EP0723703A1 - Randverbindbare metallpackung - Google Patents
Randverbindbare metallpackungInfo
- Publication number
- EP0723703A1 EP0723703A1 EP94929803A EP94929803A EP0723703A1 EP 0723703 A1 EP0723703 A1 EP 0723703A1 EP 94929803 A EP94929803 A EP 94929803A EP 94929803 A EP94929803 A EP 94929803A EP 0723703 A1 EP0723703 A1 EP 0723703A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- package
- leadframe
- base component
- perimeter
- metallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 35
- 239000002184 metal Substances 0.000 title claims description 35
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 16
- 229920000642 polymer Polymers 0.000 claims description 11
- 239000000565 sealant Substances 0.000 claims description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- 238000002048 anodisation reaction Methods 0.000 claims description 7
- 238000001465 metallisation Methods 0.000 claims description 6
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- 230000001464 adherent effect Effects 0.000 claims description 4
- 239000000976 ink Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 150000002736 metal compounds Chemical class 0.000 claims description 2
- -1 aluminum compound Chemical class 0.000 claims 2
- 239000004065 semiconductor Substances 0.000 abstract description 45
- 238000005219 brazing Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 59
- 239000000758 substrate Substances 0.000 description 33
- 239000000853 adhesive Substances 0.000 description 23
- 230000001070 adhesive effect Effects 0.000 description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 21
- 239000010949 copper Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 19
- 229910052802 copper Inorganic materials 0.000 description 18
- 229910045601 alloy Inorganic materials 0.000 description 17
- 239000000956 alloy Substances 0.000 description 17
- 239000000919 ceramic Substances 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 238000002844 melting Methods 0.000 description 11
- 229910000679 solder Inorganic materials 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000004593 Epoxy Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 239000004020 conductor Substances 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 229910001128 Sn alloy Inorganic materials 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 description 4
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000005394 sealing glass Substances 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002991 molded plastic Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 239000004634 thermosetting polymer Substances 0.000 description 2
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SPCNPOWOBZQWJK-UHFFFAOYSA-N dimethoxy-(2-propan-2-ylsulfanylethylsulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical compound COP(=S)(OC)SCCSC(C)C SPCNPOWOBZQWJK-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000001995 intermetallic alloy Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/60—Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/04—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
- H01L23/053—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
- H01L23/057—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads being parallel to the base
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/10—Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/142—Metallic substrates having insulating layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49517—Additional leads
- H01L23/49524—Additional leads the additional leads being a tape carrier or flat leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49517—Additional leads
- H01L23/49531—Additional leads the additional leads being a wiring board
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49575—Assemblies of semiconductor devices on lead frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/2612—Auxiliary members for layer connectors, e.g. spacers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/2929—Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29338—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/29339—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45117—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/45124—Aluminium (Al) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45147—Copper (Cu) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/49105—Connecting at different heights
- H01L2224/49109—Connecting at different heights outside the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4911—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4912—Layout
- H01L2224/49175—Parallel arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
- H01L2224/83805—Soldering or alloying involving forming a eutectic alloy at the bonding interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/852—Applying energy for connecting
- H01L2224/85201—Compression bonding
- H01L2224/85205—Ultrasonic bonding
- H01L2224/85207—Thermosonic bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01007—Nitrogen [N]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01014—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01022—Titanium [Ti]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01031—Gallium [Ga]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0104—Zirconium [Zr]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01046—Palladium [Pd]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01049—Indium [In]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01072—Hafnium [Hf]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01083—Bismuth [Bi]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01327—Intermediate phases, i.e. intermetallics compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/095—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
- H01L2924/097—Glass-ceramics, e.g. devitrified glass
- H01L2924/09701—Low temperature co-fired ceramic [LTCC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/1515—Shape
- H01L2924/15153—Shape the die mounting substrate comprising a recess for hosting the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/15165—Monolayer substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/157—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2924/15738—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
- H01L2924/15747—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16152—Cap comprising a cavity for hosting the device, e.g. U-shaped cap
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16195—Flat cap [not enclosing an internal cavity]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19107—Disposition of discrete passive components off-chip wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20752—Diameter ranges larger or equal to 20 microns less than 30 microns
Definitions
- the present invention relates to metal packages for housing a plurality of integrated circuit devices. More particularly, the invention relates to an adhesively sealed metal package having a circuit electrically interconnected to a leadframe and thermally connected to the package base.
- Adhesively sealed metal packages are disclosed in U.S. Patent Nos. 4,105,861 to Hascoe; 4,461,924 to Butt and 4,939,316 to Mahulikar et al.
