[go: up one dir, main page]

EP0964981B1 - Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage - Google Patents

Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage Download PDF

Info

Publication number
EP0964981B1
EP0964981B1 EP98914796A EP98914796A EP0964981B1 EP 0964981 B1 EP0964981 B1 EP 0964981B1 EP 98914796 A EP98914796 A EP 98914796A EP 98914796 A EP98914796 A EP 98914796A EP 0964981 B1 EP0964981 B1 EP 0964981B1
Authority
EP
European Patent Office
Prior art keywords
wall
turbine blade
outlet
cooling
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98914796A
Other languages
English (en)
French (fr)
Other versions
EP0964981A1 (de
Inventor
Michael Scheurlen
Michael HÄNDLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Publication of EP0964981A1 publication Critical patent/EP0964981A1/de
Application granted granted Critical
Publication of EP0964981B1 publication Critical patent/EP0964981B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling

Definitions

  • the invention relates to a turbine blade which has an inflow area, an outflow area and lying between them one pressure side and one suction side as well as one with has a wall structure around which a fluid can flow.
  • the Wall structure includes an outer wall that defines an interior Guide of cooling fluid surrounds and an outlet for cooling fluid having.
  • the invention further relates to a use such a turbine blade.
  • a gas turbine vane with a guide from Cooling gas for cooling them is described in US Pat. No. 5,419,039.
  • the guide vane is designed as a casting or composed of two castings. She points inside a supply of cooling air from the compressor to the assigned Gas turbine plant on. In their the hot gas flow exposed to the gas turbine, enclosing the air supply Wall structure are cast-in cool bags that are open on one side intended.
  • the cooler bags are on the outside of the wall structure both in the flow direction of the hot gas and perpendicular to the direction of flow of the hot gas along the Main direction of expansion of the guide vane arranged. In each Cooling bag flows from the cooling air supply over a plurality of holes in the wall structure cooling air into the cooler bag on.
  • GB A 22 62 314 discloses an air-cooled turbine blade of a gas turbine engine. Cooling air gets through the inside the turbine blade via a cooling air duct to the surface the turbine blade. To constipate this To prevent the cooling channel, the cooling channel is in a bulge the inside of the outer wall of the turbine blade integrated. The bulge prevents larger particles that are carried in the cooling air, enter the cooling air duct.
  • the object of the invention is to provide a turbine blade with a specify coolable wall structure. There is another task in using such a turbine blade specify:
  • the outlet is directed towards a turbine blade Task through such a turbine blade after the Claim 1 solved, in which the outer wall the outlet has a thickening directed towards the interior.
  • a thickening that connects to the outer wall is, even with an extremely thin outer wall for the Outlet given a large length to diameter ratio as well as a small angle of inclination of the outlet with respect to the outer wall can be realized.
  • Through the outlet can Cooling fluid, especially cooling air, in sufficient quantity Form a film cooling of the outer wall.
  • a flat angle of the outlet is immediately downstream the outlet of the cooling fluid flow on the outer wall and thus a particularly effective cooling can be achieved.
  • Such a turbine blade is preferably suitable for the Use in a gas turbine, the turbine blade from a hot gas flows around. At a temperature of the hot gas, those above the melting temperature of the base material the turbine blade is located by one with the turbine blade achievable cooling a failure of the turbine blade avoided.
  • the temperature on the outer wall, the surface temperature is through film cooling as well as cooling over the interior to one that is not critical for the turbine blade Temperature level lowered. Cooling air from the interior leads to a convective transition and heat conduction through the outer wall, creating the surface the outer wall can be cooled sufficiently.
  • the cooling outer wall is made as thin as possible.
  • the outer wall is at least partially a middle one Wall thickness that is less than 2.5 mm, in particular is about 1 mm.
  • the outlet, in particular the bore is preferably along along one Axis directed opposite the main flow direction of the Fluid is inclined at an acute angle. This is ensures that cooling air flowing out of the outlet, which relatively cool to the fluid, in particular a hot gas, is a cold film of cooling fluid around the turbine blade formed. This effectively contributes to protection the turbine blade at.
  • the outlet is preferably at an angle ⁇ between 10 ° and 45 °, in particular between 25 ° and 35 °, compared to the Outside wall inclined. It is preferably with a bore executed essentially constant cross-section. alternative the outlet can have a throttle region facing the interior with a substantially constant cross section and one too the slowdown area widening the hot gas flow exhibit. With the throttle area is essentially one Volume control of the cooling fluid flow achievable. By yourself widening slowdown range is a reduction in Flow rate of the cooling fluid can be reached, so that this immediately downstream of the outlet on the outer wall can put on.
  • the outlet preferably has a minimum diameter between 0.3 mm and 1.5 mm, in particular approximately between 0.6 mm and 0.7 mm.
