EP0964981B1 - Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage - Google Patents
Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage Download PDFInfo
- Publication number
- EP0964981B1 EP0964981B1 EP98914796A EP98914796A EP0964981B1 EP 0964981 B1 EP0964981 B1 EP 0964981B1 EP 98914796 A EP98914796 A EP 98914796A EP 98914796 A EP98914796 A EP 98914796A EP 0964981 B1 EP0964981 B1 EP 0964981B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wall
- turbine blade
- outlet
- cooling
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
Definitions
- the invention relates to a turbine blade which has an inflow area, an outflow area and lying between them one pressure side and one suction side as well as one with has a wall structure around which a fluid can flow.
- the Wall structure includes an outer wall that defines an interior Guide of cooling fluid surrounds and an outlet for cooling fluid having.
- the invention further relates to a use such a turbine blade.
- a gas turbine vane with a guide from Cooling gas for cooling them is described in US Pat. No. 5,419,039.
- the guide vane is designed as a casting or composed of two castings. She points inside a supply of cooling air from the compressor to the assigned Gas turbine plant on. In their the hot gas flow exposed to the gas turbine, enclosing the air supply Wall structure are cast-in cool bags that are open on one side intended.
- the cooler bags are on the outside of the wall structure both in the flow direction of the hot gas and perpendicular to the direction of flow of the hot gas along the Main direction of expansion of the guide vane arranged. In each Cooling bag flows from the cooling air supply over a plurality of holes in the wall structure cooling air into the cooler bag on.
- GB A 22 62 314 discloses an air-cooled turbine blade of a gas turbine engine. Cooling air gets through the inside the turbine blade via a cooling air duct to the surface the turbine blade. To constipate this To prevent the cooling channel, the cooling channel is in a bulge the inside of the outer wall of the turbine blade integrated. The bulge prevents larger particles that are carried in the cooling air, enter the cooling air duct.
- the object of the invention is to provide a turbine blade with a specify coolable wall structure. There is another task in using such a turbine blade specify:
- the outlet is directed towards a turbine blade Task through such a turbine blade after the Claim 1 solved, in which the outer wall the outlet has a thickening directed towards the interior.
- a thickening that connects to the outer wall is, even with an extremely thin outer wall for the Outlet given a large length to diameter ratio as well as a small angle of inclination of the outlet with respect to the outer wall can be realized.
- Through the outlet can Cooling fluid, especially cooling air, in sufficient quantity Form a film cooling of the outer wall.
- a flat angle of the outlet is immediately downstream the outlet of the cooling fluid flow on the outer wall and thus a particularly effective cooling can be achieved.
- Such a turbine blade is preferably suitable for the Use in a gas turbine, the turbine blade from a hot gas flows around. At a temperature of the hot gas, those above the melting temperature of the base material the turbine blade is located by one with the turbine blade achievable cooling a failure of the turbine blade avoided.
- the temperature on the outer wall, the surface temperature is through film cooling as well as cooling over the interior to one that is not critical for the turbine blade Temperature level lowered. Cooling air from the interior leads to a convective transition and heat conduction through the outer wall, creating the surface the outer wall can be cooled sufficiently.
- the cooling outer wall is made as thin as possible.
- the outer wall is at least partially a middle one Wall thickness that is less than 2.5 mm, in particular is about 1 mm.
- the outlet, in particular the bore is preferably along along one Axis directed opposite the main flow direction of the Fluid is inclined at an acute angle. This is ensures that cooling air flowing out of the outlet, which relatively cool to the fluid, in particular a hot gas, is a cold film of cooling fluid around the turbine blade formed. This effectively contributes to protection the turbine blade at.
- the outlet is preferably at an angle ⁇ between 10 ° and 45 °, in particular between 25 ° and 35 °, compared to the Outside wall inclined. It is preferably with a bore executed essentially constant cross-section. alternative the outlet can have a throttle region facing the interior with a substantially constant cross section and one too the slowdown area widening the hot gas flow exhibit. With the throttle area is essentially one Volume control of the cooling fluid flow achievable. By yourself widening slowdown range is a reduction in Flow rate of the cooling fluid can be reached, so that this immediately downstream of the outlet on the outer wall can put on.
