EP3910729B1 - Broadband orthomode transducer - Google Patents
Broadband orthomode transducer Download PDFInfo
- Publication number
- EP3910729B1 EP3910729B1 EP21172702.9A EP21172702A EP3910729B1 EP 3910729 B1 EP3910729 B1 EP 3910729B1 EP 21172702 A EP21172702 A EP 21172702A EP 3910729 B1 EP3910729 B1 EP 3910729B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- orthomode transducer
- junction
- arms
- signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 claims description 14
- 230000010287 polarization Effects 0.000 description 49
- 230000005684 electric field Effects 0.000 description 41
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000005672 electromagnetic field Effects 0.000 description 4
- 238000003801 milling Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000005388 cross polarization Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000001808 coupling effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 210000000554 iris Anatomy 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 101710195281 Chlorophyll a-b binding protein Proteins 0.000 description 1
- 101710143415 Chlorophyll a-b binding protein 1, chloroplastic Proteins 0.000 description 1
- 101710181042 Chlorophyll a-b binding protein 1A, chloroplastic Proteins 0.000 description 1
- 101710091905 Chlorophyll a-b binding protein 2, chloroplastic Proteins 0.000 description 1
- 101710095244 Chlorophyll a-b binding protein 3, chloroplastic Proteins 0.000 description 1
- 101710127489 Chlorophyll a-b binding protein of LHCII type 1 Proteins 0.000 description 1
- 101710184917 Chlorophyll a-b binding protein of LHCII type I, chloroplastic Proteins 0.000 description 1
- 101710102593 Chlorophyll a-b binding protein, chloroplastic Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/16—Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
- H01P1/161—Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/213—Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/12—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
- H01Q19/13—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
Definitions
- the invention lies in the field of microwave transmissions, and relates more particularly to an orthomode transducer used to transmit two signals in orthogonal polarizations.
- the orthomode transducer according to the invention can also be used for other devices. , such as for the production of microwave filters or duplexers.
- satellite transmission systems In order to maximize their spectral efficiency, satellite transmission systems generally use polarization diversity, which consists in transmitting on the same frequency band two orthogonally polarized signals (for example a vertical polarization and a horizontal polarization, or a circular polarization right and left circular polarization).
- polarization diversity which consists in transmitting on the same frequency band two orthogonally polarized signals (for example a vertical polarization and a horizontal polarization, or a circular polarization right and left circular polarization).
- the signals can be recovered independently, which makes it possible to transmit or receive two signals simultaneously in the same frequency band, or to transmit and receive simultaneously in the same band frequency, from a single antenna.
- Orthomode transducers or signal duplexers (better known under the English name of Orthogonal Mode Transducer, or OMT) are devices belonging to the power supply chain of an antenna, in particular of a satellite antenna.
- There picture 1a very schematically represents a transmission chain for an antenna. It comprises a source, generally a horn 101, through which the satellite signals are transmitted/received, and an orthomode transducer 102, in the form of a waveguide through which are injected/extracted two signals S 1 and S 2 103 and 104.
- the orthomode transducer is configured to combine or separate the two signals by applying an orthogonal bias to them.
- other signals associated with other frequency bands may be injected/extracted from transducer 102.
- FIG. 1b schematically represents the components of an array antenna. It comprises a plurality of sources 111 to 116, each associated with one or more beams. An orthomode transducer 121 to 126 is associated with each source, thus allowing the transmission of two orthogonally polarized signals in the beam or beams concerned, generally a signal in transmission and a signal in reception.
- the dimensions and the shape of the waveguides making up the orthomode transducer are chosen according to the frequency of the signals transmitted, so as to allow the propagation of the electromagnetic waves in controlled transverse electric modes.
- the array antennas on board satellites can comprise several tens of transmission chains, and therefore as many orthomode transducers.
- the size and mass of these devices are therefore very dimensioning elements when designing satellite antennas.
- the orthomode transducers have a square central core configured so as to allow the transmission of a first signal according to a TE10 propagation mode, in which the electric field of the signal is linear and vertical, and of a second signal according to a propagation mode TE01, in which the electric field of the signal is linear and horizontal.
- the two signals are then polarized orthogonally, and can be transmitted simultaneously.
- the central core can be rectangular for the propagation of signals in distinct frequency bands.
- the signals can be transmitted according to circular polarizations by associating for example a coupler with the orthomode transducer, so that each signal is transmitted on the one hand according to a first mode and on the other hand in a delayed and phase-shifted manner according to a second mode.
- the resulting electric field is then rotating, which creates a circularly polarized signal.
- orthomode transducers are known from the state of the art, such as, for example, the document GB2054974A .
- FIG. 2a shows a three-dimensional view of a two-pronged orthomode transducer, which is the simplest, most compact, economical, and therefore most common type of orthomode transducer. It is composed of a main waveguide 201 extending along a longitudinal axis zz'.
- the waveguide is adapted to the propagation of the two fundamental electromagnetic modes in the frequency band considered.
- this result is achieved by using a waveguide of square section whose size is sized in relation to the minimum frequency of the frequency band considered, but the guide d he wave can take any form allowing the propagation of the two signals in the desired modes.
- the main waveguide is connected by a first side along its longitudinal axis zz' to a source, a radiating element realizing the adaptation between the waveguide and the free space.
- the main waveguide 201 is connected to two guided ports 202 and 203 through which the two signals to be transmitted are injected.
- the junctions between the guided accesses and the main waveguide are made at the same level of the main waveguide, in an xy plane orthogonal to the zz' axis, through slots made in the middle of orthogonal walls of the main guide , which has the effect that signals injected by the two guided accesses are combined according to orthogonal polarizations in the main waveguide before being transmitted to the source (and conversely, makes it possible to extract on each of the access of orthogonally polarized signals).
- the rear of the main waveguide 201 along the longitudinal axis zz′ can be connected, for example, to other accesses to inject signals into a separate frequency band.
- the first signal intended to be polarized vertically, is injected into the first guided port 202.
- the solid arrows give the direction of the electric field of the first signal, perpendicular to the direction of propagation of the electromagnetic wave.
- the first signal propagates according to the fundamental propagation mode TE10, corresponding to a vertical polarization.
- the second signal intended to be polarized horizontally, is injected on the second guided port 203.
- the dotted arrows give the direction of the electric field of the second signal, perpendicular to the direction of propagation of the electromagnetic wave.
- the second signal propagates according to the fundamental propagation mode TE01, corresponding to a horizontal polarization.
- the two signals propagate according to orthogonal propagation modes.
- a two-arm orthomode transducer can be associated with a 90° coupler to circularly polarize the two signals.
- the 90° coupler 210 is connected to the guided port 202 and to the guided port 203 by two ends.
- the signal intended to be transmitted according to a polarization for example the LHCP polarization (English acronym for Left Hand Circular Polarization, or left circular polarization), is injected on the end 211 of the coupler. It then finds itself presented on the guided access 202, and in a delayed and phase-shifted manner of 90° on the guided access 203.
- the signal intended to be transmitted according to the crossed polarization here the RHCP polarization (abbreviation English for Right Hand Circular Polarization, or right circular polarization), is injected on the end 212 of the coupler. It is then presented on the guided access 203, and in a delayed and phase-shifted version of 90° on the guided access 202.
- the delays and phase shifts applied have the effect of rotating the electric field, and therefore of circularly polarizing the signals. .
- FIG. 2d figure represents the electric field of the signal injected on the guided port 203 of a two-armed orthomode transducer, in a cross-sectional view in the xy plane orthogonal to zz' at the junction between the guided ports and the main guide 201.
- the levels of gray represent the intensity, and the arrows the direction, of the electric field.
- the signal injected by the guided access 203 propagates inside the main waveguide 201 according to the propagation mode TE01, ie it is linear and horizontal. Within the main waveguide, the electric fields are not perfectly aligned. These slight distortions are linked to the sensitivity of the electric field to the asymmetries present on a centered access, and have the effect of producing coupling phenomena between the two orthogonally polarized signals.
- the device comprises a coupler with unbalanced branches 231 making it possible to transmit each of the signals in controlled proportions on the guided ports 202 and 203 of a two-branch orthomode transducer, and short-circuited waveguides (in English stub ) 232 and 233 configured to filter the signals.
- the splitting coefficients of the coupler 231 are adjusted so that a portion of a polarization of the signal injected on one channel is injected on the other channel, with a very precise phase setting making it possible to cancel the portion of parasitic energy linked to bad decoupling.
- This operation is managed by the action on the short-circuited waveguides of the filters 232 and 233 of the transmission channel which allow, in addition to the rejection of the reception band, the setting in phase quadrature of the cross component relative to the principal component.
- FIG. 2f Another way to improve the decoupling of a two port orthomode transducer is shown in figure 2f .
