EP1124050A2 - Verfahren und Vorrichtung zur Desulfatisierung eines Stickoxidspeicherkatalysators - Google Patents
Verfahren und Vorrichtung zur Desulfatisierung eines Stickoxidspeicherkatalysators Download PDFInfo
- Publication number
- EP1124050A2 EP1124050A2 EP01101850A EP01101850A EP1124050A2 EP 1124050 A2 EP1124050 A2 EP 1124050A2 EP 01101850 A EP01101850 A EP 01101850A EP 01101850 A EP01101850 A EP 01101850A EP 1124050 A2 EP1124050 A2 EP 1124050A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalytic converter
- storage catalytic
- exhaust gas
- nox
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title abstract description 31
- 238000000034 method Methods 0.000 title abstract description 8
- 238000002485 combustion reaction Methods 0.000 abstract description 62
- 230000003009 desulfurizing effect Effects 0.000 abstract 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 59
- 230000003197 catalytic effect Effects 0.000 description 52
- 239000007789 gas Substances 0.000 description 31
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 24
- 238000011144 upstream manufacturing Methods 0.000 description 18
- 238000005259 measurement Methods 0.000 description 14
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 11
- 229910052717 sulfur Inorganic materials 0.000 description 11
- 239000011593 sulfur Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000000446 fuel Substances 0.000 description 8
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 7
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 6
- 238000006477 desulfuration reaction Methods 0.000 description 4
- 230000023556 desulfurization Effects 0.000 description 4
- 231100000572 poisoning Toxicity 0.000 description 4
- 230000000607 poisoning effect Effects 0.000 description 4
- 238000000576 coating method Methods 0.000 description 3
- 238000005987 sulfurization reaction Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
- F02D41/028—Desulfurisation of NOx traps or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/1441—Plural sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1461—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
- F02D41/1462—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1463—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/04—Sulfur or sulfur oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0811—NOx storage efficiency
Definitions
- the invention relates to a method and a device according to the in the preamble of claim 1 Art.
- Lean engine operation is one way of reducing the fuel consumption of internal combustion engines. This means that the internal combustion engine is not operated with a stoichiometric ratio of air and fuel, but with excess air. In this operating mode, the nitrogen oxide emissions (NO x ) cannot be reduced when a three-way catalytic converter is used today, so that the legally prescribed exhaust gas limit values cannot be met. For this reason, nitrogen oxide storage catalysts are used for exhaust gas aftertreatment in lean engine operation. These temporarily store the raw NO x emissions emitted by the internal combustion engine during engine lean operation. After some time, the internal combustion engine is operated in rich form in order to release the stored nitrogen oxides again and to convert them chemically into harmless substances. A rich engine operation is an engine operation with excess fuel.
- a disadvantage of this solution is that the degree of desulfurization of the NO x storage catalyst cannot be determined during the desulfation. The result of this is an inaccurately determinable desulfation time, which leads to increased fuel consumption due to the long desulfation time and can accelerate the aging of the NO x catalyst.
- the object is to present a method and a device for the desulfation of NO x storage catalysts which make it possible to carry out the desulfation in such a way that the degree of sulfurization of the NO x storage catalyst can also be determined during the desulfation and is only desulfated for as long as it is required to restore sufficient catalyst efficiency.
- the desulfation should be carried out so that no hydrogen sulfide (H 2 S) is formed.
- the basic idea of the invention is based on measurements which confirm that the sulfur dioxide concentration (SO 2 ) emitted by a NO x storage catalytic converter during the desulfation is indirectly detected with a NO x sensor. This effect is used to determine the degree of desulfurization of a NO x storage catalytic converter. This determination is independent of the sulfur content in the fuel and the aging of the NO x storage catalytic converter.
- a termination point for this is determined by falling below a defined second target value.
- the process described here allows desulfation to be tailored to the needs, regardless of the sulfur content of the fuel, derived directly from the NO x concentration in the combustion exhaust gas after the NO x storage catalytic converter and the NO x concentration in the combustion exhaust gas upstream of the NO x storage catalytic converter.