- the outlet preferably has a minimum diameter between 0.3 mm and 1.5 mm, in particular approximately between 0.6 mm and 0.7 mm.
- a diameter is due to the thickening with a ratio of length to diameter of the outlet between 2 and 5 can be produced without any problems in terms of production technology.
- a flat angle of the outlet with respect to the External wall guaranteed.
- the thickening on the outer wall is preferably local, hill-shaped elevation. Due to the hill-shaped elevation the outlet, the bore, is passed through it. This enables an external wall even with a thin wall appropriate inclination and a large length to diameter ratio of the outlet.
- the hill-shaped elevation is preferred rounded towards the outlet. The increase points therefore a radius of curvature in the area of the outlet to achieve a favorable inflow of cooling fluid into the outlet on. This is an equalization of the flow of the cooling fluid in the outlet, the bore. This also contributes to improving oneself Outside wall forming cooling fluid film.
- the thickening can also be designed as a linear increase his. This can contain several outlets.
- the wall structure can also be an interior space have facing inner wall, between the inner wall and a cooling area to flow through with an outer wall Cooling fluid is provided.
- Each cooling area has one the inlet for cooling fluid associated with the inner wall. This ensures an inflow of guided in the interior Cooling fluid into the cooling area. Cooling fluid comes out the cooling area through the outlet to the outer surface the outer wall.
- the cooling area is preferably a cooling chamber trained by the outer wall and the inner wall is enclosed. This increases manufacturing flexibility of inlet and outlet and gives the opportunity, too subsequently the inlet and the outlet of cooling fluid accordingly to change the requirements for the turbine blade.
- the outlet can have a funnel-shaped opening (Slowdown range), which also subsequently can be produced by eroding or working out with a laser beam is.
- the cross section of such a funnel-shaped For example, the opening can be circular, rectangular or one have other simple geometric shape.
- the inlet is preferably approximately perpendicular to the outer wall executed so that cooling fluid flowing onto the outer wall impacts, resulting in additional impingement cooling of the outer wall can be reached at least in the area of the inlet.
- the Outlet of a cooling area, especially on the suction side preferably between the inlet for cooling air and the inflow area the turbine blade arranged. This ensures a so-called counterflow cooling, in which the cooling fluid inside the cooling area against the flow direction the hot gas flow flowing around the turbine blade is.
- the turbine blade also has two or more cast parts contain, using suitable methods (joining processes) the casting are firmly connected.
- the inlet is also made by casting.
- the turbine blade preferably has a plurality of cooling areas both along its main axis and in a plane perpendicular to the main axis.
- a stationary guide vane Gas turbine can be on the suction side as well as on the Pressure side three times three cooling chambers and depending on what can be achieved Heat transfer also have more or less cooling chambers.
- the conceptual division of the wall structure allows decoupling into an outer wall and into an inner wall the functional properties of the wall structure, with lower demands on the mechanical on the outer wall Stability can be put on the inner wall.
- the inner wall can therefore, since it is not immediately one Hot gas flow is exposed, with a larger wall thickness than the outer wall. It can essentially the mechanical support function for the turbine blade take.
- the outer wall can be made with a smaller one Wall thickness should be formed, which makes them particularly effective is coolable via the heat transfer elements.
- the cross section the cooling area between the inner wall and the Outer wall is preferably for high speed formation of the cooling fluid is low and lies especially in the area of the wall thickness of the outer wall.
- the main flow direction in the cooling area preferably corresponds the flow direction of a flowing around the turbine blade Fluids, especially a hot gas, or is this straight opposed.
- the heat transfer elements are preferred columnar or pedestal-like and sufficient from the outer wall to the inner wall. You can also be firmly connected to the inner wall.
- the cross section of the Heat transfer elements is the heat transfer and fluidic requirements adaptable, for example circular, polygonal or in the manner of a flow profile educated.
- the task aimed at using the turbine blade is solved in that the turbine blade as a moving blade or guide vane in a gas turbine plant, in particular in a gas turbine, in the temperatures of clearly above 1000 ° C of the hot gas flowing around the turbines, is used.
- FIG. 1 is directed along a major axis 19 Turbine blade 1 of a gas turbine is shown.
- the wall structure 2 has an outer wall 3 which encloses an interior space 21, which in sub-areas not shown is divided.