- the accesses are always injected orthogonally on the waveguide 201, but are shifted in the axis zz' of the source.
- This waveguide makes it possible to achieve high levels of decoupling, around -50 dB, but is bulky.
- orthomode transducer It is also known from the state of the art for orthomode transducers with four branches, making it possible to achieve greater decouplings than those with two branches.
- Such an orthomode transducer is shown in picture 3a . It is composed of a main waveguide 301 extending longitudinally along an axis zz' and connected to two pairs of waveguides (302/304 and 303/305) constituting ports through which are injected the two signals to be transmitted.
- the two waveguides of the same pair are positioned face to face in a same plane orthogonal to the zz' axis,
- the two waveguides of the other pair are connected to the other two sides of the main waveguide.
- the signal intended to be vertically polarized is injected onto the main waveguide 301 from the guided ports 303 and 305, opposite with respect to the main waveguide 301.
- the signals injected from the two guided ports are identical, synchronized, in phase and have the same power level. They then recombine constructively in the main waveguide, and the signal propagates according to the TE10 mode.
- the second signal, intended to be polarized horizontally is injected in a synchronized manner and in phase on the main waveguide 301 from the guided ports 304 and 306, opposite with respect to the main waveguide 301. Again , the two injected signals recombine constructively, and the signal propagates in the main waveguide in the propagation mode TE01.
- the symmetry of the four-pronged orthomode transducer causes the electric field lines to be straighter than in a two-pronged transducer.
- part of the signal injected from the guided port 303 is found in the guided port 302 with an electric field 310 rotated by 90°, and therefore horizontally polarized.
- part of the signal injected from the guided access 305 is found in the guided access 302 with an electric field 311 rotated by 90°, and therefore horizontally polarized.
- the signals being injected in phase from the guided ports 303 and 305, the electric field 310 and the electric field 311 of the residues of these signals transmitted in the guide 302 then find themselves in phase opposition (180°). Their recombination is done in a destructive manner, and the residues of the signals injected by the guided accesses 303 and 305 being found in the guided access 302 vanish.
- the principle is the same in each of the waveguides 302 to 305.
- the guided accesses used to inject a given signal can be recombined two by two, taking care that the paths to each injection point are of the same length so that the signals are injected simultaneously and in phase.
- the recombination circuits are then complex, especially since the two guided accesses are interleaved, and require a large number of elementary connection components, thus increasing the dispersion. In the end, the performances obtained are limited and the ohmic losses high, for a bulky and heavy device.
- An object of the invention is therefore to describe an orthomode transducer having a high level of decoupling, which is both simple to implement and compact.
- Each guided access includes a junction configured to connect the free end to the two arms of the guided access, the two arms of each guided access being connected to the main waveguide at two offset locations on one or more sides of the main waveguide, symmetrically with respect to an axis of symmetry of the main waveguide.
- connection between the main waveguide and the two arms of a guided access comprises the two angles on the same side of the main waveguide.
- the junction of each guided access is configured so that the signals transmitted on the two arms of a guided access are in phase or in phase opposition according to their mode of propagation in the main waveguide.
- the two arms of the same guided access are of substantially identical dimensions.
- the guided accesses are arranged symmetrically with respect to an axis of symmetry of the main waveguide.
- each guided access comprises a particular junction chosen from among an E-plane T-junction and an H-plane T-junction, and two particular arms.
- the two guided accesses comprise the same junction in the form of a magic T-junction, the side ports of which are connected to a common pair of arms, the first and the second signal being transmitted by two separate ports of the magic T-junction.
- the invention addresses a transmission chain for a satellite antenna comprising a source connected to an orthomode transducer as described above, or a device as described above for the transmission of signals according to orthogonal circular polarizations.
- the four-branch orthomode transducers of the state of the art are complex to implement and bulky.
- the invention is therefore naturally oriented towards orthomode transducers with two branches.
- FIG 4a roughly represents the direction of the electric field in the corner of a waveguide 401 of square or rectangular section.
- the electromagnetic field being always perpendicular to the support, in the angle of the waveguide, it is inclined according to the distance to the two walls.
- the invention proposes to inject the signals not by accesses centered on the sides of the cavity of the main waveguide of the orthomode transducer, but by off-center accesses located on the edges of one or more sides of this waveguide. main wave. With a single off-center injection point, the mode of propagation in the waveguide is not controlled since it is not certain that the electric field in the waveguide will be perfectly linear and oriented in the direction wanted.
- the invention proposes to inject each signal not by one, but by two off-centre ports on one or more sides of the main waveguide, and this symmetrically with respect to an axis of symmetry of the main waveguide.
- There figure 4b schematically represents the physical principles applying during the injection of a signal by two ports located on the edges of the same side of the main waveguide.
- FIG. 4b takes the example of the injection of a first signal into the main waveguide 401 of an orthomode transducer through a guided access 410, with the aim that this signal propagates according to the TE10 (vertical linear) mode.
- the solid arrows represent the orientation of the electric field.
- the signal injected on the guided access 410 is separated into two signals of the same power by a junction 411 acting as a signal separation means.
- the junction is connected to two arms 412 and 413 of the same length.
- the junction can for example be a plane E microwave T, carrying out the division of the signal into two signals in phase opposition and of the same power.
- each port is connected to the main waveguide 401 by two off-center slots located at the ends of the right edge of the main waveguide 401, symmetrically with respect to the axis xx'.
- the electric fields applied in this way in the corners of the main waveguide are not vertical in the corners.
- the vector recombination of these two injections gives the desired electric field, here a perfectly vertically polarized electric field.
- the junction 411 can also be an H-plane T microwave junction, realizing the division of the signal into two signals in phase and of the same power.
- the electric field of the signals (represented by the dotted arrows) at the output of the junction 411 is in phase.
- the signal in the main waveguide 401, resulting from the vector combination of the signals injected by the arms 412 and 413, is then polarized horizontally (mode TE01, horizontal linear).
- the type of junction is therefore chosen according to the mode of propagation sought in the main waveguide.
- the junction 411 separates the signal into two signals in phase opposition to vertically polarize the signal, or two in-phase signals to polarize it horizontally.
- arms of the same dimensions make it possible to inject the signal into the main waveguide in a synchronized manner and with the same power level.
- a simple way to obtain arms of the same length consists in arranging the whole of the guided access symmetrically with respect to the axis of symmetry xx' of the main waveguide 401.
- FIG. 4b The arrangement described in figure 4b is not the only one possible for a two-arm guided access in an orthomode transducer according to the invention.
- THE figures 4c, 4d and 4e describe other configurations for injecting a signal off-center to the sides of the main waveguide 401.
- the junction 421 is an E-plane T, which generates two signals in phase opposition on the two arms 422 and 423, which inject the signals into the two angles of a horizontal side of the main waveguide 401, symmetrically relative to the yy' axis. Therefore, the propagation mode in the main waveguide is the TE01 mode, ie a horizontal linear polarization.
- the propagation mode obtained is the TE10 mode, ie a vertical linear polarization.
- the two arms are connected to off-center accesses located on two opposite sides of the main waveguide 401.
- the accesses are always symmetrical with respect to the axis xx'.
- the electric field evolves as on the figure 4b , in TE10 mode, although the injection points of the arms 432 and 433 in the main waveguide are different from those of the arms 412 and 413 of the figure 4b .
- the signal is polarized horizontally (TE01 mode).
- the two arms are connected to the same horizontal side of the main waveguide 401, and are offset symmetrically with respect to the axis yy' but without encompassing the angles.
- the electric field evolves in the same way as on the figure 4c , although the arrangement of the arms and their positioning relative to the angles of the main waveguide differ.
- the arms of a guided access therefore do not necessarily join the main waveguide 401 in one of its angles, provided that the injection points in the main waveguide are symmetrical with respect to an axis of symmetry of the main waveguide 401, so that the combination of the signals injected from the two arms generates a perfectly rectilinear electric field.
- the proximity of the angles improves the performance of the orthomode transducer according to the invention, since the junction slots between the access arms and the central waveguide create a magnetic coupling (field H), their positioning in the angles optimizing the effectiveness of this coupling.
- FIG. 5a represents an embodiment of an orthomode transducer with two branches according to the invention.
- the transducer is configured to output a first signal in vertical linear polarization, and a second signal in horizontal linear polarization.
- the main waveguide 501 comprises a main waveguide 501, with a square section, but the invention would apply in the same way for a waveguide with a rectangular section, in the case of two injected signals operating in different frequency bands.
- the main waveguide 501 extends along an axis zz′ in which a source for an antenna system can for example be found. It is suitable for the propagation of signals according to the two fundamental modes TE10 and TE01 in the frequency band(s) considered.