- Advantageous according to claim 7 is the constant availability of the current NO x concentration in the combustion exhaust gas upstream of the NO x storage catalytic converter by a simple NO x measurement with a second NO x sensor, since by forming the quotient of the NO x concentration in the combustion exhaust gas upstream of the NO x storage catalyst for NO x emission after the NO x storage catalyst the catalyst efficiency is determined.
- a map with the NO x concentration in the combustion exhaust gas is stored in front of the NO x storage catalytic converter for each operating point of the internal combustion engine in a memory.
- the map values are determined by measurements on an internal combustion engine or are calculated in a control unit in the control unit using combustion models.
- the advantage of claim 9 is the adjustment of changes in Combustion process of the internal combustion engine through simple software changes in the Control unit.
- a positive aspect of claim 10 is the use of a combination sensor that measures O 2 in addition to NO x .
- Fig. 1 shows a multi-cylinder internal combustion engine 2 controlled by an electronic control unit 1, which is designed for lean engine operation.
- the combustion exhaust gases are discharged through an exhaust system 3.
- a NO x storage catalytic converter 4 arranged in the exhaust system 3 cleans the combustion exhaust gases from nitrogen oxides.
- a second NO x sensor 6 is located in front of the NO x storage catalytic converter 4
- Exhaust system 3 is arranged, which measures the NO x concentration in the combustion exhaust gas upstream of the NO x storage catalytic converter 4. Both NO x sensors 5 and 6 are connected to control unit 1.
- the control unit 1 has a memory with setpoints 27. By comparing the quotient with a first setpoint, the internal combustion engine 2 is controlled in such a way that the NO x storage catalytic converter 4 is protected against inadmissibly high sulfurization and is desulfated as required.
- the first setpoint depends on the load currently requested by the internal combustion engine 2, corresponding to the current operating state.
- FIG. 2 shows an embodiment variant of the invention.
- the illustration essentially corresponds to the arrangement shown in FIG. 1.
- the only difference is that the second NO x sensor 6 is replaced by a memory with a map 28.
- the NO x concentrations in the combustion exhaust gas of the internal combustion engine 2 are stored in front of the NO x storage catalytic converter 4 in this characteristic diagram.
- the NO x concentrations stored in the map in front of the NO x storage catalytic converter 4 are obtained either by measurements or by numerical simulations with combustion models.
- the NO x concentrations stored in the map and corresponding to the current operating state are continuously queried in front of the NO x storage catalytic converter 4 of the internal combustion engine 2.
- the formation of the quotient and the setpoint comparison with the first setpoint take place as in the principle structure mentioned first.
- FIG. 3 shows a further embodiment variant of the invention.
- the representation essentially corresponds to the arrangement shown in FIG. 1.
- the difference is that the second NO x sensor 6 is replaced by the computing unit with a combustion model in control unit 1.
- This calculates the current NO x concentration upstream of the NO x storage catalytic converter 4 in accordance with the operating state of the internal combustion engine 2.
- the formation of the quotient and the comparison of the setpoint value with the first setpoint value are carried out as in the basic structure mentioned first.
- FIG. 4 shows a time course of sulfur dioxide emissions 7, hydrogen sulfide emissions 8, air ratio ⁇ 9, nitrogen oxide emissions 10 measured after the NO x storage catalytic converter 4, temperatures of the combustion exhaust gas 11 measured in the NO x storage catalytic converter 4, the nitrogen oxide -Concentrations in the combustion exhaust gas 12 and temperatures of the combustion exhaust gas 13, measured in front of the NO x storage catalyst 4, during a continuous desulfation.
- the values are measured on an intake manifold-injection 6-cylinder internal combustion engine at 3250 rpm. Desulphation is carried out exclusively by rich engine operation - no alternate desulphation.
- the time course in seconds can be seen on the X-axis, the Y-axis shows the relative amplitude of the measured values.
- Desulfation begins at about 55 seconds, the air ratio ⁇ 9 drops.
- the course of the temperature of the combustion exhaust gas 13 in the flow direction upstream of the NO x storage catalytic converter 4 rises faster than the course of the temperature of the combustion exhaust gas 11 in the NO x storage catalytic converter 4.
- the sulfur dioxide emission 7 reaches a maximum after about 15 seconds and falls then back down to a low level.
- the hydrogen sulfide emission 8 rises sharply. As shown in the task, this is the time at which the desulfation must be stopped if no hydrogen sulfide is allowed to be emitted.