- the outer wall 3 faces the interior 21 inward thickenings 14.
- the vividness for the sake of simplicity, only two thickenings 14 are shown schematically. Through each thickening 14 is formed as a bore 17 Outlet 16 led. This enables one in the Interior 21 guided cooling fluid 6, cooling air, from the interior 21 to flow through the thickening 14 to the outer wall 3.
- the bore 17 is (see Figure 2) compared to the Outer wall 3 is preferably smaller by an acute angle ⁇ 45 ° inclined. This ensures that the cooling air 6 abuts the outer wall 3 immediately downstream of the outlet 16 and thus causes effective film cooling of the outer wall 3.
- the thickening 14 is preferably a singular local formed hill-shaped elevation and to the outlet 16th rounded off. The thickening 14 thus points where that Cooling fluid flows into the outlet 16, a radius of curvature R through which a largely unimpeded inflow of Cooling fluid 6 is guaranteed in the outlet 16. This carries also to an equalization of the flow of the cooling fluid 6 in the outlet 16, the bore 17, at.
- a turbine blade 1 is also shown in FIGS. 3 and 4 of a gas turbine, which is shown along a main axis 19 is directed.
- the wall structure 2 of this turbine blade 1 are both on the suction side 11 and on the pressure side 10 each have three hollow cooling areas designed as cooling chambers 20 5, 5a provided. These cooling areas 5, 5a are in the Wall structure 2 between the outer wall 3 and an inner wall 4 arranged.
- the inner wall 4 encloses like the outer wall 3 the divided interior 21.
- the cooling areas 5, 5a have a length that is significantly larger, for example ten times larger than their cross section.
- the outer wall 3 has one significantly smaller wall thickness than the inner wall 4, for example the wall thickness of the outer wall 3 is 1.0 mm and the Wall thickness of the inner wall 4 1.5 mm.
- the cross section of the cooling areas 5, 5a lies in the area of the wall thickness of the outer wall 3 and is, for example, about 1.0 mm.
- Over the length of each Cooling areas 5, 5a are a plurality, preferably over five, heat transfer elements 7 arranged.
- From the interior 21 leads into each cooling area 5, 5a 15 into it, which preferably as a bore or formed a plurality of bores, in particular cast, is.
- the inlet 15 is substantially perpendicular to the Outer wall 3 directed. This creates additional impingement cooling reached the outer wall 3 in the region of the inlet 15.
- a respective outlet 16 leads from each cooling area 5, 5a the outer surface of the wall structure 2. In the area of the outlet 16, the outer wall 3 has a thickening 14.
- the cooling chamber 20 is therefore wider in the area of the outlet 16 introduced in the direction of the interior 21.
- the outlet 16 is preferably designed as a bore 17.
- This hole 17 has a directly adjacent to the cooling chamber 20 Throttle area 23 with a constant cross section. On this throttle region 23 closes in the direction of the outer surface the outer wall 3 an expanding slowdown area 24 on.
- the bore 17 is along an axis 22 directed, which, as already explained for Figures 1 and 2, inclined by an acute angle ⁇ with respect to the outer wall 3 is.
- the outlet 16 is closer, in particular on the suction side 11 arranged on the inflow region 8 than that of the same cooling chamber assigned inlet 15. As a result, cooling air 6 in Countercurrent to the flow of hot gas 18 in the cooling chamber 20 guided.
- the heat transfer elements 7 are in the direction of Main axis 19 preferably arranged alternately, whereby the contact time for heat transfer between the cooling air 6 and the heat transfer element connected to the outer wall 3 7 is increased. The effectiveness of the cooling is still thereby favors that the outer wall 3 with a small Wall thickness is executed. There is also cooling the load bearing not directly exposed to the hot gas 18 Inner wall 4.
- the invention is characterized by a turbine blade a wall structure in which one is exposed to hot gas Outside wall has a thickening into an interior, through which thickening an outlet for guiding Cooling air is guided. Due to the thickening, even with one extremely thin outer wall with a wall thickness of in particular about 1 mm a favorable length to diameter ratio the outlet and a flat angle of inclination of the Guaranteed outlet opposite the outer wall. hereby effective film cooling of the outer wall can be achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
- FIG 1
- eine Turbinenschaufel einer Gasturbine in einem Querschnitt,
- FIG 2
- eine vergrößerte Darstellung der Wandstruktur gemäß Figur 1,
- FIG 3
- eine alternative Ausführungsform einer Turbinenschaufel einer Gasturbine in einem Querschnitt und
- FIG 4
- eine vergrößerte Darstellung eines Ausschnittes der Wandstruktur gemäß Figur 3.
