EP1016241B1 - Picoreseaux a saut de frequence dans un systeme multi-utilisateur radio non coordonne - Google Patents
Picoreseaux a saut de frequence dans un systeme multi-utilisateur radio non coordonne Download PDFInfo
- Publication number
- EP1016241B1 EP1016241B1 EP98943134A EP98943134A EP1016241B1 EP 1016241 B1 EP1016241 B1 EP 1016241B1 EP 98943134 A EP98943134 A EP 98943134A EP 98943134 A EP98943134 A EP 98943134A EP 1016241 B1 EP1016241 B1 EP 1016241B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- unit
- address
- master
- slave
- units
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
- H04W84/20—Leader-follower arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/713—Spread spectrum techniques using frequency hopping
- H04B1/7143—Arrangements for generation of hop patterns
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/04—Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
- H04W40/30—Connectivity information management, e.g. connectivity discovery or connectivity update for proactive routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/26—Network addressing or numbering for mobility support
Definitions
- the present invention relates to uncoordinated wireless multi-user systems, and more particularly to self-organized connectivity in an uncoordinated wireless multi-user system.
- Radio Local Area Networks typically cover an area of technology where the computer industry and the wireless communications industry merge.
- Conventional computer networking has relied on wired LANs, typically packet-switched and targeted for data transfer.
- wireless networking and in particular cellular networking, has relied on wide area networks, typically circuit-switched and targeted for voice transfer.
- Most efforts in the design of radio LANs have reused the principles that are used in wired LANs. This, however, is a questionable procedure because the environments of the wired medium and of the wireless medium differ in important ways.
- multimedia communications require additional features due to the special traffic characteristics posed by data, voice and video.
- the residential environment has its own requirements which can be decisive for the design of the system.
- the wired medium can range from a simple twisted pair to an optical fiber. Due to its shielded and controllable environment, the wired medium is characterized by low interference levels and stable propagation conditions. Consequently, the wired medium has potential for high to very high data rates. Because of the latter, all participants in wired LANs typically share this single medium.
- the medium constitutes a single channel which is used by only a single one of a number of different users at any given time. Time-division multiplexing (TDM) is used to allow different users to access the channel at different times.
- TDM Time-division multiplexing
- the protocols for accessing wired media have been standardized by the IEEE in its 802 series.
- multiple access reservation techniques like carrier-sensing (e.g., Ethernet, 802.3 Carrier-Sense Multiple Access/Collision Detect (CSMA/CD) or tokens (e.g., 802.4 token buses, or 802.5 token rings) are used to gain access to the medium.
- CSMA/CD Carrier-Sense Multiple Access/Collision Detect
- tokens e.g., 802.4 token buses, or 802.5 token rings
- LANs can be interconnected via bridges or routers which form interfaces between the different local networks. These configurations result in more complex networks. For example, reference is made to D. Bertsekas and R. Callager, Data Networks , 2nd Edition, Prentice-Hall, London, 1992. For the discussion of the residential LANs, it suffices to consider the single LAN.
- the LAN typically provides a connectionless packet-switched service. Each packet has a destination address (and usually a source address as well) so that each user can determine whether the packet that passes by is intended for him or not.
- the net throughput per user in a single LAN is determined by the peak data rate on the channel and by the number of users that share this channel. Even if the peak data rate is very high due to the wide bandwidth of the wireline medium, the effective user throughput can be low if the channel has to be shared among many users.
- WLANs wireless LANs
- IEEE 802.11 Draft standard IEEE 802.11, P802.11/D1, Dec. 1994
- ETSI HIPERLAN ETSI, RES10/96/etr, "Radio Equipment and Systems (RES); High Performance Radio Local Area Networks (HIPERLANs), July 1996 ).
- the IEEE 802.11 standard is an extension of the 802 LAN standard.
- the wireless connection is either a radio link or an infrared link.
- the radio medium is the Industrial, Scientific, Medical (ISM) band at 2.4 GHz.
- ISM Industrial, Scientific, Medical
- a 1-2 Mb/s channel is available at any given time. This relatively narrow channel has to be shared among all participants of the radio network.
- Both a configuration based on a wired infrastructure and a configuration based on an ad-hoc structure have been defined.
- the radio system With a wired infrastructure, the radio system merely provides a wireless extension between the wired LAN and the user terminal. Fixed access points interface between the wireline domain and wireless domain.
- wireless units create their own wireless network. No wired backbone is involved at all. It is the ad hoc nature provided with wireless communications that gives the WLANs an important advantage over wired LANs in certain applications.
- CSMA/CA Carrier-Sense Multiple Access/Collision Avoidance
- the fixed part takes the role of a central controller which schedules all traffic.
- the distributed CSMA/CA protocol provides the multiple access to the channel.
- the IEEE 802.11 standard is very similar to that of the wired Ethernet, but wherein the wire has been replaced by a 1 Mb/s radio channel. It will be understood that the effective user throughput decreases quickly when the number of participants increases.
- DSSS Direct Sequence Spread Spectrum
- FHSS Frequency Hopping Spread Spectrum
- different networks can theoretically coexist in the same area (different networks either use different DSSS carrier frequencies of which seven are defined, or use different FHSS hop sequences), thereby increasing the aggregate throughput. In fact, in A.
- the aggregate throughput defined as the average throughput per user times the number of co-located users (not necessarily participating in the same network), can never exceed 4-6 Mb/s with either technology.
- the networks be based on a wired infrastructure: a limited number of co-located fixed access points can create their own network. A certain amount of coordination via the wired network is then possible.
- this is much more difficult under IEEE 802.11 because the MAC protocol does not lend itself to this creation. Instead, units that come in range of an ad hoc network will join an existing network and not create their own network.
- HIPERLAN has followed a similar path as IEEE 802.11.
- the system operates in the 5.2 GHz band (not available in the United States).
- the standard is still under development and consists of a family of sub-standards, HIPERLAN 1 to 4.
- the most basic part, HIPERLAN 1 ETSI, ETS 300652, "Radio Equipment and Systems (RES); High Performance Radio Local Area Networks (HIPERLAN) Type 1; Functional Specification,” June 1996 ), is similar to the IEEE 802.11. Again, a single channel is used, but with a higher peak data rate of 23.5 Mb/s.
- EY-NPMA Elimination-Yield Non-Preemptive Priority Multiple Access
- HIPERLAN 2 One other interesting activity in the HIPERLAN area is the HIPERLAN 2 standardization which concentrates on wireless Asynchronous Transfer Mode (ATM). Presumably, this wireless network will also use the 5.2 GHz band, will support peak data rates around 40 Mb/s, and will use a centralized access scheme with some kind of demand assignment MAC scheme.
- ATM wireless Asynchronous Transfer Mode
- the existing WLAN systems have in common with the wired LANs is that a single channel is shared among all the participants of the local network. All users share both the medium itself and all information carried over this medium. In the wired LAN, this channel can encompass the entire medium. However, this is not so in the radioLANs. In the radioLANs, the radio medium typically has a bandwidth of 80 to 100 MHz. Due to implementation limitations and cost of the radio transceivers, and due to restrictions placed by regulatory bodies like the FCC and ETSI, it is virtually impossible to defme a radio channel in the radioLAN with the same bandwidth as the radio medium. Therefore, only part of the radio medium is used in a single LAN. As a result, the peak data rate over the channel decreases.
- the medium is divided into different channels, each of which can be used to set up a different radioLAN, in practice, only a single network covers a certain area, especially when it concerns ad hoc networks.
- the different channels can be used to create cells, each cell with its own network that is not disturbed by neighboring cells. This result is achieved at the expense of effort in planning the allocation of channels. In this way, a cellular structure is created that is similar to those encountered in cellular mobile systems.
- the use of different ad hoc radio networks in the same cell is prohibited, thereby limiting the attainable aggregate throughput per unit area.
- US 5,287,384 A describes a frequency hopping spread spectrum data communications system in which the same information signal is used to synchronise both the hopping sequence between a transmitter and receiver and the time slots of the media access protocol.
- the system comprises at least one base station and a plurality of terminals.
- each adapter includes a controller and a transceiver.
- Each controller and transceiver have their own hop clock and hop table.
- a data interface synchronises the hop clocks and the hop tables between the controller and the transceiver.
- a slow frequency-hopping system is used for communication.
- US 5,574,979 A shows how periodic interference can be avoided in a wireless radio frequency communication system.
- a base station (56) uses a frequency-hopping communication protocol for maintaining communication with mobile computing devices (61, 62). Each base station may use a different frequency hopping sequence. Additionally, different base stations may not employ a common master clock and will not be synchronized so as to have the frequency hopping sequences start at the same time, see column 11, line 22 to column 12, line 23.
- a NET is a group of users of a given hopping sequence or a hopping sequence itself. The NETs employ different hopping sequences to minimise potential interference between different NETs.
- a wireless network comprising: a master unit; and a slave unit.
- the master unit comprises: means for sending a master address to the slave unit; means for sending a master clock to the slave unit; and means for communicating with the slave unit by means of a virtual frequency hopping channel.
- the slave unit comprises: means for receiving the master address from the master unit; means for receiving the master clock from the master unit; and means for communicating with the master unit by means of the virtual frequency hopping channel.
- a hopping sequence of the virtual frequency hopping channel is a function of the master address; and a phase of the hopping sequence is a function of the master clock.
- the master unit in the wireless network further comprises means for transmitting an inquiry message that solicits a slave address from the slave unit; and the slave unit further comprises: means for receiving the inquiry message; and means, responsive to the inquiry message, for transmitting the slave address to the master unit.
- the master unit in the wireless network further comprises: means for receiving slave address and topology information from more than one slave unit; and means for generating a configuration tree from the address and topology information.
- the master unit in the wireless network further includes means for utilizing the configuration tree to determine a route for a connection between the master unit and the slave unit.
- the slave address and topology information comprises an own address from each of the more than one slave units and only first order address lists from each of the more than one slave units; and the means for generating the configuration tree from the address and topology information comprises: means for generating n connectivity rings from the first order address lists, wherein n is a positive integer, and wherein the generating means generates each of the connectivity rings in accordance with a rule that a higher-numbered connectivity ring cannot include nodes representing units that are already represented by a node in a lower-numbered connectivity ring.
- the means for generating the configuration tree from the address and topology information comprises: means for generating n connectivity rings from the first order address lists, wherein n is a positive integer, and wherein the generating means generates each of the connectivity rings by considering a present numbered connectivity ring having parent nodes, and including in a next higher-numbered connectivity ring those nodes representing all children of the parent nodes that satisfy the following rules: no descendant of a parent can represent the same unit as is represented by the parent; no descendant of a child of the parent can represent the same unit as any of the children of the parent; and no child of any parent can have the same name as any other child of said any parent.
- a wireless unit for use in a wireless network having a scatter topology, comprises means for receiving address and topology information from each of a number of other wireless units; and means for generating a configuration tree from the address and topology information.
- the wireless unit further comprises means for utilizing the configuration tree to determine a route for a connection between the wireless unit and at least one of the other wireless units.
- the address and topology information comprises an own address from each of the other units and only first order address lists from each of the other units; and the means for generating the configuration tree from the address and topology information comprises: means for generating n connectivity rings from the first order address lists, wherein n is a positive integer, and wherein the generating means generates each of the connectivity rings in accordance with a rule that a higher-numbered connectivity ring cannot include nodes representing units that are already represented by a node in a lower-numbered connectivity ring.
- the address and topology information comprises an own address from each of the other units and only first order address lists from each of the other units; and the means for generating the configuration tree from the address and topology information comprises: means for generating n connectivity rings from the first order address lists, wherein n is a positive integer, and wherein the generating means generates each of the connectivity rings by considering a present numbered connectivity ring having parent nodes, and including in a next higher-numbered connectivity ring those nodes representing all children of the parent nodes that satisfy the following rules: no descendant of a parent can represent the same unit as is represented by the parent; no descendant of a child of the parent can represent the same unit as any of the children of the parent; and no child of any parent can have the same name as any other child of said any parent.
- a wireless network having a scatter topology comprises: a first master unit; a second master unit; a first slave unit; and a second slave unit.
- the first master unit comprises: means for sending a first master address to the first slave unit; means for sending a first master clock to the first slave unit; and means for communicating with the first slave unit by means of a first virtual frequency hopping channel.
- the first slave unit comprises: means for receiving the first master address from the first master unit; means for receiving the first master clock from the first master unit; and means for communicating with the first master unit by means of the first virtual frequency hopping channel.
- the second master unit comprises: means for sending a second master address to the second slave unit; means for sending a second master clock to the second slave unit; and means for communicating with the second slave unit by means of a second virtual frequency hopping channel.
- the second slave unit comprises: means for receiving the second master address from the second master unit; means for receiving the second master clock from the second master unit; and means for communicating with the second master unit by means of the first virtual frequency hopping channel.
- a first hopping sequence of the first virtual frequency hopping channel is a function of the first master address; a phase of the first hopping sequence is a function of the first master clock; a second hopping sequence of the second virtual frequency hopping channel is a function of the second master address; a phase of the second sequence is a function of the second master clock; the first master clock is uncoordinated with the second master clock; and the first virtual frequency hopping channel uses the same radio spectrum as the second virtual frequency hopping channel.