- There figure 5a represents the orthomode transducer in a sectional view at the level of the intersections with the guided accesses, according to an xy plane orthogonal to the axis zz' in which the main waveguide 501 extends.
- a first guided access 510 is configured to inject the first signal into the main waveguide 501. It comprises a waveguide 511 having a free end through which the signal to be transmitted in vertical polarization is injected, a junction 512 configured to dividing the first signal into two identical signals, of the same power, and in phase opposition, such as a plane T junction E, and two arms 513 and 514, connected on the one hand to the junction 512 and on the other hand on the same side of the main waveguide in an off-center and symmetrical manner with respect to its axis xx'.
- the elements constituting the guided access 510 are dimensioned so as to allow the propagation of the first signal (whose electromagnetic field is represented by solid arrows in the figure) according to a fundamental mode in the frequency band considered.
- the vector combination of the electric fields of the signals injected by the two arms 513 and 514 into the waveguide 501 forms the propagation mode of the signal in the waveguide, that is to say here the TE10 mode, corresponding to vertical linear polarization.
- a second guided access 520 is configured to inject the second signal into the main waveguide 501, at the same level as the first guided access. It comprises a waveguide 521, through which is injected the signal, connected to a junction 522, configured to divide the second signal into two identical signals, of the same power and in phase opposition.
- the two outputs of the junction 522 give onto the arms 523 and 524.
- the two arms are respectively connected to the edges of the same side of the main waveguide, symmetrically with respect to its axis of symmetry yy'.
- the side of the waveguide chosen here is the side orthogonal to that where the arms of the first guided access are connected.
- any other side could have been selected since the final polarization of the signal is a function of the combination of the positions where the signal is injected by the two arms and of the type of junction chosen.
- the elements constituting the guided access 520 are dimensioned so as to allow the propagation of the second signal (whose electromagnetic field is represented by dotted arrows in the figure) according to a fundamental mode in the frequency band considered. They can be connected with the main waveguide 501 by slots provided with irises for impedance matching.
- the vector combination of the electric fields of the signals injected by the two arms 523 and 524 makes it possible to form the propagation mode of the signal in the waveguide, here the TE01 mode corresponding to a horizontal linear polarization.
- the orthomode transducer according to the invention therefore makes it possible, from two ports 510 and 520, to combine two signals with the desired cross polarizations in the main waveguide 501.
- FIG. 5b represents the electric field of the signal injected on the port 510 of a two-armed orthomode transducer according to an embodiment of the invention, in a sectional view in the xy plane at the intersection between the guided ports and the guide main 501.
- the length and direction of the arrows represent the intensity and direction of the electric field.
- the electric field in the port 510 evolves so that the vector combination of the signal injected in phase through the arms 513 and 514 propagates in the main waveguide according to the TE10 mode, i.e. vertically polarized . It is observed that the electric field is oriented much more precisely than in a two-port orthomode transducer shown in Fig. 2d figure , due to the symmetry of the accesses to two branches: the decoupling between the polarizations is therefore greater.
- the in-phase junction 522 (E-plane T-junction) then acts as a means of combining the signals in phase opposition.
- the position of the two arms being symmetrical with respect to the axis of symmetry yy' of the main waveguide 501, the signals transmitted in the two arms are identical and of the same power.
- the orientation of the electric field causes them to be in phase opposition (180°) in the port 521. Consequently, they cancel each other out, and the residues of the signal emitted by the guided port 510 and received in the junction 522 naturally vanish in the waveguide 521. There are therefore no or few coupling effects due to the residues of a signal in the guided access of the cross-polarization signal.
- the orthomode transducer according to the invention as represented in figure 5a makes it possible to improve decoupling performance by a few dB compared to two-arm orthomode transducers such as the one shown in figure 2a , by generating perfectly linear electric fields, and by construction blocking the propagation of the signal from one guided access to the other.
- this orthomode transducer is wider band than the two-arm orthomode transducers of the state of the art because its symmetry properties make it build polarization alignments that are always well oriented, regardless of the frequency band considered. . This is not the case with two-arm orthomode transducers, which are not symmetrical and therefore must be optimized for a given frequency band.
- FIG. 5c is a three-dimensional representation of an orthomode transducer according to one embodiment of the invention.
- This device has the advantage of being particularly simple and of occupying a volume reduced by almost 75% compared to orthomode transducers with four branches connected two by two such as that of the picture 3a , which is one of the aims sought by the invention.
- This compactness is important, in particular for the production of array antennas involving a large number of orthomode transducers arranged in a restricted mesh.
- the reduction in mass is in the same proportions, which is also highly appreciated for the production of array antennas embedded in the payload of satellites.
- orthomode transducer Another advantage of the orthomode transducer according to the invention is that the bottom of the cavity of the orthomode transducer (the rear of the main waveguide along the axis zz') remains free. It is therefore possible to add further accesses making it possible to process the polarizations of signals transmitted in another frequency band, or a load playing the role of termination of the main waveguide.
- each of the ports comprises a pair of distinct arms
- the orthomode transducer according to the invention makes it possible to polarize signals according to orthogonal linear polarizations, it can be associated with a coupler so as to circularly polarize the signals, in a manner comparable to which is done with orthomode transducers with two branches known from the state of the art such as that represented in figure 2c .
- the realization of the orthomode transducer according to the invention can be envisaged in additive manufacturing (metallic three-dimensional printing) for a reduced cost or in a milled technique, in only three parts 531, 532 and 533 represented in figure 5d , the part 533 representing a step allowing adaptation of the orthomode transducer to the source of the antenna.
- FIG. 6a Another embodiment of an orthomode transducer according to the invention is given at the figure 6a .
- This embodiment always involves a guide main wave 601, but the guided accesses of the two cross-polarized signals are injected by the same pair of arms.
- the orthomode transducer comprises a device known to those skilled in the art, called magic T junction (in English magic T ) .
- a magic T-junction is a three-dimensional, four-port microwave component: two side ports, a sum port, and a difference port. It jointly performs the T-junction function plane E and plane H, the side ports and the sum port forming the T plane H, the side ports and the difference port forming the T plane E.
- the first access to the main waveguide is formed by a waveguide 603 having a free end through which the first signal is injected, and connected to the difference port of the magic T-junction.
- the two side ports of the magic T-junction are connected to two arms 610 and 611, themselves connected to the main waveguide 601 by off-center accesses positioned on the edges of the same side of the main waveguide, symmetrically with respect to its axis of symmetry yy'.
- the second access to the main waveguide is formed by a waveguide 604 having a free end through which the second signal is injected, and connected to the sum port of the magic T-junction.
- the arms of this port are arms 610 and 611 connected to the side ports of the magic T-junction, just like the first port.
- the use of a magic T-junction makes it possible to be able to share the arms between the two ports guided in orthogonal polarizations.
- the positioning of the accesses makes it possible to obtain orthogonal propagation modes in the main waveguide 601 with perfectly formed electric fields.
- the positioning and the structure of the accesses, associated with the magic T-junction make it possible to avoid the effects of coupling between the two signals with crossed polarizations.
- the waveguide according to the embodiment presented in figure 6a makes it possible to obtain very high levels of decoupling, of the order of -70 dB, with an extremely compact device. Compared to the embodiments presented previously, however, it operates on a reduced frequency band, given by the operating band of the magic T-junction.
- FIG. 6b represents the two parts 621 and 622 required for the production by milling of an orthomode transducer according to the invention.
- the orthomode transducer according to the invention has been described in the case of application of the injection of two signals from the free ends of the guided ports to the main waveguide.
- the invention applies identically for the extraction of signals from the main waveguide to the two guided ports.
- the T-junctions play the role of means of combining the signals received by the arms from the main waveguide.
- the invention also applies in the same way for the injection of a first signal and the simultaneous extraction of a second signal in crossed polarization.
Landscapes
- Waveguide Switches, Polarizers, And Phase Shifters (AREA)
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
L'invention se situe dans le domaine des transmissions hyperfréquences, et porte plus particulièrement sur un transducteur orthomode utilisé pour transmettre deux signaux dans des polarisations orthogonales.The invention lies in the field of microwave transmissions, and relates more particularly to an orthomode transducer used to transmit two signals in orthogonal polarizations.
Si la solution proposée est particulièrement utile dans le domaine des sources d'antennes, et en particulier des antennes satellites, elle n'est pas limitée à ces applications, et le transducteur orthomode selon l'invention peut également être utilisé pour d'autres dispositifs, comme par exemple pour la réalisation de filtres ou de duplexeurs hyperfréquence.If the proposed solution is particularly useful in the field of antenna sources, and in particular satellite antennas, it is not limited to these applications, and the orthomode transducer according to the invention can also be used for other devices. , such as for the production of microwave filters or duplexers.
