EP0882307B1 - Sinterelektrode - Google Patents
Sinterelektrode Download PDFInfo
- Publication number
- EP0882307B1 EP0882307B1 EP97951066A EP97951066A EP0882307B1 EP 0882307 B1 EP0882307 B1 EP 0882307B1 EP 97951066 A EP97951066 A EP 97951066A EP 97951066 A EP97951066 A EP 97951066A EP 0882307 B1 EP0882307 B1 EP 0882307B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- powder
- sintered
- particle size
- sintered electrode
- electrode according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/04—Electrodes; Screens; Shields
- H01J61/06—Main electrodes
- H01J61/073—Main electrodes for high-pressure discharge lamps
- H01J61/0735—Main electrodes for high-pressure discharge lamps characterised by the material of the electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12028—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
- Y10T428/12042—Porous component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12028—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
- Y10T428/12063—Nonparticulate metal component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12153—Interconnected void structure [e.g., permeable, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12639—Adjacent, identical composition, components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12639—Adjacent, identical composition, components
- Y10T428/12646—Group VIII or IB metal-base
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12778—Alternative base metals from diverse categories
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12819—Group VB metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
- Y10T428/12833—Alternative to or next to each other
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
- Y10T428/1284—W-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12875—Platinum group metal-base component
Definitions
- the invention is based on a sintered electrode according to the preamble of claim 1. It is a sintered electrode for high-pressure discharge lamps such as metal halide lamps or High-pressure sodium discharge lamps.
- DE-OS 42 06 909 describes a thermionically emitting cathode element known for vacuum electron tubes, which consist of spherical particles 5 to 90% of the total volume is produced with an average grain size of less than 1 ⁇ m the sintered electrode consist of unfilled, to the environment open pores. The distances between neighboring particles (grains) are smaller than 1 ⁇ m.
- XP002062073 is a thermionically emitting cathode known, which comprises a sintered body with porosity of about 20%
- the sintered body consists of tungsten powder with a grain size distribution from 2 to 14 ⁇ m.
- the use of a very narrow grain size distribution is considered proposed a way to achieve controlled porosity.
- a dispenser cathode which has a sintered body made of porous tungsten, which reaches 83% of theoretical density It is made from tungsten powder, the grains of which have a radius in the area May have 1.5 to 6.1 microns.
- a sintered electrode is known from US Pat. No. 3,244,929 which, in addition to tungsten Proportions of emitter material such as oxides of aluminum, barium, calcium or Thorium contains The sintered body sits on a solid solid core pin Material.
- DD-PS 292 764 is a cermet sintered body consisting of a mixture known from tungsten and thorium oxide or alkaline earth oxide, in which the porosity of the sintered body through the defined use of a binder is controlled during production.
- the particle size of the cermet powder is 80 to 550 ⁇ m.
- a major problem with known sintered electrodes is that their porosity does not remain constant over the lifespan because of the sintering process the high temperature load during the operation of the electrode progresses. Therefore, such lamps have poor maintenance during the lifespan.
- sintered electrodes have so far been used for high-pressure lamps cannot prevail across the board. Rather, it was up to now instructed to use spiral electrodes with a core pin made of thoriated tungsten or pin electrodes made of thoriated tungsten. The production So far, each was made of compact solid material.
- the sintered electrode according to the invention for high-pressure discharge lamps consists of a sintered body made of one of the high-melting metals Tungsten, tantalum, osmium, iridium, molybdenum or rhenium or an alloy of these metals.
- a metal or alloy known oxidic doping (up to 5% by weight) can be added, for example an oxide of lanthanum or yttrium.
- the sintered body is made of a metallic powder, essentially spherical or the alloy, the average grain size between 2 and 100 microns, the grain size distribution by a maximum of 20% the mean fluctuates and is between 10 and 40 vol .-% of the total volume the sintered electrode consists of pores open to the environment
- the pores can be unfilled or contain emitter additives.
- Emitter additives are oxides of alkaline earth, for example barium, calcium, Strontium and mixtures thereof.