- the first virtual frequency hopping channel is different from the second virtual frequency hopping channel, thereby permitting communication between the first master unit and the first slave unit to take place without substantially interfering with communication between the second master unit and the second slave unit.
- each of the first and second master units in the wireless network further comprises means for transmitting an inquiry message that solicits a slave address from the first and second slave units. Furthermore, each of the first and second slave units in the wireless network further comprises: means for receiving the inquiry message; and means, responsive to the inquiry message, for transmitting the slave address to the first and second master units.
- each of the first and second master units in the wireless network further comprises: means for receiving slave address and topology information from more than one slave unit; and means for generating a configuration tree from the address and topology information.
- each of the first and second master units in the wireless network further includes means for utilizing the configuration tree to determine a route for a connection between the first and second master unit and the respective first and second slave units.
- the slave address and topology information comprises an own address from each of the more than one slave units and only first order address lists from each of the more than one slave units; and the means for generating the configuration tree from the address and topology information comprises: means for generating n connectivity rings from the first order address lists, wherein n is a positive integer, and wherein the generating means generates each of the connectivity rings in accordance with a rule that a higher-numbered connectivity ring cannot include nodes representing units that are already represented by a node in a lower-numbered connectivity ring.
- the slave address and topology information in the wireless network comprises an own address from each of the more than one slave units and only first order address lists from each of the more than one slave units.
- the means for generating the configuration tree from the address and topology information comprises: means for generating n connectivity rings from the first order address lists, wherein n is a positive integer, and wherein the generating means generates each of the connectivity rings by considering a present numbered connectivity ring having parent nodes, and including in a next higher-numbered connectivity ring those nodes representing all children of the parent nodes that satisfy the following rules: no descendant of a parent can represent the same unit as is represented by the parent; no descendant of a child of the parent can represent the same unit as any of the children of the parent; and no child of any parent can have the same name as any other child of said any parent.
- the conventional single-channel approach to LANS is characterized by the fact that all units can receive all information transferred over the channel. Consequently, the network topology is either a star, as illustrated in FIG. 1 ; a ring, as illustrated in FIG. 2 ; or a mesh, as illustrated in FIG. 3 .
- a star topology a master controller that schedules all communications can be placed in the center.
- a more distributed control is applied. For wired LANs, the star and the ring topologies are most appropriate, because they minimize the amount of cabling.
- the mesh topology i.e., a topology in which one unit can connect directly to many other units
- the mesh topology is automatically obtained in radio LANs due to the omni-directional radio propagation.
- all units connect to each of the other units in the network.
- Each unit constantly listens to the master or listens to traffic on the channel. This is beneficial in applications like broadcasting or multicasting.
- these applications are only used a small percentage of the time. Instead, most applications call for point-to-point or point-to-multipoint services between two or a limited number of units connected to the network. For these applications, the single-channel approach limits the performance.
- a multi-channel approach is applied in which units that want to communicate don't have to wait for a free spot on the channel, but instead look for a free channel which they can use directly.
- all users share all of the channels in the allocated spectrum on average, but only a few users use a particular channel at a particular moment in time. In this way, simultaneous communication links can be established without interfering with each other.
- the multi-channel approach also enables channel reuse: if the connections are sufficiently separated geographically, they can use the same channel without disturbing one another.
- the "overall” network consists of scattered connections or scattered subnets (piconets) and is therefore referred to herein as having a scatter topology.
- This arrangement differs from the existing wired LANs and wireless LANs in that although the medium (e.g., the 83.5 MHz radio spectrum at 2.4 GHz) is shared among all users, the information transferred over the medium is not shared among all users. Instead, multiple, channels are created, and each channel is only shared by the participants of interest, namely, only those participants that need to share the information.
- each unit can potentially connect to each other unit in range, it will not instantaneously connect to all units in range simultaneously. Multiple ad-hoc connections can be established, which each operate independently.
- FIG. 4 An example of a scatter network 401 in accordance with the invention is illustrated in FIG. 4 .
- four subnets 403-1, ... , 403-4 have been formed.
- each subnet 403-x only those units participate that indeed want to exchange information.
- Each subnet 403-x has its own virtual channel, and only the participants of the piconet contend for the corresponding channel.
- the subnets 403-x function independently with respect to one another. Units for which there is no need for information exchange (such as unit 8 in FIG. 4 ) are not connected. However, these units periodically scan the spectrum for page messages to see whether another unit wants to connect to them.
- a form of adaptive channel allocation or a form of spreading is applied.
- the units that want to connect perform measurements on the different channels and then select the best channel (i.e., the least-interfered-with channel).
- the adaptive scheme has some disadvantages compared to the spreading techniques described next.
- a mechanism must be included such that the units that want to communicate indeed select the same (least interfered with) best channel, which is not a trivial task.
- a central controller is unavoidable. Instead spreading, as is also required by the Federal Communication Commission (FCC) in the unlicensed band like the ISM 2.4GHz, is a much more attractive method.
- FCC Federal Communication Commission
- direct-sequence spreading or frequency-hop (FH) spreading can be applied to spread the interference.
- FH frequency-hop
- a suitable air interface applying slow FH is described in U.S. Patent Application No. 08/685,069 (Attorney Docket No. 27951/00059 EUS00390-RCUR), entitled “Short-Range Radio Communications System and Method of Use", which was filed on July 23, 1996 in the name of Paul W. DENT and Jacobus C. HAARTSEN, which is commonly assigned to the same assignee as that of the present application, and which is hereby incorporated herein by reference.
- an air interface is described that obtains immunity against co-user interference and other jammers by applying frequency hopping and a fast packet-retransmission scheme.
- Frequency hopping is preferred over direct-sequence spreading for a number of reasons.
- direct-sequence spreading would pose near-far problems.
- a power control mechanism cannot be implemented because of the uncoordinated nature of the transmitters.
- the existence of unknown jammers would also mandate the need for a rather high processing gain and high transmission (TX) power.
- TX transmission
- the high spreading rate that the high processing gain would involve, would result in a costly transceiver design. As to high TX power, this is less attractive in battery-driven user equipment.
- TX transmission
- Direct-sequence spreading can only use part of the spectrum due to bandwidth limitations in the transceiver. Instead, frequency hopping systems can hop over the entire spectrum on average, but still have a reasonable channel bandwidth instantaneously.
- the present invention defines 79 hops of 1 MHz width.
- a virtual channel is defined as a pseudo-random hop sequence which hops on average over all 79 hops.
- Different connections can be established simultaneously by applying different virtual channels. Occasionally, different virtual channels will use the same hop, in which case they collide. Error recovery and redundancy are then used to overcome the disturbance.
- FIG. 5a shows a prior art single channel approach in which there is only one channel 503, and this channel 503 is identical to the medium 501, as is typically encountered in wired LANS. All users contend for the same channel 503, and TDM is utilized to give each user a portion of the transmission capacity. Access to the channel 503 is controlled either centrally or in a distributed manner.
- FIG. 5b a prior art system is shown in which the medium 501 is divided into several subchannels 505-x, for example by applying Frequency Division Multiplexing (FDM). The users in range establish a network using one of those subchannels 505-x.
- FDM Frequency Division Multiplexing
- This subchannel 505-x is either fixed (like in HIPERLAN) or hops slowly through the entire medium (like in IEEE 802.11 FHSS). That is, at different points in time, a different subchannel 505-x is selected. However, at any point in time, all users contend to gain access to the same subchannel. For example, in the illustration of FIG. 5b , a moment in time is shown in which each of the users 1 through 9 contends to gain access to subchannel 505-3.
- FIG. 5c the multi-channel approach of the invention is shown. Again, the medium 501 has been divided into subchannels. However, a group of connected users 507-x is multiplexed (i.e. is frequency hopping) through all subchannels 509-x at a relatively high rate. Packets are multiplexed at the hop rate among the different subchannels 509-x. The hopping pattern represents a virtual channel.
- three user groups 507-x are presumed: a first group 507-1 comprising users identified as users 2, 3 and 4; a second group 507-2 comprising users identified as users 5 and 8; and a third group 507-3 comprising users identified as users 6, 7 and 9.
- each of these groups 507-x constitutes a piconet.
- an additional user, user 1 is not in any of the user groups 507-x, and is therefore not connected in any of the three piconets.
- each piconet corresponds to a virtual channel using a particular sequence to multiplex (hop) through the subchannels, and using a particular link address to identify its packets.
- the different piconets reuse all the subchannels in a random way; each subchannel is used on average by all piconets.
- the sharing of the subchannels results in a statistical multiplexing between the piconets which increases the efficiency under bursty traffic conditions such as those encountered in data applications. Due to the fast hop rate (one packet per hop), the statistical multiplexing is much more efficient than, for example, can be obtained in co-located WLANs based on a FHSS 802.11 where the dwell time on a single channel is much longer.
- the type of service obtained with a multi-channel approach lies somewhere between a pure circuit-switched service and a pure packet-switched service.
- Virtual channels are defined similar to channels in connection-oriented packet-switched networks. However, each virtual channel is uniquely coupled to two or more users and operates in a synchronous manner similar to channels in circuit-switched networks. Furthermore, unlike the (sub)channels or circuits in circuit-switched networks which are used exclusively by the connected users, the circuits in the piconets are shared on average among all the users. For bursty data applications this provides higher throughput and better usage of the medium due to the statistical packet multiplexing which is not encountered in conventional circuit-switched networks.
- the address is 64-bits long, but of course, this need not be the case in every embodiment.
- the address determines the pseudo-random hop sequence or virtual channel that the unit uses when it is a master.
- the master therefore, has to distribute its address among the slaves so that all use the same virtual hopping channel.
- a very long hop sequence is used in which each hop in the 79 possible hops is visited with equal probability.
- the phase in the hop sequence is determined by the system clock in the master transceiver unit.
- a unit in standby mode wakes up at regular time intervals, say every T seconds (such as every 1.28s), to listen for a page message which consists of its address.
- This page message can be considered like a 64-chip direct-sequence code: the receiver correlates against this code and only then activates the rest of the transceiver if the correlation result exceeds a certain threshold.
- Each new wake-up instant the unit wakes up at a new hop according to a 32-hop wake-up sequence.
- the 32 wake-up hops are all unique and evenly spread over the 2.4 GHz ISM band. Both the wake-up hops and the pseudo-random wake-up hop sequence are determined by the standby unit's address. The phase in the sequence is determined by the system clock of standby unit.
- the unit trying to connect (the "paging unit") retransmits the page message (which is the spreading code representing the recipient's address) with a high repetition rate in different hops. It uses the wake-up hops and the wake-up hop sequence of the recipient, and tries to reach the recipient by sending the page message at as many different hops in the wake-up hop sequence as possible.
- the paging unit can expedite the acquisition because it knows when and in which hop the recipient will wake up.
- the worst-case acquisition delay is T (due to the fact that a standby unit only wakes up once every T seconds). Without knowledge of the standby unit's clock, the worst-case acquisition delay amounts to 2T.
- the paging unit which is designated as the master unit, conveys its address and its system clock to the recipient.
- the master code and clock will then be used to define the virtual FH channel.
- This master code is also used to identify the packets on the virtual channel. That is, each packet on the virtual channel, irrespective of which user of the virtual channel is the sender, is preceded by the master address, which acts as a link address.
- the master address acts as a link address.
- limited point-to-multipoint capabilities are defined in an exemplary embodiment which permit a unit assigned as master to connect to a plurality of slaves.
- a star topology results with the master in the center. Slaves cannot communicate directly with each other, but need to use the master as an intermediary.
- a polling scheme is utilized that schedules the transmissions of the different slaves. All slaves are time synchronized, that is, they all listen to the master at the same time. Only the slave that is addressed (read polled) in the slave receive (RX) slot is allowed to respond in the succeeding slave TX slot. All units, master and slaves, recognize the packets on the virtual channel by the link code (which is the master address).
- a particular slave in the piconet is identified by a member address.
- the member address is a 3-bit address in the packet header. The 3-bit address limits the number of participants in a piconet to eight. If a particular embodiment does not permit the packet header to be enlarged to include a wider address field, then a larger number of participants could be allowed by implementing a further addressing scheme in the payload of the packet.
- the link between units uses a Time Division Duplex (TDD) scheme in which a radio transceiver alternately transmits and receives.
- TDD Time Division Duplex
- a TDD frame consists of a transmit slot and a receive slot.
- the messages to be transmitted are divided into packets.
- Each TX and RX slot can contain at most one TX packet and one RX packet, respectively.
- Consecutive slots use different hops as defined by the virtual channel.
- the virtual channel provides a synchronous link: units that share the same virtual channel hop in synchrony and strictly adhere to the TDD timing. However, a slot does not have to be occupied. If there is no data to be sent, two connected units can hop in synchrony without exchanging packets.
- each packet contains the link address corresponding to the virtual channel.
- the channel is not contention-free. Rather, different virtual channels may occasionally use the same hop. Consequently, a recipient needs to examine the received link address in order to identify whether the received packet is really his, or whether the packet is associated with another virtual channel that, by accident, landed on the same receive hop as the one for the recipient's virtual channel.