  • a diameter is due to the thickening with a ratio of length to diameter of the outlet between 2 and 5 can be produced without any problems in terms of production technology.
  • a flat angle of the outlet with respect to the External wall guaranteed.
  • the thickening on the outer wall is preferably local, hill-shaped elevation. Due to the hill-shaped elevation the outlet, the bore, is passed through it. This enables an external wall even with a thin wall appropriate inclination and a large length to diameter ratio of the outlet.
  • the hill-shaped elevation is preferred rounded towards the outlet. The increase points therefore a radius of curvature in the area of the outlet to achieve a favorable inflow of cooling fluid into the outlet on. This is an equalization of the flow of the cooling fluid in the outlet, the bore. This also contributes to improving oneself Outside wall forming cooling fluid film.
  • the thickening can also be designed as a linear increase his. This can contain several outlets.
  • the wall structure can also be an interior space have facing inner wall, between the inner wall and a cooling area to flow through with an outer wall Cooling fluid is provided.
  • Each cooling area has one the inlet for cooling fluid associated with the inner wall. This ensures an inflow of guided in the interior Cooling fluid into the cooling area. Cooling fluid comes out the cooling area through the outlet to the outer surface the outer wall.
  • the cooling area is preferably a cooling chamber trained by the outer wall and the inner wall is enclosed. This increases manufacturing flexibility of inlet and outlet and gives the opportunity, too subsequently the inlet and the outlet of cooling fluid accordingly to change the requirements for the turbine blade.
  • the outlet can have a funnel-shaped opening (Slowdown range), which also subsequently can be produced by eroding or working out with a laser beam is.
  • the cross section of such a funnel-shaped For example, the opening can be circular, rectangular or one have other simple geometric shape.
  • the inlet is preferably approximately perpendicular to the outer wall executed so that cooling fluid flowing onto the outer wall impacts, resulting in additional impingement cooling of the outer wall can be reached at least in the area of the inlet.
  • the Outlet of a cooling area, especially on the suction side preferably between the inlet for cooling air and the inflow area the turbine blade arranged. This ensures a so-called counterflow cooling, in which the cooling fluid inside the cooling area against the flow direction the hot gas flow flowing around the turbine blade is.
  • the turbine blade also has two or more cast parts contain, using suitable methods (joining processes) the casting are firmly connected.
  • the inlet is also made by casting.
  • the turbine blade preferably has a plurality of cooling areas both along its main axis and in a plane perpendicular to the main axis.
  • a stationary guide vane Gas turbine can be on the suction side as well as on the Pressure side three times three cooling chambers and depending on what can be achieved Heat transfer also have more or less cooling chambers.
  • the conceptual division of the wall structure allows decoupling into an outer wall and into an inner wall the functional properties of the wall structure, with lower demands on the mechanical on the outer wall Stability can be put on the inner wall.
  • the inner wall can therefore, since it is not immediately one Hot gas flow is exposed, with a larger wall thickness than the outer wall. It can essentially the mechanical support function for the turbine blade take.
  • the outer wall can be made with a smaller one Wall thickness should be formed, which makes them particularly effective is coolable via the heat transfer elements.
  • the cross section the cooling area between the inner wall and the Outer wall is preferably for high speed formation of the cooling fluid is low and lies especially in the area of the wall thickness of the outer wall.
  • the main flow direction in the cooling area preferably corresponds the flow direction of a flowing around the turbine blade Fluids, especially a hot gas, or is this straight opposed.
  • the heat transfer elements are preferred columnar or pedestal-like and sufficient from the outer wall to the inner wall. You can also be firmly connected to the inner wall.
  • the cross section of the Heat transfer elements is the heat transfer and fluidic requirements adaptable, for example circular, polygonal or in the manner of a flow profile educated.
  • the task aimed at using the turbine blade is solved in that the turbine blade as a moving blade or guide vane in a gas turbine plant, in particular in a gas turbine, in the temperatures of clearly above 1000 ° C of the hot gas flowing around the turbines, is used.
  • FIG. 1 is directed along a major axis 19 Turbine blade 1 of a gas turbine is shown.
  • the wall structure 2 has an outer wall 3 which encloses an interior space 21, which in sub-areas not shown is divided.
  • the outer wall 3 faces the interior 21 inward thickenings 14.
  • the vividness for the sake of simplicity, only two thickenings 14 are shown schematically. Through each thickening 14 is formed as a bore 17 Outlet 16 led. This enables one in the Interior 21 guided cooling fluid 6, cooling air, from the interior 21 to flow through the thickening 14 to the outer wall 3.