- the packages have a metallic base and cover.
- a leadframe is disposed between the base and cover and adhesively bonded to both.
- the leadframe may include a centrally positioned die attach paddle with an integrated circuit device bonded thereto. Bond wires electrically interconnect the device to the leadframe.
- metal packages over molded plastic packages such as quad flat packs (QFPs) or ceramic packages such as ceramic dual in line packages (CERDIPs)
- QFPs quad flat packs
- CERDIPs ceramic dual in line packages
- the metal package removes heat generated during the operation of the device more efficiently than plastic or ceramic packages.
- the improved heat dissipation is due to both the improved thermal conduction of the metallic components and the ability of the components to disperse heat laterally along all surfaces of the package.
- the improved thermal dissipation permits encapsulation of more complex and higher power integrated circuit devices than is possible with plastic or ceramic packages. As the integrated circuit devices become more complex, more electrical interconnections with external circuitry and with other integrated circuit devices is required.
- the leadframe which electrically interconnects the device to external circuitry is usually manufactured from a copper base alloy having a thickness of from about 0.13mm to about 0.51mm (5-20 mils). Due to stamping and etching constraints, the minimum width of each lead, as well as the spacing between leads is about equal to the thickness of the leadframe. As a result, there is a limit on the number of leads which may approach the integrated circuit device.
- An additional limitation is lead length. As the integrated circuit devices become more powerful and operate at higher operating speeds, the time for an electronic signal to travel from one device to the next limits the speed of the electronic assembly (such as a computer) . When a single device is encapsulated in each electronic package, the electronic signal must travel from the device, through a bond wire, through a leadframe, through a circuit trace on a printed circuit board, through a second leadframe, through a second bond wire and then to a second discretely housed device.
- a hybrid circuit has conductive circuit traces formed on a dielectric substrate. Discrete integrated circuit devices are electrically interconnected to the circuit traces such that a plurality of devices may all be located on a single substrate.
- the hybrid circuit can then be encapsulated in a metal, plastic or ceramic package typically referred to as a multi-chip module. Examples of multi-chip modules, as well as a description of their development may be found in an article by Hodson entitled "Circuits Meet the Challenge of Size, Power and Flexibility" which appeared in the October, 1991 issue of ELECTRONIC PACKAGING AND PRODUCTION.
- Multi-chip modules address the problem of increasing the density of integrated circuit devices.
- the dielectric substrates which are typically silicon or alumina, are not ideal for the conduction of heat from the multi-chip module.
- aluminum nitride has been proposed as an alternate and will provide better thermal conduction, the material is brittle and hard to fabricate.
- a low cost, high thermal conductivity multi-chip module may be formed using a metallic substrate.
- the metal preferably copper, aluminum or an alloy thereof, has better thermal conductivity than conventional silicon and alumina substrates and also better thermal conductivity than Kovar which is frequently used to house the circuits. Accordingly, it is an object of the invention to provide a multi-chip module having high thermal conductivity. It is a feature of the invention that a circuit, either rigid or flexible, and either single or multi-layer, is adhesively bonded to a metallic substrate with an inorganic dielectric layer disposed therebetween. A plurality of integrated circuit devices are electrically interconnected either to that circuit or to a leadframe positioned around the perimeter of the circuit. Yet another feature of the invention is that the devices may be attached to any one of the metallic substrate, the inorganic dielectric layer, the circuit traces or an intervening die attach paddle.
- a leadframe assembly for electrically interconnecting a plurality of semiconductor devices.
- the assembly includes a leadframe with inner lead ends defining a central region and a hybrid circuit.
- the hybrid circuit is made up of a dielectric substrate which supports circuit traces.
- the hybrid circuit contains a first means for electrically interconnecting at least a portion of the circuit traces to the inner lead ends of the leadframe and a second means for supporting a plurality of discrete semiconductor devices.
- the leadframe assembly is encapsulated within metallic package components or is encased in a plastic molding resin.
- Figure 1 shows in cross sectional representation an adhesively sealed metal package as known from the prior art.
- Figure 2 shows in top planar view an integrated circuit device bonded to a centrally positioned die attach paddle as known from the prior art.
- Figure 3 shows in top planar view a hybrid circuit mounted on a die attach paddle and electrically interconnected to a leadframe in accordance with a first embodiment of the invention.
- Figure 4 shows in cross sectional representation a multi-chip module incorporating a centrally positioned die attach paddle.
- Figure 5 shows in cross sectional representation a hybrid circuit mounted on a metallic package component in accordance with a second embodiment of the invention.