- the usage of the link address is quite important because bursty traffic may result in empty slots that may accidentally be filled by other links, and because near-far situations may occur in which an interfering packet completely wipes out the intended packet.
- Voice transmission is not a problem in this system because a synchronous link is provided. If voice is part of the information stream, a voice packet will be transmitted every TDD frame. Occasional collisions may be overcome by recovery techniques at the recipient, or alternatively they may be ignored. The latter requires that robust voice coding techniques like Continuous Variable Slope Delta (CVSD) modulation be applied.
- CVSD Continuous Variable Slope Delta
- ARQ Automatic Retransmission Query
- the star topology and polling access scheme of the present invention are a consequence of the piconet definition and the strict timing synchronization in the virtual channel. If two slaves need to communicate directly with one another, an additional piconet is then created over which the original master has no direct control. One of the slaves shifts its TDD framing by half a frame. This slave cannot hear the master anymore (it acts like a master of the new piconet), and neither can the original master hear the slave. Although for a piconet, a single (virtual) channel approach is used, distributed control is not possible because of the strict timing synchronization applied.
- an inquiry procedure is provided that enables units to learn of the addresses of nearby units.
- the inquiry procedure is very similar to the page procedure. Instead of a page message, an inquiry message is transmitted with a high repetition rate in different hops.
- the inquiry message is a 64-bit code ordering the recipient to reveal its unit parameters. Like the address, the inquiry code determines, for example, 32 different inquiry hops and an inquiry hop sequence.
- Units that receive an inquiry message respond with a single packet including the recipient's address, the recipient's system clock, and its class of service (e.g., whether the unit is a printer, a laptop computer, a base station, and the like). Units may randomly choose a return hop in the inquiry hop sequence to avoid collisions.
- the inquiring unit collects all responses, and makes a list of codes and clock offsets of the units that are within range. The information can then later be used when a connection is desired. Since units are moving, the inquiry procedure may be repeated periodically so that the list can be updated when necessary.
- the above-described process enables a unit to collect all of the information necessary for it to establish a piconet with units that are within range.
- a unit may want to connect to a unit that is out of range (i.e., too far away for direct radio communication to take place between the units).
- this problem is solved by utilizing an intermediate unit that is within range of both the source unit and the destination unit.
- the intermediate unit acts like a master in a point-to-multipoint configuration, and relays information between the two units that cannot connect directly. This embodiment is illustrated in FIG. 6a , in which two units A and B are out of range.
- a third unit, unit C is in range of both units A and B, and is used as a master.
- Units A and B are slaves in this single piconet 601.
- the intermediate unit that is within range of the two other units acts as a bridge between the source and destination units.
- a bridge unit is a more complicated unit that is able to connect to two piconets.
- units A and B which are out of range with respect to one another, participate in different piconets 603 and 605.
- the bridge unit C participates in each of these piconets 603 and 605. Because the two piconets 603 and 605 are uncoordinated, the bridge unit C essentially comprises two transceiver units, each participating in a different one of the piconet 603 and 605. Within the bridge unit C, information is transferred back and forth between the two transceivers. Because the bridge C uses two virtual channels (two piconets) instead of one, it provides a higher throughput between the units A and B than the point-to-multipoint configuration of FIG. 6a .
- intermediate units to set up connections depends of course on the geographical distances and the range of a single unit.
- the range of the unit's radio may be limited because this results in a cost-effective implementation and low power consumption. Higher power levels would result in an increased range and would simplify connectivity in the wireless LAN. However, it should be noted that power levels also affect the capacity of the system as a whole. When low power levels are utilized, the limited range means that piconets that are separated by a sufficient geographical distance will not interfere with each other at all because the interference power will be lower than the receiver sensitivity level.
- a unit receiving an inquiry message also provides the inquiring unit with all addresses and classes of service of the units the inquired unit can reach. This information will have been collected in the inquired unit in a previous inquiry procedure carried out by the inquired unit. In this way, not only are the units in range of the inquiring unit determined, but also the units in range of these inquired units are determined.
- the source unit can then connect to a destination unit that is out of range via intermediate bridge units whose addresses can be derived.
- This procedure can be repeated, in that an inquired unit not only provides its own address list, but also the address lists it received from other units which they obtained during their own inquiry sessions.
- a unit can collect all lists identifying all units in the area that have the possibility of connecting to each other, either directly or indirectly (e.g., via bridge units).
- the source unit can classify the units according to "connectivity" rings.
- the units belonging to the first connectivity ring can be reached directly by the source unit.
- Units belonging to the second connectivity ring can only be reached by the considered units via a bridge (or other intermediary) unit in the first connectivity ring.
- Units in the third connectivity ring can only be reached by applying two bridge units, one in the first connectivity ring, and one in the second connectivity ring (which is in the first connectivity ring of the first bridge unit).
- a source unit investigates the address lists with connectivity rings, and uses a tree tracking algorithm to determine which units will be used as bridge units.
- a connection to the destination is then established by subsequently making a connection first from the source unit to the first bridge unit, then from the first bridge unit to the second bridge unit, and so on, until the last bridge unit connects to the destination unit.
- the inquiry procedure will now be illustrated in connection with the exemplary configuration shown in FIG. 7 .
- the peer units 1, ... , 10 are shown in a local area. Each unit is indicated by a node and number. Potential connections can be established between certain units, as shown by the dashed lines. It can be seen in this example that not all units can directly reach each other. for example, unit 9 is in the coverage area of, and can therefore connect to, units 2, 8 and 10, but cannot reach the other units 1, 3, 4, 5, 6 and 7. This may be caused by additional propagation losses (radio shadowing) or other conditions that block a possible radio connection.
- unit 9 When broadcasting an inquiry, unit 9 will get a response from units 2, 8 and 10, which will reveal their addresses and classes of service.
- the "first-order" address list in unit 9 is thus ⁇ 2, 8, 10 ⁇ . These are the addresses of the units in the first connectivity ring of unit 9. (Of course, unit 9 also retains lists of other information, such as classes of service, in connection with the nearby units. For the sake of simplicity, all of this information will henceforth be referred to generally as addresses.)
- each unit 2, 8, and 10 gives unit 9 its respective first-order address list. These lists will, of course, include the address of unit 9 if unit 9 has been in the local area long enough to have received and responded to an inquiry from these other units.
- unit 2 will give its first-order address list including 1, 3, 6, 7 and 9.
- unit 9 can generate a second-order address list that includes all units in the first-order lists from the other units, not covered in the first-order address list of unit 9 and excluding unit 9 itself.
- unit 9's second-order address list will at least include units 1, 3, 6 and 7.
- the final second-order address list in unit 9 will read ⁇ 1, 3, 6, 7 ⁇ . It will be understood that this process can be extended to more remote units, that is, units can also give their second-order address lists to unit 9, which can then be used as the basis for generating a third-order address list, and so on.
- FIG. 8 This extended inquiry process is illustrated in FIG. 8 , in which the i-th order address list of an arbitrary unit j is indicated as L(i,j).
- Units 2, 8 and 10 themselves have first-order lists L(1,2), L(1,8), L(1,10) as shown in the figure.
- the lists L(1,2), L(1,8), L(1,10) are supplied to unit 9 by the respective units 2, 8 and 10 in response to unit 9's inquiry.
- unit 9 itself can form a second-order list L(2,9) by merging L(1,2), L(1,8) and L(1,10) and removing references to itself as well as references to any other units that are already included in its own first-order list, L(1,9).
- this results in the second-order list L(2,9) ⁇ 1, 3, 6, 7 ⁇ .
- the units identified in this list cannot be reached by unit 9 directly, but can be reached by the use of a single bridge unit.
- the units listed in L(2,9) form the second connectivity ring as seen from unit 9.
- units 2, 8 and 10 can also derive their second-order lists (L(2,2), L(2,8) and L(2,10), respectively) and provide these lists to unit 9.
- a connectivity tree can be generated that includes the possible connections.
- the connectivity tree 901 for the exemplary unit 9 is shown in FIG. 9 .
- Each node in the connectivity tree 901 represents a particular one of the units 1, ... , 10., and a branch represents a possible connection.
- At the top of the connectivity tree 901 is the considered unit, which in this example is unit 9.
- the connectivity tree can also be generated by merely considering all first-order address lists from all units, and following the rule that a higher-numbered connectivity ring cannot include units that have already been encountered in lower-numbered connectivity rings to exclude loops.
- the above-described extended inquiry technique and the connectivity tree such as the exemplary one shown in FIG. 9 , enable each source unit to find the shortest route (using the minimum number of bridge units) to the destination unit.
- this technique does not take into account the fact that certain units may not be capable of operating as bridges, or may currently be busy leaving them without the radio resources necessary for relaying information between other units. Because they operate on battery power, it is usually preferable that portable devices not be used as bridge devices. Therefore, the source unit might not be able to use the shortest route. In that case, the above-described techniques provide too little information.
- unit 9 is able to utilize only first-order address lists to create a second connectivity tree 1001.
- unit 9 is at the top of the connectivity tree 1001.
- These units 2, 8 and 10 constitute a first connectivity ring 1003.
- the relationship between a unit and the other units to which it can directly connect will be referred to as a parent-child relationship.
- unit 9 is a parent whose children are the units 2, 8 and 10. These children, when considered as parents themselves, each have their own children, and so on.
- Each parent knows its children by means of its first-order address list.
- the second connectivity tree 1001 is a result of following this rule with respect to the exemplary units depicted in FIG. 7 .
- unit 5 were allowed to have a child unit 6 in the fourth connectivity ring 1009, this would violate the first rule because this child unit 6 would have a grandparent (in the second connectivity ring 1005) that is also identified as unit 6.
- the tree cannot be extended at any of the nodes representing unit 5 in the third connectivity ring 1007.
- nodes representing unit 5 in the fourth connectivity ring 1009 because their placement did not violate any rules.
- the tree is built from first-order connectivity lists and reduced according to the two rules set forth above until no new nodes can be added. At this point, the tree is finished, and all available connectivity information is present in the considered unit.
- a second connectivity tree 1001 such as the one depicted in FIG. 10 can be generated in a considered unit (e.g., unit 9) as soon as that unit has received all first-order address lists.
- a unit that receives an inquiry preferably responds with not only its own first-order address list, but also with the first-order address lists of every other node that it knows about. It will also be understood that each unit can generate a similar tree, with its own unit address at the top.
- the second connectivity tree 1001 differs from the first connectivity tree 901 in that it has an additional connectivity ring, namely, the fourth connectivity ring 1009.
- the reason why this fourth connectivity ring 1009 exists in the second connectivity tree 1001 (and, therefore, why the second connectivity tree 1001 contains more information than the first connectivity tree 901) is because the reduction criteria that were applied to the second connectivity tree 1001 were not designed to minimize the number of connectivity rings.
- the connectivity tree in a unit is determined because, for each unit in the tree, the address is known and the route to reach it is known. In addition, because the class of service for each unit is known, the capabilities of all units are completely known.
- the top unit (acting as source unit) can select routes downwards in order to connect to the destination unit. Different routes can exist. For example, suppose that in the example of FIG. 7 , unit 9 wants to connect to unit 6. Referring now to FIG. 11 , it can be seen from the second connectivity tree 1001 that there are three different routes that may be followed: a first route 1101, a second route 1103 and a third route 1105.
- the route selection procedure can be based on any combination of the following factors:
- the first condition i.e., a consideration of the number of bridge units in a given route
- the first route 1101 i.e., 9 ⁇ 2 ⁇ 6
- the second route 1103 i.e., 9 ⁇ 8 ⁇ 6
- the third route 1105 i.e., 9 ⁇ 10 ⁇ 1 ⁇ 4 ⁇ 6
- the first and second routes 1101 and 1103 should be preferred because of the fewer number of required bridge nodes.
- the second route 1103 is preferable to the first route 1101 because bridge unit 8 will produce less interference than bridge unit 2. (This conclusion is reached by considering the fact that four branches leave bridge unit 2 compared to only two branches leaving bridge unit 8.)
- the connection may be established by unit 9 first connecting to unit 8 with a request for unit 8 to act as a bridge unit and to establish a bridge connection to unit 6.
- Unit 8 will then establish a connection to unit 6, and then link the two connections to units 6 and 9 to provide the second route 1103 (i.e., 9 ⁇ 8 ⁇ 6).
- a self-organized wireless LAN (WLAN) technology has been described.
- the inventive self-organized WLAN system can make use of a wired LAN to which the individual wireless units form wireless extensions.
- the desirability of this approach depends on the particular application.
- the self-organized WLAN's plug-and-play scenario with a complete wireless connectivity may be more advantageous than relying on a wired backbone.
- Both extended range and capacity can be simply obtained by disposing more bridge units at strategic positions. When the wireless units hit a low target price, this will be a cheaper approach than using a wired backbone.
- a wired backbone would require a complete extra LAN with all its protocols and hardware.
- One or several wireless units can act as fixed parts within a WLAN. Each fixed wireless unit can set up a piconet and can then act as a master. (Note that several wireless units can be co-located in the same fixed part.)
- the protocols for the wireless units will only be valid for the lower-level communications. Any wired LAN protocols to be extended to the portable unit should be handled at higher levels; that is the wireless portion of the LAN should be transparent to them.