  • the bore 17 is (see Figure 2) compared to the Outer wall 3 is preferably smaller by an acute angle ⁇ 45 ° inclined. This ensures that the cooling air 6 abuts the outer wall 3 immediately downstream of the outlet 16 and thus causes effective film cooling of the outer wall 3.
  • the thickening 14 is preferably a singular local formed hill-shaped elevation and to the outlet 16th rounded off. The thickening 14 thus points where that Cooling fluid flows into the outlet 16, a radius of curvature R through which a largely unimpeded inflow of Cooling fluid 6 is guaranteed in the outlet 16. This carries also to an equalization of the flow of the cooling fluid 6 in the outlet 16, the bore 17, at.
  • a turbine blade 1 is also shown in FIGS. 3 and 4 of a gas turbine, which is shown along a main axis 19 is directed.
  • the wall structure 2 of this turbine blade 1 are both on the suction side 11 and on the pressure side 10 each have three hollow cooling areas designed as cooling chambers 20 5, 5a provided. These cooling areas 5, 5a are in the Wall structure 2 between the outer wall 3 and an inner wall 4 arranged.
  • the inner wall 4 encloses like the outer wall 3 the divided interior 21.
  • the cooling areas 5, 5a have a length that is significantly larger, for example ten times larger than their cross section.
  • the outer wall 3 has one significantly smaller wall thickness than the inner wall 4, for example the wall thickness of the outer wall 3 is 1.0 mm and the Wall thickness of the inner wall 4 1.5 mm.
  • the cross section of the cooling areas 5, 5a lies in the area of the wall thickness of the outer wall 3 and is, for example, about 1.0 mm.
  • Over the length of each Cooling areas 5, 5a are a plurality, preferably over five, heat transfer elements 7 arranged.
  • From the interior 21 leads into each cooling area 5, 5a 15 into it, which preferably as a bore or formed a plurality of bores, in particular cast, is.
  • the inlet 15 is substantially perpendicular to the Outer wall 3 directed. This creates additional impingement cooling reached the outer wall 3 in the region of the inlet 15.
  • a respective outlet 16 leads from each cooling area 5, 5a the outer surface of the wall structure 2. In the area of the outlet 16, the outer wall 3 has a thickening 14.
  • the cooling chamber 20 is therefore wider in the area of the outlet 16 introduced in the direction of the interior 21.
  • the outlet 16 is preferably designed as a bore 17.
  • This hole 17 has a directly adjacent to the cooling chamber 20 Throttle area 23 with a constant cross section. On this throttle region 23 closes in the direction of the outer surface the outer wall 3 an expanding slowdown area 24 on.
  • the bore 17 is along an axis 22 directed, which, as already explained for Figures 1 and 2, inclined by an acute angle ⁇ with respect to the outer wall 3 is.
  • the outlet 16 is closer, in particular on the suction side 11 arranged on the inflow region 8 than that of the same cooling chamber assigned inlet 15. As a result, cooling air 6 in Countercurrent to the flow of hot gas 18 in the cooling chamber 20 guided.
  • the heat transfer elements 7 are in the direction of Main axis 19 preferably arranged alternately, whereby the contact time for heat transfer between the cooling air 6 and the heat transfer element connected to the outer wall 3 7 is increased. The effectiveness of the cooling is still thereby favors that the outer wall 3 with a small Wall thickness is executed. There is also cooling the load bearing not directly exposed to the hot gas 18 Inner wall 4.
  • the invention is characterized by a turbine blade a wall structure in which one is exposed to hot gas Outside wall has a thickening into an interior, through which thickening an outlet for guiding Cooling air is guided. Due to the thickening, even with one extremely thin outer wall with a wall thickness of in particular about 1 mm a favorable length to diameter ratio the outlet and a flat angle of inclination of the Guaranteed outlet opposite the outer wall. hereby effective film cooling of the outer wall can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft eine Turbinenschaufel, die einen Anströmbereich, einen Abströmbereich und dazwischen sich gegenüberliegend eine Druckseite und eine Saugseite sowie eine mit einer von einem Fluid umströmbaren Wandstruktur aufweist. Die Wandstruktur umfaßt eine Außenwand, die einen Innenraum zur Führung von Kühlfluid umgibt und einen Auslaß für Kühlfluid aufweist. Die Erfindung betrifft weiterhin eine Verwendung einer solchen Turbinenschaufel.
Eine Leitschaufel einer Gasturbine mit einer Führung von Kühlgas zu deren Kühlung ist in der US-PS 5,419,039 beschrieben. Die Leitschaufel ist als ein Gußstück ausgeführt bzw. aus zwei Gußstücken zusammengesetzt. Sie weist in ihrem Inneren eine Zuführung von Kühlluft aus dem Verdichter der zugeordneten Gasturbinenanlage auf. In ihrer der Heißgasströmung der Gasturbine ausgesetzten, die Luftzuführung umschließenden Wandstruktur sind eingegossene einseitig offene Kühltaschen vorgesehen. Die Kühltaschen sind an der Außenseite der Wandstruktur sowohl in Strömungsrichtung des Heißgases als auch senkrecht zur Strömungsrichtung des Heißgases entlang der Hauptausdehnungsrichtung der Leitschaufel angeordnet. In jede Kühltasche strömt von der Kühlluftzuführung über eine Mehrzahl von Löchern in der Wandstruktur Kühlluft in die Kühltasche ein. Diese wird in Strömungsrichtung des Heißgases von der Kühlluft durchströmt und tritt in einem bereits durch das Gießen der Leitschaufeln gebildeten Öffnungsbereich in die Strömung des Heißgases aus. Hierdurch wird in gewissem Maße an der äußeren Oberfläche der Wandstruktur eine Filmkühlung erreicht. In der Kühltasche kann ein nicht näher spezifizierter Sockel oder können mehrere nicht näher spezifizierte Sokkel zur Verbesserung der Wärmeleitung vorgesehen sein.