- FIG. 5 shows a simultaneous measurement during an alternate desulfation.
- about the time axis in seconds are, according to FIG. 2, all before mentioned measured values, determined at the same measuring points, plotted.
- the Emissions are compared due to signal transit times caused by the measuring system the air ratio ⁇ 9 shifted about 10 seconds late.
- the alternating desulphation is realized by alternately rich and lean engine operation, clearly recognizable by the nitrogen oxide emissions 10 and the air ratio ⁇ 9.
- the beginning of the alternating desulphation is about 50 seconds.
- the increase in sulfur dioxide emission 7, which indicates a sulfur discharge due to desulfation, is clearly recognizable in each rich phase.
- An increased nitrogen oxide emission 10 can be seen in each lean phase.
- a portion of the nitrogen oxide concentration 12 that is present upstream of the NO x storage catalytic converter 4 passes through this. From approximately 120 seconds after the start of the measurement, the temperature profile of the combustion exhaust gas 11 in the NO x storage catalyst 4 shows higher values than the temperature profile 13 before it.
- the joint drop in sulfur dioxide 7 and nitrogen oxide emissions 10 is noticeable from about 100 seconds. It can be seen from this that the measurement of the nitrogen oxide emission 10 is representative of the sulfur dioxide emissions 7. If the nitrogen oxide emission 10 becomes small, it can be concluded that the sulfur has largely been broken down from the NO x storage catalytic converter 4. If the nitrogen oxide emission 10 falls below a second setpoint during a desulfation, the desulfation is terminated.
- Fig. 6 shows a flow diagram for detection of a sulfur poisoning of the NO x storage catalytic converter 4.
- the start 15 of the internal combustion engine 2 starts the measurement of the NO x emission 16 after the NO x storage catalytic converter 4 by the first NO x sensor 5 and simultaneously determining the NO x concentration in the combustion exhaust gas 17 upstream of the NO x storage catalytic converter 4.
- the control device 1 executes a quotient formation 18 of the NO x concentration in the combustion exhaust gas upstream of the NO x storage catalytic converter 4 to the NO x emission.
- a setpoint comparison 19 is then carried out between the quotient and a first setpoint, which is read from the memory with setpoints 19.
- the first setpoint is dependent on the current operating point of the internal combustion engine 2.
- control unit 1 checks the possibility of desulfurization 20. If this is not feasible, Control unit 1 continues to carry out setpoint comparison 19 using current quotients until there is the possibility of desulfurization 20. If the operating state of the internal combustion engine 2 permits the desulfation 21 to be carried out, it is started.
- the determination of the NO x concentration 17 in the combustion exhaust gas upstream of the NO x storage catalytic converter 4 takes place according to the embodiment in FIG. 1 either from the sensor output signal of the second NO x sensor 6, or according to FIG. 2 from the map of the memory with map 28 , or corresponding to FIG. 3 from a NO x calculation of the computing unit 29 with a combustion model in the control unit 1.
- the internal combustion engine 2 is in the operating state of alternating desulphation 21.
- the first NO x sensor 5 measures the NO x emission 22 after the NO x storage catalytic converter 4 during a lean engine operation.
- Lean engine operation lasts between one and thirty seconds, depending on the catalytic coating;
- the rich engine operation also lasts between one and thirty seconds, depending on the catalytic coating and is stopped before the formation of hydrogen sulfide.
- the current NO x concentration 23 in the combustion exhaust gas upstream of the NO x storage catalytic converter 4 is determined.
- the NO x concentration 23 is determined either from the sensor output signal of the second NO x sensor 6, or according to FIG. 2 from the map of the memory with map 28, or corresponding to FIG. 3 from an NO x calculation of the computing unit 29 with a combustion model in the control unit 1.
- control unit 1 carries out a quotient formation 24 from the NO x concentration in the combustion exhaust gas upstream of the NO x storage catalytic converter 4 to the NO x emission and then carries out a further setpoint comparison 25 with a second setpoint from the memory with setpoints 27.
- the second setpoint also depends on the current operating point of the internal combustion engine 2. If the quotient does not exceed the second setpoint, the alternating desulphation 21 is continued. If the second setpoint is exceeded, control unit 1 ends the alternating desulphation 26.