- the portable wireless units in range can always establish an ad-hoc piconet among themselves. This off-loads the wired LANs and increases capacity because an intermediary (i.e. the fixed part) is not required if a connection can be established directly.
- a first unit designated as a master unit 1201
- a second unit designated as a slave unit 1203.
- Each of these units is shown as comprising only those means for carrying out the indicated functions associated with the respective roles of "master” and "slave.” It will be recognized, however, that the allocation of roles as exclusively master and exclusively slave is done here merely to facilitate the discussion about the invention, and that the invention encompasses those units that include all of the necessary components for acting as both master and slave. It is further noted that only those components that are directly related to the invention are illustrated. However, those skilled in the art will recognize that each of the master and slave units 1201, 1203 includes additional components, such as transceivers and the like, which are well-known and which are necessary for carrying out the wireless communication aspects of the invention.
- the master unit 1201 also includes a master clock 1207.
- the master unit 1201 In order to be able to establish connections, it is necessary for the master unit 1201 to know the addresses of the other units with which a connection can be established. To perform this function, the master unit 1201 includes an inquiry means 1209 that operates as means for sending out inquiry messages as described above. The inquiry means 1209 also collects the responses (address and topology information 1211) and organizes it in accordance with the connectivity tree techniques described above.
- the slave unit 1203 is similarly associated with a slave address 1213, and similarly includes a slave clock 1215 which need not be synchronized with the master unit 1201.
- the slave unit includes an inquiry response means 1217 whose job is to recognize received inquiries, and to generate and transmit an appropriate response back to the master unit 1201.
- the response may comprise not only the slave address 1213, but also other information such as the slave's class of service, and the slave's present clock reading.
- the page message includes the slave address, which information is obtained from the inquiry means 1209. (Of course, if the topology requires that the connection be established through a bridge node (not shown), the page message would include the address of the bridge node. In one embodiment, the page message may also include a request to establish a connection with the slave unit 1203. In an alternative embodiment, the page message serves only to establish a connection with the bridge node. After the bridge node connection is established, the master unit 1201 then issues a request for the bridge to establish a connection with the slave unit 1203.)
- a wake-up means 1221 is provided in the slave unit 1203.
- the wake-up means 1221 includes a timer 1223 which causes the slave unit 1203 to wake up periodically to determine whether a received page message is intended for this slave unit 1203.
- An address compare unit 1225 is provided for this purpose. If the slave address 1213 matches the received page address, then response means 1227 within the wake-up means 1221 generates and transmits an appropriate response back to the master unit 1201.
- One aspect of the present invention is the fact that both the master unit 1201 and the slave unit 1203 utilize a frequency hopping communication system.
- the slave unit 1203 wakes up in any one of a number of predetermined paging hop frequencies.
- the master unit 1201 does not know exactly in which hop frequency the slave unit 1203 will awaken, it retransmits the page message with a high repetition rate in different hops. It uses the wake-up hops and the wake-hop sequence of the recipient, and tries to reach the recipient by sending the page message at as many different hops as possible.
- the sequence of wake-up hops is generated by a paging channel generator 1229 within the paging means 1219.
- master unit 1201 conveys its master address 1205 and master clock 1207 to the slave unit 1203.
- the master address 1205 and master clock 1207 are then used to define the virtual frequency hopping channel that will be used in communications between the master unit 1201 and the slave unit 1203.
- master communication means include a channel select unit 1231 that generates the hop frequencies at appropriate times, based on the master address 1205 (which determines the hop sequence) and the master clock 1207 (which determines the phase within the hop sequence).
- a channel select unit 1235 is similarly included within slave communications means 1233 in order to generate the hop frequencies at appropriate times, based on the master address (which determines the hop sequence) and the master clock 1207.
- the master clock 1207 is first received by the slave unit 1203, the difference between the master clock 1207 and the slave clock 1215 is determined and stored. Then, whenever a current master clock value is needed within the slave unit 1203, it is calculated based on the stored difference and the current slave clock 1215.
- the slave unit 1203 further includes a second address compare unit 1237.
- each communication in the piconet includes the address of the intended recipient.
- the purpose of the second address compare unit 1237 is to compare a received destination address with the slave unit's own slave address 1213 to determine whether it is the intended recipient of a received communication.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
- Small-Scale Networks (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Claims (23)
- Réseau sans fil comprenant :une unité maîtresse (1201) ; etune unité esclave (1203),dans lequel l'unité maîtresse comprend un moyen (1239) pour communiquer avec l'unité esclave (1203) au moyen d'un canal virtuel à sauts de fréquence ;dans lequel l'unité esclave (1203) comprend un moyen (1233) pour communiquer avec l'unité maîtresse (1201) au moyen du canal virtuel à sauts de fréquence ;caractérisé en ce que l'unité maîtresse comprend un moyen pour envoyer une adresse maîtresse (1205) à l'unité esclave (1203) et un moyen pour envoyer une horloge maîtresse (1207) à l'unité esclave (1203) ;l'unité esclave comprend un moyen (1233) pour recevoir l'adresse maîtresse en provenance de l'unité maîtresse (1201) et un moyen (1233) pour recevoir l'horloge maîtresse en provenance de l'unité maîtresse (1201) ;une séquence de sauts du canal virtuel à sauts de fréquence est fonction de l'adresse maîtresse (1205), et l'adresse maîtresse est une adresse unique d'identification d'unité ; etune phase de la séquence de sauts est fonction de l'horloge maîtresse (1207).
- Réseau sans fil selon la revendication 1, dans lequel :l'unité maîtresse (1201) comprend en outre un moyen (1209) pour transmettre un message d'interrogation qui demande une adresse esclave (1213) à l'unité esclave (1203), dans lequel l'adresse esclave est une adresse unique d'identification d'unité ; etl'unité esclave (1203) comprend en outre :un moyen pour recevoir le message d'interrogation; etun moyen (1217) pour transmettre, en réponse au message d'interrogation, l'adresse esclave à l'unité maîtresse (1201).
- Réseau sans fil selon la revendication 2, dans lequel l'unité maîtresse (1201) comprend en outre :un moyen (1239) pour recevoir des informations d'adresse esclave et de topologie en provenance de plus d'une unité esclave ; etun moyen pour générer un arbre de configuration (1001) à partir des informations d'adresse et de topologie.
- Réseau sans fil selon la revendication 3, dans lequel l'unité maîtresse (1201) comprend en outre un moyen pour utiliser l'arbre de configuration (1001) afin de déterminer un chemin pour une connexion entre l'unité maîtresse (1201) et l'unité esclave (1203).
- Réseau sans fil selon la revendication 3, dans lequel :l'adresse esclave (1213) et les informations de topologie comprennent une adresse propre provenant de chacune des plus d'une unités esclaves (1203) et uniquement des listes d'adresses du premier ordre en provenance de chacune des plus d'une unités esclaves (1203) ; etle moyen destiné à générer l'arbre de configuration (1001) à partir des informations d'adresse et de topologie comprend :un moyen pour générer n anneaux de connectivité (1003, 1005, 1007, 1009) à partir des listes d'adresses du premier ordre, où n est un entier positif, et dans lequel le moyen générateur génère chacun des anneaux de connectivité en conformité avec une règle selon laquelle un anneau de connectivité de numéro plus élevé ne peut pas contenir de noeuds (1 à 9) représentant des unités qui sont déjà représentées par un noeud (1 à 9) dans un anneau de connectivité de numéro plus faible.
- Réseau sans fil selon la revendication 3, dans lequel :les informations d'adresse esclave et de topologie comprennent une adresse propre provenant de chacune des plus d'une unités esclaves (1203) et uniquement des listes d'adresses du premier ordre provenant de chacune des plus d'une unités esclaves (1203) ; etle moyen destiné à générer l'arbre de configuration (1001) à partir des informations d'adresse et de topologie comprend :un moyen pour générer n anneaux de connectivité (1003, 1005, 1007, 1009) à partir des listes d'adresses du premier ordre, où n est un entier positif, et dans lequel le moyen générateur génère chacun des anneaux de connectivité en considérant un anneau de connectivité ayant le numéro présent et ayant des noeuds parents, et comprenant, dans un anneau de connectivité de numéro plus élevé suivant, les noeuds qui représentent tous les enfants des noeuds parents respectant les règles suivantes :aucun descendant d'un parent ne peut représenter la même unité que celle qui est représentée par le parent ;aucun descendant d'un enfant du parent ne peut représenter la même unité que l'un quelconque des enfants du parent ; etaucun enfant d'un parent quelconque ne peut avoir le même nom que tout autre enfant dudit parent quelconque.
- Réseau sans fil selon la revendication 1, ayant une topologie diffuse, le réseau sans fil comprenant en plus de ladite unité maîtresse, appelée ci-après première unité maîtresse, et de ladite unité esclave, appelée ci-après première unité esclave :une deuxième unité maîtresse (1201) ; etune deuxième unité esclave (1203),dans lequel la deuxième unité maîtresse (1201) comprend :un moyen pour envoyer une deuxième adresse maîtresse (1205) à la deuxième unité esclave (1203) ;un moyen pour envoyer une deuxième horloge maîtresse (1207) à la deuxième unité esclave (1203) ;un moyen pour communiquer avec la deuxième unité esclave (1203) au moyen d'un deuxième canal virtuel à sauts de fréquence ;dans lequel la deuxième unité esclave (1203) comprend :un moyen (1233) pour recevoir la deuxième adresse maîtresse en provenance de la deuxième unité maîtresse (1201) ;un moyen (1233) pour recevoir la deuxième horloge maîtresse en provenance de la deuxième unité maîtresse (1201) ; etun moyen (1233) pour communiquer avec la deuxième unité maîtresse (1201) au moyen du premier canal virtuel à sauts de fréquence ;dans lequel :une deuxième séquence de sauts du deuxième canal virtuel à sauts de fréquence est fonction de la deuxième adresse maîtresse (1205) ;une phase de la deuxième séquence est fonction de la deuxième horloge maîtresse (1207) ;la première horloge maîtresse (1207) n'est pas coordonnée avec la deuxième horloge maîtresse (1207) ; etle premier canal virtuel à sauts de fréquence utilise le même spectre radio que le deuxième canal virtuel à sauts de fréquence ;le premier canal virtuel à sauts de fréquence étant différent du deuxième canal virtuel à sauts de fréquence, pour ainsi permettre qu'une communication entre la première unité maîtresse (1201) et la première unité esclave (1203) ait lieu sans brouiller notablement la communication entre la deuxième unité maîtresse (1201) et la deuxième unité esclave (1203).
- Réseau sans fil selon la revendication 7, dans lequel :chacune des première et deuxième unités maîtresses (1201) comprend en outre un moyen (1209) pour transmettre un message d'interrogation qui demande une adresse esclave (1213) aux première et deuxième unités esclaves (1203) ; etchacune des première et deuxième unités esclaves (1203) comprend en outre :un moyen pour recevoir le message d'interrogation ; etun moyen (1217) pour transmettre, en réponse au message d'interrogation, l'adresse esclave (1213) aux première et deuxième unités maîtresses (1201).
- Réseau sans fil selon la revendication 8, dans lequel chacune des première et deuxième unités maîtresses (1201) comprend en outre :un moyen pour recevoir des informations d'adresse esclave et de topologie (1211) en provenance de plus d'une unité esclave (1203) ; etun moyen pour générer un arbre de configuration (1001) à partir des informations d'adresse et de topologie (1211).
- Réseau sans fil selon la revendication 9, dans lequel chacune des première et deuxième unités maîtresses (1201) comprend en outre un moyen pour utiliser l'arbre de configuration (1001) afin de déterminer un chemin pour une connexion entre les première et deuxième unités maîtresses (1201) et les première et deuxième unités esclaves respectives (1203).
- Réseau sans fil selon la revendication 9, dans lequel :les informations d'adresse esclave et de topologie (1211) comprennent une adresse propre en provenance de chacune des plus d'une unités esclaves (1203) et uniquement des listes d'adresses du premier ordre en provenance de chacune des plus d'une unités esclaves (1203) ; etle moyen destiné à générer l'arbre de configuration (1001) à partir des informations d'adresse et de topologie (1211) comprend :un moyen pour générer n anneaux de connectivité (1003, 1005, 1007, 1009) à partir des listes d'adresses du premier ordre, où n est un entier positif, et dans lequel la moyen générateur génère chacun des anneaux de connectivité en conformité avec une règle selon laquelle un anneau de connectivité de numéro plus élevé ne peut pas contenir de noeuds représentant des unités qui sont déjà représentées par un noeud dans un anneau de connectivité de numéro plus faible.