- Figure 6 shows in cross sectional representation a hybrid circuit mounted on a metallic package component and incorporating a multi-layer circuit in accordance with a third embodiment of the invention.
- Figure 7 shows in cross sectional representation a multi-chip module with a leadframe is adhesively bonded to a metallic package component in accordance with a fourth embodiment of the invention.
- Figure 8 shows in cross-sectional representation a hybrid circuit encapsulated in an adhesively sealed metal package.
- Figure 9 shows in cross sectional representation an edge socketable metal electronic package in accordance with an embodiment of the invention.
- Figure 10 shows in top planar view the edge socketable package of Fig. 9.
- Figure 11 shows in top planar view a multi-chip module encased within the edge socketable package of Fig. 9.
- Figure 12 shows in cross sectional representation an adhesively sealed metal package having circuit traces bonded to the package base in accordance with an embodiment of the invention.
- Figure 13 shows in cross sectional representation an edge socketable package utilizing the circuit traces of Fig. 12.
- Figure 14 shows in cross sectional representation a side brazed package utilizing the circuit traces of Fig. 12. The following definitions apply throughout this application:
- Hybrid Circuit a circuit which combines several different components in a single package.
- the hybrid circuit will include circuit traces supported on a dielectric substrate and a plurality of discrete semiconductor devices.
- Multi-Chip Module an electronic package for housing one or more hybrid circuits.
- Figure 1 shows in cross sectional an adhesively sealed metal package 10.
- the package 10 has a metallic base component 12 and a cover component 14.
- a leadframe 16 is disposed between the metallic base component 12 and the cover component 14 and adhesively bonded to both by a polymer adhesive 18.
- a die attach paddle 20 which is typically formed from the same metal as the leadframe is bonded to the metallic base component 12 by a thermally conductive pad attach adhesive 22.
- both the metallic base component 12 and the cover component 14 are formed from aluminum or an aluminum base alloy. At least a portion of the surfaces 30 of the package components is coated with an anodization layer which provides both corrosion resistance and electrical isolation. Dependent on whether the surface 32 of the interior of the metallic base component 12 is anodized or not, the semiconductor device 24 may be electrically interconnected to the metallic base component 12 or electrically isolated therefrom.
- Figure 2 shows in top planar view the positioning of the semiconductor device 24 on a die attach paddle 20 as known from the prior art.
- the die attach paddle 20 is disposed within a central region defined by the inner lead tips 34 of the leadframe.
- the inner lead tips 34 may approach the semiconductor device 24 from all four directions as in a quad configuration; from two sides (dual in-line configuration) ; or from a single side (single in-line configuration) .
- Small diameter bond wires 28 electrically interconnect the semiconductor device 24 to the inner lead ends 34 of the leadframe.
- These bond wires 28 are generally small diameter, typically on the order of 0.025mm (1 mil), wires of copper, aluminum, gold or alloys thereof and are thermosonically bonded to the inner lead ends 34 of the leadframe and metallized input/output pads on the electrically active face of the semiconductor device 24.
- thin strips of copper foil as utilized in tape automated bonding (TAB) may also form the interconnection between the semiconductor device 24 and the inner lead ends 28. Due to the stamping and etching constraints discussed above, a limited number of inner lead ends 34 may approach the semiconductor device 24. Spacing the inner lead ends 34 farther from the semiconductor device 24 will permit the inclusion of additional leads. However, this is not a desired solution. As the bond wire length increases, the operating speed of the device decreases.
- Figure 3 shows a leadframe assembly 40 for the electrical interconnection of a hybrid circuit 42.
- the hybrid circuit 42 comprises a dielectric substrate 44 which supports a plurality of circuit traces 46.
- the dielectric substrate 44 may be formed from any suitable insulative material, either organic or inorganic, and may be either rigid or flexible.
- dielectric substrate is preferred to facilitate the conduction of heat from the semiconductor devices.
- the semiconductor device 24 c is mounted in an aperture 48 formed through the dielectric substrate 44 directly to either the package base (not shown) or a die attach paddle 20, the thickness of the dielectric substrate becomes less important.
- the dielectric substrate 44 is formed from an insulative material having good thermal conductivity such as aluminum nitride or silicon carbide, the thickness of the substrates is less important.
- Typical materials for the dielectric substrate include ceramics such as alumina (A1 2 0 3 ) , aluminum nitride (A1N) and silicon carbide (SiC) .
- the dielectric substrate may also be an organic such as polyimide or an epoxy, either filled or unfilled.
