EP0995880A2 - Turbinenschaufel - Google Patents
Turbinenschaufel Download PDFInfo
- Publication number
- EP0995880A2 EP0995880A2 EP99810915A EP99810915A EP0995880A2 EP 0995880 A2 EP0995880 A2 EP 0995880A2 EP 99810915 A EP99810915 A EP 99810915A EP 99810915 A EP99810915 A EP 99810915A EP 0995880 A2 EP0995880 A2 EP 0995880A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine blade
- felt
- intermetallic
- turbine
- blade according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 claims abstract description 50
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000000835 fiber Substances 0.000 claims abstract description 15
- 239000011253 protective coating Substances 0.000 claims abstract description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 238000005260 corrosion Methods 0.000 claims abstract description 3
- 239000011248 coating agent Substances 0.000 claims abstract 2
- 238000000576 coating method Methods 0.000 claims abstract 2
- 230000001681 protective effect Effects 0.000 claims description 16
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 claims description 5
- 229910021326 iron aluminide Inorganic materials 0.000 claims description 5
- 229910000907 nickel aluminide Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 238000009413 insulation Methods 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000012720 thermal barrier coating Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- UJXVAJQDLVNWPS-UHFFFAOYSA-N [Al].[Al].[Al].[Fe] Chemical compound [Al].[Al].[Al].[Fe] UJXVAJQDLVNWPS-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/182—Transpiration cooling
- F01D5/183—Blade walls being porous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
- B22F7/004—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/14—Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
Definitions
- the invention relates to a turbine blade with a metallic Blade body and a protective cover made of a porous intermetallic felt is formed and cooling air channels are formed in the blade body of the turbine blade which open on the intermetallic felt to supply it with cooling air.
- a sealing arrangement which has a passage to seal between a rotating and a non-rotating part.
- the sealing arrangement has a surface seal arranged on one of the two parts and an edge part that is opposite the surface seal arranged and attached to the other part.
- the edge part points into the surface seal protruding teeth on the grooves when rotating in the surface seal cut, whereby the seal assembly forms a labyrinth seal.
- the surface seal of this known seal arrangement is composed of metal fibers, which form a mat or felt-like construction.
- This material is achieved by sintering a matrix of randomly oriented metal fibers at a high Temperature and reduced pressure, creating a completely matted Structure made of metal fibers that forms metal bonds at all contact points which has fibers.
- the sintered material is characterized by an apparent Density, which is considerably less than the density of the fibers themselves. The low The density of the sintered fiber material is approximately in the range from 14 to 30% and thus these materials differ from sintered powdered materials, that have a density of more than 30%.
- Have this type of surface seals Proven as it has both the required strength, rigidity and compactness have as well as elastic, crushable and rubable.
- GB 2 053 367 A shows a cooled gas turbine with one rotating Blade opposite shield.
- the shield is made of an im Cross-section rectangular tubular ring formed in its interior Can absorb cooling air.
- On the wall of the Rings are holes and this wall is porous on the outside Provide layer, which can be penetrated by the cooling air.
- the porous Layer consists of a material sintered from small balls.
- the balls are made of a nickel-based super alloy.
- DE 2 038 047 describes a structural precaution on guide vanes that are inside the flow space of a steam turbine, in particular a saturated and wet steam turbine, is arranged and to drain the surfaces of each Guide vanes.
- the guide vane provides drainage channels that are covered with porous, liquid-permeable material made of metallic materials or their Alloys is made, are filled.
- porous, liquid-permeable Material is used solely for the targeted removal of water from the interior of a steam turbine.
- DE 33 27 218 A1 describes a thermally highly stressed, cooled component, in particular a turbine blade which, for the sake of reducing the Thermal stress is covered with a metal felt layer, which in turn is covered with an additional, ceramic thermal insulation layer.
- the metal felt layer serves as an elastic carrier material for the ceramic Thermal insulation layer (see page 4, lines 33 to page 5, line 2, page 6, 1. Paragraph and page 7, lines 2 to 7), but there is also a metal felt layer heat-dissipating effect, especially since cooling air via cooling air guide grooves 3 (see 1) is fed to the underside of the metal felt layer to make it local to cool and in this way to optimal heat dissipation by the Thermal insulation layer 6 to pass through flowing heat.