- Réseau sans fil selon la revendication 9, dans lequel :les informations d'adresse esclave et de topologie (1211) comprennent une adresse propre en provenance de chacune des plus d'une unités esclaves (1203) et uniquement des listes d'adresses du premier ordre en provenance de chacune des plus d'une unités esclaves (1203) ; etle moyen destiné à générer l'arbre de configuration (1001) à partir des informations d'adresse et de topologie (1211) comprend :un moyen pour générer n anneaux de connectivité (1003, 1005, 1007, 1009) à partir des listes d'adresses du premier ordre, où n est un entier positif, et dans lequel la moyen générateur génère chacun des anneaux de connectivité en considérant un anneau de connectivité ayant le numéro présent et ayant des noeuds parents, et comprenant, dans un anneau de connectivité de numéro plus élevé suivant, les noeuds qui représentent tous les enfants des noeuds parents respectant les règles suivantes :aucun descendant d'un parent ne peut représenter la même unité que celle qui est représentée par le parent ;aucun descendant d'un enfant du parent ne peut représenter la même unité que l'un quelconque des enfants du parent ; etaucun enfant d'un parent quelconque ne peut avoir le même nom que tout autre enfant dudit parent quelconque.
- Procédé de mise en fonctionnement d'un réseau sans fil comprenant une unité maîtresse (1201) et une unité esclave (1203), le procédé comprenant les étapes suivantes :l'unité maîtresse (1201) envoie une adresse maîtresse (1205) et une horloge maîtresse (1207) à une unité esclave (1203) dudit réseau sans fil ;l'unité esclave (1203) reçoit l'adresse maîtresse (1205) et l'horloge maîtresse (1207) en provenance de l'unité maîtresse (1201) ;l'unité maîtresse (1201) et l'unité esclave (1203) communiquent l'une avec l'autre au moyen d'un canal virtuel à sauts de fréquence ;dans lequel une séquence de sauts du canal virtuel à sauts de fréquence est fonction de l'adresse maîtresse (1205), et l'adresse maîtresse (1205) est une adresse unique d'identification d'unité ; etune phase de la séquence de sauts est fonction de l'horloge maîtresse (1207).
- Unité maîtresse (1201) destinée à un réseau sans fil, comprenant :un moyen pour envoyer une adresse maîtresse (1205) à une unité esclave (1203) dudit réseau sans fil ;un moyen pour envoyer une horloge maîtresse (1207) à l'unité esclave (1203) ; etun moyen (1239) pour communiquer avec l'unité esclave (1203) au moyen d'un canal virtuel à sauts de fréquence ;dans lequel une séquence de sauts du canal virtuel à sauts de fréquence est fonction de l'adresse maîtresse (1205), et l'adresse maîtresse (1205) est une adresse unique d'identification d'unité ; etune phase de la séquence de sauts est fonction de l'horloge maîtresse (1207).
- Unité maîtresse (1201) selon la revendication 14, comprenant un moyen (1209) pour transmettre un message d'interrogation qui demande une adresse esclave (1213) à l'unité esclave (1203).
- Unité maîtresse (1201) selon la revendication 15, comprenant un moyen pour recevoir des informations d'adresse esclave (1213) et de topologie en provenance de plus d'une unité esclave (1203) ; et
un moyen pour générer un arbre de configuration (1001) à partir des informations d'adresse et de topologie. - Unité maîtresse (1201) selon la revendication 16, comprenant un moyen pour utiliser l'arbre de configuration (1001) afin de déterminer un chemin pour une connexion entre l'unité maîtresse (1201) et l'unité esclave (1203).
- Unité maîtresse selon la revendication 16, dans laquelle :les informations d'adresse esclave et de topologie (1211) comprennent une adresse propre en provenance de chacune des plus d'une unités esclaves (1203) et uniquement des listes d'adresses du premier ordre en provenance de chacune des plus d'une unités esclaves (1203) ; etle moyen destiné à générer l'arbre de configuration (1001) à partir des informations d'adresse et de topologie (1211) comprend :un moyen pour générer n anneaux de connectivité (1003, 1005, 1007, 1009) à partir des listes d'adresses du premier ordre, où n est un entier positif, et dans lequel la moyen générateur génère chacun des anneaux de connectivité en conformité avec une règle selon laquelle un anneau de connectivité de numéro plus élevé ne peut pas contenir de noeuds représentant des unités qui sont déjà représentées par un noeud dans un anneau de connectivité de numéro plus faible.
- Unité maîtresse (1201) selon la revendication 16, dans laquelle :les informations d'adresse esclave et de topologie (1211) comprennent une adresse propre en provenance de chacune des plus d'une unités esclaves (1203) et uniquement des listes d'adresses du premier ordre en provenance de chacune des plus d'une unités esclaves (1203) ; etle moyen destiné à générer l'arbre de configuration (1001) à partir des informations d'adresse et de topologie (1211) comprend :un moyen pour générer n anneaux de connectivité (1003, 1005, 1007, 1009) à partir des listes d'adresses du premier ordre, où n est un entier positif, et dans lequel le moyen générateur génère chacun des anneaux de connectivité en considérant un anneau de connectivité ayant le numéro présent et ayant des noeuds parents, et comprenant, dans un anneau de connectivité de numéro immédiatement plus élevé suivant, les noeuds qui représentent tous les enfants des noeuds parents respectant les règles suivantes :aucun descendant d'un parent ne peut représenter la même unité que celle qui est représentée par le parent ;aucun descendant d'un enfant du parent ne peut représenter la même unité que l'un quelconque des enfants du parent ; etaucun enfant d'un parent quelconque ne peut avoir le même nom que tout autre enfant dudit parent quelconque.
- Procédé de mise en fonctionnement d'une unité maîtresse (1201) dans un réseau sans fil, comprenant les étapes suivantes :l'unité maîtresse (1201) envoie une adresse maîtresse (1205) et une horloge maîtresse (1207) à une unité esclave (1203) dudit réseau sans fil ;l'unité maîtresse (1201) communique avec l'unité esclave (1203) au moyen d'un canal virtuel à sauts de fréquence ;dans lequel une séquence de sauts du canal virtuel à sauts de fréquence est fonction de l'adresse maîtresse (1201), et l'adresse maîtresse (1205) est une adresse unique d'identification d'unité ; etune phase de la séquence de sauts est fonction de l'horloge maîtresse (1207).
- Unité esclave (1203) destinée à un réseau sans fil, comprenant :un moyen pour recevoir une adresse maîtresse (1205) d'une unité maîtresse (1201) du réseau sans fil ;un moyen pour recevoir une horloge maîtresse (1207) de l'unité maîtresse (1201) ; etun moyen pour communiquer avec l'unité maîtresse (1201) au moyen d'un canal virtuel à sauts de fréquence ;dans lequel une séquence de sauts du canal virtuel à sauts de fréquence est fonction de l'adresse maîtresse (1205), et l'adresse maîtresse est une adresse unique d'identification d'unité ; etune phase de la séquence de sauts est fonction de l'horloge maîtresse (1207).
- Unité esclave (1203) selon la revendication 21, comprenant :un moyen pour recevoir un message d'interrogation de l'unité maîtresse (1201) qui demande une adresse esclave (1213) à l'unité esclave (1203), dans laquelle l'adresse esclave (1213) est une adresse unique d'identification d'unité ; etun moyen (1217) pour transmettre, en réponse au message d'interrogation, l'adresse esclave à l'unité maîtresse.
- Procédé de mise en fonctionnement d'une unité esclave (1203) destinée à un réseau sans fil, comprenant les étapes suivantes :recevoir une adresse maîtresse (1205) en provenance d'une unité maîtresse (1201) du réseau sans fil ;recevoir une horloge maîtresse (1207) en provenance de l'unité maîtresse (1201) ; etcommuniquer avec l'unité maîtresse (1201) au moyen d'un canal virtuel à sauts de fréquence ;dans lequel une séquence de sauts du canal virtuel à sauts de fréquence est fonction de l'adresse maîtresse (1205), et l'adresse maîtresse (1205) est une adresse unique d'identification d'unité ; etune phase de la séquence de sauts est fonction de l'horloge maîtresse (1207).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08008576A EP1956757A3 (fr) | 1997-09-17 | 1998-09-16 | Piconets à saut de fréquence dans un système multi-utilisateur sans fil non coordonné |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US932911 | 1978-08-11 | ||
US08/932,911 US6590928B1 (en) | 1997-09-17 | 1997-09-17 | Frequency hopping piconets in an uncoordinated wireless multi-user system |
PCT/SE1998/001555 WO1999014897A2 (fr) | 1997-09-17 | 1998-09-16 | Picoreseaux a saut de frequence dans un systeme multi-utilisateur radio non coordonne |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08008576A Division EP1956757A3 (fr) | 1997-09-17 | 1998-09-16 | Piconets à saut de fréquence dans un système multi-utilisateur sans fil non coordonné |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1016241A2 EP1016241A2 (fr) | 2000-07-05 |
EP1016241B1 true EP1016241B1 (fr) | 2009-07-22 |
Family
ID=25463144
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08008576A Withdrawn EP1956757A3 (fr) | 1997-09-17 | 1998-09-16 | Piconets à saut de fréquence dans un système multi-utilisateur sans fil non coordonné |
EP98943134A Expired - Lifetime EP1016241B1 (fr) | 1997-09-17 | 1998-09-16 | Picoreseaux a saut de frequence dans un systeme multi-utilisateur radio non coordonne |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08008576A Withdrawn EP1956757A3 (fr) | 1997-09-17 | 1998-09-16 | Piconets à saut de fréquence dans un système multi-utilisateur sans fil non coordonné |
Country Status (20)
Country | Link |
---|---|
US (1) | US6590928B1 (fr) |
EP (2) | EP1956757A3 (fr) |
JP (2) | JP2001517021A (fr) |
KR (1) | KR20010024100A (fr) |
CN (2) | CN1326370C (fr) |
AR (1) | AR020311A1 (fr) |
AU (1) | AU756518B2 (fr) |
BR (1) | BR9812226A (fr) |
CA (1) | CA2304189A1 (fr) |
CO (1) | CO4810278A1 (fr) |
DE (1) | DE69841001D1 (fr) |
EE (1) | EE200000166A (fr) |
ES (1) | ES2330394T3 (fr) |
HK (1) | HK1033228A1 (fr) |
ID (1) | ID24522A (fr) |
IL (1) | IL135086A (fr) |
MY (1) | MY123395A (fr) |
NO (1) | NO20001378L (fr) |
RU (1) | RU2201034C2 (fr) |
WO (1) | WO1999014897A2 (fr) |
Families Citing this family (214)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100030423A1 (en) | 1999-06-17 | 2010-02-04 | Paxgrid Telemetric Systems, Inc. | Automotive telemetry protocol |
US20020150050A1 (en) | 1999-06-17 | 2002-10-17 | Nathanson Martin D. | Automotive telemetry protocol |
US6538577B1 (en) * | 1997-09-05 | 2003-03-25 | Silver Springs Networks, Inc. | Electronic electric meter for networked meter reading |
US20080129538A1 (en) * | 1999-02-23 | 2008-06-05 | Raj Vaswani | Electronic electric meter for networked meter reading |
US6396814B1 (en) * | 1997-09-12 | 2002-05-28 | Kabushiki Kaisha Toshiba | Network construction method and communication system for communicating between different groups via representative device of each group |
GB9725659D0 (en) * | 1997-12-03 | 1998-02-04 | Nokia Mobile Phones Ltd | The LPRF system with frequency hopping extensions |
US20030035406A1 (en) * | 1998-04-02 | 2003-02-20 | Pctel, Inc. | Multiple handset wireless conferencing system |
US6484027B1 (en) * | 1998-06-15 | 2002-11-19 | Sbc Technology Resources, Inc. | Enhanced wireless handset, including direct handset-to-handset communication mode |
JP3808660B2 (ja) * | 1999-03-31 | 2006-08-16 | 株式会社東芝 | 通信システム及び端末装置 |
JP2000316010A (ja) * | 1999-04-30 | 2000-11-14 | Fujitsu Ltd | 無線端末装置およびノード装置 |
US6788938B1 (en) * | 1999-05-31 | 2004-09-07 | Sony Corporation | Construction method of radio network system and radio transmission device |
AU5382300A (en) * | 1999-06-17 | 2001-01-09 | Paxgrid Telemetric Systems Inc. | Vehicular telemetry |
US6650630B1 (en) * | 1999-06-25 | 2003-11-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Resource management and traffic control in time-division-duplex communication systems |