- Other substrate materials include silicon which has good thermal conductivity and a coefficient of thermal expansion exactly matching that of silicon based semiconductor devices 24.
- a plurality of circuit traces 46 are formed on the dielectric substrate 44 by conventional means.
- a desired pattern may be formed from a metallic paste by a process such as screen printing or direct writing. The metallic paste is then fired to drive off organic binders leaving behind a metallized circuit pattern.
- a metallic film may be deposited by electroless plating or by lamination of a thin layer of metallic foil. Selective etching, such as photolithography, forms the described circuit patterns.
- the circuit traces 46 can electrically interconnect semiconductor devices 24*, 24 b .
- Other circuit traces 46' can form a metallization pad for attachment of an integrated circuit device 24*.
- a first means is provided to electrically interconnect circuit traces to the inner lead ends 34 of the leadframe. Suitable first means include a metallized interposer pad 46" to shorten the length of bond wires extending between the inner lead ends 34 of the leadframe and a semiconductor device 24 d .
- the circuit traces can form a metallic foil 47 bonded to semiconductor device 24 d in TAB format or form a series of discrete bonding sites for direct soldering to input/output sites on the integrated circuit device ("flip chip bonding") .
- the circuit traces can also form another first means for electrical interconnection or an extension 50 for direct bonding to the inner lead ends 34.
- the circuit traces 46* can form bonding pads for the direct attachment of inner lead ends 34 to the hybrid circuit 42. Attachment may be by any suitable electrically conductive means such as thermosonic bonding, thermal compression bonding, soldering and conductive adhesives. Preferred are low melting solders such as gold tin and lead tin alloys. Attachment of the leadframe assembly 40 to the metallic base component 12 of an adhesively sealed metal package is illustrated in cross-sectional representation in Figure 4.
- Figure 4 shows two semiconductor devices 24*, 24 c bonded to a die attach paddle 20 by means of a hybrid circuit 42.
- metallized bonding pad 46' may electrically interconnect the backside of the semiconductor device 24* to the leadframe or to other semiconductor devices.
- the semiconductor device 24 c can extend through an aperture 48 in the hybrid circuit 42 for direct Bonding to the die attach paddle 20.
- Attachments of the semiconductor devices 24*, 24 c to either the hybrid circuit 42 or the die attach paddle 20 may be by any conventional means such as an epoxy or a low temperature melting solder. If electrical interconnection between the backside of the semiconductor device and the bonding site is desired, either a metallic solder such as the gold tin eutectic or a lead tin composition may be used. Alternatively, a conductive adhesive such as a silver filled epoxy may be utilized.
- suitable die attach materials include polymer adhesives and, when the dielectric substrate 44 is a high temperature substrate such as ceramic or silicon, a sealing glass may be utilized. Additionally, metals which alloy with the substrate, for example, for a silicon substrate, gold may be utilized.
- Small diameter bond wires 28 electrically interconnect the inner lead ends 34 to a bonding pad 46" which is then electrically interconnected through a second bond wire 28' to a semiconductor device 24°.
- This interposer circuit structure reduces the length of the bond wire required to interconnect the leadframe to the semiconductor device 24 c .
- foil extensions 50 may extend from the circuit metallizations 46 for direct interconnection to inner lead ends 34.
- Bond 52 between the foil extension 50 and the inner lead end 34 may be by any suitable means which maintains electrical conductivity between the foil extension and the inner lead end such as a conductive adhesive, a solder or thermal compression or thermosonic bonding. Most preferred are low melting temperature solders such as gold-tin or lead-tin alloys.
- the leadframe assembly 40 is then bonded to a metallic base component 12 by a pad attach adhesive 22.
- the pad attach adhesive 22 may be any suitable metallic or polymer adhesive such as a solder or epoxy. When a polymer adhesive is utilized, it is desirable to increase the thermal conductivity of the adhesive to improve thermal conduction.
- the pad attach adhesive 22 may be a thermosetting epoxy filled with a thermally conductive material such as silver, graphite or alumina.
- One particularly advantageous aspect of this embodiment is illustrated by the direct bonding of semiconductor device 24 c to die attach paddle 20. While all the advantages of the hybrid circuit 42 are obtained, the semiconductor device 24 c is in direct contact with the metallic die attach paddle 20. Heat generated by the semiconductor device does not pass through a thermally insulating dielectric substrate 44 to reach the thermally conductive die attach paddle 20.
- a second embodiment of the invention is illustrated in cross sectional representation in Figure 5.