- the internal combustion engine can again be operated in lean engine operation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
- 1.
- Steuergerät
- 2.
- Brennkraftmaschine
- 3.
- Abgasanlage
- 4.
- NOx-Speicherkatalysator
- 5.
- erster NOx-Sensor
- 6.
- zweiter NOx-Sensor
- 7.
- Schwefeldioxid-Emission
- 8.
- Schwefelwasserstoff-Emission
- 9.
- Luftverhältnis λ
- 10.
- Stickoxid-Emission
- 11.
- Temperatur des Verbrennungsabgases im NOx-Speicherkatalysator
- 12.
- Stickoxid-Konzentration im Verbrennungsabgas vor NOx-Speicherkatalysator
- 13.
- Temperatur des Verbrennungsabgases vor NOx-Speicherkatalysator
- 14, 14
- Einhüllende der Emissionen von Schwefeldioxid und Stickoxiden
- 15.
- Starten der Brennkraftmaschine
- 16.
- Messung der NOx-Emission
- 17.
- Bestimmung der NOx-Konzentration im Verbrennungsabgas vor NOx-Speicherkatalysator
- 18
- Quotientenbildung
- 19.
- Sollwertvergleich
- 20.
- Möglichkeit einer Desulfatisierung
- 21.
- Durchführung der Desulfatisierung
- 22.
- Messung der NOx-Emission
- 23.
- Bestimmung der NOx- Konzentration im Verbrennungsabgas vor NOx-Speicherkatalysator
- 24.
- Quotientenbildung
- 25.
- Sollwertvergleich
- 26.
- Beenden der Desulfatisierung
- 27.
- Speicher mit Sollwerten
- 28.
- Speicher mit Kennfeld
- 29.
- Recheneinheit
Claims (10)
- Verfahren zum Betrieb einer Brennkraftmaschine zur Desulfatisierung eines in einer Abgasreinigungsanlage angeordneten NOx-Speicherkatalysators durch zyklischen Wechsel des Luftverhältnisses dadurch gekennzeichnet, dassdie NOx-Emission im Verbrennungsabgas nach einem NOx-Speicherkatalysator fortlaufend oder intermittierend gemessen (16) und gleichzeitig ein weiterer Wert für eine NOx-Konzentration vor dem NOx-Speicherkatalysator ermittelt (17) wird,der Quotient aus dem Wert der NOx-Konzentration vor dem NOx-Speicherkatalysator zu dem NOx-Messwert nach dem NOx-Speicherkatalysator gebildet (18) und dieser mit einem ersten Sollwert fortlaufend verglichen (19) wird,bei Unterschreitung des ersten Sollwertes in Abhängigkeit von der Motorlast (20) eine Desulfatisierung eingeleitet (21) wird,während der Desulfatisierung (21) in jeder Magerphase die NOx-Konzentration im Verbrennungsabgas nach dem NOx-Speicherkatalysator gemessen (22) und gleichzeitig ein weiterer Wert für die NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator ermittelt (23) wird,der Quotient aus dem Wert der NOx-Konzentration vor dem NOx-Speicherkatalysator zu dem NOx-Messwert nach dem NOx-Speicherkatalysator gebildet (24) und dieser mit einem zweiten Sollwert fortlaufend verglichen (25) wird,bei Überschreitung des zweiten Sollwertes die Desulfatisierung gestoppt (26) wird.
- Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Sollwerte aus einem Speicher mit Sollwerten (27) ausgelesen werden.
- Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator (4) gemessen wird.
- Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator (4) aus einem Speicher mit Kennfeld (28) ausgelesen wird.
- Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator (4) mit einem Verbrennungsmodell von einer Recheneinheit (29) berechnet wird.
- Vorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass ein NOx-Sensor (5) in Strömungsrichtung nach einem NOx-Speicherkatalysator (4) angeordnet und mit einem Steuergerät (1) verbunden ist, mit dem die Desulfatisierung des NOx-Speicherkatalysators (4) in Abhängigkeit von dem NOx-Sensorausgangssignal und einem weiteren Wert für die NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator (4) durchführbar ist.
