EP0661905B1 - Verfahren zur Anpassung eines Hörgerätes, Vorrichtung hierzu und Hörgerät - Google Patents
Verfahren zur Anpassung eines Hörgerätes, Vorrichtung hierzu und Hörgerät Download PDFInfo
- Publication number
- EP0661905B1 EP0661905B1 EP95103571A EP95103571A EP0661905B1 EP 0661905 B1 EP0661905 B1 EP 0661905B1 EP 95103571 A EP95103571 A EP 95103571A EP 95103571 A EP95103571 A EP 95103571A EP 0661905 B1 EP0661905 B1 EP 0661905B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acoustic
- individual
- unit
- hearing
- loudness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 82
- 230000008447 perception Effects 0.000 claims abstract description 59
- 230000008054 signal transmission Effects 0.000 claims abstract description 4
- 230000000873 masking effect Effects 0.000 claims description 112
- 238000012937 correction Methods 0.000 claims description 63
- 230000005540 biological transmission Effects 0.000 claims description 51
- 230000006870 function Effects 0.000 claims description 34
- 230000001419 dependent effect Effects 0.000 claims description 24
- 238000003860 storage Methods 0.000 claims description 20
- 238000012986 modification Methods 0.000 claims description 17
- 230000004048 modification Effects 0.000 claims description 17
- 230000009466 transformation Effects 0.000 claims description 16
- 239000000872 buffer Substances 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 12
- 230000003595 spectral effect Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 10
- 238000011002 quantification Methods 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 claims description 3
- 230000002829 reductive effect Effects 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 abstract description 12
- 238000011066 ex-situ storage Methods 0.000 abstract description 5
- 230000006399 behavior Effects 0.000 description 47
- 230000000875 corresponding effect Effects 0.000 description 31
- 238000001228 spectrum Methods 0.000 description 25
- 208000032041 Hearing impaired Diseases 0.000 description 21
- 230000003321 amplification Effects 0.000 description 15
- 238000003199 nucleic acid amplification method Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 14
- 239000013598 vector Substances 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- 238000005457 optimization Methods 0.000 description 8
- 230000035807 sensation Effects 0.000 description 8
- 238000012076 audiometry Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000001771 impaired effect Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 5
- 206010011878 Deafness Diseases 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 208000016354 hearing loss disease Diseases 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000005477 standard model Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 208000009966 Sensorineural Hearing Loss Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000010370 hearing loss Effects 0.000 description 2
- 231100000888 hearing loss Toxicity 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 206010000210 abortion Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 235000015241 bacon Nutrition 0.000 description 1
- 238000007630 basic procedure Methods 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- FVTCRASFADXXNN-SCRDCRAPSA-N flavin mononucleotide Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-SCRDCRAPSA-N 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/70—Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/50—Customised settings for obtaining desired overall acoustical characteristics
- H04R25/505—Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
Definitions
- the present invention relates to a method according to the The preamble of claim 1, an apparatus according to that of claim 23 and a hearing aid according to claim 39.
- a psycho-acoustic perceptual quantity becomes one Size understood, which is non-linear, through individual laws perception, from physical-acoustic Variables such as frequency spectrum, sound pressure level, phase position, Course of time, etc.
- Hearing aids known to date change physical, acoustic Signal sizes such that a hearing aid hearing impaired individual hears better.
- the adaptation the hearing aid is done by setting physical Transmission quantities, such as frequency-dependent amplification, Level limitation etc. until the individual with the Satisfied hearing aid within the possibilities presented is.
- Preferred embodiment variants of the method according to the invention are specified in claims 2 to 22 of the invention Device in claims 24 to 38 and of the hearing aid according to the invention in claim 40.
- the device according to the invention can designed as a fitting device separately from the hearing aid his. However, it also includes adjustment measures on the hearing aid the perceived size taken into account for the individual correct.
- inventive device defined in the claims, the inventive method and the inventive Hearing aids are then, for example, based on Figures explained.
- the loudness "L” is a psycho-acoustic quantity, which indicates how “loud” an individual is at presented acoustic Signal senses.
- Loudness has its own unit of measurement; a sinusoidal 1kHz frequency signal at a sound pressure level of 40dB-SPL, produces a loudness of 1 "Sone". A sine of same frequency with a level of 50dB-SPL is exactly double perceived so loud; the corresponding loudness is so 2 sone.