- the invention has for its object a turbine blade with a metallic Blade body and a protective cover made of a porous intermetallic felt is formed and in the blade body of the turbine blade cooling air channels are formed, which open on the intermetallic felt to this with cooling air supply in such a way that the turbine blade can be cooled better than it is possible in the case of the prior art. This is also intended to increase efficiency the turbine can be increased.
- the turbine blade according to the invention is characterized in that the intermetallic felt based on an iron or nickel-aluminide alloy, with mixed proportions between Fe: Al and Ni: Al of approx. 50:50, with the ratio that Atomic ratio is meant.
- the intermetallic felt based on an iron or nickel-aluminide alloy with mixed proportions between Fe: Al and Ni: Al of approx. 50:50, with the ratio that Atomic ratio is meant.
- Metallic felts are also said to comprise ratios between 40:60 to 60:40 obtained, the oxidizability is very weak, which on the one hand The lifespan of such metallic felts can be increased significantly and others retain their felt structure for longer.
- iron or nickel-aluminide alloy Add substances or elements of the respective alloy, e.g. Ta, Nb, Cr, B, Si, Zr or Ga. It is essential when adding additional elements that the atomic Mixing ratio between Fe and Al or Ni and Al in the order of magnitude remains at 50:50.
- cooling channels are provided according to the invention in the protective coating Blade body facing, open in the area of the cooling channels. In this way it can be ensured that the intermetallic felt is additionally increased by cooling air is flowed through. This can create a risk of turbine blade overheating be excluded.
- the porous intermetallic felt on the surface of the blade body does not immediately cool air introduced into it with the Hot gases come into contact with the turbine, but occurs gradually and on a larger scale Surface distributed through the intermetallic felt.
- the intermetallic felt the higher surface temperatures than conventional materials for turbine blades can be intensively cooled as a result, whereby the turbine blade with a compared to a turbine blade, in which the cooling air ducts directly emerge on the surface, extremely small amount of cooling air at operating temperature can be held. Because the amount of cooling air because of better heat transfer the efficiency of the turbine is correspondingly much lower increased because less cooling air does not affect the energy supply in the combustion chamber participates and reduces the efficiency of the turbine.
- the gradual flow of cooling air through the intermetallic felt causes the exit velocity of the cooling air on the surface of the turbine blade is very low and does not adversely affect the aerodynamics in the manner known hitherto. This is especially true if the intermetallic felt is on the leading edge the turbine blade is arranged because then, unlike conventional ones cooled turbine blades, the flow behavior of the turbine blade impinging gases are not adversely affected by counter-flowing cooling air becomes.
- the cooling channels incorporated in the intermetallic felt which the felt layer does not necessarily push through completely, but only partially penetrate the felt, ensure that the protective cover is optimally supplied with cooling air.
- the turbine blade according to the invention allows because of the smaller amount of cooling air and the improved aerodynamics, a considerable increase in efficiency a turbine equipped with these turbine blades.
- the intermetallic felt is also insensitive to mechanical loads, such as. Impact of foreign objects, as these only result in small, local deformations lead, but neither the function of the cooling system essential nor affect the basic function of the blade.
- Fig. 1 shows a turbine blade 1 according to the invention in section.
- the turbine blade 1 has a known aerodynamic shape and is made of two Side walls 2, 3 formed.
- the turbine blade has in the leading edge region 4 1 has an approximately semicircular outer surface that is flush with the outer surfaces the side walls 2, 3 merges.
- the side walls 2, 3 run from Front edge area 4 together in the direction of a rear edge 5, wherein they in Area of the rear edge 5 are firmly connected.
- Adjacent to the im Cut approximately semicircular leading edge area 4 is between the side walls 2, 3 a transverse web 6 is arranged, the space between the two Side walls 2, 3 divided into two cooling air channels 7, 8, through which the Turbine blade 1 cooling air is supplied.
- the front edge region 4 of the turbine blade is designed in two layers, wherein an inner layer by a front edge part 9 which is approximately ring segment-shaped in section and an outer layer by an intermetallic felt Protective cover 10 are formed.
- the approximately circular segment-shaped front edge part 9 is with the side walls 2, 3 each connected via a transition part 11, 12.