De manière à maximiser leur efficacité spectrale, les systèmes de transmission par satellite utilisent généralement la diversité de polarisation, qui consiste à transmettre sur la même bande de fréquence deux signaux polarisés orthogonalement (par exemple une polarisation verticale et une polarisation horizontale, ou une polarisation circulaire droite et une polarisation circulaire gauche). Lorsque les polarisations entre les deux signaux sont parfaitement orthogonales, les signaux peuvent être récupérés indépendamment, ce qui permet d'émettre ou de recevoir deux signaux simultanément dans une même bande de fréquence, ou bien d'émettre et de recevoir simultanément dans la même bande de fréquence, à partir d'une seule antenne.In order to maximize their spectral efficiency, satellite transmission systems generally use polarization diversity, which consists in transmitting on the same frequency band two orthogonally polarized signals (for example a vertical polarization and a horizontal polarization, or a circular polarization right and left circular polarization). When the polarizations between the two signals are perfectly orthogonal, the signals can be recovered independently, which makes it possible to transmit or receive two signals simultaneously in the same frequency band, or to transmit and receive simultaneously in the same band frequency, from a single antenna.
Dans le cas théorique, le découplage entre les deux signaux est infini, ce qui permet de les dissocier parfaitement. En pratique, les asymétries des équipements de transmission créent une prise d'angle des champs électriques. Dans ce cas, une sous composante de chaque polarisation se confond avec la polarisation croisée, ce qui entraine des phénomènes de couplage entre les signaux. L'homme du métier veille donc à ce que les deux signaux polarisés orthogonalement soient transmis avec le plus fort découplage possible.In the theoretical case, the decoupling between the two signals is infinite, which makes it possible to separate them perfectly. In practice, the asymmetries of the transmission equipment create an angle of the electric fields. In this case, a sub-component of each polarization merges with the crossed polarization, which leads to coupling phenomena between the signals. A person skilled in the art therefore ensures that the two orthogonally polarized signals are transmitted with the strongest possible decoupling.
Les transducteurs orthomodes, ou duplexeurs de signaux (plus connus sous le nom anglais de Orthogonal Mode Transducer, ou OMT) sont des dispositifs appartenant à la chaîne d'alimentation d'une antenne, en particulier d'une antenne satellite. La
De nombreux satellites de télécommunication sont équipés d'antennes réseau, composées d'un grand nombre de chaînes de transmission telles que celle représenté à la
Les antennes réseau embarquées dans des satellites peuvent comprendre plusieurs dizaines de chaînes de transmission, et donc autant de transducteurs orthomodes. L'encombrement et la masse de ces dispositifs sont donc des éléments très dimensionnants lors de la conception des antennes satellites.The array antennas on board satellites can comprise several tens of transmission chains, and therefore as many orthomode transducers. The size and mass of these devices are therefore very dimensioning elements when designing satellite antennas.
Dans la suite de la description, et afin de simplifier la compréhension des phénomènes physiques qui s'appliquent, les explications sont données en considérant le cas d'application de deux signaux injectés sur le transducteur orthomode dans le but d'être polarisés orthogonalement et combinés puis émis par la source de l'antenne satellite. Cependant, l'invention s'applique de manière identique dans le cas de deux signaux de polarisations orthogonales reçus depuis la source de l'antenne satellite, et transmis et séparés par le transducteur orthomode, ou dans le cas où un signal est émis et l'autre est reçu.In the rest of the description, and in order to simplify the understanding of the physical phenomena which apply, the explanations are given by considering the case of application of two signals injected on the transducer orthomode in order to be orthogonally polarized and combined and then emitted by the source of the satellite antenna. However, the invention applies identically in the case of two signals of orthogonal polarizations received from the source of the satellite antenna, and transmitted and separated by the orthomode transducer, or in the case where a signal is emitted and the other is received.
Les transducteurs orthomodes présentent un coeur central carré configuré de manière à permettre la transmission d'un premier signal selon un mode de propagation TE10, dans lequel le champ électrique du signal est linéaire et vertical, et d'un deuxième signal selon un mode de propagation TE01, dans lequel le champ électrique du signal est linéaire et horizontal. Les deux signaux sont alors polarisés orthogonalement, et peuvent être transmis simultanément. Le coeur central peut être rectangulaire pour la propagation de signaux dans des bandes de fréquences distinctes. De même, les signaux peuvent être transmis selon des polarisations circulaires en associant par exemple un coupleur au transducteur orthomode, de manière à ce que chaque signal soit transmis d'une part selon un premier mode et d'autre part de manière retardée et déphasée selon un deuxième mode. Le champ électrique résultant est alors tournant, ce qui crée un signal polarisé circulairement.The orthomode transducers have a square central core configured so as to allow the transmission of a first signal according to a TE10 propagation mode, in which the electric field of the signal is linear and vertical, and of a second signal according to a propagation mode TE01, in which the electric field of the signal is linear and horizontal. The two signals are then polarized orthogonally, and can be transmitted simultaneously. The central core can be rectangular for the propagation of signals in distinct frequency bands. Similarly, the signals can be transmitted according to circular polarizations by associating for example a coupler with the orthomode transducer, so that each signal is transmitted on the one hand according to a first mode and on the other hand in a delayed and phase-shifted manner according to a second mode. The resulting electric field is then rotating, which creates a circularly polarized signal.
Plusieurs structures différentes de transducteurs orthomodes sont connues de l'état de la technique, comme par exemple , le document
La
Le guide d'onde principal est relié par un premier côté selon son axe longitudinal zz' à une source, élément rayonnant réalisant l'adaptation entre le guide d'onde et l'espace libre. Le guide d'onde principal 201 est relié à deux accès guidés 202 et 203 par lesquels sont injectés les deux signaux à transmettre. Les jonctions entre les accès guidés et le guide d'onde principal se font au même niveau du guide d'onde principal, dans un plan xy orthogonal à l'axe zz', à travers des fentes réalisées au milieu de parois orthogonales du guide principal, ce qui a pour effet que des signaux injectés par les deux accès guidés sont combinés selon des polarisations orthogonales dans le guide d'onde principal avant d'être transmis à la source (et à l'inverse, permet d'extraire sur chacun des accès des signaux polarisés orthogonalement). L'arrière du guide d'onde principal 201 selon l'axe longitudinal zz' peut être relié, par exemple, à d'autres accès pour injecter des signaux dans une bande de fréquence distincte.The main waveguide is connected by a first side along its longitudinal axis zz' to a source, a radiating element realizing the adaptation between the waveguide and the free space. The
La
Comme représenté à la
La
Le signal injecté par l'accès guidé 203 se propage à l'intérieur du guide d'onde principal 201 selon le mode de propagation TE01, c'est-à-dire qu'il est linéaire et horizontal. Au sein du guide d'onde principal, les champs électriques ne sont pas parfaitement alignés. Ces légères distorsions sont liées la sensibilité du champ électrique aux asymétries présentes sur un accès centré, et ont pour effet de produire des phénomènes de couplage entre les deux signaux polarisés orthogonalement.The signal injected by the guided
En outre, une petite partie du signal injecté par l'accès 203 se propage dans l'accès guidé 202. Le champ électrique étant toujours perpendiculaire au support, celui-ci tourne en entrant dans l'accès guidé 202. Des résidus du signal transmis sur l'accès 203 se retrouvent alors sur l'accès guidé 202 avec la même polarisation que le signal transmis sur cet accès (linéaire vertical), ce qui est à l'origine de phénomènes de couplage parasite supplémentaires. Pour cette raison, le découplage généralement atteint grâce à un transducteur orthomode à deux branches est de l'ordre de -20 dB. Ce niveau de découplage peut s'avérer trop faible pour un certain nombre d'applications, comme par exemple pour les antennes satellites, où les pertes liées au découplage se traduisent par une dégradation du bilan de liaison et donc des débits atteignables.In addition, a small part of the signal injected by
Une manière connue permettant d'améliorer le découplage entre les voies d'un transducteur orthomode à deux accès guidés est décrite dans le brevet
Cette solution permet d'atteindre des niveaux élevés de découplage, mais est complexe à mettre en oeuvre et encombrante.This solution makes it possible to achieve high levels of decoupling, but is complex to implement and cumbersome.
