP3179551A1 (en) | 2017-06-14 |
CA2950993A1 (en) | 2017-06-11 |
FR3045220B1 (en) | 2018-09-07 |
US10381699B2 (en) | 2019-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3179551B1 (en) | Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies | |
EP2869400B1 (en) | Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor | |
EP2869396B1 (en) | Power divider including a T-coupler in the E-plane, radiating network and antenna including such a radiating network | |
EP2564466B1 (en) | COMPACT RADIANT ELEMENT WITH RESONANT CAVITES | |
EP3547450B1 (en) | Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity | |
EP2202839B1 (en) | Compact feed system for the generation of circular polarisation in an antenna and method of producing such system | |
FR2904478A1 (en) | ORTHOMODE TRANSDUCTION DEVICE COMPRISING OPTIMIZED IN THE MESH PLAN FOR AN ANTENNA | |
EP3086409B1 (en) | Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module | |
EP4012834A1 (en) | Antenna source for an array antenna with direct radiation, radiating panel and antenna comprising a plurality of antenna sources | |
EP3180816B1 (en) | Multiband source for a coaxial horn used in a monopulse radar reflector antenna. | |
EP3462532B1 (en) | Power divider for antenna comprising four identical orthomode transducers | |
EP4078728B1 (en) | Dual-polarization antenna | |
EP3664214B1 (en) | Multiple access radiant elements | |
FR3069713B1 (en) | ANTENNA INTEGRATING DELAY LENSES WITHIN A DISTRIBUTOR BASED ON PARALLEL PLATE WAVEGUIDE DIVIDERS | |
FR3029018A1 (en) | COMPACT RADIOFREQUENCY EXCITATION MODULE WITH INTEGRATED CINEMATIC AND COMPACT BIAXE ANTENNA COMPRISING LESS SUCH COMPACT MODULE | |
EP3910729B1 (en) | Broadband orthomode transducer | |
EP3900113B1 (en) | Elementary microstrip antenna and array antenna | |
EP1152483B1 (en) | Dual-band microwave radiating element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171120 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200228 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01P 1/161 20060101AFI20200629BHEP Ipc: H01Q 21/24 20060101ALN20200629BHEP Ipc: H01P 1/213 20060101ALI20200629BHEP Ipc: H01P 5/12 20060101ALI20200629BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01P 1/213 20060101ALI20200901BHEP Ipc: H01Q 21/24 20060101ALN20200901BHEP Ipc: H01P 1/161 20060101AFI20200901BHEP Ipc: H01P 5/12 20060101ALI20200901BHEP |
|
INTG | Intention to grant announced |
Effective date: 20200922 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1365631 Country of ref document: AT Kind code of ref document: T Effective date: 20210315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016053025 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210624 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210524 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210525 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210524 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1365631 Country of ref document: AT Kind code of ref document: T Effective date: 20210224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016053025 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
26N | No opposition filed |
Effective date: 20211125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210624 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602016053025 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211205 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211205 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211205 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211205 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241121 Year of fee payment: 9 |