- the transition parts 11, 12 form a constriction area continuously tapering toward the leading edge portion.
- the two side walls 2, 3, the crossbar 6, the transition parts 11, 12 and the leading edge part 9 are formed in one piece from metal and form one Blade body.
- the front edge part 9 is provided with approximately radially extending cooling bores 13, which open into cooling channels 13 'which protrude into the protective coating 10.
- further cooling bores 14 can be introduced, which form the side walls 2, 3 sloping from the inside to the outside towards the rear edge 5 enforce.
- the constriction area in the leading edge area 4 forms a recess for Inclusion of the protective cover 10 consisting of the intermetallic felt.
- the intermetallic felt is made of a felt-like material, such as it, for example, from "VDI Report 1151, 1995, Metallic High Temperature Fibers by melt extraction - manufacture, properties and applications, Stephani et al., page 175ff ".
- the so educated Felt-like material is used as a filter and as a catalyst carrier.
- this felt-like material is made from intermetallic fibers and used as a protective covering for a turbine blade.
- the intermetallic felt consists of an iron-aluminide or nickel-aluminide alloy with an alloy ratio between each of the two alloy partners of about 50:50.
- These alloys have high heat resistance and high oxidation resistance and advantageous thermal conductivity properties.
- the above are Properties by choosing the intermetallic phase in a wide range Range adjustable.
- the protective cover 10 made of intermetallic felt is in the recess of the turbine blade 1 fixed by high temperature soldering, the solder a higher Melting point as the application temperature in the turbine.
- the porosity of the protective coating 10 can be determined by the parameters of the manufacturing process how to set the pressing pressure and sintering temperature. This is the Flow resistance of the protective coating 10 to the respective requirements adjustable.
- the thickness of the protective coating is e.g. in the range of 2-8 mm.
- Cooling air is the leading edge part through the cooling channel 7 during operation of the turbine 9 supplied, the cooling air through the formed in the leading edge part Bores 13, 13 'to the outside in the protective cover 10 made of intermetallic felt flows.
- the incoming air is distributed over an area and flows through the felt. Because of the large contact area between the Intermetallic felt and the cooling air have excellent heat transfer properties, so that the predominant heat capacity of the cooling air for cooling the Protective cover 10 is used. It also works from an intermetallic felt existing protective coating 10 as a thermal insulator against the blade body.
- the rear edge 5 of the turbine blade with a protective cover made of intermetallic felt to provide a protective coating over the entire surface of the turbine blade.
- the protective cover can be of variable thickness and / or of variable porosity his.
- the porosity can e.g. in the course from the leading edge area 4 to the trailing edge 5 remove, causing the intermetallic felt to be more exposed to heat Front edge absorbs more cooling air than in the rest of the area. It can also be useful be to vary the porosity along the span.
- the intermetallic felt can e.g. also with a corrosion protection layer or Thermal protection layer to be coated.
- a so-called TBC layer Thermal Barrier Coating
- the felt can be Deformability Differences in the thermal expansion behavior of the protective layer and balance the base material.
- Another advantage of the protective coating according to the invention is that it has Foreign body damage is insensitive, i.e. usually only local deformations are generated that hardly affect the function of the turbine blade.
- the turbine blades according to the invention are for use in a gas turbine designed.
- the front edges of the blades of the first turbine guide row are to be provided with the protective coating according to the invention, since they are special are strongly exposed to the hot gases of the turbine.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
- Fig. 1
- eine erfindungsgemäße Turbinenschaufel im Querschnitt,
- Fig. 2
- die in Fig. 1 gezeigt Turbinenschaufel im Vorderkantenbereich in einer vergrößerten Querschnittsdarstellung,
- Fig. 3
- den Vorderkantenbereich der in Fig. 1 gezeigten Turbinenschaufel ohne einen Intermetallik-Filz in perspektivischer Ansicht.