Die GB A 22 62 314 offenbart eine luftgekühlte Turbinenschaufel eines Gasturbinentriebwerks. Kühlluft wird durch das Innere der Turbinenschaufel uber einen Kühlluftkanal zur Oberfläche der Turbinenschaufel gefuhrt. Um eine Verstopfung dieses Kühlkanals zu verhindern, ist der Kühlkanal in eine Ausbuchtung der Innenseite der Außenwand der Turbinenschaufel integriert. Durch die Ausbuchtung wird verhindert, daß größere Partikel, welche in der Kühlluft mitgeführt werden, in den Kühlluftkanal eintreten.
Aufgabe der Erfindung ist es, eine Turbinenschaufel mit einer kühlbaren Wandstruktur anzugeben. Eine weitere Aufgabe besteht darin, eine Verwendung einer solchen Turbinenschaufel anzugeben:
Erfindungsgemäß wird die auf eine Turbinenschaufel gerichtete Aufgabe durch eine solche Turbinenschaufel nach dem Patentanspruch 1 gelöst, bei der die Außenwand an dem Auslaß eine zu dem Innenraum gerichtete Verdickung aufweist. Durch eine Verdickung, die mit der Außenwand verbunden ist, ist selbst bei einer äußerst dünnen Außenwand für den Auslaß ein großes Längen zu Durchmesser-Verhältnis gegeben sowie ein kleiner Neigungswinkel des Auslasses in Bezug auf die Außenwand realisierbar. Durch den Auslaß kann mithin Kühlfluid, insbesondere Kühlluft, in ausreichender Menge zur Ausbildung einer Filmkühlung der Außenwand strömen. Durch einen flachen Winkel des Auslasses ist ein unmittelbar stromab des Auslasses Anliegen der Kühlfluidströmung an der Außenwand und somit eine besonders wirksame Kühlung erreichbar.
Vorzugsweise eignet sich eine solche Turbinenschaufel für den Einsatz in einer Gasturbine, wobei die Turbinenschaufel von einem Heißgas umströmt wird. Bei einer Temperatur des Heißgases, die oberhalb der Schmelztemperatur des Grundmaterials der Turbinenschaufel liegt, wird durch eine mit der Turbinenschaufel erreichbare Kühlung ein Versagen der Turbinenschaufel vermieden. Die Temperatur an der Außenwand, die Oberflächentemperatur, wird durch eine Filmkühlung sowie eine Kühlung über den Innenraum auf ein für die Turbinenschaufel unkritisches Temperaturniveau abgesenkt. Kühlluft aus dem Innenraum führt zu einem konvektiven Übergang und zu einer Wärmeleitung durch die Außenwand hindurch, wodurch die Oberfläche der Außenwand ausreichend kühlbar ist.
Eine besonders effektive Kühlung wird erzielt, wenn die zu kühlende Außenwand möglichst dünn ausgeführt ist. Vorzugsweise ist die Außenwand zumindest bereichsweise eine mittlere Wandstärke, die geringer als 2,5 mm beträgt, insbesondere etwa bei 1 mm liegt.
Kühlluft, die durch den Innenraum der Turbinenschaufel strömt, wird erwärmt und gelangt durch den Auslaß, welcher als Bohrung, insbesondere Filmkühlbohrung, ausgeführt ist, in eine Strömung eines die Turbinenschaufel umströmenden Fluides, insbesondere eines Heißgases, hinein. Der Auslaß, insbesondere die Bohrung, ist vorzugsweise entlang entlang einer Achse gerichtet, die gegenüber der Hauptströmungsrichtung des Fluides um einen spitzen Winkel geneigt ist. Hierdurch ist gewährleistet, daß aus dem Auslaß ausströmende Kühlluft, welche verhältnismäßig kühl gegenüber dem Fluid, insbesondere einem Heißgas, ist, einen kalten Kühlfluidfilm um die Turbinenschaufel ausbildet. Dieser trägt wirksam zu einem Schutz der Turbinenschaufel bei.
Der Auslaß ist vorzugsweise um einen Winkel α zwischen 10° und 45°, insbesondere zwischen 25° und 35°, gegenüber der Außenwand geneigt. Er ist vorzugsweise als eine Bohrung mit im wesentlichen konstantem Querschnitt ausgeführt. Alternativ kann der Auslaß einen dem Innenraum zugewandten Drosselbereich mit im wesentlichen konstantem Querschnitt und einen zu der Heißgasströmung sich erweiternden Verlangsamungsbereich aufweisen. Mit dem Drosselbereich ist im wesentlichen eine Mengenregelung des Kühlfluidstroms erreichbar. Durch den sich erweiternden Verlangsamungsbereich ist eine Reduzierung der Strömungsgeschwindigkeit des Kühlfluides erreichbar, so daß sich dieses unmittelbar stromab des Auslasses an die Außenwand anlegen kann.
Der Auslaß hat vorzugsweise einen minimalen Durchmesser zwischen 0,3 mm und 1,5 mm, insbesondere etwa zwischen 0,6 mm und 0,7 mm. Durch die Verdickung ist ein solcher Durchmesser bei einem Verhältnis von Länge zu Durchmesser des Auslasses zwischen 2 und 5 fertigungstechnisch unproblematisch herstellbar. Somit ist außer der ausreichenden Zuführung von Kühlfluid aus dem Innenraum an die Außenoberfläche der Außenwand auch ein flacher Winkel des Auslasses gegenüber der Außenwand gewährleistet.
Die Verdickung ist an der Außenwand vorzugsweise als lokale, hügelförmige Erhöhung ausgebildet. Durch die hügelförmige Erhöhung hindurch ist der Auslaß, die Bohrung, geführt. Dies ermöglicht selbst bei geringer Wandstärke der Außenwand eine entsprechende Neigung und ein großes Längen zu Durchmesser-Verhältnis des Auslasses. Die hügelförmige Erhöhung ist vorzugsweise zu dem Auslaß hin abgerundet. Die Erhöhung weist mithin im Bereich des Auslasses einen Krümmungsradius zur Erzielung einer günstigen Einströmung von Kühlfluid in den Auslaß auf. Hierdurch ist eine Vergleichmäßigung der Strömung des Kühlfluides in dem Auslaß, der Bohrung, erreichbar. Dies trägt ebenfalls zu einer Verbesserung eines sich an der Außenwand ausbildenden Kühlfluidfilmes bei.
Die Verdickung kann auch als linienförmige Erhöhung ausgebildet sein. Diese kann mehrere Auslässe enthalten.