Une autre manière d'améliorer le découplage d'un transducteur orthomode à deux accès est représenté à la
Il est également connu de l'état de la technique des transducteurs orthomodes à quatre branches, permettant d'atteindre des découplages plus importants que ceux à deux branches. Un tel transducteur orthomode est représenté à la
La
Le signal destiné à être polarisé verticalement est injecté sur le guide d'onde principal 301 depuis les accès guidés 303 et 305, opposées par rapport au guide d'onde principal 301. Les signaux injectés depuis les deux accès guidés sont identiques, synchronisés, en phase et ont le même niveau de puissance. Ils se recombinent alors de manière constructive dans le guide d'onde principal, et le signal se propage selon le mode TE10. De même, le deuxième signal, destiné à être polarisé horizontalement, est injecté de manière synchronisée et en phase sur le guide d'onde principal 301 depuis les accès guidés 304 et 306, opposées par rapport au guide d'onde principal 301. Là aussi, les deux signaux injectés se recombinent de manière constructive, et le signal se propage dans le guide d'onde principal dans le mode de propagation TE01.The signal intended to be vertically polarized is injected onto the
La symétrie du transducteur orthomode à quatre branches a pour effet que les lignes de champ électriques sont plus rectilignes que dans un transducteur à deux branches.The symmetry of the four-pronged orthomode transducer causes the electric field lines to be straighter than in a two-pronged transducer.
Comme dans le guide d'onde à deux accès, une partie du signal injecté depuis l'accès guidé 303 se retrouve dans l'accès guidé 302 avec un champ électrique 310 pivoté de 90°, et donc polarisé horizontalement. De même, une partie du signal injecté depuis l'accès guidé 305 se retrouve dans l'accès guidé 302 avec un champ électrique 311 pivoté de 90°, et donc polarisé horizontalement. Les signaux étant injectés en phase depuis les accès guidés 303 et 305, le champ électrique 310 et le champ électrique 311 des résidus de ces signaux transmis dans le guide 302 se retrouvent alors en opposition de phase (180°). Leur recombinaison se fait de manière destructive, et les résidus des signaux injectés par les accès guidés 303 et 305 se retrouvant dans l'accès guidé 302 s'évanouissent. Le principe est le même dans chacun des guides d'onde 302 à 305.As in the waveguide with two ports, part of the signal injected from the guided
Les propriétés de symétrie des transducteurs orthomodes à quatre branches permettent donc d'obtenir un champ électrique parfaitement linéaire, la polarisation croisée s'évanouissant naturellement dans les accès croisés. Ils présentent généralement des niveaux de découplage importants, de l'ordre de -40 dB.The properties of symmetry of orthomode transducers with four branches therefore make it possible to obtain a perfectly linear electric field, the cross polarization vanishing naturally in cross accesses. They generally have high levels of decoupling, of the order of -40 dB.
Cependant, générer deux signaux identiques et en phase pour chaque polarisation reporte la complexité en amont puisqu'il est alors nécessaire de dupliquer la génération des signaux, les signaux transmis à un couple d'accès devant être parfaitement identiques et synchronisés. En outre le transducteur orthomode disposant de quatre accès indépendants n'est pas optimal en terme de compacité.However, generating two identical and in-phase signals for each polarization transfers the complexity upstream since it is then necessary to duplicate the generation of the signals, the signals transmitted to an access pair having to be perfectly identical and synchronized. Furthermore, the orthomode transducer having four independent ports is not optimal in terms of compactness.
De manière alternative, les accès guidés utilisés pour injecter un signal donné peuvent être recombinés deux à deux, en prenant garde à ce que les chemins vers chaque point d'injection soient de même longueur pour que les signaux soient injectés simultanément et en phase. Les circuits de recombinaison sont alors complexes, d'autant que les deux accès guidés sont entrelacés, et requièrent un grand nombre de composants élémentaires de liaison, augmentant ainsi la dispersion. Au final les performances obtenues sont limitées et les pertes ohmiques importantes, pour un dispositif encombrant et lourd.Alternatively, the guided accesses used to inject a given signal can be recombined two by two, taking care that the paths to each injection point are of the same length so that the signals are injected simultaneously and in phase. The recombination circuits are then complex, especially since the two guided accesses are interleaved, and require a large number of elementary connection components, thus increasing the dispersion. In the end, the performances obtained are limited and the ohmic losses high, for a bulky and heavy device.
Un objet de l'invention est donc de décrire un transducteur orthomode présentant un important niveau de découplage, qui soit à la fois simple à mettre en oeuvre et compact.An object of the invention is therefore to describe an orthomode transducer having a high level of decoupling, which is both simple to implement and compact.
A cet effet, la présente invention décrit un transducteur orthomode, pour la transmission d'un premier signal et d'un deuxième signal dans des modes de propagation orthogonaux. Le transducteur orthomode comprend :
- un guide d'onde principal à section carrée ou rectangulaire,
- deux accès guidés ayant d'une part une extrémité libre par laquelle sont respectivement injectés ou récupérés le premier signal et le deuxième signal, et d'autre part deux bras reliés au guide d'onde principal.
- a main waveguide with a square or rectangular section,
- two guided ports having on the one hand a free end via which the first signal and the second signal are respectively injected or recovered, and on the other hand two arms connected to the main waveguide.
Chaque accès guidé comprend une jonction configurée pour relier l'extrémité libre aux deux bras de l'accès guidé, les deux bras de chaque accès guidé étant reliés au guide d'onde principal en deux emplacements décentrés d'un ou plusieurs côtés du guide d'onde principal, de manière symétrique par rapport à un axe de symétrie du guide d'onde principal.Each guided access includes a junction configured to connect the free end to the two arms of the guided access, the two arms of each guided access being connected to the main waveguide at two offset locations on one or more sides of the main waveguide, symmetrically with respect to an axis of symmetry of the main waveguide.
Avantageusement, la liaison entre le guide d'onde principal et les deux bras d'un accès guidé comprend les deux angles d'un même côté du guide d'onde principal.Advantageously, the connection between the main waveguide and the two arms of a guided access comprises the two angles on the same side of the main waveguide.
Selon le mode de réalisation du transducteur orthomode selon l'invention, la jonction de chaque accès guidé est configurée pour que les signaux transmis sur les deux bras d'un accès guidé soient en phase ou en opposition de phase suivant leur mode de propagation dans le guide d'onde principal.According to the embodiment of the orthomode transducer according to the invention, the junction of each guided access is configured so that the signals transmitted on the two arms of a guided access are in phase or in phase opposition according to their mode of propagation in the main waveguide.
Avantageusement, les deux bras d'un même accès guidé sont de dimensions sensiblement identiques.Advantageously, the two arms of the same guided access are of substantially identical dimensions.
Avantageusement, les accès guidés sont agencés de manière symétrique par rapport à un axe de symétrie du guide d'onde principal.Advantageously, the guided accesses are arranged symmetrically with respect to an axis of symmetry of the main waveguide.
Dans un mode de réalisation du transducteur orthomode décrit, chaque accès guidé comprend une jonction particulière choisie parmi une jonction en T plan E et une jonction en T plan H, et deux bras particuliers.In one embodiment of the orthomode transducer described, each guided access comprises a particular junction chosen from among an E-plane T-junction and an H-plane T-junction, and two particular arms.
Dans un mode de réalisation alternatif, les deux accès guidés comprennent une même jonction sous la forme d'une jonction en T magique dont les ports latéraux sont reliés à une paire de bras commune, le premier et le deuxième signal étant transmis par deux ports distincts de la jonction en T magique.In an alternative embodiment, the two guided accesses comprise the same junction in the form of a magic T-junction, the side ports of which are connected to a common pair of arms, the first and the second signal being transmitted by two separate ports of the magic T-junction.
L'invention décrite porte également sur un dispositif permettant de transmettre les signaux selon des polarisations circulaires orthogonales. Il comprend :
- un transducteur orthomode tel que décrit précédemment, et
- un coupleur 90° relié aux extrémités libres des accès guidés du transducteur orthomode de manière à polariser circulairement le premier et le deuxième signal.
- an orthomode transducer as previously described, and
- a 90° coupler connected to the free ends of the guided ports of the orthomode transducer so as to circularly polarize the first and the second signal.
Enfin, l'invention adresse une chaîne de transmission pour antenne satellite comprenant une source reliée à un transducteur orthomode tel que décrit précédemment, ou un dispositif tel que décrit précédemment pour la transmission de signaux selon des polarisations circulaires orthogonales.Finally, the invention addresses a transmission chain for a satellite antenna comprising a source connected to an orthomode transducer as described above, or a device as described above for the transmission of signals according to orthogonal circular polarizations.