- 1
- Turbinenschaufel
- 2
- Seitenwandung
- 3
- Seitenwandung
- 4
- Vorderkantenbereich
- 5
- Hinterkante
- 6
- Quersteg
- 7
- Kühlluftkanal
- 8
- Kühlluftkanal
- 9
- Vorderkantenteil
- 10
- Schutzüberzug
- 11
- Übergangsteil
- 12
- Übergangsteil
- 13,13'
- Kühlbohrung
- 14
- Kühlbohrung
Claims (15)
- Turbinenschaufel mit einem metallischen Schaufelkörper und einem Schutzüberzug (10), der aus einem porösen Intermetallik-Filz ausgebildet ist und im Schaufelkörper der Turbinenschaufel (1) Kühlluftkanäle (13) ausgebildet sind, welche am Intermetallik-Filz münden, um diesen mit Kühlluft zu versorgen,
dadurch gekennzeichnet, daß der Intermetallik-Filz auf einer Eisen- oder Nickel-Aluminid-Legierung basiert, mit Mischungsanteilen zwischen Fe:Al bzw. Ni:Al von ca. 50:50, und
daß der Schutzüberzug Kühlkanäle 13' aufweist, die, dem Schaufelkörper zugewandt, im Bereich der Kühlkanäle münden. - Turbinenschaufel nach Anspruch 1,
dadurch gekennzeichnet, daß die Eisen- oder Nickel-Aluminid-Legierung zusätzliche Bestandteile von Ta, Nb, Cr, B, Si, Zr oder Ga aufweist. - Turbinenschaufel nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß Kühlkanäle 13' vorgesehen sind, die den Schutzüberzug vollständig durchsetzen. - Turbinenschaufel nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß Kühlkanäle 13' vorgesehen sind, die in den Schutzüberzug nur teilweise eindringen. - Turbinenschaufel nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß eine Vorderkante (4) des Schaufelkörpers mit dem Intermetallik-Filz versehen ist. - Turbineschaufel nach einem der Ansprüche 1 oder 5,
dadurch gekennzeichnet, daß eine Hinterkante (5) des Schaufelkörpers mit dem Intermetallik-Filz versehen ist. - Turbinenschaufel nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß der Schaufelkörper in dem, mit dem Intermetallik-Filz versehenen Bereich mit einer Ausnehmung versehen ist, in welcher der Intermetallik-Filz angeordnet ist, so daß er bündig mit dem angrenzenden Bereich des Schaufelkörpers abschließt. - Turbinenschaufel nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, daß der gesamte Schaufelkörper mit dem Intermetallik-Filz überzogen ist. - Turbinenschaufel nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet, daß der Intermetallik-Filz aus zusammengepressten und gesinterten intermetallischen Fasern ausgebildet ist. - Turbinenschaufel nach Anspruch 9,
dadurch gekennzeichnet, daß die intermetallischen Fasern aus einer intermetallischen Phase auf Eisenbasis oder Nickelbasis ausgebildet sind. - Turbinenschaufel nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, daß die Fasern des Intermetallik-Filzes beschichtet sind. - Turbinenschaufel nach Anspruch 11,
dadurch gekennzeichnet, daß die Fasern des Intermetallik-Filzes mit einer Korrosionsschutzschicht und/oder einer Wärmeschutzbeschichtung beschichtet sind. - Turbinenschaufel nach einem der Ansprüche 1 bis 12,
dadurch gekennzeichnet, daß die Turbinenschaufel am Rotor einer Turbomaschine angeordnet ist. - Turbinenschaufel nach Anspruch 12
dadurch gekennzeichnet, daß die in einer ersten Leitreihe angeordneten Turbinenschaufeln mit dem aus Intermetallik-Filz ausgebildeten Schutzüberzug versehen sind. - Turbinenschaufeln nach Anspruch 13 oder 14,
dadurch gekennzeichnet, daß die Turbomaschine eine Gasturbine ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19848104A DE19848104A1 (de) | 1998-10-19 | 1998-10-19 | Turbinenschaufel |
DE19848104 | 1998-10-19 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0995880A2 true EP0995880A2 (de) | 2000-04-26 |
EP0995880A3 EP0995880A3 (de) | 2002-01-23 |
EP0995880B1 EP0995880B1 (de) | 2003-12-03 |