Die Wandstruktur kann neben einer Außenwand noch eine dem Innenraum zugewandte Innenwand aufweisen, wobei zwischen Innenwand und Außenwand ein Kühlbereich zur Durchströmung mit einem Kühlfluid vorgesehen ist. Jeder Kühlbereich weist einen der Innenwand zugeordneten Einlaß für Kühlfluid auf. Dieser gewährleistet ein Einströmen von in dem Innenraum geführtem Kühlfluid in den Kühlbereich hinein. Kühlfluid gelangt aus dem Kühlbereich durch den Auslaß hinaus an die Außenoberfläche der Außenwand. Der Kühlbereich ist vorzugsweise als Kühlkammer ausgebildet, die von der Außenwand und der Innenwand umschlossen ist. Dies erhöht die Flexibilität bei der Herstellung von Einlaß und Auslaß und gibt die Möglichkeit, auch nachträglich den Einlaß sowie den Auslaß von Kühlfluid entsprechend den Anforderungen an die Turbinenschaufel zu verändern. Der Auslaß kann eine trichterförmige Öffnung (Verlangsamungsbereich) aufweisen, welche auch nachträglich durch Erodieren oder Herausarbeiten mittels Laserstrahl herstellbar ist. Der Querschnitt einer solchen trichterförmigen Öffnung kann beispielsweise kreisrund, rechteckig oder eine andere einfach-geometrische Form aufweisen.
Der Einlaß ist vorzugsweise in etwa senkrecht zur Außenwand ausgeführt, so daß einströmendes Kühlfluid auf die Außenwand aufprallt, wodurch eine zusätzliche Prallkühlung der Außenwand zumindest im Bereich des Einlasses erreichbar ist. Der Auslaß eines Kühlbereichs, insbesondere an der Saugseite, ist vorzugsweise zwischen dem Einlaß für Kühlluft und dem Anströmbereich der Turbinenschaufel angeordnet. Dies gewährleistet eine sogenannte Gegenstromkühlung, bei der das Kühlfluid innerhalb des Kühlbereiches entgegen der Strömungsrichtung der die Turbinenschaufel umströmnden Heißgasströmung gerichtet ist. Dies führt insbesondere bei einer als Leitschaufel eingesetzten Turbinenschaufel zu einer verbesserten Filmkühlung. Die Turbinenschaufel mit einer Wandstruktur umfaßend zumindest einen Kühlbereich, der zwischen einer Außenwand und einer Innenwand angeordnet ist, ist als Ganzes durch Gießen in einem Arbeitsschritt herstellbar. Selbstverständlich kann die Turbinenschaufel auch zwei oder mehrere gegossene Teile enthalten, die mit geeigneten Methoden (Fügeverfahren) nach dem Gießen miteinander fest verbunden werden. Vorzugsweise ist auch der Einlaß durch Gießen hergestellt. Die Turbinenschaufel weist vorzugsweise eine Vielzahl von Kühlbereichen sowohl entlang ihrer Hauptachse als auch in einer Ebene senkrecht zur Hauptachse auf. Eine Leitschaufel einer stationären Gasturbine kann sowohl an der Saugseite als auch an der Druckseite drei mal drei Kühlkammern sowie je nach zu erzielendem Wärmeübertrag auch mehr oder weniger Kühlkammern aufweisen.
In dem Kühlbereich sind in einer Hauptströmungsrichtung des Kühlfluides von dem Kühlfluid umströmbare Wärmeübertragungselemente hintereinander angeordnet, die wärmetechnisch mit der Außenwand verbunden sind. Hierdurch ist eine wirksame Erwärmung des Kühlfluides in dem Kühlbereich über eine lange Wegstrecke gewährleistet. Durch die wärmetechnische Verbindung der Wärmeübertragungselemente mit der Außenwand ist eine wirksame Wärmeübertragung von der Außenwand auf das Kühlfluid gegeben.
Weiterhin gestattet die konzeptionelle Aufteilung der Wandstruktur in eine Außenwand und in eine Innenwand eine Entkopplung der funktionellen Eigenschaften der Wandstruktur, wobei an die Außenwand geringere Anforderungen an die mechanische Stabilität gestellt werden können als an die Innenwand. Die Innenwand kann mithin, da sie nicht unmittelbar einer Heißgasströmung ausgesetzt ist, mit einer größeren Wandstärke als die Außenwand ausgeführt sein. Sie kann im wesentlichen die mechanische Tragfunktion für die Turbinenschaufel übernehmen. Die Außenwand hingegen kann mit einer geringeren Wandstärke ausgebildet sein, wodurch sie besonders effektiv über die Wärmeübertragungselemente kühlbar ist. Der Querschnitt des Kühlbereichs zwischen der Innenwand und der Außenwand ist vorzugsweise zur Ausbildung einer hohen Geschwindigkeit des Kühlfluides gering ausgebildet und liegt insbesondere im Bereich der Wandstärke der Außenwand. Durch einen geringen durchströmten Querschnitt des Kühlbereichs und eine damit ausgebildete hohe Geschwindigkeit des Kühlfluides werden sehr hohe Wärmeübergangszahlen erreicht. Die Hauptströmungsrichtung in dem Kühlbereich entspricht vorzugsweise der Strömungsrichtung eines die Turbinenschaufel umströmenden Fluides, insbesondere eines Heißgases, oder ist dieser gerade entgegengesetzt. Die Wärmeübertragungselemente sind vorzugsweise säulenartig oder podestartig ausgebildet und reichen von der Außenwand bis an die Innenwand heran. Sie können auch mit der Innenwand fest verbunden sein. Der Querschnitt der Wärmeübertragungselemente ist jeweils den wärmeübertragungsund strömungstechnischen Anforderungen anpaßbar, beispielsweise kreisförmig, vieleckig oder nach Art eines Strömungsprofils ausgebildet.
Die auf eine Verwendung der Turbinenschaufel gerichtete Aufgabe wird dadurch gelöst, daß die Turbinenschaufel als Laufschaufel oder Leitschaufel in einer Gasturbinenanlage, insbesondere in einer Gasturbine, in der Temperaturen von deutlich über 1000 °C des die Turbinen umströmenden Heißgases auftreten, verwendet wird.
Anhand der in der Zeichnung dargestellten Ausführungsbeispiele wird die Turbinenschaufel näher erläutert. Es zeigen schematisiert unter Darstellung der für die Erläuterung verwendeten konstruktiven und funktionellen Merkmale:
FIG 1
eine Turbinenschaufel einer Gasturbine in einem Querschnitt,
FIG 2