- Aluminates are also suitable Oxides of hafnium or zirconium or rare earth metals (in particular Sc, Y, La, Ce, Nd, Gd, Dy and Yb).
- the average grain size of the spherical powder is preferably between 5 and 70 ⁇ m.
- the grain size distribution fluctuates by a maximum of 10% around the mean.
- the sintered body is on a in a manner known per se Solid metal core pin attached
- connection techniques such as No soldering or welding can be.
- the mechanical connection is only by shrinking or sintering
- the material of the sintered body and of the core pin is preferably essentially the same, for example pure tungsten.
- the sintered body can be unfilled or contain emitter additives (e.g. lanthanum oxide). Pure tungsten doped with potassium is also suitable for the core pin or a rhenium-tungsten alloy.
- the electrode can do without thorium and is then radioactive.
- the service life of the high-pressure discharge lamps equipped with it is lengthened, the increase in lamp lamp voltage is reduced and the Maintenance of the luminous flux significantly improved
- the blackening the wall of the discharge vessel is reduced when the lamps are in operation, there is a reduction in the restlessness of the arc and flickering
- the manufacture of the electrode is considerably simplified Compared to conventional electrodes, the electrode coil can be saved become.
- the powder is single crystal.
- Powder in particular be pressed around a core pin.
- Method step c) can be preferred, for example, in the case of tungsten at temperatures from 2500 to 2800 K. In the event of of an alloy is the lowest with melting temperature melting component meant.
- Another advantageous process is the metal injection molding process.
- This Technology is described in more detail in DE-OS 197 49 908. You can in modified form can also be used for the present invention.
- the course of the procedure can be summarized as follows: A suitable one Metal powder is mixed with so much plastic (the so-called binder) that this starting material, which is in the form of granules, has the flow properties of the plastic and analogous to plastic injection molding can be further machined by placing it in an injection mold with the contour of the desired future component. Then a metallic one To obtain the component, the green body is removed from the injection mold; the binder is then removed by heat or by solvent removed from the so-called green body. This process is called Dewaxing. Then the component is made accordingly classic powder metallurgy sintered to a very high density component.
- the essentially spherical metal powder is produced in known way, being rounded or almost exactly spherical Particles can arise.
- One example is the carbonyl process (New Types of Metal Powders, Ed. H. Hausner, Gordon and Breach Science Publishers, New York 1963, published in the series Metallurgical Society Conferences as volume 23). Particularly good results are obtained with single crystal Metal powder achieved.
- the spherical powder grains of homogeneous size develop during sintering Equilibrium surfaces in the form of polyhedra. For example, it is around [110] or [111] faces. Surprisingly, it turned out that these polyhedron surfaces do not sinter further, so that the porosity of this new sintered body is practically constant over the service life remains. It is a so-called sponge body with an open Porosity.
- the mode of operation of the sintered body is explained in more detail below using an example in which the sintered body is produced from pure (that is to say ThO 2- free) tungsten.
- the starting material is spherical W powder with a diameter that is as uniform as possible, i.e. with a narrow distribution width of the grain size.
- This homogeneity of the powder ultimately results in great stability of the sintered body at high temperatures and leads to correspondingly stable conditions during the life of the lamp.
- the powder can be pressed directly around a ThO 2 -free core pin. Sintering is then carried out at the relatively low temperature of around 2350 ( ⁇ 100) ° C. This low temperature, which corresponds approximately to 0.7 times the melting temperature of the tungsten, means considerable energy savings compared to the usual sintering temperatures of 2800-3000 ° C for compact tungsten material.
- the residual porosity of the finished sintered sponge electrode can be targeted can be set via the ball size of the starting material. Preferably are ball sizes from 5 to 70 ⁇ m for the sponge electrode used. A residual porosity of about 15 to 30% by volume can thus be achieved.
- the discharge starts at a large one Area.
- the point-like approach known from conventional electrodes who often there at very high temperatures and for hiking of the focal spot is avoided.
- the temperature distribution on the whole sponge body is largely even.