Family
ID=7884915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99810915A Expired - Lifetime EP0995880B1 (de) | 1998-10-19 | 1999-10-07 | Turbinenschaufel |
Country Status (3)
Country | Link |
---|---|
US (1) | US6241469B1 (de) |
EP (1) | EP0995880B1 (de) |
DE (2) | DE19848104A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2348276A (en) * | 1999-03-20 | 2000-09-27 | Abb Alstom Power Ch Ag | Combustion chamber wall |
EP1512911A1 (de) * | 2003-09-04 | 2005-03-09 | Rolls-Royce Deutschland Ltd & Co KG | Anordnung zur Kühlung hoch wärmebelasteter Bauteile |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6264766B1 (en) * | 1998-11-24 | 2001-07-24 | General Electric Company | Roughened bond coats for a thermal barrier coating system and method for producing |
DE19937577A1 (de) * | 1999-08-09 | 2001-02-15 | Abb Alstom Power Ch Ag | Reibungsbehaftete Gasturbinenkomponente |
US6617003B1 (en) * | 2000-11-06 | 2003-09-09 | General Electric Company | Directly cooled thermal barrier coating system |
US6761956B2 (en) * | 2001-12-20 | 2004-07-13 | General Electric Company | Ventilated thermal barrier coating |
US6709230B2 (en) * | 2002-05-31 | 2004-03-23 | Siemens Westinghouse Power Corporation | Ceramic matrix composite gas turbine vane |
US6648597B1 (en) | 2002-05-31 | 2003-11-18 | Siemens Westinghouse Power Corporation | Ceramic matrix composite turbine vane |
CN100430499C (zh) * | 2002-08-16 | 2008-11-05 | 阿尔斯托姆科技有限公司 | 金属间材料及该材料的应用 |
US7093359B2 (en) | 2002-09-17 | 2006-08-22 | Siemens Westinghouse Power Corporation | Composite structure formed by CMC-on-insulation process |
US9068464B2 (en) * | 2002-09-17 | 2015-06-30 | Siemens Energy, Inc. | Method of joining ceramic parts and articles so formed |
JP4096706B2 (ja) * | 2002-11-13 | 2008-06-04 | 株式会社Ihi | 薄肉軽量冷却タービン翼 |
DE10301175B4 (de) * | 2003-01-08 | 2006-12-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur pulvermetallurgischen Herstellung von Bauteilen |
EP1481747A3 (de) * | 2003-05-27 | 2007-05-02 | Alstom Technology Ltd | Verfahren zur Herstellung eines wärmebelasteten Bauteils sowie wärmebelastetes Bauteil |
DE10332563A1 (de) * | 2003-07-11 | 2005-01-27 | Rolls-Royce Deutschland Ltd & Co Kg | Turbinenschaufel mit Prallkühlung |
US6905302B2 (en) * | 2003-09-17 | 2005-06-14 | General Electric Company | Network cooled coated wall |
US7216694B2 (en) * | 2004-01-23 | 2007-05-15 | United Technologies Corporation | Apparatus and method for reducing operating stress in a turbine blade and the like |
US7066717B2 (en) * | 2004-04-22 | 2006-06-27 | Siemens Power Generation, Inc. | Ceramic matrix composite airfoil trailing edge arrangement |
DE102004023623A1 (de) * | 2004-05-10 | 2005-12-01 | Alstom Technology Ltd | Strömungsmaschinenschaufel |
US7186091B2 (en) * | 2004-11-09 | 2007-03-06 | General Electric Company | Methods and apparatus for cooling gas turbine engine components |
US7435058B2 (en) | 2005-01-18 | 2008-10-14 | Siemens Power Generation, Inc. | Ceramic matrix composite vane with chordwise stiffener |
EP1707301B1 (de) * | 2005-03-31 | 2008-06-18 | Siemens Aktiengesellschaft | Verfahren zum Aufbringen von Fasermatten auf die Oberfläche oder in eine Vertiefung eines Bauteiles |
US7241107B2 (en) * | 2005-05-19 | 2007-07-10 | Spanks Jr William A | Gas turbine airfoil with adjustable cooling air flow passages |
US7563071B2 (en) * | 2005-08-04 | 2009-07-21 | Siemens Energy, Inc. | Pin-loaded mounting apparatus for a refractory component in a combustion turbine engine |
US7510367B2 (en) * | 2006-08-24 | 2009-03-31 | Siemens Energy, Inc. | Turbine airfoil with endwall horseshoe cooling slot |