L'invention sera mieux comprise et d'autres caractéristiques, détails et avantages apparaîtront mieux à la lecture de la description qui suit, donnée à titre non limitatif, et grâce aux figures annexées qui suivent, données à titre d'exemple, parmi lesquelles :
- la
figure 1a représente très schématiquement une chaîne de transmission pour antenne, par exemple une antenne satellite, - la
figure 1b représente très schématiquement les composantes d'une antenne réseau embarquée dans un satellite, - la
figure 2a représente une vue en trois dimensions d'un transducteur orthomode à deux branches selon l'état de l'art, - la
figure 2b décrit le principe de polarisation des signaux dans un guide d'onde à deux branches, - la
figure 2c représente un montage permettant de polariser circulairement et combiner des signaux dans un transducteur orthomode à deux branches, - la
figure 2d représente le champ électrique du signal injecté sur l'accès guidé 203 d'un transducteur orthomode à deux branches, - la
figure 2e représente un montage permettant d'améliorer le découplage d'un transducteur orthomode à deux branches, - la
figure 2f représente un transducteur orthomode à deux branches décalées, - la
figure 3a représente une vue en trois dimensions d'un transducteur orthomode à quatre branches selon l'état de l'art, - la
figure 3b décrit le principe de polarisation des signaux dans un transducteur orthomode à quatre branches, - la
figure 4a représente grossièrement le champ électrique dans l'angle d'un guide d'onde de section carrée ou rectangle, - la
figure 4b représente schématiquement les principes physiques s'appliquant lors de l'injection d'un signal par deux accès situés sur les bords d'un côté du guide d'onde principal, - la
figure 4c représente une configuration permettant d'injecter un signal de manière décentrée sur les côtés d'un guide d'onde, - la
figure 4d représente une configuration permettant d'injecter un signal de manière décentrée sur les côtés d'un guide d'onde, - la
figure 4e représente une configuration permettant d'injecter un signal de manière décentrée sur les côtés d'un guide d'onde, - la
figure 5a représente un mode de réalisation d'un transducteur orthomode à deux branches selon l'invention, - la
figure 5b représente le champ électrique du signal injecté sur l'accès 510 d'un transducteur orthomode à deux branches selon un mode de réalisation de l'invention, - la
figure 5c est une représentation en trois dimensions d'un transducteur orthomode selon un mode de réalisation de l'invention, - la
figure 5d distingue les différentes parties d'un transducteur orthomode selon un mode de réalisation de l'invention pour une fabrication par fraisage, - la
figure 6a représente un mode de réalisation d'un transducteur orthomode à deux branches selon l'invention, - la
figure 6b distingue les différentes parties d'un transducteur orthomode selon un mode de réalisation de l'invention pour une fabrication par fraisage.
- there
picture 1a very schematically represents a transmission chain for an antenna, for example a satellite antenna, - there
figure 1b very schematically represents the components of a network antenna on board a satellite, - there
figure 2a represents a three-dimensional view of an orthomode transducer with two branches according to the state of the art, - there
figure 2b describes the principle of polarization of signals in a waveguide with two branches, - there
figure 2c represents an assembly making it possible to circularly polarize and combine signals in an orthomode transducer with two branches, - there
2d figure represents the electric field of the signal injected on the guidedaccess 203 of a two-branch orthomode transducer, - there
figure 2e represents an assembly making it possible to improve the decoupling of an orthomode transducer with two branches, - there
figure 2f represents an orthomode transducer with two staggered branches, - there
picture 3a represents a three-dimensional view of an orthomode transducer with four branches according to the state of the art, - there
figure 3b describes the principle of signal polarization in an orthomode transducer with four branches, - there
figure 4a roughly represents the electric field in the corner of a waveguide with a square or rectangle section, - there
figure 4b schematically represents the physical principles that apply when injecting a signal through two ports located on the edges of one side of the main waveguide, - there
figure 4c represents a configuration for injecting a signal off-center on the sides of a waveguide, - there
4d figure represents a configuration for injecting a signal off-center on the sides of a waveguide, - there
figure 4e represents a configuration for injecting a signal off-center on the sides of a waveguide, - there
figure 5a represents an embodiment of a two-branch orthomode transducer according to the invention, - there
figure 5b represents the electric field of the signal injected on theport 510 of a two-branch orthomode transducer according to one embodiment of the invention, - there
figure 5c is a three-dimensional representation of an orthomode transducer according to one embodiment of the invention, - there
figure 5d distinguishes the different parts of an orthomode transducer according to one embodiment of the invention for manufacture by milling, - there
figure 6a represents an embodiment of a two-branch orthomode transducer according to the invention, - there
figure 6b distinguishes the different parts of an orthomode transducer according to one embodiment of the invention for manufacture by milling.
Des références identiques sont utilisées dans des figures différentes lorsque les éléments désignés sont identiques.Identical references are used in different figures when the designated elements are identical.
S'ils présentent de bonnes performances en découplage, les transducteurs orthomodes à quatre branches de l'état de l'art sont complexes à mettre en oeuvre et encombrants. L'invention s'oriente donc naturellement vers les transducteurs orthomodes à deux branches.Although they have good decoupling performance, the four-branch orthomode transducers of the state of the art are complex to implement and bulky. The invention is therefore naturally oriented towards orthomode transducers with two branches.
Elle s'appuie sur les propriétés du champ électromagnétique, qui s'oriente de manière perpendiculaire aux parois métalliques du guide d'onde.It is based on the properties of the electromagnetic field, which is oriented perpendicular to the metal walls of the waveguide.
La
L'invention propose d'injecter les signaux non pas par des accès centrées sur les côtés de la cavité du guide d'onde principal du transducteur orthomode, mais par des accès décentrés situés sur les bords d'un ou plusieurs côtés de ce guide d'onde principal. Avec un seul point d'injection décentré, le mode de propagation dans le guide d'onde n'est pas maitrisé puisqu'il n'est pas certain que le champ électrique dans le guide d'onde sera parfaitement linéaire et orienté dans la direction voulue. L'invention propose d'injecter chaque signal non par un, mais par deux accès décentrés d'un ou plusieurs côtés du guide d'onde principal, et ce de manière symétrique par rapport à un axe de symétrie du guide d'onde principal. La
La
La jonction 411 peut également être une jonction hyperfréquence en T plan H, réalisant la division du signal en deux signaux en phase et de même puissance. Dans ce cas, le champ électrique des signaux (représenté par les flèches en pointillés) en sortie de la jonction 411 est en phase. Le signal dans le guide d'onde principal 401, résultant de la combinaison vectorielle des signaux injectés par les bras 412 et 413, est alors polarisé horizontalement (mode TE01, linéaire horizontal). Le type de jonction est donc choisi selon le mode de propagation recherché dans le guide d'onde principal.The
En injectant un même signal, en phase ou en opposition de phase, à travers deux accès décentrés et symétriques dans le guide d'onde principal d'un transducteur orthomode, il est donc possible de « forcer » le mode de propagation de l'onde électromagnétique. Dans l'exemple de la
L'utilisation de bras de mêmes dimensions (même longueur, même largeur et même hauteur) permet d'injecter le signal dans le guide d'onde principal de manière synchronisée et avec un même niveau de puissance. Un moyen simple d'obtenir des bras de même longueur consiste à agencer l'ensemble de l'accès guidé de manière symétrique par rapport à l'axe de symétrie xx' du guide d'onde principal 401.The use of arms of the same dimensions (same length, same width and same height) makes it possible to inject the signal into the main waveguide in a synchronized manner and with the same power level. A simple way to obtain arms of the same length consists in arranging the whole of the guided access symmetrically with respect to the axis of symmetry xx' of the
La disposition décrite à la
Dans la
Dans la
Dans la
Les bras d'un accès guidé ne rejoignent donc pas nécessairement le guide d'onde principal 401 dans un de ses angles, à condition que les points d'injection dans le guide d'onde principal soient symétriques par rapport à un axe de symétrie du guide d'onde principal 401, pour que la combinaison des signaux injectés depuis les deux bras génère un champ électrique parfaitement rectilinéaire. Cependant, la proximité des angles améliore les performances du transducteur orthomode selon l'invention, car les fentes de jonction entre les bras d'accès et le guide d'onde central créent un couplage magnétique (champ H), leur positionnement dans les angles optimisant l'efficacité de ce couplage.The arms of a guided access therefore do not necessarily join the
La
Il comprend un guide d'onde principal 501, à section carrée, mais l'invention s'appliquerait de manière identique pour un guide d'onde à section rectangulaire, dans le cas de deux signaux injectés fonctionnant dans des bandes de fréquences différentes. Le guide d'onde principal 501 s'étend selon un axe zz' dans lequel peut par exemple se trouver une source pour un système antennaire. Il est adapté à la propagation de signaux selon les deux modes fondamentaux TE10 et TE01 dans la ou les bandes de fréquences considérées. La