eine vergrößerte Darstellung der Wandstruktur gemäß Figur 1,
FIG 3
eine alternative Ausführungsform einer Turbinenschaufel einer Gasturbine in einem Querschnitt und
FIG 4
eine vergrößerte Darstellung eines Ausschnittes der Wandstruktur gemäß Figur 3.
Die Bezugszeichen sämtlicher Figuren haben jeweils die gleiche Bedeutung.
In Figur 1 ist eine entlang einer Hauptachse 19 gerichtete Turbinenschaufel 1 einer Gasturbine dargestellt. Diese weist eine Wandstruktur 2 auf mit einem Anströmbereich 8, einem Abströmbereich 9 sowie einer Druckseite 10 und einer Saugseite 11, die einander gegenüber angeordnet sind. Die Wandstruktur 2 weist eine Außenwand 3 auf, die einen Innenraum 21 umschließt, welcher in nicht näher dargestellte Teilbereiche unterteilt ist. Die Außenwand 3 weist in den Innenraum 21 hinein gerichtete Verdickungen 14 auf. Der Anschaulichkeit halber sind lediglich schematisch zwei Verdickungen 14 dargestellt. Durch jede Verdickung 14 ist ein als Bohrung 17 ausgebildeter Auslaß 16 geführt. Dieser ermöglicht einem in den Innenraum 21 geführten Kühlfluid 6, Kühlluft, aus dem Innenraum 21 durch die Verdickung 14 an die Außenwand 3 zu strömen. Außerhalb der Turbinenschaufel 1 vermischt sich die Kühlluft 6 mit der Strömung 18 (siehe Figur 2) eines die Turbinenschaufel 1 umströmenden Fluides, insbesondere eines Heißgases. Die Bohrung 17 ist (siehe Figur 2) gegenüber der Außenwand 3 um einen spitzen Winkel α vorzugsweise kleiner 45° geneigt. Hierdurch wird erreicht, daß sich die Kühlluft 6 unmittelbar stromab des Auslasses 16 an die Außenwand 3 anlegt und somit eine wirksame Filmkühlung der Außenwand 3 bewirkt. Die Verdickung 14 ist vorzugsweise als singuläre lokale hügelförmige Erhöhung ausgebildet und zu dem Auslaß 16 hin abgerundet. Die Verdickung 14 weist mithin dort, wo das Kühlfluid in den Auslaß 16 einströmt, einen Krümmungsradius R auf, durch den ein weitgehend ungehindertes Einströmen des Kühlfluides 6 in den Auslaß 16 gewährleistet ist. Dies trägt auch zu einer Vergleichmäßigung der Strömung des Kühlfluides 6 in dem Auslaß 16, der Bohrung 17, bei.
In den Figuren 3 und 4 ist ebenfalls eine Turbinenschaufel 1 einer Gasturbine dargestellt, die entlang einer Hauptachse 19 gerichtet ist. In der Wandstruktur 2 dieser Turbinenschaufel 1 sind sowohl an der Saugseite 11 als auch an der Druckseite 10 jeweils drei als Kühlkammern 20 ausgebildete hohle Kühlbereiche 5, 5a vorgesehen. Diese Kühlbereiche 5, 5a sind in der Wandstruktur 2 zwischen der Außenwand 3 und einer Innenwand 4 angeordnet. Die Innenwand 4 umschließt wie die Außenwand 3 den unterteilten Innenraum 21. Die Kühlbereiche 5, 5a haben eine Länge, die deutlich größer, beispielsweise zehn mal größer, als ihr Querschnitt ist. Die Außenwand 3 hat eine deutlich geringere Wandstärke als die Innenwand 4, beispielsweise beträgt die Wandstärke der Außenwand 3 1,0 mm und die Wandstärke der Innenwand 4 1,5 mm. Der Querschnitt der Kühlbereiche 5, 5a liegt im Bereich der Wandstärke der Außenwand 3 und beträgt beispielsweise etwa 1,0 mm. Über die Länge jedes Kühlbereichs 5, 5a sind eine Mehrzahl, vorzugsweise über fünf, Wärmeübertragungselemente 7 angeordnet. Von dem Innenraum 21 führt in jeden Kühlbereich 5, 5a ein jeweiliger Einlaß 15 hinein, welcher vorzugsweise als eine Bohrung oder eine Mehrzahl von Bohrungen ausgebildet, insbesondere gegossen, ist. Der Einlaß 15 ist im wesentlichen senkrecht zur Außenwand 3 gerichtet. Hierdurch wird eine zusätzliche Prallkühlung der Außenwand 3 im Bereich des Einlasses 15 erreicht. Von jedem Kühlbereich 5, 5a führt ein jeweiliger Auslaß 16 an die Außenoberfläche der Wandstruktur 2. Im Bereich des Auslasses 16 weist die Außenwand 3 eine Verdickung 14 auf. Die Kühlkammer 20 ist mithin im Bereich des Auslasses 16 weiter in Richtung des Innenraumes 21 hineingeführt. Der Auslaß 16 ist vorzugsweise als eine Bohrung 17 ausgeführt. Diese Bohrung 17 weist einen unmittelbar an die Kühlkammer 20 angrenzenden Drosselbereich 23 mit konstantem Querschnitt auf. An diesen Drosselbereich 23 schließt sich in Richtung zur Außenoberfläche der Außenwand 3 ein sich erweiternder Verlangsamungsbereich 24 an. Die Bohrung 17 ist entlang einer Achse 22 gerichtet, die, wie bereits zu den Figuren 1 und 2 erläutert, gegenüber der Außenwand 3 um einen spitzen Winkel α geneigt ist. Insbesondere an der Saugseite 11 ist der Auslaß 16 näher an dem Anströmbereich 8 angeordnet als der der gleichen Kühlkammer zugeordnete Einlaß 15. Hierdurch wird Kühlluft 6 im Gegenstrom zur Strömung des Heißgases 18 in der Kühlkammer 20 geführt.
Die Wärmeübertragungselemente 7 sind in Richtung der Hauptachse 19 vorzugsweise alternierend angeordnet, wodurch die Kontaktzeit zur Wärmeübertragung zwischen der Kühlluft 6 und dem mit der Außenwand 3 verbundenen Wärmeübertragungselement 7 erhöht wird. Die Wirksamkeit der Kühlung wird noch dadurch begünstigt, daß die Außenwand 3 mit einer geringen Wandstärke ausgeführt ist. Weiterhin erfolgt auch eine Kühlung der nicht unmittelbar dem Heißgas 18 ausgesetzten tragenden Innenwand 4.
Die Erfindung zeichnet sich durch eine Turbinenschaufel mit einer Wandstruktur aus, bei der eine einem Heißgas aussetzbare Außenwand eine Verdickung in einen Innenraum hinein aufweist, durch welche Verdickung ein Auslaß zur Führung von Kühlluft geführt ist. Durch die Verdickung ist selbst bei einer äußerst dünnen Außenwand mit einer Wandstärke von insbesondere etwa 1 mm ein günstiges Längen- zu Durchmesser-Verhältnis des Auslasses sowie ein flacher Neigungswinkel des Auslasses gegenüber der Außenwand gewährleistet. Hierdurch ist eine wirksame Filmkühlung der Außenwand erreichbar.