- Vorrichtung nach Anspruch 5 dadurch gekennzeichnet, dass ein weiterer NOx-Sensor (6) vor dem NOx-Speicherkatalysator (4) angeordnet und mit dem Steuergerät (1) verbunden ist
- Vorrichtung nach Anspruch 5 dadurch gekennzeichnet, dass die NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator (4) in einem Speicher mit Kennfeld (28) abgelegt und von dem Steuergerät (1) auslesbar ist.
- Vorrichtung nach Anspruch 5 dadurch gekennzeichnet, dass die NOx-Konzentration im Verbrennungsabgas vor dem NOx-Speicherkatalysator (4) von einer Recheneinheit (29) in dem Steuergerät (1) mit Hilfe eines Verbrennungsmodells berechenbar ist.
- Vorrichtung nach einem der zuvor genannten Ansprüche dadurch gekennzeichnet, dass der NOx-Sensor (5) mit einem Sauerstoffsensor in einem gemeinsamen Gehäuse kombinierbar ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10005473A DE10005473C2 (de) | 2000-02-08 | 2000-02-08 | Verfahren und Vorrichtung zur Desulfatisierung eines Stickoxidspeicherkatalysators |
DE10005473 | 2000-02-08 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1124050A2 true EP1124050A2 (de) | 2001-08-16 |
EP1124050A3 EP1124050A3 (de) | 2004-02-25 |
EP1124050B1 EP1124050B1 (de) | 2005-12-21 |
Family
ID=7630186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01101850A Expired - Lifetime EP1124050B1 (de) | 2000-02-08 | 2001-01-26 | Verfahren und Vorrichtung zur Desulfatisierung eines Stickoxidspeicherkatalysators |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1124050B1 (de) |
DE (2) | DE10005473C2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11053879B2 (en) | 2016-02-10 | 2021-07-06 | Scania Cv Ab | Method and system for diagnosing exhaust sensors |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10303085B4 (de) * | 2002-01-28 | 2011-08-11 | Toyota Jidosha Kabushiki Kaisha, Aichi-ken | Abgassteuerungsvorrichtung und -verfahren eines Verbrennungsmotors |
JP3867612B2 (ja) * | 2002-04-12 | 2007-01-10 | トヨタ自動車株式会社 | 内燃機関の空燃比制御装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19859462A1 (de) | 1998-03-05 | 1999-09-09 | Ford Global Tech | Verfahren zur Entgiftung eines Katalysators |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3542404B2 (ja) * | 1995-04-26 | 2004-07-14 | 本田技研工業株式会社 | 内燃機関の空燃比制御装置 |
DE19731624A1 (de) * | 1997-07-23 | 1999-01-28 | Volkswagen Ag | Verfahren und Vorrichtung zur Überwachung der De-Sulfatierung bei NOx-Speicherkatalysatoren |
DE69816939T2 (de) * | 1997-11-10 | 2004-06-03 | Mitsubishi Jidosha Kogyo K.K. | Vorrichtung zur Abgasreinigung für eine Brennkraftmaschine |
DE19801815A1 (de) * | 1998-01-19 | 1999-07-22 | Volkswagen Ag | Mager-Regeneration von NOx-Speichern |
DE19816276C2 (de) * | 1998-04-11 | 2000-05-18 | Audi Ag | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine |
FR2779482B1 (fr) * | 1998-06-03 | 2000-07-21 | Renault | Procede et dispositif de commande de purge en oxydes de soufre d'un pot catalytique de traitement des gaz d'echappement d'un moteur a combustion interne |
DE19827195A1 (de) * | 1998-06-18 | 1999-12-23 | Volkswagen Ag | Verfahren zur De-Sulfatierung eines NOx-Speicherkatalysators |
DE19830829C1 (de) * | 1998-07-09 | 1999-04-08 | Siemens Ag | Verfahren zur Regeneration eines NOx-Speicherkatalysators |
US6244046B1 (en) * | 1998-07-17 | 2001-06-12 | Denso Corporation | Engine exhaust purification system and method having NOx occluding and reducing catalyst |
-
2000
- 2000-02-08 DE DE10005473A patent/DE10005473C2/de not_active Expired - Fee Related
-
2001
- 2001-01-26 DE DE50108418T patent/DE50108418D1/de not_active Expired - Lifetime
- 2001-01-26 EP EP01101850A patent/EP1124050B1/de not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19859462A1 (de) | 1998-03-05 | 1999-09-09 | Ford Global Tech | Verfahren zur Entgiftung eines Katalysators |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11053879B2 (en) | 2016-02-10 | 2021-07-06 | Scania Cv Ab | Method and system for diagnosing exhaust sensors |