Un premier accès guidé 510 est configuré pour injecter le premier signal dans le guide d'onde principal 501. Il comprend un guide d'onde 511 présentant une extrémité libre par laquelle est injecté le signal à émettre en polarisation verticale, une jonction 512 configurée pour diviser le premier signal en deux signaux identiques, de même puissance, et en opposition de phase, tel qu'une jonction en T plan E, et deux bras 513 et 514, reliés d'une part à la jonction 512 et d'autre part à un même côté du guide d'onde principal de manière décentrée et symétrique par rapport à son axe xx'. Les éléments constituant l'accès guidé 510 sont dimensionnés de manière à permettre la propagation du premier signal (dont le champ électromagnétique est représenté par des flèches pleines sur la figure) selon un mode fondamental dans la bande de fréquence considérée. Ils peuvent être reliés avec le guide d'onde principal 501 à travers des iris réalisant l'adaptation d'impédance. La combinaison vectorielle des champs électriques des signaux injectés par les deux bras 513 et 514 dans le guide d'onde 501 forme le mode de propagation du signal dans le guide d'onde, c'est-à-dire ici le mode TE10, correspondant à une polarisation linéaire verticale.A first guided
De manière identique, un deuxième accès guidé 520 est configuré pour injecter le deuxième signal dans le guide d'onde principal 501, au même niveau que le premier accès guidé. Il comprend un guide d'onde 521, par lequel est injecté le signal, relié à une jonction 522, configurée pour diviser le deuxième signal en deux signaux identiques, de même puissance et en opposition de phase. Les deux sorties de la jonction 522 donnent sur les bras 523 et 524. Les deux bras sont respectivement reliés aux bords d'un même côté du guide d'onde principal, de manière symétrique par rapport à son axe de symétrie yy'. Le côté du guide d'onde choisi ici est le côté orthogonal à celui où sont reliés les bras du premier accès guidé. Cependant, dans le transducteur orthomode selon l'invention, n'importe quel autre côté aurait pu être sélectionné puisque la polarisation finale du signal est fonction de la combinaison des positions où le signal est injecté par les deux bras et du type de jonction choisi. Les éléments constituant l'accès guidé 520 sont dimensionnés de manière à permettre la propagation du deuxième signal (dont le champ électromagnétique est représenté par des flèches en pointillés sur la figure) selon un mode fondamental dans la bande de fréquence considérée. Ils peuvent être reliés avec le guide d'onde principal 501 par des fentes pourvues d'iris pour l'adaptation d'impédance. La combinaison vectorielle des champs électriques des signaux injectés par les deux bras 523 et 524 permet de former le mode de propagation du signal dans le guide d'onde, ici le mode TE01 correspondant à une polarisation linéaire horizontale.Similarly, a second guided
Le transducteur orthomode selon l'invention permet donc, à partir de deux accès 510 et 520, de combiner deux signaux avec les polarisations croisées voulues dans le guide d'onde principal 501.The orthomode transducer according to the invention therefore makes it possible, from two
La
Le champ électrique dans l'accès 510 évolue de sorte que la combinaison vectorielle du signal injecté en phase à travers les bras 513 et 514 se propage dans le guide d'onde principal selon le mode TE10, c'est-à-dire polarisé verticalement. On observe que le champ électrique est orienté beaucoup plus précisément que dans un transducteur orthomode à deux accès représenté à la
Une partie de l'énergie injectée depuis l'accès guidé 510 se propage dans les bras 523 et 524 de l'accès guidé 520, où le champ électrique tourne pour se retrouver orienté horizontalement. La jonction en phase 522 (jonction en T plan E) joue alors le rôle de moyen de combinaison en opposition de phase des signaux. La position des deux bras étant symétrique par rapport à l'axe de symétrie yy' du guide d'onde principal 501, les signaux transmis dans les deux bras sont identiques et de même puissance. L'orientation du champ électrique fait qu'ils sont en opposition de phase (180°) dans l'accès 521. Par conséquent, ils s'annulent, et les résidus du signal émis par l'accès guidé 510 et reçus dans la jonction 522 s'évanouissent naturellement dans le guide d'onde 521. Il n'y a donc pas ou peu d'effets de couplage dus aux résidus d'un signal dans l'accès guidé du signal de polarisation croisé.Part of the energy injected from the guided
Le phénomène est le même dans l'autre sens, où des résidus du signal émis par l'accès 520 se retrouvent en opposition de phase dans les bras 513 et 514. Leur recombinaison par la jonction 511 en opposition de phase fait que le signal polarisé horizontalement s'évanouit en sortie. Il n'y a donc pas ou peu d'effets de couplage dans ce sens non plus.The phenomenon is the same in the other direction, where residues of the signal emitted by
Grâce aux propriétés de symétrie des accès décentrés, le transducteur orthomode selon l'invention tel que représenté à la
La
Ce dispositif présente l'avantage d'être particulièrement simple et d'occuper un volume réduit de près de 75% par rapport aux transducteurs orthomodes à quatre branches reliées deux à deux tel que celui de la
Un autre avantage du transducteur orthomode selon l'invention est que le fond de cavité du transducteur orthomode (l'arrière du guide d'onde principal selon l'axe zz') reste libre. Il est donc possible d'ajouter à la suite d'autres accès permettant de traiter les polarisations de signaux transmis dans une autre bande de fréquence, ou une charge jouant le rôle de terminaison du guide d'onde principal.Another advantage of the orthomode transducer according to the invention is that the bottom of the cavity of the orthomode transducer (the rear of the main waveguide along the axis zz') remains free. It is therefore possible to add further accesses making it possible to process the polarizations of signals transmitted in another frequency band, or a load playing the role of termination of the main waveguide.
Si le transducteur orthomode selon l'invention, où chacun des accès comprend un couple de bras distincts, permet de polariser des signaux selon des polarisations linéaires orthogonales, il peut être associé à un coupleur de manière à polariser circulairement les signaux, de manière comparable à ce qui se fait avec les transducteurs orthomodes à deux branches connus de l'état de la technique tel que celui représenté à la
Enfin, la réalisation du transducteur orthomode selon l'invention est envisageable en fabrication additive (impression en trois dimensions métallique) pour un coût réduit ou en technique fraisée, en seulement trois parties 531, 532 et 533 représentées à la
Un autre mode de réalisation d'un transducteur orthomode selon l'invention est donné à la
Pour ceci, le transducteur orthomode comprend un dispositif connu de l'homme du métier, nommé jonction en T magique (en anglais magic T). Une jonction en T magique est un composant hyperfréquence à trois dimensions et quatre ports : deux ports latéraux, un port somme et un port différence. Il réalise conjointement la fonction de jonction en T plan E et plan H, les ports latéraux et le port somme formant le T plan H, les ports latéraux et le port différence formant le T plan E.For this, the orthomode transducer comprises a device known to those skilled in the art, called magic T junction (in English magic T ) . A magic T-junction is a three-dimensional, four-port microwave component: two side ports, a sum port, and a difference port. It jointly performs the T-junction function plane E and plane H, the side ports and the sum port forming the T plane H, the side ports and the difference port forming the T plane E.
Le premier accès au guide d'onde principal est formé par un guide d'onde 603 présentant une extrémité libre par laquelle est injecté le premier signal, et relié au port différence de la jonction en T magique. Les deux ports latéraux de la jonction en T magique sont reliés à deux bras 610 et 611, eux-mêmes reliés au guide d'onde principal 601 par des accès décentrés positionnés sur les bords d'un même côté du guide d'onde principal, de manière symétrique par rapport sont axe de symétrie yy'.The first access to the main waveguide is formed by a
Le deuxième accès au guide d'onde principal est formé par un guide d'onde 604 présentant une extrémité libre par laquelle est injecté le deuxième signal, et relié au port somme de la jonction en T magique. Les bras de cet accès sont les bras 610 et 611 raccordés aux ports latéraux de la jonction en T magique, tout comme le premier accès.The second access to the main waveguide is formed by a
L'utilisation d'une jonction en T magique permet de pouvoir partager les bras entre les deux accès guidés dans des polarisations orthogonales. Le positionnement des accès permet d'obtenir des modes de propagation orthogonaux dans le guide d'onde principal 601 avec des champs électriques parfaitement formés. Enfin, le positionnement et la structure des accès, associés à la jonction en T magique, permettent d'éviter les effets de couplage entre les deux signaux à polarisations croisées.The use of a magic T-junction makes it possible to be able to share the arms between the two ports guided in orthogonal polarizations. The positioning of the accesses makes it possible to obtain orthogonal propagation modes in the
Le guide d'onde selon le mode de réalisation présenté à la
Sa réalisation est très simple puisqu'il peut être généré par fabrication additive, ou par un fraisage requérant uniquement l'assemblage de deux pièces. La
Les modes de réalisation présentés précédemment pour un transducteur orthomode selon l'invention permettent de combiner des signaux dans des polarisations orthogonales de manière simple, peu encombrante et très performante.The embodiments presented above for an orthomode transducer according to the invention make it possible to combine signals in orthogonal polarizations in a simple, compact and high-performance manner.