- the hybrid circuit 42 is bonded such as by an adhesive 54 directly to the metallic base component 12. While the dielectric substrate 44 provides electrical isolation between the circuit traces 46 and the metallic base component 12, it is desirable to provide an inorganic dielectric layer 56 between the metallic base component and the hybrid circuit 42.
- the metallic substrate is aluminum or an aluminum base alloy
- the inorganic dielectric layer may constitute a layer of anodized aluminum formed by any suitable anodization process, such as anodic immersion in a solution containing sulfuric acid and sulfosalicylic acid which provides an integral black color for aluminum alloys of the 3xxx series (aluminum containing up to 1.5 weight percent manganese) .
- the inorganic dielectric layer 56 may constitute a thin refractory oxide layer formed in situ, by coating with a second material and forming the inorganic dielectric layer from that second material or by direct bonding of an insulating layer.
- the "in situ" process involves forming the inorganic dielectric layer 56 directly from the constituents of the copper base alloy.
- Preferred copper alloys contain from about 2 to about 12 percent by weight aluminum.
- One particularly preferred alloy is copper alloy C6381 containing 2.5 to 3.1% aluminum, 1.5 to 2.1% silicon and the balance copper.
- the copper base alloy is oxidized by heating in gases having a low oxygen content.
- One suitable gas is 4% hydrogen, 96% nitrogen and a trace of oxygen released from a trace of water mixed in the gas.
- the copper base alloy may be clad with a metal or alloy capable of forming the refractory oxide as disclosed in U.S. Patent No. 4,862,323.
- the copper base substrates may be coated with a second metal, such as nickel, and a refractory oxide formed on the coating layer.
- a second metal such as nickel
- Another suitable technique is disclosed in U.S. Patent No. 4,495,378 to Dotzer et al.
- An iron or copper substrate is coated with a metallic flash of copper or silver. Aluminum is then electrolytically deposited on the flash and anodized to form an inorganic dielectric layer.
- the formation of the layer may be selective, for example, when an electrolytic process is used such as anodization, a plater's tape may mask selected areas to prevent formation of the layer in those regions.
- semiconductor device 24 e may be bonded directly to the metallic base component 12 to maximize thermal conduction from the electronic device.
- the semiconductor device 24 f may be bonded to the inorganic dielectric layer. The choice between embodiments 24 e and 24 f depends on whether electrical isolation from the metallic base component 12 is desired.
- the semiconductor device 24 b may be bonded to a metallization pad 46' formed from the circuitry traces 46.
- Figure 6 illustrates in cross sectional representation a third embodiment of the invention.
- the hybrid circuit comprises a multi-layer hybrid circuit 58 having a plurality of metallic layers and at least one dielectric layer separating the metallic layers.
- Circuit traces 46 may be formed on the first metallic layer 60 as well as the second metallic layer 62.
- one of the metallic layers may comprise a solid sheet for use as a ground or power plane.
- An electrically conductive via 64 formed by any means known in the art, for example, deposition of a carbon black dispersion on the walls of a non-conductive via followed by electrolytic or electroless plating of a conductive material such as copper as disclosed in U.S. Patent No. 4,619,741 to Minten et al, may be utilized.
- the conductive vias 64 allow electrical interconnection of the second metallic layer to input/output sites on the face of the semiconductor device 24.
- the semiconductor devices may be bonded to either of the metallic layers, to the intervening dielectric layer 64, to a die attach paddle (not shown) to the inorganic dielectric layer 56 or to the metallic base component 12.
- Figure 6 shows a multi-layer hybrid circuit 58 comprising two metal layers and a single dielectric layer, there may be any number of metallic layers and intervening dielectric layers. Additionally, while Figure 6 illustrates an embodiment in which the multi-layer hybrid circuit 58 is directly bonded to an inorganic dielectric layer 56 formed on the surface of a metallic base component 12, it is within the scope of the invention for a die attach paddle to be disposed between the multi-layer hybrid circuit and the metallic base component.
- FIG. 7 illustrates in cross sectional representation a fourth embodiment of the invention.
- the metallic base component 12 has an inorganic dielectric layer 56 formed on at least one surface.
- a thermally conductive, electrically insulating pad attach adhesive 22 such as a thermosetting polymer, thermoplastic polymer or sealing glass bonds both the inner lead ends 34 of the leadframe and a plurality of die attach paddles 20 to the metallic base component.
- Bond wires 28 electrically interconnect the semiconductor devices 24 to the leadframe and to metallic circuit runs 66 which may constitute inner lead fingers or metallic runs electrically isolated from the leadframe.
- the semiconductor devices 24 are bonded to die attach paddles 20 with die attach adhesive 26.