- one conventional electrode has a high temperature gradient. It has in particular at the top a typically 500 K higher temperature than in rear part of the electrode.
- the transition from glow to glow occurs Arc discharge faster when using the sintered electrode than when conventional solid electrode because the heat dissipation from the top the electrode in the direction of crushing due to the small contact area between the sintered grains of the sintered body is greatly reduced.
- any reflective coating may be present the piston ends are dimensioned smaller or omitted entirely, whereby a higher luminous flux is achieved.
- the sintered electrode 1 shown in FIG. 1 for a 150 W lamp consists of a cylindrical sintered body 2, in its half facing away from the discharge a solid core pin 5 made of tungsten is pressed axially.
- the sintered body 2 consists of tungsten, which is made of spherical metal powder with a medium Grain size of 10 microns is made. The grain size distribution fluctuates by 10% around the mean. The residual porosity is approximately 15% by volume.
- the diameter of the core pin is approximately 0.5 mm, the outer diameter the sintered body is approximately 1.5 mm.
- FIG. 2 shows an example of a metal halide lamp 9 with a Power of 150 W. It consists of a quartz glass vessel 10, which is a metal halide filling contains. There are external power supplies at both ends 11 and molybdenum foils 12 embedded in bruises 13. On The core pins 5 of the electrodes 1 are fastened to the molybdenum foils 12. Latter protrude into the discharge vessel 10. The two ends of the outlet tion vessel are each with a heat reflective coating 14th made of zirconium oxide.
- the electrode consists of a sintered body, which is rounded on the discharge side or tapered to a point
- the sintered body consists of tungsten, while the pressed core pin is made of rhenium, rhenium-plated tungsten or molybdenum.
- a particularly advantageous method for producing a sintered electrode according to the invention is based on the metal injection molding method known per se. The principle is explained in detail in DE-OS 197 49 908. An overview can be found in the article “Overview of Powder Injection Molding” by PJ Vervoort et al., In: Advanced Performance Materials 3 , pp. 121-151 (1996).
- the mixture in the Injection mold injected around a core pin and with this during sintering connected.
- Such electrodes show a much better life behavior.
- Studies on metal halide lamps with 150 W output show that maintenance of the luminous flux after 1000 hours of use of metal powders with a grain size of 5 or 20 ⁇ m to 95% each of the initial luminous flux.
- the state of the Technology conventional stick electrode made of doped tungsten material
- Luminous flux drops to values between 83 and 90% after 1000 hours to observe.
Landscapes
- Discharge Lamp (AREA)
- Powder Metallurgy (AREA)
Description
- Figur 1
- eine Sinterelektrode, im Schnitt
- Figur 2
- eine Metallhalogenidlampe mit Sinterelektrode
- Bereitstellen eines im wesentlichen sphärischen, einkristallinen,
Metallpulvers aus hochschmelzendem Metall wie Wolfram, Tantal,
Molybdän, Osmium, Iridium oder Rhenium oder einer Legierung dieser Metalle,
wobei das Pulver folgende Eigenschaften besitzt:
- die mittlere Korngröße des Metallpulvers beträgt zwischen 2 und 100 µm;
- die Korngrößenverteilung schwankt um maximal 20 % um den Mittelwert;
- Herstellen einer Mischung (sog. "feedstock") aus Pulver und Binder (oft auch als "Wachs" bezeichnet) und evtl. Polymer;
- Spritzen der Mischung in eine Spritzgußform;
- chemisches und thermisches Entfernen des Binders ("Entwachsen", sog. "dewaxing")
- Sintern bei einer Temperatur von etwa.dem 0,6 bis 0,8-fachen der Schmelztemperatur des verwendeten Metalls.