US6891820B1 (en) | 1999-07-06 | 2005-05-10 | Broadcom Corporation | Utilization of the internet protocol to facilitate communication involving mobile devices |
WO2001003370A2 (fr) * | 1999-07-06 | 2001-01-11 | Widcomm, Inc. | Utilisation du protocole internet pour faciliter la communication au moyen de dispositifs portables |
US6654614B2 (en) | 1999-07-06 | 2003-11-25 | Widcomm, Inc. | Implementation of power control in a wireless overlay network |
US6691173B2 (en) | 1999-07-06 | 2004-02-10 | Widcomm, Inc. | Distributed management of an extended network containing short-range wireless links |
JP4324751B2 (ja) * | 1999-07-07 | 2009-09-02 | ソニー株式会社 | 通信チャンネル選択方法および無線ネットワーク装置 |
US6526034B1 (en) | 1999-09-21 | 2003-02-25 | Tantivy Communications, Inc. | Dual mode subscriber unit for short range, high rate and long range, lower rate data communications |
GB9923864D0 (en) * | 1999-10-09 | 1999-12-08 | Koninkl Philips Electronics Nv | Low power radio network |
GB9923863D0 (en) * | 1999-10-09 | 1999-12-08 | Koninkl Philips Electronics Nv | Low power radio network |
JP3349485B2 (ja) * | 1999-11-29 | 2002-11-25 | シャープ株式会社 | 無線通信装置及び無線通信方法 |
DE69923981T2 (de) * | 1999-12-06 | 2006-03-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Verfahren und Anordnung in einem Telekommunikationsnetz |
EP1107520A1 (fr) * | 1999-12-06 | 2001-06-13 | Telefonaktiebolaget Lm Ericsson | Méthode et dispositif dans un réseau de communication |
DE69942507D1 (de) * | 1999-12-06 | 2010-07-29 | Ericsson Telefon Ab L M | Intelligente Herstellung von Piconets |
US7164704B1 (en) * | 1999-12-09 | 2007-01-16 | Texas Instruments Incorporated | Beam forming for transmit using bluetooth modified hopping sequences (BFTBMH) |
FR2802380B1 (fr) * | 1999-12-13 | 2002-02-15 | Matra Nortel Communications | Procede de controle d'un canal de communication partage par plusieurs stations, et station d'emission/reception pour la mise en oeuvre du procede |
US7684465B1 (en) * | 2000-01-21 | 2010-03-23 | Texas Instruments Incorporated | Frequency hopping communication protocol |
US8019836B2 (en) | 2002-01-02 | 2011-09-13 | Mesh Comm, Llc | Wireless communication enabled meter and network |
US7042863B1 (en) | 2000-03-13 | 2006-05-09 | Broadcom Corporation | Efficient time-division multiplexed addressing protocol |
US7284266B1 (en) | 2000-03-21 | 2007-10-16 | Broadcom Corporation | System and method for secure biometric identification |
US6804232B1 (en) * | 2000-03-27 | 2004-10-12 | Bbnt Solutions Llc | Personal area network with automatic attachment and detachment |
US6643336B1 (en) | 2000-04-18 | 2003-11-04 | Widcomm, Inc. | DC offset and bit timing system and method for use with a wireless transceiver |
WO2001089250A1 (fr) * | 2000-05-18 | 2001-11-22 | Siemens Aktiengesellschaft | Procede de transfert d'appel d'urgence |
KR100370746B1 (ko) * | 2000-05-30 | 2003-02-05 | 한국전자통신연구원 | 다차원 직교 자원 도약 다중화 통신 방식 및 장치 |
US20010054060A1 (en) * | 2000-06-16 | 2001-12-20 | Fillebrown Lisa A. | Personal wireless network |
US8386557B2 (en) * | 2000-06-16 | 2013-02-26 | Enfora, Inc. | Method for supporting a personal wireless network |
US7162260B2 (en) * | 2000-06-27 | 2007-01-09 | Sharp Kabushiki Kaisha | Method of managing communication network, and communication device |
JP2004504893A (ja) * | 2000-08-01 | 2004-02-19 | エンディウス・インコーポレーテッド | 椎骨を固定するための方法および装置 |
US6876643B1 (en) * | 2000-08-08 | 2005-04-05 | International Business Machines Corporation | Clustering in wireless ad hoc networks |
JP3738205B2 (ja) * | 2000-08-12 | 2006-01-25 | 三星電子株式会社 | ネットワークの伝送電力最適化装置及びその方法 |
EP1329060A2 (fr) * | 2000-08-30 | 2003-07-23 | Lucent Technologies Inc. | Procede et appareil pour assurer la securite des utilisateurs d'appareils de type bluetooth?tm |
US6876850B2 (en) * | 2000-08-30 | 2005-04-05 | Sony Corporation | Communication apparatus and communication method |
US6757532B1 (en) * | 2000-08-30 | 2004-06-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Permissible operating mode determination in a dual-mode radio |
JP3651664B2 (ja) * | 2000-09-01 | 2005-05-25 | 株式会社東芝 | 放送型サービスシステム及びその通信方法 |
AU2001280351A1 (en) * | 2000-09-20 | 2002-04-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Traffic dependent bluetooth scatternet optimization procedure |
AU2001296378A1 (en) * | 2000-09-29 | 2002-04-08 | The Regents Of The University Of California | Ad hoc network accessing using distributed election of a shared transmission schedule |
US6711151B1 (en) * | 2000-10-10 | 2004-03-23 | Computer Access Technology Corporation | Apparatus and method using paging for synchronizing to a communication network without joining the network |
US6718395B1 (en) * | 2000-10-10 | 2004-04-06 | Computer Access Technology Corporation | Apparatus and method using an inquiry response for synchronizing to a communication network |
AU2002215963A1 (en) * | 2000-10-20 | 2002-04-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Compensation for time drift in a digital communication system |
WO2002037757A2 (fr) * | 2000-10-30 | 2002-05-10 | The Regents Of The University Of California | Procede de sauts de canal a l'initiative d'un recepteur (rich) pour des reseaux de radiocommunication |
US6807165B2 (en) * | 2000-11-08 | 2004-10-19 | Meshnetworks, Inc. | Time division protocol for an ad-hoc, peer-to-peer radio network having coordinating channel access to shared parallel data channels with separate reservation channel |
US20030012173A1 (en) * | 2000-11-08 | 2003-01-16 | Johan Rune | Coordinated inquiry and page procedures in an ad-hoc wireless network |
GB0027332D0 (en) * | 2000-11-09 | 2000-12-27 | Koninkl Philips Electronics Nv | System control through portable devices |
US7058050B2 (en) * | 2000-12-01 | 2006-06-06 | Telefonaktiebolaget L M Ericsson (Publ) | Flexible inter-network communication scheduling |
DE10062303C2 (de) * | 2000-12-14 | 2002-11-28 | Layers Ag 7 | Verfahren zum Betrieb eines Ad Hoc-Netzwerkes zur drahtlosen Datenübertragung von synchronen und asynchronen Nachrichten |
US7164885B2 (en) * | 2000-12-18 | 2007-01-16 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for selective service access |
KR100781373B1 (ko) * | 2001-01-05 | 2007-11-30 | 삼성전자주식회사 | 무선 통신기기 및 그 통신방법 및 이를 적용한 무선통신시스템 |
KR100555664B1 (ko) * | 2001-01-08 | 2006-03-03 | 삼성전자주식회사 | 무선 통신기기 및 이를 적용한 무선 통신시스템 및 그통신방법 |
KR100726425B1 (ko) * | 2001-01-30 | 2007-06-11 | 삼성전자주식회사 | 무선 통신기기 및 이를 적용한 무선 통신시스템 및 그제어방법 |
US7177594B2 (en) * | 2001-09-06 | 2007-02-13 | Intel Corporation | Controlling communications between devices within a mobile and ad hoc network |
GB0102813D0 (en) * | 2001-02-05 | 2001-03-21 | Nokia Mobile Phones Ltd | Exchange of information in Bluetooth |
DE60212890T2 (de) * | 2001-02-21 | 2006-11-16 | Nippon Telegraph And Telephone Corp. | Mehrstrecken-Paket-Funk-Kommunikationssystem |
WO2002073898A2 (fr) * | 2001-03-12 | 2002-09-19 | Hrl Laboratories, Llc | Procede d'attribution dynamique des ressources fonde sur la priorite et dispositif pour systemes d'offre et de demande |
US7424002B2 (en) | 2001-03-20 | 2008-09-09 | Arraycomm, Llc | Resource allocation in a wireless network |
US7227855B1 (en) | 2001-03-20 | 2007-06-05 | Arraycomm Llc | Resource allocation in a wireless network |
US7577451B2 (en) * | 2001-04-04 | 2009-08-18 | Intel Corporation | Extending personal area networks |
US7106820B2 (en) | 2001-04-10 | 2006-09-12 | Broadcom Corporation | System and method for establishing word synchronization |
US7152110B2 (en) * | 2001-04-18 | 2006-12-19 | Microsoft Corporation | Information exchange between non-networked devices through an intermediary device via a piconet |
US7269183B2 (en) | 2001-04-27 | 2007-09-11 | Broadcom Corporation | System and method for connecting bluetooth-enabled devices to a personal computer |
US7039033B2 (en) * | 2001-05-07 | 2006-05-02 | Ixi Mobile (Israel) Ltd. | System, device and computer readable medium for providing a managed wireless network using short-range radio signals |
WO2003013078A1 (fr) * | 2001-07-31 | 2003-02-13 | Arraycomm, Inc. | Attribution dynamique de ressources materielles dans une station de base pour l'envoi de messages de recherche de personnes |
WO2003013162A2 (fr) * | 2001-07-31 | 2003-02-13 | Arraycomm, Inc. | Attribution de ressources dans un reseau sans fil |
US7089298B2 (en) * | 2001-08-20 | 2006-08-08 | Nokia Corporation | Naming distribution method for ad hoc networks |
US20030045296A1 (en) * | 2001-09-06 | 2003-03-06 | Jeremy Burr | Establishing communications between devices within a mobile ad hoc network based on user attributes |
WO2003026221A1 (fr) * | 2001-09-16 | 2003-03-27 | Commprize Ventures Limited | Systeme et procede d'introduction de l'emission-reception par secteurs dans des reseaux sans fil |
US7151745B2 (en) * | 2001-11-08 | 2006-12-19 | Broadcom Corporation | Scalable synchronous packet transmit scheduler |
US7421257B1 (en) | 2001-11-30 | 2008-09-02 | Stragent, Llc | Receiver scheduling in ad hoc wireless networks |
US7042866B2 (en) * | 2001-12-10 | 2006-05-09 | Telcordia Technologies, Inc. | Method and apparatus utilizing bluetooth protocols for the remote setting of IP network parameters |
US7231463B2 (en) * | 2002-01-04 | 2007-06-12 | Intel Corporation | Multi-level ring peer-to-peer network structure for peer and object discovery |
US7146433B2 (en) * | 2002-02-01 | 2006-12-05 | Lenovo Singapore Pte. Ltd | Extending an allowable transmission distance between a wireless device and an access point by communication with intermediate wireless devices |
US7369576B2 (en) * | 2002-02-06 | 2008-05-06 | Telcordia Technologies, Inc. | Managing scanning and traffic in a network |
US8170480B1 (en) * | 2002-02-25 | 2012-05-01 | Hewlett-Packard Development Company, L.P. | Bypassing bluetooth discovery for devices in a special list |
US7194283B2 (en) * | 2002-08-14 | 2007-03-20 | Intel Corporation | Method and apparatus for communication using multiple communication protocols |
EP1389853B1 (fr) * | 2002-08-14 | 2006-03-29 | Sony Deutschland GmbH | Reconfiguration en fonction de la bande passante de réseaux mobiles ad hoc |
US7610050B2 (en) * | 2002-08-14 | 2009-10-27 | Tadaaki Chigusa | System for mobile broadband networking using dynamic quality of service provisioning |
US8194770B2 (en) | 2002-08-27 | 2012-06-05 | Qualcomm Incorporated | Coded MIMO systems with selective channel inversion applied per eigenmode |
US7522689B2 (en) * | 2002-09-23 | 2009-04-21 | Telefonaktiebolaget L M Ericsson (Publ) | Clock recovery in communication systems |
US7460559B2 (en) * | 2002-10-17 | 2008-12-02 | Alereon, Inc. | Methods and sets of piconets using time frequency division multiple access |
US7483711B2 (en) * | 2002-10-24 | 2009-01-27 | Bbn Technologies Corp | Spectrum-adaptive networking |
US8218609B2 (en) | 2002-10-25 | 2012-07-10 | Qualcomm Incorporated | Closed-loop rate control for a multi-channel communication system |
US8170513B2 (en) | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Data detection and demodulation for wireless communication systems |
US7002900B2 (en) | 2002-10-25 | 2006-02-21 | Qualcomm Incorporated | Transmit diversity processing for a multi-antenna communication system |
US8320301B2 (en) | 2002-10-25 | 2012-11-27 | Qualcomm Incorporated | MIMO WLAN system |
US8134976B2 (en) | 2002-10-25 | 2012-03-13 | Qualcomm Incorporated | Channel calibration for a time division duplexed communication system |
US7324429B2 (en) | 2002-10-25 | 2008-01-29 | Qualcomm, Incorporated | Multi-mode terminal in a wireless MIMO system |
US8208364B2 (en) | 2002-10-25 | 2012-06-26 | Qualcomm Incorporated | MIMO system with multiple spatial multiplexing modes |
US8570988B2 (en) | 2002-10-25 | 2013-10-29 | Qualcomm Incorporated | Channel calibration for a time division duplexed communication system |
US7986742B2 (en) | 2002-10-25 | 2011-07-26 | Qualcomm Incorporated | Pilots for MIMO communication system |