- the die attach paddles are then adhesively bonded to the inorganic dielectric layer by thermally conductive pad attach adhesive 22.
- Thesleadframe assemblies illustrated in Figures 3-7 may be encapsulated in any suitable electronic package, such as plastic, ceramic or metal.
- Figure 8 illustr es in cross sectional representation a preferred embodiment in which a multi-layer hybrid circuit is encapsulated within a metal electronic package 70. All elements illustrated in Figure 8 are not drawn to scale to better show the structure of the hybrid circuit 58. As a result, certain elements, notably semiconductor devices 24, are distorted in the Figure.
- the package has a metallic base component 12 formed from a thermally conductive material such as an aluminum base alloy. Fins 72 may be formed in the metallic base component 12 to increase thermal dissipation.
- a multi-layer hybrid circuit 58 having first 60 and second 62 metallic layers and intervening dielectric layers 64 is bonded by adhesive 54 to a die attach paddle 20. Thermally conductive pad attach adhesive 22 bonds the multi-layer hybrid circuit and the die attach paddle 20 to the metallic base component 12.
- the surface 30 of the base component 12 is preferably coated with an inorganic dielectric layer to improve electrical isolation and corrosion resistance.
- the first metallic layer 60 contains cantilever foil extensions 50 for direct bonding to the inner leads 34 of leadframe 16.
- a plurality of semiconductor devices 24 are bonded to the die attach paddle 20. Bond wires 28 electrically interconnect the semiconductor devices 24 to circuit traces formed in the first metallic layer. Electrical interconnection to the second metallic layer may also be incorporated through the use of electrically conductive vias (not shown) .
- a cover component 14 and a metallic base component 12 are bonded to the leadframe 16 by a polymer adhesive 18.
- the polymer adhesive 18 is a thermosetting epoxy or other adhesive requiring heat for cure, air in the package cavity 74 will expand during heating.
- a vent hole 76 is preferably formed in the cover component 14. The vent hole 76 is subsequently sealed, for example, by adhesively sealing a small metal slug to complete the multi-chip module 70.
- Figure 8 illustrates an embodiment in which a leadframe assembly is encapsulated within a metal package, it is within the scope of the invention to encapsulate any of the above-described leadframe assemblies in a molded plastic package, a ceramic package or a glass sealed metal package.
- FIG. 9 shows in cross-sectional representation another embodiment of the present invention.
- the electronic package 90 is edge connectable for making electrical contact with an external socket.
- the package 90 has a base component 92 formed from a thermally conductive material such as a metal, metal alloy or metal compound. Copper and aluminum based materials are preferred for good thermal conductivity. If a close match of the coefficient of thermal expansion of an encased silicon based semiconductor device 94 is required, the base component 92 may be formed from an iron-nickel alloy.
- a ⁇ dframe 96 is bonded to the base component 92 by a ..irst dielectric sealant 98.
- the first dielectric sealant is any suitably adherent material such as a thermosetting or thermoplastic polymer resin or a sealing glass.
- the dielectric sealant 98 is a thermosetting epoxy resin.
- the leadframe 96 is any suitable electrically conductive material such as copper or a copper based alloy.
- a cover component 100 which may be formed from any suitable material such as a polymer, ceramic or metal, is bonded to the leadframe 96 with a second dielectric sealant 102.
- the second dielectric sealant 102 is preferably formed from the same material as the first dielectric sealant 98 such that the same thermal profile cures both sealants.
- the cover component 100 is preferably formed from a material having a coefficient of thermal expansion close to that of the base component 92 to avoid flexing of the package due to a coefficient of thermal expansion mis-match. Generally, the cover component 100 will be formed from the same material as the base component 92.
- An external portion 104 of the leads of the leadframe 96 extends beyond the perimeter of the cover component 100 and is supported by the base component 92.
- the external portion 104 terminates at the perimeter of base component 92.
- the first dielectric sealant 98 electrically isolates the external portion 104 from a metallic base component 92.
- the base component 92 is coated with a dielectric layer.
- the edge connectable portion 106 may be any desired thickness.
- the typical thickness of a printed wiring board socket is about 1.1 millimeters.
- Figure 10 illustrates in top planar view the electronic package 90 of Figure 9.
- the external portion 104 is shaded for clarity.
- Advantages of this design in addition to the ease of edge connectability, include virtually no possibility of external lead damage, bending or distortion since the leads are rigidly adhered to the base component 92. While the leads can emanate from all four sides of the package as illustrated in Figure 10, it is within the scope of the invention for the leads to emanate from one, two or three sides.