Claims (15)

  1. Turbinenschaufel (1), die einen Anströmbereich (8), einen Abströmbereich (9) und dazwischen sich gegenuberliegend eine Druckseite (10) und eine Saugseite (11) sowie eine von einem Fluid (18) umstrombaren Wandstruktur (2) aufweist, wobei die Wandstruktur (2) eine Außenwand (3) umfaßt, die einen Innenraum (21) zur Führung von Kuhlfluid (6) umgibt und einen Auslaß (16) für Kühlfluid (6) aufweist,
    wobei die Außenwand (3) an dem Auslaß (16) eine zu dem Innenraum (21) gerichtete Verdickung (14) aufweist, wobei die Außenwand (3) zumindest bereichweise eine mittlere Wandstärke kleiner 2,5 mm aufweist.
  2. Turbinenschaufel (1) nach Anspruch 1,
    dadurch gekennzeichnet, daß der Auslaß (16) im wesentlichen entlang einer Achse (22) gerichtet ist, die lokal gegnüber der Außenwand (3) um einen Winkel (α) zwischen 10° und 45°, insbesondere zwischen 25° und 35°, geneigt ist.
  3. Turbinenschaufel (1) nach Anspruch 2,
    dadurch gekennzeichnet, daß der Auslaß (16) eine Bohrung (17) mit im wesentlichen konstantem Querschnitt ist.
  4. Turbinenschaufel (1) nach Anspruch 2,
    dadurch gekennzeichnet, daß der Auslaß (16) zu dem Innenraum (21) gewandt einen Drosselbereich (23) mit im wesentlichen konstantem Querschnitt aufweist, der in einen Verlangsamungsbereich (24) mit sich erweiterndem Querschnitt übergeht.
  5. Turbinenschaufel (1) nach einem der vorhergehenden Anspruche, dadurch gekennzeichnet, daß die Verdickung (14) als lokale hugelformige Erhohung ausgebildet ist.
  6. Turbinenschaufel (1) nach 5,
    dadurch gekennzeichnet, daß die Verdickung (14) zum Auslaß (16) hin abgerundet ist.
  7. Turbinenschaufel (1) nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, daß die Verdikkung (14) als linienförmige Erhöhung ausgebildet ist.
  8. Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichet, daß die Außenwand (3) zumindest bereichsweise eine mittlere Wandstärke von etwa 1 mm aufweist.
  9. Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Auslaß (16) ein Verhältnis Länge zu Durchmesser von zwischen 2 und 5, insbesondere 3 bis 4, aufweist.
  10. Turbinenschaufel (1) nach einen der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Auslaß (16) einen minimalen Durchmesser von zwischen 0.3 mm und 1.5 mm, insbesondere etwa zwischen 0.6 mm und 0.7 mm, aufweist.
  11. Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Wandstruktur (2) eine Innenwand (4) und einen zwischen Innenwand (4) und Außenwand (3) angeordneten Kühlbereich (5) zur Durchströmung mit einem Kühlfluid (6) aufweist, und jeder Kühlbereich (5) einen der Innenwand (4) zugeordneten Einlaß (15) für Kühlfluid (6) aufweist.
  12. Turbinenschaufel (1) nach Anspruch 11,
    dadurch gekennzeichnet, daß in dem Kühlbereich (5) von dem Kühlfluid (6) in einer Hauptströmungsrichtung (12) umstrombare Wärmeübertragungselemente (7) hintereinander angeordnet sind, die warmetechnisch mit der Außenwand (3) verbunden sind.
  13. Turbinenschaufel (1) nach Anspruch 11 oder 12,
    dadurch gekennzeichnet, daß Außenwand (3), Innenwand (4) und Wärmeubertragungselemente (7) durch Gießen in einem Arbeitsschritt hergestellt sind.
  14. Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche, welche eine Laufschaufel (1a) oder eine Leitschaufel (1b) für eine Gasturbine ist.
  15. Verwendung einer Turbinenschaufel (1) nach einem der vorhergehenden Ansprüche in einer Gasturbinenanlage.
EP98914796A 1997-02-20 1998-02-20 Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage Expired - Lifetime EP0964981B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19706760 1997-02-20
DE19706760 1997-02-20
PCT/DE1998/000521 WO1998037310A1 (de) 1997-02-20 1998-02-20 Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage

Publications (2)

Publication Number Publication Date
EP0964981A1 EP0964981A1 (de) 1999-12-22
EP0964981B1 true EP0964981B1 (de) 2002-12-04

Family

ID=7820960

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98914796A Expired - Lifetime EP0964981B1 (de) 1997-02-20 1998-02-20 Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage

Country Status (4)

Country Link
EP (1) EP0964981B1 (de)
JP (1) JP2001511864A (de)
DE (1) DE59806535D1 (de)
WO (1) WO1998037310A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105189928A (zh) * 2013-03-15 2015-12-23 联合工艺公司 增材制造挡板、覆盖物和模具

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5931638A (en) * 1997-08-07 1999-08-03 United Technologies Corporation Turbomachinery airfoil with optimized heat transfer
WO1999014465A1 (de) * 1997-09-18 1999-03-25 Siemens Aktiengesellschaft Turbinenschaufel sowie verwendung einer turbinenschaufel
US6213714B1 (en) * 1999-06-29 2001-04-10 Allison Advanced Development Company Cooled airfoil
DE10333304A1 (de) * 2003-07-15 2005-02-03 Rolls-Royce Deutschland Ltd & Co Kg Turbinenschaufel mit Prallkühlung
ATE513980T1 (de) 2004-12-24 2011-07-15 Alstom Technology Ltd Verfahren zur herstellung eines bauteils mit eingebettetem kanal sowie bauteil
JP2011208624A (ja) * 2010-03-31 2011-10-20 Hitachi Ltd 高温部材の冷却構造
EP2568118A1 (de) * 2011-09-12 2013-03-13 Siemens Aktiengesellschaft Gasturbinenkomponente
EP2584148A1 (de) * 2011-10-21 2013-04-24 Siemens Aktiengesellschaft Filmgekühlte Turbinenschaufel für eine Strömungsmaschine
US9863254B2 (en) 2012-04-23 2018-01-09 General Electric Company Turbine airfoil with local wall thickness control
US9267381B2 (en) * 2012-09-28 2016-02-23 Honeywell International Inc. Cooled turbine airfoil structures
US20140102684A1 (en) * 2012-10-15 2014-04-17 General Electric Company Hot gas path component cooling film hole plateau
JP2014148938A (ja) * 2013-02-01 2014-08-21 Siemens Ag ターボ機械のためのフィルム冷却されるタービンブレード
US9328616B2 (en) 2013-02-01 2016-05-03 Siemens Aktiengesellschaft Film-cooled turbine blade for a turbomachine
US20150096306A1 (en) * 2013-10-08 2015-04-09 General Electric Company Gas turbine airfoil with cooling enhancement
US9970319B2 (en) 2014-05-05 2018-05-15 United Technologies Corporation Reducing variation in cooling hole meter length
US10982552B2 (en) * 2014-09-08 2021-04-20 Raytheon Technologies Corporation Gas turbine engine component with film cooling hole
US20170306764A1 (en) * 2016-04-26 2017-10-26 General Electric Company Airfoil for a turbine engine
US10344611B2 (en) 2016-05-19 2019-07-09 United Technologies Corporation Cooled hot section components for a gas turbine engine
US11085641B2 (en) 2018-11-27 2021-08-10 Honeywell International Inc. Plug resistant effusion holes for gas turbine engine
FR3111661B1 (fr) * 2020-06-22 2022-11-04 Safran Aircraft Engines Aube de turbine avec système de refroidissement
KR102466386B1 (ko) 2020-09-25 2022-11-10 두산에너빌리티 주식회사 터빈 블레이드 및 이를 포함하는 터빈

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770608A (en) * 1985-12-23 1988-09-13 United Technologies Corporation Film cooled vanes and turbines
US4827587A (en) * 1988-01-25 1989-05-09 United Technologies Corporation Method of fabricating an air cooled turbine blade
US5383766A (en) * 1990-07-09 1995-01-24 United Technologies Corporation Cooled vane
US5405242A (en) 1990-07-09 1995-04-11 United Technologies Corporation Cooled vane
GB2262314A (en) * 1991-12-10 1993-06-16 Rolls Royce Plc Air cooled gas turbine engine aerofoil.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105189928A (zh) * 2013-03-15 2015-12-23 联合工艺公司 增材制造挡板、覆盖物和模具
US10173264B2 (en) 2013-03-15 2019-01-08 United Technologies Corporation Additive manufacturing baffles, covers, and dies

Also Published As

Publication number Publication date
DE59806535D1 (de) 2003-01-16
WO1998037310A1 (de) 1998-08-27
JP2001511864A (ja) 2001-08-14
EP0964981A1 (de) 1999-12-22

Similar Documents

Publication Publication Date Title
EP0964981B1 (de) Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage
DE60031185T2 (de) Methode zur Kühlung einer Wand einer Strömungsmaschinenschaufel
DE602004009487T2 (de) Dämpfungs- und Dichtungselement für Turbine
EP1320661B1 (de) Gasturbinenschaufel
DE69828757T2 (de) Kühlung der Anströmkante einer Gasturbinenschaufel
DE3345263C2 (de) Gekühlte Turbinenschaufel
DE60015233T2 (de) Turbinenschaufel mit interner Kühlung
DE69714960T3 (de) Wirbelelementkonstruktion für Kühlkanäle eines Gasturbinenrotorschaufelblattes
DE3789514T2 (de) Gekühlte Gasturbinenschaufel.
DE60202212T2 (de) Kühlbares segment für turbomaschinen und turbinen mit brennkammer
DE2320581C2 (de) Gasturbine mit luftgekühlten Turbinenlaufschaufeln
DE60018817T2 (de) Gekühlte Gasturbinenschaufel
EP1267039A1 (de) Kühlkonstruktion für Schaufelblatthinterkante
DE102006004437A1 (de) Plattform einer Laufschaufel einer Gasturbine, Verfahren zur Herstellung einer Laufschaufel, Dichtungsplatte und Gasturbine
EP1165939B1 (de) Kühlmitteldurchströmte, gegossene gasturbinenschaufel sowie vorrichtung und verfahren zur herstellung eines verteilerraums der gasturbinenschaufel
EP0892149B1 (de) Kühlsystem für den Vorderkantenbereich einer hohlen Gasturbinenschaufel
DE19963349A1 (de) Schaufel für Gasturbinen mit Drosselquerschnitt an Hinterkante
DE4441507A1 (de) Turbinenkühlschaufel
EP1482246A1 (de) Brennkammer
EP1180578A1 (de) Anordnung von Turbinenschaufeln
EP1668236B1 (de) Brennkammer mit kühleinrichtung und verfahren zur herstellung der brennkammer
EP0954680B1 (de) Turbinenschaufel sowie verwendung in einer gasturbinenanlage
EP1745195B1 (de) Strömungsmaschinenschaufel
WO2003054356A1 (de) Thermisch belastetes bauteil
DE69925447T2 (de) Kühlbare Schaufelblätter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20010615

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59806535

Country of ref document: DE

Date of ref document: 20030116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030228

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030315

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20030905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080227

Year of fee payment: 11

Ref country code: GB

Payment date: 20080211

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080214

Year of fee payment: 11

Ref country code: DE

Payment date: 20080410

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090220

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090220

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090220