US20040081131A1 (en) | 2002-10-25 | 2004-04-29 | Walton Jay Rod | OFDM communication system with multiple OFDM symbol sizes |
US8169944B2 (en) | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Random access for wireless multiple-access communication systems |
KR20040040040A (ko) * | 2002-11-06 | 2004-05-12 | 삼성전자주식회사 | 무선통신시스템 및 무선통신시스템의 핸드오프방식 |
KR100775691B1 (ko) * | 2002-11-13 | 2007-11-09 | 엘지노텔 주식회사 | 통신 네트웍에서의 메쉬 그룹 설정 방법 |
JP2006517766A (ja) * | 2003-02-13 | 2006-07-27 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | マルチバンドuwbネットワークにおけるピコネット干渉を低減する疑似ランダム周波数シーケンスの使用 |
US20060171402A1 (en) * | 2003-03-06 | 2006-08-03 | Moore John A | Method and system for providing broadband multimedia services |
US20040174900A1 (en) * | 2003-03-06 | 2004-09-09 | Incucomm, Inc. A Delaware Corporation | Method and system for providing broadband multimedia services |
WO2004079965A2 (fr) * | 2003-03-07 | 2004-09-16 | Yosi Dagan | Systeme de reseau sans fil permettant de collecter des donnees |
KR101086266B1 (ko) | 2003-03-27 | 2011-11-24 | 주식회사 젤라인 | 포인트 대 멀티 포인트 통신을 위한 계층적 매체 접근제어방법 |
US7808939B2 (en) * | 2003-03-28 | 2010-10-05 | Lenovo (Singapore) Pte Ltd. | Routing in wireless ad-hoc networks |
KR100538922B1 (ko) * | 2003-04-01 | 2005-12-27 | 삼성전자주식회사 | 블루투스 고속 서브넷에서의 슈퍼바이저핸드오버 방법 |
US7305459B2 (en) | 2003-04-28 | 2007-12-04 | Firetide, Inc. | Wireless service point networks |
US7522731B2 (en) * | 2003-04-28 | 2009-04-21 | Firetide, Inc. | Wireless service points having unique identifiers for secure communication |
DE10328602B4 (de) | 2003-06-25 | 2017-06-01 | Xieon Networks S.À.R.L. | Verfahren zur Preemphase optischer Signale in einem Übertragungssystem mit Add-Drop-Modulen |
EP1494394A1 (fr) * | 2003-06-30 | 2005-01-05 | Sony International (Europe) GmbH | Mécanisme de découverte de services tenant en compte la distance pour déterminer la disponibilité de services distants dans un réseau "sans fil" personnel |
FR2857542B1 (fr) * | 2003-07-11 | 2006-03-17 | Axces | Procede et systeme permettant d'etablir de maniere rapide une communication entre un lecteur et une pluralite d'objets communicants |
US7701858B2 (en) * | 2003-07-17 | 2010-04-20 | Sensicast Systems | Method and apparatus for wireless communication in a mesh network |
US7647055B2 (en) | 2003-09-19 | 2010-01-12 | Qualcomm Incorporated | System and method for integration of wireless computer network in position determining technology |
ITTO20030753A1 (it) * | 2003-09-26 | 2005-03-27 | Marco Rigat | Scarpone da telemark polifunzionale |
US7406070B2 (en) * | 2003-10-09 | 2008-07-29 | Telefonaktiebolaget L M Ericsson (Publ) | Adaptive threshold for HS-SCCH part 1 decoding |
US7453853B2 (en) * | 2003-10-09 | 2008-11-18 | Ericsson Technology Licensing Ab | Adaptive correlation of access codes in a packet-based communication system |
US7515924B2 (en) * | 2003-10-30 | 2009-04-07 | Qualcomm Incorporated | Method and module for operating independently of a remote terminal if an incoming pilot signal is not detected within a time period and enabling a pilot signal transmission |
US7468969B2 (en) * | 2003-11-07 | 2008-12-23 | Interdigital Technology Corporation | Apparatus and methods for central control of mesh networks |
US9473269B2 (en) | 2003-12-01 | 2016-10-18 | Qualcomm Incorporated | Method and apparatus for providing an efficient control channel structure in a wireless communication system |
US20050141596A1 (en) | 2003-12-31 | 2005-06-30 | Black Greg R. | Method and apparatus for reducing data collisions in a frequency hopping communication system |
US7408914B2 (en) * | 2004-01-08 | 2008-08-05 | Qualcomm Incorporated | Time-hopping systems and techniques for wireless communications |
GB0406104D0 (en) * | 2004-03-17 | 2004-04-21 | Koninkl Philips Electronics Nv | Connecting devices to a peer-to-peer network |
KR100678932B1 (ko) * | 2004-04-02 | 2007-02-07 | 삼성전자주식회사 | 백본 네트워크로 연결된 조정자 기반 무선망간의 통신방법및 장치 |
EP1589701A3 (fr) * | 2004-04-21 | 2010-07-14 | Samsung Electronics Co., Ltd. | Système et méthode pour la transmission de données dans un réseau sans fil basé sur un coordonnateur |
EP1626537A1 (fr) * | 2004-08-11 | 2006-02-15 | Iwatsu Electric Co., Ltd. | Système de réseau local sans fil et procédé correspondant pour connexion de points d'accès |
DE102004040069B3 (de) * | 2004-08-18 | 2006-03-23 | Siemens Ag | Aufbau eines drahtungebundenen Kommunikationsnetzes unter Ermittlung lokaler Topologieinformation aus den Kennungen der Kommunikationsgeräte |
US8478283B2 (en) * | 2004-09-29 | 2013-07-02 | Apple Inc. | Method and system for capacity and coverage enhancement in wireless networks with relays |
US8670421B2 (en) * | 2004-11-30 | 2014-03-11 | Symbol Technologies, Inc. | System and method for cohesive radio operation |
US8503299B2 (en) * | 2005-05-12 | 2013-08-06 | Apple, Inc. | Method and system for packet scheduling |
US7466749B2 (en) | 2005-05-12 | 2008-12-16 | Qualcomm Incorporated | Rate selection with margin sharing |
US7801105B2 (en) * | 2005-05-25 | 2010-09-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Scheduling radio resources for symmetric service data connections |
US20060268848A1 (en) * | 2005-05-25 | 2006-11-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Connection type handover of voice over internet protocol call based low-quality detection |
US8289952B2 (en) * | 2005-05-25 | 2012-10-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Enhanced VoIP media flow quality by adapting speech encoding based on selected modulation and coding scheme (MCS) |
US20060268900A1 (en) * | 2005-05-25 | 2006-11-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Local switching of calls setup by multimedia core network |
US7970400B2 (en) * | 2005-05-25 | 2011-06-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Connection type handover of voice over internet protocol call based on resource type |
US8358714B2 (en) | 2005-06-16 | 2013-01-22 | Qualcomm Incorporated | Coding and modulation for multiple data streams in a communication system |
US7515544B2 (en) | 2005-07-14 | 2009-04-07 | Tadaaki Chigusa | Method and system for providing location-based addressing |
US7701913B2 (en) * | 2005-10-31 | 2010-04-20 | Intel Corporation | Methods and apparatus for providing a platform coexistence system of multiple wireless communication devices |
US7962101B2 (en) * | 2005-11-17 | 2011-06-14 | Silver Spring Networks, Inc. | Method and system for providing a routing protocol for wireless networks |
TWI377825B (en) * | 2005-11-17 | 2012-11-21 | Silver Spring Networks Inc | Method and system for providing a network protocol for utility services |
CN100490408C (zh) * | 2005-11-24 | 2009-05-20 | 鸿富锦精密工业(深圳)有限公司 | 接入点及其建立无线分布系统连线的方法 |
US20070133592A1 (en) * | 2005-12-13 | 2007-06-14 | Heyun Zheng | Method for tree-based spatial time division multiple access (TDMA) scheduling in a multi-hop wireless |
US20070209059A1 (en) * | 2006-03-03 | 2007-09-06 | Moore John A | Communication system employing a control layer architecture |
US9014102B2 (en) | 2006-04-20 | 2015-04-21 | Abb Inc. | Mobile access node channel selection within a mesh network |
US20080127223A1 (en) * | 2006-06-27 | 2008-05-29 | Christian Zechlin | System and method for communications operations |
US7778149B1 (en) | 2006-07-27 | 2010-08-17 | Tadaaki Chigusa | Method and system to providing fast access channel |
EP2050306B1 (fr) * | 2006-07-28 | 2014-10-29 | BlackBerry Limited | Procédé et système à topologie réseau multi-sauts |
US8619623B2 (en) * | 2006-08-08 | 2013-12-31 | Marvell World Trade Ltd. | Ad-hoc simple configuration |
US9167423B2 (en) * | 2006-09-29 | 2015-10-20 | Rosemount Inc. | Wireless handheld configuration device for a securable wireless self-organizing mesh network |
US8233456B1 (en) | 2006-10-16 | 2012-07-31 | Marvell International Ltd. | Power save mechanisms for dynamic ad-hoc networks |
US8175024B2 (en) | 2006-10-16 | 2012-05-08 | Nokia Corporation | Bandwidth allocation for relay networks |
US8732315B2 (en) | 2006-10-16 | 2014-05-20 | Marvell International Ltd. | Automatic ad-hoc network creation and coalescing using WiFi protected setup |
US9308455B1 (en) | 2006-10-25 | 2016-04-12 | Marvell International Ltd. | System and method for gaming in an ad-hoc network |
US8305948B2 (en) * | 2006-11-15 | 2012-11-06 | Qualcomm Incorporated | Transmissions to multiple stations in wireless communication systems |
CN101548568B (zh) * | 2006-12-04 | 2013-03-27 | 皇家飞利浦电子股份有限公司 | 多信道无线网络中的信道间通信方法 |
US8160096B1 (en) | 2006-12-06 | 2012-04-17 | Tadaaki Chigusa | Method and system for reserving bandwidth in time-division multiplexed networks |
KR100869272B1 (ko) | 2006-12-06 | 2008-11-18 | 국방과학연구소 | 근거리 Ad―hoc 통신망에서의 다중접속제어 방법 |
US8687608B2 (en) | 2007-01-05 | 2014-04-01 | Qualcomm Incorporated | Method and apparatus for supporting communication in pico networks |
US7853417B2 (en) * | 2007-01-30 | 2010-12-14 | Silver Spring Networks, Inc. | Methods and system for utility network outage detection |
US7957322B2 (en) | 2007-02-02 | 2011-06-07 | Silver Sring Networks, Inc. | Flow-through provisioning in utility AMR/AMI networks |
US8401001B2 (en) | 2007-03-28 | 2013-03-19 | Intel Corporation | Method and apparatus of connectivity recovery in wireless network |
CN101287178B (zh) * | 2007-04-13 | 2012-04-18 | 中兴通讯股份有限公司 | 包含基站和无线中继站的无线传输网络的自适应管理方法 |
US8594678B2 (en) | 2007-04-18 | 2013-11-26 | Qualcomm Incorporated | Backhaul network for femto base stations |
JP5041871B2 (ja) * | 2007-05-10 | 2012-10-03 | 三菱電機株式会社 | ホスト計算機および無線ネットワーク・システム |
KR101297776B1 (ko) * | 2007-05-11 | 2013-08-20 | 삼성전자주식회사 | 통신모드를 변경하는 방법 및 휴대단말기 |
US8310961B2 (en) | 2007-10-08 | 2012-11-13 | Nokia Siemens Networks Oy | Techniques for link utilization for half-duplex and full-duplex stations in a wireless network |
US8351369B2 (en) * | 2007-12-12 | 2013-01-08 | Synapsense Corporation | Apparatus and method for adaptive data packet scheduling in mesh networks |
US7995467B2 (en) * | 2007-12-12 | 2011-08-09 | Synapsense Corporation | Apparatus and method for adapting to failures in gateway devices in mesh networks |
US8331282B2 (en) | 2007-12-28 | 2012-12-11 | Synapsense Corporation | Apparatus and method for adaptive channel hopping in mesh networks |
US8885548B2 (en) * | 2007-12-28 | 2014-11-11 | Synapsense Corporation | Apparatus and method for admitting new devices in a self-healing, self-organizing mesh network |
US8295209B2 (en) | 2008-02-21 | 2012-10-23 | Nokia Corporation | Frame structures with flexible partition boundary for wireless networks |
US8473898B2 (en) * | 2008-07-08 | 2013-06-25 | Synapsense Corporation | Apparatus and method for building integrated distributed applications for use with a mesh network |
US8599728B2 (en) | 2008-07-11 | 2013-12-03 | Nokia Siemens Networks Oy | Recovery schemes for group switching procedures for multi-group frequency division duplex wireless networks |
JP4829935B2 (ja) * | 2008-07-14 | 2011-12-07 | 富士通テレコムネットワークス株式会社 | 電力線通信装置 |
KR101613229B1 (ko) * | 2008-08-11 | 2016-04-19 | 코닌클리케 필립스 엔.브이. | 인체 영역 네트워크들에서 글로벌 비콘들의 송신들을 스케줄링하기 위한 방법 |
CN101651888B (zh) * | 2008-08-14 | 2012-08-08 | 华为技术有限公司 | 信道指配方法及装置 |
US8902868B2 (en) * | 2008-08-15 | 2014-12-02 | Qualcomm Incorporated | Method and apparatus for wirelessly distributing multiplex signal comprising multimedia data over a local area network |
US8532003B2 (en) | 2008-10-03 | 2013-09-10 | Synapsense Corporation | Apparatus and method for managing packet routing through internally-powered network devices in wireless sensor networks |
US8600560B2 (en) | 2008-12-30 | 2013-12-03 | Synapsense Corporation | Apparatus and method for controlling computer room air conditioning units (CRACs) in data centers |
US8538584B2 (en) | 2008-12-30 | 2013-09-17 | Synapsense Corporation | Apparatus and method for controlling environmental conditions in a data center using wireless mesh networks |