- Figure 11 shows in top planar view an electronic package 110 housing a hybrid circuit 112 which may be any known in the art or any of the hybrid circuits described above.
- Circuit traces 114 and the means 116 of electrically interconnecting the circuit traces to electrical components 118 is described above.
- the circuit traces 114 are electrically interconnected to the interior portion of a leadframe and the exterior portion 104 of the leadframe extends beyond the package cover 100 for electrical interconnection to a socket.
- Figure 12 illustrates in cross-sectional representation an adhesively sealed electronic package 120 in accordance with another embodiment of the invention.
- the base component 122 which may be any suitable metal, metal alloy or metallic compound, is at least partially coated with a dielectric layer 124.
- the base component 122 is an aluminum based material and the dielectric layer 124 is an anodization layer.
- Circuit traces 126 are deposited directly on the dielectric layer 124 by any suitable process such as screen printing, ion or plasma deposition or direct writing.
- the circuit traces are any conductive material which is adherent to the dielectric layer 124 following firing or other curing. Suitable materials include metallizations such as copper, tungsten, palladium/nickel alloys and chromium/copper/chromium/laminar structures. Conductive polymers such as silver filled epoxy can also be used.
- electrically conductive inks which are generally a mixture of a relatively low melting point metal or metal alloy powder, a relatively high melting metal powder and a flux.
- the high melting point metal powder is copper powder.
- other metals or alloys such as silver, gold, palladium and nickel and their alloys may be employed.
- the lower melting temperature powder may be tin, bismuth, lead, gallium, indium or any other metal or metal alloy having a melting point lower than the high melting powder component.
- the flux is driven off and the metallic powders diffuse, forming an intermetallic alloy with a relatively high melting temperature.
- Conductive inks of this type are available from Toranaga Technologies, Inc., of Carlsbad, California.
- One or more integrated circuit devices 128 or other electrical components are electrically interconnected to the circuit traces 126 by any suitable means 130 such as wire bonding, TAB attach or flip chip bonding.
- the circuit trace 126 is electrically interconnected to a leadframe 132 by any suitable means such as wire bonding, TAB attach or direct soldering.
- a dielectric sealing means 134 such as a thermosetting polymer resin, thermoplastic polymer resin or sealing glass bonds the leadframe 132 to the base component 122.
- a cover component 136 is bonded to the opposing side of the leadframe by any suitable means, preferably the same first dielectric sealant 134.
- the circuit traces 126 may extend to the perimeter of the base component 122 to form an edge socketable package as described above.
- Figure 14 illustrates in cross sectional representation an electronic package in accordance with another embodiment of the invention. While most elements of this package are similar to those of Figures 12 and 13, the circuit trace 126 terminates at the perimeter of the base component 122 and cover component 136.
- a suitable solder 142 such as a lead tin alloy or a gold tin alloy is deposited on the edge of the circuit trace 126 such as by solder dipping or screen printing.
- a leadframe 144 is brought into contact with the solder 142 and bonded to the solder forming a side brazed package.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Lead Frames For Integrated Circuits (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US134993 | 1987-12-18 | ||
US13499393A | 1993-10-12 | 1993-10-12 | |
PCT/US1994/010388 WO1995010853A1 (en) | 1993-10-12 | 1994-09-26 | Edge connectable metal package |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0723703A1 true EP0723703A1 (de) | 1996-07-31 |
EP0723703A4 EP0723703A4 (de) | 1998-04-01 |
Family
ID=22466004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94929803A Withdrawn EP0723703A4 (de) | 1993-10-12 | 1994-09-26 | Randverbindbare metallpackung |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0723703A4 (de) |
JP (1) | JPH09503888A (de) |
KR (1) | KR960705354A (de) |
AU (1) | AU7873894A (de) |