Claims (12)
- Sinterelektrode (1) für Hochdruckentladungslampen, die einen Sinterkörper (2) umfasst, wobei der Sinterkörper (2) eine zylindrische Außenkontur besitzt und aus einem im wesentlichen sphärischen Pulver eines der hochschmelzenden Metalle Wolfram, Tantal, Osmium, Iridium, Molybdän oder Rhenium oder einer Legierung dieser Metalle hergestellt ist, wobei die mittlere Korngröße des Pulvers zwischen 2 und 100 µm beträgt, wobei zwischen 10 und 40 Vol.-% des Gesamtvolumens der Sinterelektrode aus zur Umgebung hin offenen Poren besteht, dadurch gekennzeichnet, dass der Sinterkörper (2) homogen aus einkristallinem Pulver aufgebaut ist, wobei die Korngrößenverteilung des Pulvers um maximal 20 % um den Mittelwert schwankt.
- Sinterelektrode nach Anspruch 1, dadurch gekennzeichnet, dass die Poren ungefüllt sind oder Emitterzusätze enthalten.
- Sinterelektrode nach Anspruch 1, dadurch gekennzeichnet, dass die mittlere Korngröße zwischen 5 und 70 µm beträgt
- Sinterelektrode nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Korngrößenverteilung um maximal 10 % um den Mittelwert schwankt
- Sinterelektrode nach Anspruch 1, dadurch gekennzeichnet, dass der Sinterkörper (2) auf einem Kernstift (5) aus massivem Metall befestigt ist.
- Sinterelektrode nach Anspruch 5, dadurch gekennzeichnet, dass das Material des Sinterkörpers (2) und des Kernstifts (5) das gleiche ist
- Sinterelektrode nach Anspruch 1, dadurch gekennzeichnet, dass das Metall bis zu 5 Gew.-% Dotierstoffe enthält
- Verfahren zur Herstellung einer Sinterelektrode gemäß Anspruch 1, bestehend aus folgenden Verfahrensschritten:Bereitstellen eines im wesentlichen sphärischen, einkristallinen, Metallpulvers aus einem der hochschmelzenden Metalle Wolfram, Tantal, Molybdän, Osmium, Iridium oder Rhenium oder einer Legierung dieser Metalle, wobei das Pulver folgende Eigenschaften besitztdie mittlere Korngröße des Metallpulvers beträgt zwischen 2 und 100 µm;die Korngrößenverteilung schwankt um maximal 20 % um den Mittelwert;Pressen des Pulvers;Sintern bei einer Temperatur von dem 0,6 bis 0,8-fachen der Schmelztemperatur des verwendeten Metalls.
- Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Pulver um einen Kernstift (5) gepreßt wird und mit diesem beim Sintern verbunden wird.
- Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Pressen ohne Zugabe eines Binders erfolgt.
- Verfahren zur Herstellung einer Sinterelektrode gemäß Anspruch 1, bestehend aus folgenden Verfahrensschritten:Bereitstellen eines im wesentlichen sphärischen, einkristallinen Metallpulvers aus einem der hochschmelzenden Metalle Wolfram, Tantal, Molybdän, Osmium, Iridium oder Rhenium oder einer Legierung dieser Metalle, wobei das Pulver folgende Eigenschaften besitztdie mittlere Korngröße des Metallpulvers beträgt zwischen 2 und 100 µm;die Korngrößenverteilung schwankt um maximal 20 % um den Mittelwert;Herstellen einer Mischung, im Englischen oft als feedstock bezeichnet, aus Pulver und Binder, oft auch als Wachs bezeichnet;Spritzen der Mischung in eine Spritzgußform;chemisches und thermisches Entfernen des Binders;Sintern bei einer Temperatur von dem 0,6 bis 0,8-fachen der Schmelztemperatur des verwendeten Metalls.
- Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Mischung in der Spritzgußform um einen Kernstift gespritzt wird und mit diesem beim Sintern verbunden wird.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19652822 | 1996-12-18 | ||
DE19652822A DE19652822A1 (de) | 1996-12-18 | 1996-12-18 | Sinterelektrode |
PCT/DE1997/002640 WO1998027575A1 (de) | 1996-12-18 | 1997-11-11 | Sinterelektrode |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0882307A1 EP0882307A1 (de) | 1998-12-09 |
EP0882307B1 true EP0882307B1 (de) | 2004-01-28 |
Family
ID=7815235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97951066A Expired - Lifetime EP0882307B1 (de) | 1996-12-18 | 1997-11-11 | Sinterelektrode |
Country Status (9)
Country | Link |
---|---|
US (1) | US6218025B1 (de) |
EP (1) | EP0882307B1 (de) |
JP (1) | JP2000505939A (de) |
KR (1) | KR19990082364A (de) |
CN (1) | CN1123053C (de) |
CA (1) | CA2246517C (de) |
DE (2) | DE19652822A1 (de) |
HU (1) | HU223302B1 (de) |
WO (1) | WO1998027575A1 (de) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6705914B2 (en) | 2000-04-18 | 2004-03-16 | Matsushita Electric Industrial Co., Ltd. | Method of forming spherical electrode surface for high intensity discharge lamp |
DE10307716B4 (de) * | 2002-03-12 | 2021-11-18 | Taniobis Gmbh | Ventilmetall-Pulver und Verfahren zu deren Herstellung |
CN101292324B (zh) * | 2003-05-26 | 2012-11-14 | 皇家飞利浦电子股份有限公司 | 具有改进的颜色稳定性的无钍电极 |
US20090134799A1 (en) * | 2004-11-02 | 2009-05-28 | Koninklijke Philips Electronics, N.V. | Discharge lamp, electrode, and method of manufacturing a component of a discharge lamp |
JP2008519394A (ja) * | 2004-11-02 | 2008-06-05 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 放電ランプ、電極、及び、放電ランプの電極部分を製造する方法 |
WO2006072858A2 (en) * | 2005-01-03 | 2006-07-13 | Philips Intellectual Property & Standards Gmbh | Lighting assembly and method of operating a discharge lamp |
JP2006283077A (ja) * | 2005-03-31 | 2006-10-19 | Ngk Insulators Ltd | 複合体 |
JP4454527B2 (ja) * | 2005-03-31 | 2010-04-21 | 日本碍子株式会社 | 発光管及び高圧放電灯 |
JP4614908B2 (ja) * | 2005-05-11 | 2011-01-19 | 日立粉末冶金株式会社 | 冷陰極蛍光ランプ用電極 |
DE102005035190A1 (de) * | 2005-07-27 | 2007-02-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Haltestab |
JP2007095665A (ja) | 2005-09-02 | 2007-04-12 | Sony Corp | ショートアーク型高圧放電電極、ショートアーク型高圧放電管、ショートアーク型高圧放電光源装置、及びそれらの各製造方法 |
US7652415B2 (en) * | 2005-10-20 | 2010-01-26 | General Electric Company | Electrode materials for electric lamps and methods of manufacture thereof |
KR100682313B1 (ko) * | 2005-12-13 | 2007-02-15 | 안의현 | 냉음극 형광램프의 전극 및 그 제조방법 |
JP5100632B2 (ja) * | 2006-03-16 | 2012-12-19 | 株式会社東芝 | 冷陰極管用焼結電極およびそれを用いた冷陰極管並びに液晶表示装置 |
US20070236125A1 (en) * | 2006-04-07 | 2007-10-11 | Federal-Mogul World Wide, Inc. | Spark plug |
DE102007013990A1 (de) * | 2007-03-23 | 2008-09-25 | Osram Gesellschaft mit beschränkter Haftung | Material für Elektroden oder Leuchtkörper und Elektrode bzw. Leuchtkörper |
WO2010001316A1 (en) * | 2008-07-04 | 2010-01-07 | Philips Intellectual Property & Standards Gmbh | Mercury-free and zinc-free high intensity gas-discharge lamp |
JP5224281B2 (ja) * | 2008-09-16 | 2013-07-03 | 独立行政法人物質・材料研究機構 | 冷陰極蛍光管用電極およびこれを用いた冷陰極蛍光管 |
DE102009005446A1 (de) * | 2009-01-21 | 2010-07-22 | Schott Ag | Granulat, Verfahren zu dessen Herstellung sowie dessen Verwendung |
WO2011018741A2 (en) * | 2009-08-13 | 2011-02-17 | Koninklijke Philips Electronics N.V. | Mercury-free high intensity gas-discharge lamp |