Claims (15)
- Turbinenschaufel (1), die einen Anströmbereich (8), einen Abströmbereich (9) und dazwischen sich gegenuberliegend eine Druckseite (10) und eine Saugseite (11) sowie eine von einem Fluid (18) umstrombaren Wandstruktur (2) aufweist, wobei die Wandstruktur (2) eine Außenwand (3) umfaßt, die einen Innenraum (21) zur Führung von Kuhlfluid (6) umgibt und einen Auslaß (16) für Kühlfluid (6) aufweist,
wobei die Außenwand (3) an dem Auslaß (16) eine zu dem Innenraum (21) gerichtete Verdickung (14) aufweist, wobei die Außenwand (3) zumindest bereichweise eine mittlere Wandstärke kleiner 2,5 mm aufweist. - Turbinenschaufel (1) nach Anspruch 1,
dadurch gekennzeichnet, daß der Auslaß (16) im wesentlichen entlang einer Achse (22) gerichtet ist, die lokal gegnüber der Außenwand (3) um einen Winkel (α) zwischen 10° und 45°, insbesondere zwischen 25° und 35°, geneigt ist. - Turbinenschaufel (1) nach Anspruch 2,
dadurch gekennzeichnet, daß der Auslaß (16) eine Bohrung (17) mit im wesentlichen konstantem Querschnitt ist. - Turbinenschaufel (1) nach Anspruch 2,
dadurch gekennzeichnet, daß der Auslaß (16) zu dem Innenraum (21) gewandt einen Drosselbereich (23) mit im wesentlichen konstantem Querschnitt aufweist, der in einen Verlangsamungsbereich (24) mit sich erweiterndem Querschnitt übergeht. - Turbinenschaufel (1) nach einem der vorhergehenden Anspruche, dadurch gekennzeichnet, daß die Verdickung (14) als lokale hugelformige Erhohung ausgebildet ist.
- Turbinenschaufel (1) nach 5,
dadurch gekennzeichnet, daß die Verdickung (14) zum Auslaß (16) hin abgerundet ist. - Turbinenschaufel (1) nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, daß die Verdikkung (14) als linienförmige Erhöhung ausgebildet ist. - Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichet, daß die Außenwand (3) zumindest bereichsweise eine mittlere Wandstärke von etwa 1 mm aufweist.
- Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Auslaß (16) ein Verhältnis Länge zu Durchmesser von zwischen 2 und 5, insbesondere 3 bis 4, aufweist.
- Turbinenschaufel (1) nach einen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Auslaß (16) einen minimalen Durchmesser von zwischen 0.3 mm und 1.5 mm, insbesondere etwa zwischen 0.6 mm und 0.7 mm, aufweist.
- Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Wandstruktur (2) eine Innenwand (4) und einen zwischen Innenwand (4) und Außenwand (3) angeordneten Kühlbereich (5) zur Durchströmung mit einem Kühlfluid (6) aufweist, und jeder Kühlbereich (5) einen der Innenwand (4) zugeordneten Einlaß (15) für Kühlfluid (6) aufweist.
- Turbinenschaufel (1) nach Anspruch 11,
dadurch gekennzeichnet, daß in dem Kühlbereich (5) von dem Kühlfluid (6) in einer Hauptströmungsrichtung (12) umstrombare Wärmeübertragungselemente (7) hintereinander angeordnet sind, die warmetechnisch mit der Außenwand (3) verbunden sind. - Turbinenschaufel (1) nach Anspruch 11 oder 12,
dadurch gekennzeichnet, daß Außenwand (3), Innenwand (4) und Wärmeubertragungselemente (7) durch Gießen in einem Arbeitsschritt hergestellt sind. - Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, welche eine Laufschaufel (1a) oder eine Leitschaufel (1b) für eine Gasturbine ist.