WO (1) | WO1995010853A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008001414A1 (de) * | 2008-04-28 | 2009-10-29 | Robert Bosch Gmbh | Substrat-Schaltungsmodul mit Bauteilen in mehreren Kontaktierungsebenen |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2094552A (en) * | 1981-03-06 | 1982-09-15 | Thomson Csf | A semiconductor-chip encapsulation micromodule which is testable after soldering on a substrate |
US4480013A (en) * | 1981-07-20 | 1984-10-30 | Sumitomo Electric Industries, Ltd. | Substrate for use in semiconductor apparatus |
US4577056A (en) * | 1984-04-09 | 1986-03-18 | Olin Corporation | Hermetically sealed metal package |
US4862323A (en) * | 1984-04-12 | 1989-08-29 | Olin Corporation | Chip carrier |
US4939316A (en) * | 1988-10-05 | 1990-07-03 | Olin Corporation | Aluminum alloy semiconductor packages |
US5014159A (en) * | 1982-04-19 | 1991-05-07 | Olin Corporation | Semiconductor package |
US5013871A (en) * | 1988-02-10 | 1991-05-07 | Olin Corporation | Kit for the assembly of a metal electronic package |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58190046A (ja) * | 1982-04-30 | 1983-11-05 | Fujitsu Ltd | 半導体装置 |
US4953001A (en) * | 1985-09-27 | 1990-08-28 | Raytheon Company | Semiconductor device package and packaging method |
US4839716A (en) * | 1987-06-01 | 1989-06-13 | Olin Corporation | Semiconductor packaging |
US5268533A (en) * | 1991-05-03 | 1993-12-07 | Hughes Aircraft Company | Pre-stressed laminated lid for electronic circuit package |
-
1994
- 1994-09-26 EP EP94929803A patent/EP0723703A4/de not_active Withdrawn
- 1994-09-26 AU AU78738/94A patent/AU7873894A/en not_active Abandoned
- 1994-09-26 WO PCT/US1994/010388 patent/WO1995010853A1/en not_active Application Discontinuation
- 1994-09-26 JP JP7511803A patent/JPH09503888A/ja active Pending
- 1994-09-26 KR KR1019960701854A patent/KR960705354A/ko not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2094552A (en) * | 1981-03-06 | 1982-09-15 | Thomson Csf | A semiconductor-chip encapsulation micromodule which is testable after soldering on a substrate |
US4480013A (en) * | 1981-07-20 | 1984-10-30 | Sumitomo Electric Industries, Ltd. | Substrate for use in semiconductor apparatus |
US5014159A (en) * | 1982-04-19 | 1991-05-07 | Olin Corporation | Semiconductor package |
US4577056A (en) * | 1984-04-09 | 1986-03-18 | Olin Corporation | Hermetically sealed metal package |
US4862323A (en) * | 1984-04-12 | 1989-08-29 | Olin Corporation | Chip carrier |
US5013871A (en) * | 1988-02-10 | 1991-05-07 | Olin Corporation | Kit for the assembly of a metal electronic package |
US4939316A (en) * | 1988-10-05 | 1990-07-03 | Olin Corporation | Aluminum alloy semiconductor packages |
Non-Patent Citations (1)
Title |
---|
See also references of WO9510853A1 * |
Also Published As
Publication number | Publication date |
---|---|
JPH09503888A (ja) | 1997-04-15 |
AU7873894A (en) | 1995-05-04 |
EP0723703A4 (de) | 1998-04-01 |
KR960705354A (ko) | 1996-10-09 |
WO1995010853A1 (en) | 1995-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6300673B1 (en) | Edge connectable metal package | |
US5103292A (en) | Metal pin grid array package | |
US6262477B1 (en) | Ball grid array electronic package | |
US5098864A (en) | Process for manufacturing a metal pin grid array package | |
US5506446A (en) | Electronic package having improved wire bonding capability | |
US4577056A (en) | Hermetically sealed metal package | |
WO1997002600A1 (en) | Electronic package with improved thermal properties | |
KR20020095053A (ko) | 열방출 능력이 개선된 전력용 모듈 패키지 및 그 제조 방법 | |
JP2006303400A (ja) | 電子部品収納用パッケージおよび電子装置ならびに電子装置の実装構造 | |
CN118969739A (zh) | 半导体封装结构 | |
JP3631638B2 (ja) | 半導体素子用パッケージの実装構造 | |
JPS622587A (ja) | ハイパワ−用混成集積回路 | |
CN115732450A (zh) | 一种新型功率模块高密度封装结构及其制造方法 | |
WO1995010853A1 (en) | Edge connectable metal package | |
JPH0677361A (ja) | マルチチップモジュール | |
WO1994025984A1 (en) | Ic package and method of its manufacture | |
JPH08255868A (ja) | 半導体装置およびその製造方法 | |
JPH08107127A (ja) | 半導体装置 | |
JPH0897329A (ja) | 電子部品搭載装置 | |
JPH03161957A (ja) | 半導体装置 | |
WO1995008188A1 (en) | Flip chip in metal electronic packages | |
JP2649251B2 (ja) | 電子部品搭載用基板 | |
JP3470041B2 (ja) | 混成集積回路装置 | |
JP2024042491A (ja) | 半導体装置 | |
JP2023091272A (ja) | 半導体モジュール及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960410 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19980213 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): DE GB |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19990401 |