DE102009055123A1 (de) | 2009-12-22 | 2011-06-30 | Osram Gesellschaft mit beschränkter Haftung, 81543 | Keramische Elektrode für eine Hochdruckentladungslampe |
CN101831568A (zh) * | 2010-05-21 | 2010-09-15 | 西北有色金属研究院 | 粉末冶金法制备耐超高温铱合金的方法 |
CN102366837A (zh) * | 2011-08-10 | 2012-03-07 | 厦门虹鹭钨钼工业有限公司 | 一种高压气体放电灯用钍钨-钨复合电极的制作方法 |
CN104584185B (zh) * | 2012-07-31 | 2016-11-16 | 东芝高新材料公司 | 放电灯用阴极、放电灯用阴极的制造方法、放电灯 |
US20140041589A1 (en) * | 2012-08-07 | 2014-02-13 | Veeco Instruments Inc. | Heating element for a planar heater of a mocvd reactor |
AT16085U1 (de) * | 2017-09-22 | 2019-01-15 | Plansee Se | Kathode |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2700000A (en) * | 1952-02-27 | 1955-01-18 | Philips Corp | Thermionic cathode and method of manufacturing same |
US2721372A (en) * | 1951-06-30 | 1955-10-25 | Philips Corp | Incandescible cathodes |
US5418070A (en) * | 1988-04-28 | 1995-05-23 | Varian Associates, Inc. | Tri-layer impregnated cathode |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB816135A (en) | 1955-01-28 | 1959-07-08 | Ass Elect Ind | Workable alloys of molybdenum and tungsten containing rhenium |
DE292764C (de) | ||||
GB639797A (en) | 1947-08-14 | 1950-07-05 | Gen Electric Co Ltd | Improvements in and relating to oxide-coated electrodes for electric discharge lamps |
NL272981A (de) | 1961-01-02 | |||
GB977545A (en) | 1961-12-09 | 1964-12-09 | Hitachi Ltd | Improvements relating to the production of hollow cathodes |
AU527753B2 (en) | 1978-09-07 | 1983-03-24 | Tokyo Shibaura Denki Kabushiki Kaisha | Discharge lamp electrode |
US4303848A (en) * | 1979-08-29 | 1981-12-01 | Toshiba Corporation | Discharge lamp and method of making same |
US4415835A (en) | 1981-06-22 | 1983-11-15 | General Electric Company | Electron emissive coatings for electric discharge devices |
US4830822A (en) | 1985-08-26 | 1989-05-16 | Gte Products Corporation | Variable density article and method for producing same |
NL8700935A (nl) | 1987-04-21 | 1988-11-16 | Philips Nv | Geimpregneerde kathodes met een gekontroleerde porositeit. |
DE4206909A1 (de) | 1992-03-05 | 1993-09-09 | Philips Patentverwaltung | Thermionisch emittierendes kathodenelement |
GB9413973D0 (en) | 1994-07-11 | 1994-08-31 | Rank Brimar Ltd | Electrode structure |
JPH09231946A (ja) | 1996-02-23 | 1997-09-05 | Ushio Inc | ショートアーク型放電ランプ |
-
1996
- 1996-12-18 DE DE19652822A patent/DE19652822A1/de not_active Withdrawn
-
1997
- 1997-11-11 KR KR1019980706094A patent/KR19990082364A/ko not_active Application Discontinuation
- 1997-11-11 DE DE59711260T patent/DE59711260D1/de not_active Expired - Fee Related
- 1997-11-11 EP EP97951066A patent/EP0882307B1/de not_active Expired - Lifetime
- 1997-11-11 CN CN97192363.9A patent/CN1123053C/zh not_active Expired - Fee Related
- 1997-11-11 JP JP10527165A patent/JP2000505939A/ja not_active Abandoned
- 1997-11-11 HU HU9901361A patent/HU223302B1/hu not_active IP Right Cessation
- 1997-11-11 CA CA002246517A patent/CA2246517C/en not_active Expired - Fee Related
- 1997-11-11 US US09/125,393 patent/US6218025B1/en not_active Expired - Fee Related
- 1997-11-11 WO PCT/DE1997/002640 patent/WO1998027575A1/de not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2721372A (en) * | 1951-06-30 | 1955-10-25 | Philips Corp | Incandescible cathodes |
US2700000A (en) * | 1952-02-27 | 1955-01-18 | Philips Corp | Thermionic cathode and method of manufacturing same |