Le transducteur orthomode selon l'invention a été décrit dans le cas d'application de l'injection de deux signaux depuis les extrémités libres des accès guidés vers le guide d'onde principal. Cependant, l'invention s'applique de manière identique pour l'extraction de signaux depuis le guide d'onde principal vers les deux accès guidés. Dans ce cas, les jonctions en T jouent le rôle de moyens de combinaison des signaux reçus par les bras depuis le guide d'onde principal. L'invention s'applique également de la même manière pour l'injection d'un premier signal et l'extraction simultanée d'un deuxième signal en polarisation croisée.The orthomode transducer according to the invention has been described in the case of application of the injection of two signals from the free ends of the guided ports to the main waveguide. However, the invention applies identically for the extraction of signals from the main waveguide to the two guided ports. In this case, the T-junctions play the role of means of combining the signals received by the arms from the main waveguide. The invention also applies in the same way for the injection of a first signal and the simultaneous extraction of a second signal in crossed polarization.
Claims (9)
- An orthomode transducer for transmitting a first signal and a second signal in orthogonal propagation modes, comprising:- a primary waveguide (501, 601) with a square or rectangular cross section, and characterised in that it comprises:- two guided access means (510, 520) having, on the one hand, a free end via which the first signal and the second signal are respectively injected or recovered, and, on the other hand, two arms connected to the primary waveguide,and wherein each guided access means comprises a junction (512, 522, 602) configured to connect the free end to the two arms of the guided access means, the two arms (513, 514, 523, 524, 610, 611) of each guided access means being connected to the primary waveguide at two off-centred locations on one or more sides of the primary waveguide, the two locations being symmetrical with respect to an axis of symmetry of the primary waveguide.
- The orthomode transducer according to claim 1, wherein the connection between the primary waveguide and the two arms of a guided access means comprises the two corners of one and the same side of the primary waveguide.
- The orthomode transducer according to one of the preceding claims, wherein the junction (512, 522, 602) of each guided access means is configured such that the signals transmitted on the pair of arms of a guided access means are in phase or in phase opposition depending on their propagation mode in the primary waveguide.
- The orthomode transducer according to one of the preceding claims, wherein the two arms of the same guided access means have substantially identical dimensions.
- The orthomode transducer according to one of the preceding claims, wherein the guided access means are arranged symmetrically with respect to an axis of symmetry of the primary waveguide.
- The orthomode transducer according to one of the preceding claims, wherein each guided access means comprises a particular junction (512, 522) chosen from among an E-plane T-junction and an H-plane T-junction, and two particular arms (513, 514, 523, 524).
- The orthomode transducer according to one of claims 1 to 5, wherein the two guided access means comprise one and the same junction (602) in the form of a magic-T junction whose lateral ports are connected to a common pair of arms (610, 611), the first and second signals being transmitted via two separate ports (603, 604) of the magic-T junction.
- A device comprising:- an orthomode transducer (102) according to one of claims 1 to 7, and- a 90° coupler (210) connected to the free ends of the guided access means of the orthomode transducer so as to circularly polarise the first and second signals.
- A transmission chain for a satellite antenna, comprising a source (101) connected to an orthomode transducer (102) according to one of claims 1 to 7 or to a device according to claim 8.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2004878A FR3110290B1 (en) | 2020-05-15 | 2020-05-15 | Broadband Orthomode Transducer |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3910729A1 EP3910729A1 (en) | 2021-11-17 |
EP3910729C0 EP3910729C0 (en) | 2023-06-07 |
EP3910729B1 true EP3910729B1 (en) | 2023-06-07 |
Family
ID=72709454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21172702.9A Active EP3910729B1 (en) | 2020-05-15 | 2021-05-07 | Broadband orthomode transducer |
Country Status (5)
Country | Link |
---|---|
US (1) | US11476553B2 (en) |
EP (1) | EP3910729B1 (en) |
CA (1) | CA3118228A1 (en) |
ES (1) | ES2948938T3 (en) |
FR (1) | FR3110290B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3118537B1 (en) * | 2020-12-30 | 2023-12-22 | Thales Sa | MAGIC TEE MICROWAVE JUNCTION BROADBAND |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB835575A (en) * | 1955-12-21 | 1960-05-25 | Standard Telephones Cables Ltd | An improved multiplexing and filtering device for the u.h.f. band |
US3715688A (en) * | 1970-09-04 | 1973-02-06 | Rca Corp | Tm01 mode exciter and a multimode exciter using same |
GB2054974B (en) * | 1979-05-15 | 1983-02-02 | Era Tech Ltd | Tracking mode couplers for use in radar and communications tracking systems |
FR2939971B1 (en) | 2008-12-16 | 2011-02-11 | Thales Sa | COMPACT EXCITATION ASSEMBLY FOR GENERATING CIRCULAR POLARIZATION IN AN ANTENNA AND METHOD FOR PRODUCING SUCH AN EXCITATION ASSEMBLY |
AU2011326337B2 (en) * | 2010-11-08 | 2015-05-28 | Bae Systems Australia Limited | Antenna system |
US11081766B1 (en) * | 2019-09-26 | 2021-08-03 | Lockheed Martin Corporation | Mode-whisperer linear waveguide OMT |
-
2020
- 2020-05-15 FR FR2004878A patent/FR3110290B1/en active Active
-
2021
- 2021-05-07 ES ES21172702T patent/ES2948938T3/en active Active
- 2021-05-07 EP EP21172702.9A patent/EP3910729B1/en active Active
- 2021-05-11 US US17/317,757 patent/US11476553B2/en active Active
- 2021-05-13 CA CA3118228A patent/CA3118228A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3910729C0 (en) | 2023-06-07 |
US20210359383A1 (en) | 2021-11-18 |
CA3118228A1 (en) | 2021-11-15 |
ES2948938T3 (en) | 2023-09-22 |
FR3110290B1 (en) | 2022-06-03 |
US11476553B2 (en) | 2022-10-18 |
EP3910729A1 (en) | 2021-11-17 |
FR3110290A1 (en) | 2021-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2869396B1 (en) | Power divider including a T-coupler in the E-plane, radiating network and antenna including such a radiating network | |
CA2678530C (en) | Compact excitation arrangement for generating circular polarization of an antenna and process for creating said compact excitation arrangement | |
EP0108463B1 (en) | Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements | |
EP3179551B1 (en) | Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies | |
CA2869648C (en) | Compact, polarizing power distributor, network of several distributors, compact radiating element and flat antenna comprising such a distributor | |
EP3726642B1 (en) | Polarising screen with wideband polarising radiofrequency cell(s) | |
EP3577720B1 (en) | Elementary antenna comprising a planar radiating device | |
EP3180816B1 (en) | Multiband source for a coaxial horn used in a monopulse radar reflector antenna. | |
FR3105884A1 (en) | Circular polarization dual band Ka satellite antenna horn | |
EP3910729B1 (en) | Broadband orthomode transducer | |
FR2736212A1 (en) | BALUN COUPLER INTEGRATED MICROWAVE, ESPECIALLY FOR DIPOLE ANTENNA | |
EP3900113B1 (en) | Elementary microstrip antenna and array antenna | |
EP4024604A1 (en) | Hyperfrequency junction in broadband magic tee | |
EP1152483B1 (en) | Dual-band microwave radiating element | |
EP3035445B1 (en) | Orthogonal mode junction coupler and associated polarization and frequency separator | |
EP4092831A1 (en) | Antenna with lacunary distribution network | |
FR3137798A1 (en) | Improved elementary antenna of the slot-fed radiating plane type and active array antenna | |
FR2929796A1 (en) | COUPLER FOR RADIO FREQUENCY MULTIBAND SYSTEM. | |
FR2544554A1 (en) | Radiating element or receiver of left and right circularly polarised microwave signals and plane antenna comprising an array of such elements juxtaposed | |
FR3016101A1 (en) | COMPACT ANTENNA STRUCTURE FOR SATELLITE TELECOMMUNICATIONS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
B565 | Issuance of search results under rule 164(2) epc |
Effective date: 20211012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220426 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01P 1/161 20060101AFI20220914BHEP |
|
INTG | Intention to grant announced |
Effective date: 20221012 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1577670 Country of ref document: AT Kind code of ref document: T Effective date: 20230615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602021002683 Country of ref document: DE |
|
U01 | Request for unitary effect filed |
Effective date: 20230706 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20230717 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2948938 Country of ref document: ES Kind code of ref document: T3 Effective date: 20230922 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231007 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602021002683 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240308 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 4 Effective date: 20240419 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240611 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230607 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240531 |