US7641440B2 (en) * | 2006-08-31 | 2010-01-05 | Siemens Energy, Inc. | Cooling arrangement for CMC components with thermally conductive layer |
US7806658B2 (en) * | 2006-10-25 | 2010-10-05 | Siemens Energy, Inc. | Turbine airfoil cooling system with spanwise equalizer rib |
EP1930544A1 (de) * | 2006-10-30 | 2008-06-11 | Siemens Aktiengesellschaft | Turbinenschaufel |
US7963745B1 (en) | 2007-07-10 | 2011-06-21 | Florida Turbine Technologies, Inc. | Composite turbine blade |
US8070454B1 (en) * | 2007-12-12 | 2011-12-06 | Florida Turbine Technologies, Inc. | Turbine airfoil with trailing edge |
US8167573B2 (en) * | 2008-09-19 | 2012-05-01 | Siemens Energy, Inc. | Gas turbine airfoil |
US8671696B2 (en) * | 2009-07-10 | 2014-03-18 | Leonard M. Andersen | Method and apparatus for increasing thrust or other useful energy output of a device with a rotating element |
US8256088B2 (en) * | 2009-08-24 | 2012-09-04 | Siemens Energy, Inc. | Joining mechanism with stem tension and interlocked compression ring |
US20120067054A1 (en) * | 2010-09-21 | 2012-03-22 | Palmer Labs, Llc | High efficiency power production methods, assemblies, and systems |
DE102011008695A1 (de) * | 2011-01-15 | 2012-07-19 | Mtu Aero Engines Gmbh | Verfahren zum generativen Herstellen eines Bauelements mit einer integrierten Dämpfung für eine Strömungsmaschine und generativ hergestelltes Bauelement mit einer integrierten Dämpfung für eine Strömungsmaschine |
US9139480B2 (en) | 2011-02-28 | 2015-09-22 | Honeywell International Inc. | Protective coatings and coated components comprising the protective coatings |
US20120301319A1 (en) * | 2011-05-24 | 2012-11-29 | General Electric Company | Curved Passages for a Turbine Component |
EP2540970A1 (de) | 2011-07-01 | 2013-01-02 | Siemens Aktiengesellschaft | Mit flüssigem Metall gekühlte Schaufel |
RU2476682C1 (ru) * | 2011-09-07 | 2013-02-27 | Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") | Лопатка турбомашины |
RU2502875C2 (ru) * | 2011-10-25 | 2013-12-27 | Закрытое акционерное общество "Группа региональных производств" | Охлаждаемая лопатка |
WO2013144022A1 (en) | 2012-03-28 | 2013-10-03 | Alstom Technology Ltd | Method for removing a ceramic |
US20150292074A1 (en) * | 2012-10-31 | 2015-10-15 | Saab Ab | A porous coating applied onto an aerial article |
US10539041B2 (en) * | 2013-10-22 | 2020-01-21 | General Electric Company | Cooled article and method of forming a cooled article |
RU2543638C1 (ru) * | 2014-03-06 | 2015-03-10 | Николай Владимирович Макаров | Способ повышения давления и экономичности лопастных турбомашин радиального типа |
RU2557818C1 (ru) * | 2014-07-21 | 2015-07-27 | Общество с ограниченной ответственностью "ГрандАэро" | Радиально-вихревая турбомашина |
US9963982B2 (en) * | 2014-09-08 | 2018-05-08 | United Technologies Corporation | Casting optimized to improve suction side cooling shaped hole performance |
US10077667B2 (en) * | 2015-05-08 | 2018-09-18 | United Technologies Corporation | Turbine airfoil film cooling holes |
KR101866900B1 (ko) * | 2016-05-20 | 2018-06-14 | 한국기계연구원 | 가스 터빈용 블레이드 |
US20180051568A1 (en) * | 2016-08-16 | 2018-02-22 | General Electric Company | Engine component with porous holes |
US10598025B2 (en) * | 2016-11-17 | 2020-03-24 | United Technologies Corporation | Airfoil with rods adjacent a core structure |
GB2560516B (en) | 2017-03-13 | 2019-08-28 | Rolls Royce Plc | A method of manufacturing a coated turbine blade and a coated turbine vane |
US11434781B2 (en) | 2018-10-16 | 2022-09-06 | General Electric Company | Frangible gas turbine engine airfoil including an internal cavity |