US8761084B2 (en) * | 2009-01-14 | 2014-06-24 | Synapsense Corporation | Apparatus and method for establishing data communication in a time-synchronized mesh wireless network during time synchronization failures |
US8509688B2 (en) * | 2009-04-23 | 2013-08-13 | Samsung Electronics Co., Ltd. | Apparatus and method for mac logical channel selection for operating piconets in body area networks |
US8160838B2 (en) * | 2009-04-30 | 2012-04-17 | Synapsense Corporation | Apparatus and method for visualizing environmental conditions in a data center using wireless sensor networks |
CN102804683B (zh) * | 2009-05-08 | 2015-11-25 | 韩国电子通信研究院 | 用于无线个域网装置的操作方法 |
EP2443901B1 (fr) * | 2009-06-15 | 2019-12-25 | Synapsense Corporation | Appareils et procédés pour une adaptation au bruit ambiant dans les réseaux à capteurs sans fil |
KR20120075491A (ko) | 2009-11-06 | 2012-07-06 | 리서치 인 모션 리미티드 | 전자 콘텐츠를 선택, 공유 및 디스플레이하는 장치, 시스템 및 방법 |
US20110111697A1 (en) * | 2009-11-06 | 2011-05-12 | Research In Motion Limited | Device, system and method for selecting, sharing and displaying electronic content |
JP5044046B2 (ja) | 2009-11-30 | 2012-10-10 | インターナショナル・ビジネス・マシーンズ・コーポレーション | パケット通信システム、通信方法およびプログラム |
ES2595213T3 (es) * | 2009-12-28 | 2016-12-28 | Nec Corporation | Sistema de comunicaciones y método de generación de información de topología |
US8811377B1 (en) | 2010-08-30 | 2014-08-19 | Synapsense Corporation | Apparatus and method for instrumenting devices to measure power usage using a multi-tier wireless network |
US8547876B1 (en) | 2011-04-13 | 2013-10-01 | The United States Of America As Represented By Secretary Of The Navy | Intermediate functional device and method |
US8930455B2 (en) | 2011-12-22 | 2015-01-06 | Silver Spring Networks, Inc. | Power outage detection system for smart grid using finite state machines |
US9131416B2 (en) * | 2012-02-02 | 2015-09-08 | Qualcomm Incorporated | Methods and apparatus for managing mobility in a multi-radio device |
US10136426B2 (en) | 2014-12-05 | 2018-11-20 | Dominant Technologies, LLC | Wireless conferencing system using narrow-band channels |
US9143309B2 (en) | 2012-04-13 | 2015-09-22 | Dominant Technologies, LLC | Hopping master in wireless conference |
US10568155B2 (en) | 2012-04-13 | 2020-02-18 | Dominant Technologies, LLC | Communication and data handling in a mesh network using duplex radios |
US9538570B2 (en) | 2014-12-05 | 2017-01-03 | Dominant Technologies, LLC | Mobile device with integrated duplex radio capabilities |
US9548854B2 (en) | 2012-04-13 | 2017-01-17 | Dominant Technologies, LLC | Combined in-ear speaker and microphone for radio communication |
US9247518B2 (en) | 2013-03-12 | 2016-01-26 | Qualcomm Incorporated | Mobile device positioning responsive to externally generated regional candidate position fix mode selection |
US9377519B2 (en) | 2013-03-12 | 2016-06-28 | Qualcomm Incorporated | Server-based mobile device regional candidate position fix mode selection |
US10015720B2 (en) * | 2014-03-14 | 2018-07-03 | GoTenna, Inc. | System and method for digital communication between computing devices |
WO2016144219A1 (fr) * | 2015-03-10 | 2016-09-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Nœud maître et procédé associé permettant la gestion de connexions à des dispositifs esclaves |
CA3058076A1 (fr) | 2016-07-01 | 2018-01-04 | Paxgrid Cdn Inc. | Systeme d'authentification et d'autorisation d'acces a un environnement vehiculaire a acces sans fil par des dispositifs clients et de comptabilisation de la consommation a cet ef fet |
US9948351B2 (en) * | 2016-07-01 | 2018-04-17 | Intel IP Corporation | Short range radio communication device and a method of controlling a short range radio communication device |
CN108124310B (zh) | 2016-11-29 | 2020-04-14 | 华为技术有限公司 | 一种跳频通信方法及其设备 |
EP3352527A1 (fr) * | 2017-01-24 | 2018-07-25 | ABB Schweiz AG | Réseau de communication sans fil |
CN109726841B (zh) * | 2017-10-27 | 2022-02-01 | 北京京东乾石科技有限公司 | 基于无人仓的agv路径计算方法及agv行驶路径控制方法 |
CN110383767B (zh) * | 2019-06-05 | 2023-07-11 | 深圳市汇顶科技股份有限公司 | 基于同步链路的拓扑切换方法、装置、系统及存储介质 |
US11576180B2 (en) * | 2020-03-04 | 2023-02-07 | Cisco Technology, Inc. | Resource unit allocation in mesh networks |
WO2023081158A1 (fr) * | 2021-11-04 | 2023-05-11 | Qorvo Us, Inc. | Réseau maillé auto-organisé |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4466060A (en) | 1982-02-11 | 1984-08-14 | At&T Bell Telephone Laboratories, Incorporated | Message routing in a computer network |
US5253248A (en) | 1990-07-03 | 1993-10-12 | At&T Bell Laboratories | Congestion control for connectionless traffic in data networks via alternate routing |
US5274666A (en) * | 1991-10-16 | 1993-12-28 | Telephonics Corporation | Wireless communication system |
EP0582373B1 (fr) | 1992-07-17 | 1999-10-06 | Sun Microsystems, Inc. | Méthode et appareil pour réaliser une organisation autonome dans un réseau local sans fil |
US5287384A (en) | 1992-10-15 | 1994-02-15 | Lxe Inc. | Frequency hopping spread spectrum data communications system |
WO1995001020A1 (fr) * | 1993-06-25 | 1995-01-05 | Xircom, Incorporated | Detection de porteuses virtuelles pour reseau local de transmission sans fil a commande repartie |
CN1071079C (zh) * | 1993-10-26 | 2001-09-12 | 艾利森电话股份有限公司 | 一种用于选定从发起者传递信息到接受者的路由的方法 |
US5412654A (en) | 1994-01-10 | 1995-05-02 | International Business Machines Corporation | Highly dynamic destination-sequenced destination vector routing for mobile computers |
US5414731A (en) | 1994-03-18 | 1995-05-09 | International Business Machines Corporation | Command set and procedure for synchronization of frequency hopping control clocks |
US5574979A (en) | 1994-06-03 | 1996-11-12 | Norand Corporation | Periodic interference avoidance in a wireless radio frequency communication system |
CA2129199C (fr) | 1994-07-29 | 1999-07-20 | Roger Y.M. Cheung | Methode et appareil pour raccorder en derivation un reseau local sans fil et un reseau local cable |
US5896375A (en) | 1996-07-23 | 1999-04-20 | Ericsson Inc. | Short-range radio communications system and method of use |
US5940431A (en) | 1996-12-23 | 1999-08-17 | Telefonaktiebolaget Lm Ericsson | Access technique of channel hopping communications system |
-
1997
- 1997-09-17 US US08/932,911 patent/US6590928B1/en not_active Expired - Lifetime
-
1998
- 1998-09-15 MY MYPI98004201A patent/MY123395A/en unknown
- 1998-09-15 CO CO98052998A patent/CO4810278A1/es unknown
- 1998-09-16 BR BR9812226-6A patent/BR9812226A/pt not_active IP Right Cessation
- 1998-09-16 EP EP08008576A patent/EP1956757A3/fr not_active Withdrawn
- 1998-09-16 DE DE69841001T patent/DE69841001D1/de not_active Expired - Lifetime
- 1998-09-16 CN CNB2005100700724A patent/CN1326370C/zh not_active Expired - Lifetime
- 1998-09-16 JP JP2000512315A patent/JP2001517021A/ja active Pending
- 1998-09-16 ES ES98943134T patent/ES2330394T3/es not_active Expired - Lifetime
- 1998-09-16 CN CNB988111535A patent/CN1227864C/zh not_active Expired - Lifetime
- 1998-09-16 ID IDW20000719A patent/ID24522A/id unknown
- 1998-09-16 WO PCT/SE1998/001555 patent/WO1999014897A2/fr not_active Application Discontinuation
- 1998-09-16 KR KR1020007002853A patent/KR20010024100A/ko not_active Application Discontinuation
- 1998-09-16 AU AU90994/98A patent/AU756518B2/en not_active Expired
- 1998-09-16 EE EEP200000166A patent/EE200000166A/xx unknown
- 1998-09-16 EP EP98943134A patent/EP1016241B1/fr not_active Expired - Lifetime
- 1998-09-16 CA CA002304189A patent/CA2304189A1/fr not_active Abandoned
- 1998-09-16 RU RU2000109553/09A patent/RU2201034C2/ru active
- 1998-09-17 AR ARP980104617A patent/AR020311A1/es active IP Right Grant
-
2000
- 2000-03-15 IL IL135086A patent/IL135086A/en not_active IP Right Cessation
- 2000-03-16 NO NO20001378A patent/NO20001378L/no not_active Application Discontinuation
-
2001
- 2001-06-04 HK HK01103847A patent/HK1033228A1/xx not_active IP Right Cessation
-
2007
- 2007-09-12 JP JP2007237169A patent/JP2008061256A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
NO20001378D0 (no) | 2000-03-16 |
CN1227864C (zh) | 2005-11-16 |
HK1033228A1 (en) | 2001-08-17 |
WO1999014897A3 (fr) | 1999-08-19 |
CA2304189A1 (fr) | 1999-03-25 |
ES2330394T3 (es) | 2009-12-09 |
US6590928B1 (en) | 2003-07-08 |
AU756518B2 (en) | 2003-01-16 |
JP2001517021A (ja) | 2001-10-02 |
EP1016241A2 (fr) | 2000-07-05 |
CO4810278A1 (es) | 1999-06-30 |
CN1697413A (zh) | 2005-11-16 |
AU9099498A (en) | 1999-04-05 |
MY123395A (en) | 2006-05-31 |
WO1999014897A2 (fr) | 1999-03-25 |
CN1278974A (zh) | 2001-01-03 |
DE69841001D1 (de) | 2009-09-03 |
JP2008061256A (ja) | 2008-03-13 |
ID24522A (id) | 2000-07-20 |
CN1326370C (zh) | 2007-07-11 |
BR9812226A (pt) | 2000-07-18 |
RU2201034C2 (ru) | 2003-03-20 |
EP1956757A2 (fr) | 2008-08-13 |
EE200000166A (et) | 2001-04-16 |
NO20001378L (no) | 2000-05-12 |
KR20010024100A (ko) | 2001-03-26 |
IL135086A (en) | 2006-12-31 |
AR020311A1 (es) | 2002-05-08 |
EP1956757A3 (fr) | 2009-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1016241B1 (fr) | Picoreseaux a saut de frequence dans un systeme multi-utilisateur radio non coordonne | |
EP1350359B1 (fr) | Mise en reseau dans des pico-reseaux a sauts de frequence non coordonnes | |
US7142527B2 (en) | System and method for transmission scheduling using network membership information and neighborhood information | |
Tzamaloukas et al. | Channel-hopping multiple access | |
EP1249101B1 (fr) | Protocole pour l'ordonnancement de transmissions etablies en fonction du voisinage | |
AU2002313823B2 (en) | System and method for collision-free transmission scheduling using neighborhood information and advertised transmission times | |
EP1155538B1 (fr) | Protocole adaptatif de communication destine aux reseaux sans fil | |
US20040047319A1 (en) | Contention-based medium access control for ad hoc wireless piconets | |
AU2002313823A1 (en) | System and method for collision-free transmission scheduling using neighborhood information and advertised transmission times | |
EP1371183B1 (fr) | Systeme et procede de planifications utilisant des informations d'appartenance a un reseau et de voisinage | |
Miklós et al. | Performance Analysis of Ad Hoc Communication Over Multiple Frequency Hopping Channels | |
Miklós et al. | A novel scheme to interconnect multiple frequency hopping channels into an ad hoc network | |
Ramachandran | Indoor Wireless Environments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000317 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE ES FI FR GB IT NL PT SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) |
|
17Q | First examination report despatched |
Effective date: 20070823 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04W 84/20 20090101AFI20090203BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FI FR GB IT NL PT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69841001 Country of ref document: DE Date of ref document: 20090903 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2330394 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091122 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090722 |
|
26N | No opposition filed |
Effective date: 20100423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090722 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170927 Year of fee payment: 20 Ref country code: FR Payment date: 20170925 Year of fee payment: 20 Ref country code: FI Payment date: 20170927 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20170926 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170927 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20171002 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69841001 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20180915 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20180915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20180915 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20180917 |