US5418070A (en) * | 1988-04-28 | 1995-05-23 | Varian Associates, Inc. | Tri-layer impregnated cathode |
Also Published As
Publication number | Publication date |
---|---|
KR19990082364A (ko) | 1999-11-25 |
DE59711260D1 (de) | 2004-03-04 |
CA2246517A1 (en) | 1998-06-25 |
HU223302B1 (hu) | 2004-05-28 |
HUP9901361A2 (hu) | 1999-08-30 |
HUP9901361A3 (en) | 2000-04-28 |
EP0882307A1 (de) | 1998-12-09 |
DE19652822A1 (de) | 1998-06-25 |
CN1211341A (zh) | 1999-03-17 |
JP2000505939A (ja) | 2000-05-16 |
CN1123053C (zh) | 2003-10-01 |
CA2246517C (en) | 2005-08-09 |
WO1998027575A1 (de) | 1998-06-25 |
US6218025B1 (en) | 2001-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0882307B1 (de) | Sinterelektrode | |
DE69303489T2 (de) | Dichtungselement für aluminumoxid-entladungskolben und verfahren zu deren herstellung | |
DE19749908A1 (de) | Elektrodenbauteil für Entladungslampen | |
EP1481418B1 (de) | Kurzbogen-hochdruckentladungslampe | |
EP0652586B1 (de) | Metallhalogenidentladungslampe mit keramischem Entladungsgefäss und Herstellverfahren für eine derartige Lampe | |
DE69507283T2 (de) | Niederdruckentladundslampe | |
DE2245717A1 (de) | Elektrode mit einem poroesen sinterkoerper | |
DE9415217U1 (de) | Hochdruckentladungslampe | |
EP2020018B1 (de) | Hochdruckentladungslampe | |
EP0585797B1 (de) | Hochdruckentladungslampe | |
DE69731374T2 (de) | Niederdruckentladunglampe | |
EP0713738A1 (de) | Gesintertes Formteil aus hochschmelzendem Metallpulver mit Dotierungen | |
DE69921901T2 (de) | Cermet und keramische Entladungslampe | |
DE69105103T2 (de) | Niederdruckentladungslampe. | |
DE3002033A1 (de) | Sinterelektrode fuer entladungsroehren | |
DE2655726C2 (de) | ||
WO2010069678A2 (de) | Keramisches entladungsgefäss für eine hochdruckentladungslampe | |
DE69220865T2 (de) | Werkstoff für Vakuumschalterkontakte und Verfahren zu ihrer Herstellung | |
EP0383108B1 (de) | Hochdruckentladungslampe für den Betrieb mit Wechselstrom | |
DE19616408A1 (de) | Elektrode für Entladungslampen | |
DE2519014C3 (de) | Verfahren zur Herstellung von Elektroden für Hochdruckentladungslampen | |
DE69718363T2 (de) | Thermionische Kathode und Verfahren zu ihrer Herstellung | |
DE60112851T2 (de) | Zusammengefügte Teile und Hochdruckentladungslampen | |
DE3519163A1 (de) | Elektrodenmaterial fuer eine funkenstrecke | |
EP0559283B1 (de) | Kathode mit einem porösen Kathodenelement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980805 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 20010622 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 20040128 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040128 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040128 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59711260 Country of ref document: DE Date of ref document: 20040304 Kind code of ref document: P |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20040128 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041029 |
|
EN | Fr: translation not filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20051109 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20051118 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070601 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20070601 |
|
BERE | Be: lapsed |
Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M. Effective date: 20061130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090119 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100601 |