US11149558B2 (en) | 2018-10-16 | 2021-10-19 | General Electric Company | Frangible gas turbine engine airfoil with layup change |
US11111815B2 (en) | 2018-10-16 | 2021-09-07 | General Electric Company | Frangible gas turbine engine airfoil with fusion cavities |
US10746045B2 (en) | 2018-10-16 | 2020-08-18 | General Electric Company | Frangible gas turbine engine airfoil including a retaining member |
US10760428B2 (en) | 2018-10-16 | 2020-09-01 | General Electric Company | Frangible gas turbine engine airfoil |
US10837286B2 (en) | 2018-10-16 | 2020-11-17 | General Electric Company | Frangible gas turbine engine airfoil with chord reduction |
US11208892B2 (en) | 2020-01-17 | 2021-12-28 | Raytheon Technologies Corporation | Rotor assembly with multiple rotor disks |
US11371351B2 (en) * | 2020-01-17 | 2022-06-28 | Raytheon Technologies Corporation | Multi-disk bladed rotor assembly for rotational equipment |
US11339673B2 (en) | 2020-01-17 | 2022-05-24 | Raytheon Technologies Corporation | Rotor assembly with internal vanes |
US11946441B2 (en) * | 2022-02-10 | 2024-04-02 | Kamil Podhola | Outer turbine system |
CN115657294B (zh) * | 2022-12-26 | 2023-04-11 | 中国航天三江集团有限公司 | 螺旋可调式高功率激光液冷截止光阑 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB778672A (en) * | 1954-10-18 | 1957-07-10 | Parsons & Marine Eng Turbine | Improvements in and relating to the cooling of bodies subject to a hot gas stream, for example turbine blades |
US3215511A (en) * | 1962-03-30 | 1965-11-02 | Union Carbide Corp | Gas turbine nozzle vane and like articles |
US3647316A (en) * | 1970-04-28 | 1972-03-07 | Curtiss Wright Corp | Variable permeability and oxidation-resistant airfoil |
US3656863A (en) * | 1970-07-27 | 1972-04-18 | Curtiss Wright Corp | Transpiration cooled turbine rotor blade |
DE2038047A1 (de) * | 1970-07-31 | 1972-02-03 | Maschf Augsburg Nuernberg Ag | Entwässerung der Oberflachen der Leitschaufeln und des Stromungsraumes von Dampfturbinen, insbesondere Satt und Naßdampfturbinen |
US3706508A (en) * | 1971-04-16 | 1972-12-19 | Sean Lingwood | Transpiration cooled turbine blade with metered coolant flow |
GB1545584A (en) * | 1975-03-07 | 1979-05-10 | Onera (Off Nat Aerospatiale) | Processes and systems for the formation of surface diffusion alloys on perforate metal workpieces |
US4257735A (en) | 1978-12-15 | 1981-03-24 | General Electric Company | Gas turbine engine seal and method for making same |
GB2053367B (en) | 1979-07-12 | 1983-01-26 | Rolls Royce | Cooled shroud for a gas turbine engine |
FR2483513A1 (fr) * | 1980-05-28 | 1981-12-04 | Snecma | Procede pour la fabrication d'aubes de turbine refroidies au moyen d'un corps poreux et produit obtenu suivant ce procede |
DE3203869C2 (de) | 1982-02-05 | 1984-05-10 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Turbinenlaufschaufel für Strömungsmaschinen, insbesondere Gasturbinentriebwerke |
DE3327218A1 (de) * | 1983-07-28 | 1985-02-07 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Thermisch hochbeanspruchtes, gekuehltes bauteil, insbesondere turbinenschaufel |
DE4130946C1 (de) * | 1991-09-18 | 1992-09-03 | Mtu Muenchen Gmbh | |
DE4241420C1 (de) * | 1992-12-09 | 1993-11-25 | Mtu Muenchen Gmbh | Verfahren zur Herstellung von Bauteilen oder Substraten mit Verbundbeschichtungen und dessen Anwendung |
DE19734273A1 (de) * | 1997-08-07 | 1999-02-11 | Siemens Ag | Hitzebeständige Leitschaufel |
-
1998
- 1998-10-19 DE DE19848104A patent/DE19848104A1/de not_active Withdrawn
-
1999
- 1999-10-07 EP EP99810915A patent/EP0995880B1/de not_active Expired - Lifetime
- 1999-10-07 DE DE59907926T patent/DE59907926D1/de not_active Expired - Lifetime
- 1999-10-18 US US09/419,789 patent/US6241469B1/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