- Verwendung einer Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche in einer Gasturbinenanlage.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19706760 | 1997-02-20 | ||
DE19706760 | 1997-02-20 | ||
PCT/DE1998/000521 WO1998037310A1 (de) | 1997-02-20 | 1998-02-20 | Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0964981A1 EP0964981A1 (de) | 1999-12-22 |
EP0964981B1 true EP0964981B1 (de) | 2002-12-04 |
Family
ID=7820960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98914796A Expired - Lifetime EP0964981B1 (de) | 1997-02-20 | 1998-02-20 | Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0964981B1 (de) |
JP (1) | JP2001511864A (de) |
DE (1) | DE59806535D1 (de) |
WO (1) | WO1998037310A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105189928A (zh) * | 2013-03-15 | 2015-12-23 | 联合工艺公司 | 增材制造挡板、覆盖物和模具 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5931638A (en) * | 1997-08-07 | 1999-08-03 | United Technologies Corporation | Turbomachinery airfoil with optimized heat transfer |
WO1999014465A1 (de) * | 1997-09-18 | 1999-03-25 | Siemens Aktiengesellschaft | Turbinenschaufel sowie verwendung einer turbinenschaufel |
US6213714B1 (en) * | 1999-06-29 | 2001-04-10 | Allison Advanced Development Company | Cooled airfoil |
DE10333304A1 (de) * | 2003-07-15 | 2005-02-03 | Rolls-Royce Deutschland Ltd & Co Kg | Turbinenschaufel mit Prallkühlung |
ATE513980T1 (de) | 2004-12-24 | 2011-07-15 | Alstom Technology Ltd | Verfahren zur herstellung eines bauteils mit eingebettetem kanal sowie bauteil |
JP2011208624A (ja) * | 2010-03-31 | 2011-10-20 | Hitachi Ltd | 高温部材の冷却構造 |
EP2568118A1 (de) * | 2011-09-12 | 2013-03-13 | Siemens Aktiengesellschaft | Gasturbinenkomponente |
EP2584148A1 (de) * | 2011-10-21 | 2013-04-24 | Siemens Aktiengesellschaft | Filmgekühlte Turbinenschaufel für eine Strömungsmaschine |
US9863254B2 (en) | 2012-04-23 | 2018-01-09 | General Electric Company | Turbine airfoil with local wall thickness control |
US9267381B2 (en) * | 2012-09-28 | 2016-02-23 | Honeywell International Inc. | Cooled turbine airfoil structures |
US20140102684A1 (en) * | 2012-10-15 | 2014-04-17 | General Electric Company | Hot gas path component cooling film hole plateau |
JP2014148938A (ja) * | 2013-02-01 | 2014-08-21 | Siemens Ag | ターボ機械のためのフィルム冷却されるタービンブレード |
US9328616B2 (en) | 2013-02-01 | 2016-05-03 | Siemens Aktiengesellschaft | Film-cooled turbine blade for a turbomachine |
US20150096306A1 (en) * | 2013-10-08 | 2015-04-09 | General Electric Company | Gas turbine airfoil with cooling enhancement |
US9970319B2 (en) | 2014-05-05 | 2018-05-15 | United Technologies Corporation | Reducing variation in cooling hole meter length |
US10982552B2 (en) * | 2014-09-08 | 2021-04-20 | Raytheon Technologies Corporation | Gas turbine engine component with film cooling hole |
US20170306764A1 (en) * | 2016-04-26 | 2017-10-26 | General Electric Company | Airfoil for a turbine engine |
US10344611B2 (en) | 2016-05-19 | 2019-07-09 | United Technologies Corporation | Cooled hot section components for a gas turbine engine |
US11085641B2 (en) | 2018-11-27 | 2021-08-10 | Honeywell International Inc. | Plug resistant effusion holes for gas turbine engine |
FR3111661B1 (fr) * | 2020-06-22 | 2022-11-04 | Safran Aircraft Engines | Aube de turbine avec système de refroidissement |
KR102466386B1 (ko) | 2020-09-25 | 2022-11-10 | 두산에너빌리티 주식회사 | 터빈 블레이드 및 이를 포함하는 터빈 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4770608A (en) * | 1985-12-23 | 1988-09-13 | United Technologies Corporation | Film cooled vanes and turbines |
US4827587A (en) * | 1988-01-25 | 1989-05-09 | United Technologies Corporation | Method of fabricating an air cooled turbine blade |
US5383766A (en) * | 1990-07-09 | 1995-01-24 | United Technologies Corporation | Cooled vane |