Also Published As
Publication number | Publication date |
---|---|
DE10005473A1 (de) | 2001-08-09 |
DE50108418D1 (de) | 2006-01-26 |
EP1124050B1 (de) | 2005-12-21 |
DE10005473C2 (de) | 2002-01-17 |
EP1124050A3 (de) | 2004-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19843871B4 (de) | Diagnose eines NOx-Speicherkatalysators mit nachgeschaltetem NOx-Sensor | |
DE19744738A1 (de) | Verfahren sowie Vorrichtung zur Überwachung der Wirksamkeit einer NOx-Falle | |
EP1228301A2 (de) | Verfahren zum überprüfen eines abgaskatalysators einer brennkraftmaschine | |
WO2002073019A2 (de) | Verfahren zum betrieb von brennkraftmaschinen | |
DE19605103C2 (de) | Vorrichtung zur Verschlechterungsdiagnose eines Abgasreinigungskatalysators | |
DE10001133B4 (de) | Vorrichtung zum Steuern des Luft-Kraftstoffverhältnisses bei einer Verbrennungskraftmaschine | |
EP1131549A1 (de) | VERFAHREN ZUM ADAPTIEREN DER NOx-ROHKONZENTRATION EINER MIT LUFTÜBERSCHUSS ARBEITENDEN BRENNKRAFTMASCHINE | |
DE102021126386B3 (de) | Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung | |
DE102005005537A1 (de) | Steuergerät für Verbrennungsmaschine | |
DE10126455B4 (de) | Verfahren zur Desulfatisierung eines Stickoxid-Speicherkatalysators | |
DE10027347B4 (de) | Abgasemissionssteuerungs/regelungsvorrichtung für einen Verbrennungsmotor | |
EP1192343B1 (de) | VERFAHREN ZUR INITIIERUNG UND ÜBERWACHUNG EINER ENTSCHWELFELUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATOR | |
DE10005473C2 (de) | Verfahren und Vorrichtung zur Desulfatisierung eines Stickoxidspeicherkatalysators | |
EP1124051B1 (de) | Verfahren und Vorrichtung zur Desulfatisierung eines NOx-Speicherkatalysators mit NOx-Sensor | |
DE102017211710B4 (de) | Ermitteln der Schwefelbeladung eines LNT | |
DE10156476B4 (de) | Verfahren zur Erkennung der fortschreitenden Verschwefelung eines NOx-Speicherkatalysators | |
DE19859176C2 (de) | Verfahren zum Überprüfen der Funktionsfähigkeit einer Lambdasonde | |
DE10305452A1 (de) | Verfahren zur Diagnose eines Katalysators im Abgasstrom einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens | |
DE10305635B4 (de) | Abgasreinigungsverfahren für Magerbrennkraftmaschinen | |
DE102022101084B3 (de) | Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung | |
DE102022211614B3 (de) | Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung | |
DE10318213B4 (de) | Regenerationsverfahren für einen Speicherkatalysator einer Brennkraftmaschine | |
DE102023203306B3 (de) | Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung | |
WO2024188699A1 (de) | Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung | |
DE102022208310A1 (de) | Verfahren zur Abgasnachbehandlung einer Verbrennungskraftmaschine mit mindestens einem SCR-Katalysator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7F 02D 41/14 B Ipc: 7F 02D 41/02 A |
|
17P | Request for examination filed |
Effective date: 20040308 |
|
17Q | First examination report despatched |
Effective date: 20040428 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50108418 Country of ref document: DE Date of ref document: 20060126 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060108 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060922 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20140113 Year of fee payment: 14 Ref country code: DE Payment date: 20140122 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140131 Year of fee payment: 14 Ref country code: FR Payment date: 20140129 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140206 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50108418 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150126 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150127 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150126 |