None |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2348276A (en) * | 1999-03-20 | 2000-09-27 | Abb Alstom Power Ch Ag | Combustion chamber wall |
GB2348276B (en) * | 1999-03-20 | 2003-07-16 | Abb Alstom Power Ch Ag | Combustion chamber wall |
EP1512911A1 (de) * | 2003-09-04 | 2005-03-09 | Rolls-Royce Deutschland Ltd & Co KG | Anordnung zur Kühlung hoch wärmebelasteter Bauteile |
US7204089B2 (en) | 2003-09-04 | 2007-04-17 | Rolls-Royce Deutschland Ltd & Co Kg | Arrangement for the cooling of thermally highly loaded components |
Also Published As
Publication number | Publication date |
---|---|
EP0995880B1 (de) | 2003-12-03 |
EP0995880A3 (de) | 2002-01-23 |
DE59907926D1 (de) | 2004-01-15 |
US6241469B1 (en) | 2001-06-05 |
DE19848104A1 (de) | 2000-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0995880B1 (de) | Turbinenschaufel | |
DE60217456T2 (de) | Abreibbare Beschichtung für Mantelringe von Gasturbinen | |
DE4116886C2 (de) | Gelochtes Blech als Hitzeschild | |
DE60213328T2 (de) | Gekühlte hohle Schaufelspitzenabdeckung einer Turbinenschaufel | |
DE2637443C2 (de) | ||
EP2140114B1 (de) | Axiallager insbesondere für einen turbolader | |
DE3345263C2 (de) | Gekühlte Turbinenschaufel | |
EP1173657B1 (de) | Turbinenschaufel und verfahren zur herstellung einer turbinenschaufel | |
EP0995881B1 (de) | Dichtungsanordnung | |
EP1152124A1 (de) | Dichtungsanordnung | |
EP3191244B1 (de) | Verfahren zur herstellung einer laufschaufel und so erhaltene schaufel | |
EP1219787B1 (de) | Gasturbinenschaufel und Gasturbine | |
EP0964981B1 (de) | Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage | |
DE2833012C2 (de) | Gehäuse für Strahltriebwerkturbine | |
EP0118020A1 (de) | Keramische Turbinenschaufel mit metallenem Stützkern | |
DE2717810A1 (de) | Gasturbinenlaeufer mit keramischen schaufeln | |
WO2005043058A2 (de) | Keramischer hitzeschildstein mit eingebetteten verstärkungselementen zur auskleidung einer gasturbinenbrennkammerwand | |
DE102012016978A1 (de) | Schwingungsdämpfer für rotierende Teile | |
EP3400373A1 (de) | Laufschaufel für eine gasturbine mit gekühlter anstreifkante | |
DE2825801C2 (de) | ||
DE102009044584A1 (de) | Einrichtung in Zusammenhang mit Turbinenschaufelkühlöffnungen | |
DE2825219A1 (de) | Abschleifbares material aus metall und verfahren zu seiner herstellung | |
WO2010052052A1 (de) | Rotor für eine strömungsmaschine | |
EP1598522B1 (de) | Dampfturbinen-Komponente und Verfahren zum Kühlen einer Dampfturbine sowie Verwendung | |
EP1647671A1 (de) | Thermisch beanspruchtes Bauteil einer Strömungsmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Kind code of ref document: A2 Designated state(s): DE GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7F 01D 5/18 A, 7F 01D 5/28 B |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020711 |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59907926 Country of ref document: DE Date of ref document: 20040115 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040213 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040906 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59907926 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59907926 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 59907926 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59907926 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59907926 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171019 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171019 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59907926 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181007 |