US5405242A (en) | 1990-07-09 | 1995-04-11 | United Technologies Corporation | Cooled vane |
GB2262314A (en) * | 1991-12-10 | 1993-06-16 | Rolls Royce Plc | Air cooled gas turbine engine aerofoil. |
-
1998
- 1998-02-20 JP JP53616398A patent/JP2001511864A/ja active Pending
- 1998-02-20 DE DE59806535T patent/DE59806535D1/de not_active Expired - Fee Related
- 1998-02-20 EP EP98914796A patent/EP0964981B1/de not_active Expired - Lifetime
- 1998-02-20 WO PCT/DE1998/000521 patent/WO1998037310A1/de active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105189928A (zh) * | 2013-03-15 | 2015-12-23 | 联合工艺公司 | 增材制造挡板、覆盖物和模具 |
US10173264B2 (en) | 2013-03-15 | 2019-01-08 | United Technologies Corporation | Additive manufacturing baffles, covers, and dies |
Also Published As
Publication number | Publication date |
---|---|
DE59806535D1 (de) | 2003-01-16 |
WO1998037310A1 (de) | 1998-08-27 |
JP2001511864A (ja) | 2001-08-14 |
EP0964981A1 (de) | 1999-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0964981B1 (de) | Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage | |
DE60031185T2 (de) | Methode zur Kühlung einer Wand einer Strömungsmaschinenschaufel | |
DE602004009487T2 (de) | Dämpfungs- und Dichtungselement für Turbine | |
EP1320661B1 (de) | Gasturbinenschaufel | |
DE69828757T2 (de) | Kühlung der Anströmkante einer Gasturbinenschaufel | |
DE3345263C2 (de) | Gekühlte Turbinenschaufel | |
DE60015233T2 (de) | Turbinenschaufel mit interner Kühlung | |
DE69714960T3 (de) | Wirbelelementkonstruktion für Kühlkanäle eines Gasturbinenrotorschaufelblattes | |
DE3789514T2 (de) | Gekühlte Gasturbinenschaufel. | |
DE60202212T2 (de) | Kühlbares segment für turbomaschinen und turbinen mit brennkammer | |
DE2320581C2 (de) | Gasturbine mit luftgekühlten Turbinenlaufschaufeln | |
DE60018817T2 (de) | Gekühlte Gasturbinenschaufel | |
EP1267039A1 (de) | Kühlkonstruktion für Schaufelblatthinterkante | |
DE102006004437A1 (de) | Plattform einer Laufschaufel einer Gasturbine, Verfahren zur Herstellung einer Laufschaufel, Dichtungsplatte und Gasturbine | |
EP1165939B1 (de) | Kühlmitteldurchströmte, gegossene gasturbinenschaufel sowie vorrichtung und verfahren zur herstellung eines verteilerraums der gasturbinenschaufel | |
EP0892149B1 (de) | Kühlsystem für den Vorderkantenbereich einer hohlen Gasturbinenschaufel | |
DE19963349A1 (de) | Schaufel für Gasturbinen mit Drosselquerschnitt an Hinterkante | |
DE4441507A1 (de) | Turbinenkühlschaufel | |
EP1482246A1 (de) | Brennkammer | |
EP1180578A1 (de) | Anordnung von Turbinenschaufeln | |
EP1668236B1 (de) | Brennkammer mit kühleinrichtung und verfahren zur herstellung der brennkammer | |
EP0954680B1 (de) | Turbinenschaufel sowie verwendung in einer gasturbinenanlage | |
EP1745195B1 (de) | Strömungsmaschinenschaufel | |
WO2003054356A1 (de) | Thermisch belastetes bauteil | |
DE69925447T2 (de) | Kühlbare Schaufelblätter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990820 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
17Q | First examination report despatched |
Effective date: 20010615 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59806535 Country of ref document: DE Date of ref document: 20030116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030228 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030315 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20030905 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080227 Year of fee payment: 11 Ref country code: GB Payment date: 20080211 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080214 Year of fee payment: 11 Ref country code: DE Payment date: 20080410 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090220 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20091030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090220 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090220 |