- the present invention has as its object propose a method and suitable devices for this, with which a hearing aid to be adapted to an individual can be adjusted so that the acoustic perception of the individual at least in the first approximation of that one Norm, namely the normal hearing.
- the procedure according to the invention can certainly also for the consideration of other psychoacoustic Sizes are used, such as for the consideration of the size "masking behavior in the Time domain and / or in the frequency domain ".
- the norm, N is used to determine a psycho-acoustic perception variable, in particular the loudness L N , by means of standardized acoustic signals A o and compared with the values of this variable, corresponding to L I of an individual, with the same acoustic signals A o . From the difference corresponding to ⁇ L NI , setting data are determined which act directly on a hearing aid or on the basis of which, manually, a hearing aid is set. L I is determined on the individual without a hearing aid or with a hearing aid that has not yet been adapted, possibly progressively adapted.
- the loudness itself is a variable, which in turn is of depends on several variables.
- this is the number Measurements that must be made on an individual to get even approximate information, with the interventions on the hearing aid, for everyone in a natural environment occurring broadband signals that are desired To be able to correct perception, great.
- the correlation between recorded size differences Interventions in the transmission behavior of a hearing aid ambiguous and extremely complex.
- a quantifying model of the Perception size, especially loudness used.
- a model is intended to be used with all types of acoustic signals can be received; at least approximate results the corresponding size sought.
- the model can be identified, that is valid for the individual. The identification should be able to be canceled if the model is in predeterminable Extent is identified.
- Such a quantifying model of a psycho-acoustic Perception size does not have to be closed mathematical expression can be given, but may well be defined by a multidimensional table from where with the prevailing frequency and sound level ratios a real acoustic signal as a variable the perceived size can be called up.
- the band-specific, mean sound pressure levels S k form the model variables defining a presented acoustic signal, which determine the current spectral power density distribution.
- the spectral width of the considered critical bands CB k , the linear approximation of the loudness perception, ⁇ k , and the hearing threshold T k are parameters of the model or the mathematical simulation function according to (1).
- the model parameters ⁇ k , T k and CB k have been determined using the standard N, ie for people with normal hearing.
- the curve L kN represents the loudness curve of the standard as a function of the sound level S k of an acoustic signal presented in a respective critical band k, recorded as explained with reference to FIG. 1.
- a sinusoidal signal or a narrowband noise signal is presented.
- the parameter ⁇ N represents the slope of a linear approximation or regression line of this course L kN at higher sound levels, ie at sound pressure levels from 40 to 120 dB SPL, where the acoustic useful signals also predominantly occur. This is also referred to below as "large signal behavior".
- this increase can be assumed to be the same, ⁇ N , in each of the frequency bands.
- the hearing threshold T kN In contrast to the parameter ⁇ N , the hearing threshold T kN also differs in the norm and in a first approximation in every critical frequency band CB kN and is not a priori identical to the 0dB sound pressure level.
- the typical hearing threshold curve of the standard is precisely defined by ISO R226 (1961).
- Leijon has described a procedure that allows the further band-specific coefficients or model parameters ⁇ kI and CB kI to be estimated from the hearing thresholds T kI of individuals.
- the estimation errors are usually large when considering individual cases. Nevertheless, when identifying individual loudness models, it is possible to start with estimated parameters, for example those estimated from diagnostic information. This drastically reduces the effort and the burden on the individual.
- the loudness L recorded with a category scaling according to FIG. 1, is plotted in FIG. 3 as a function of the mean sound pressure level in dB-SPL for a sinusoidal or narrow-band signal of the frequency f k in a critical band of the number k considered ,
- the loudness L N of the standard increases non-linearly with the signal level in the selected representation, the gradient curve is in a first approximation for normal hearing people for all critical bands with the regression line with the gradient ⁇ N entered on the curve N in FIG. 3 reproduced in [categories per dB-SPL].
- model parameter ⁇ N corresponds to a nonlinear amplification, the same for normal hearing people in every critical band, but to be determined for individuals with ⁇ kI in every frequency band.
- the straight line with the slope ⁇ k approximates the non-linear loudness function in band k by a regression line.
- L kI typically denotes the course of the loudness L I of the hearing impaired in a band k.
- the curve of a hearing impaired person has a larger offset to the zero point and is steeper than the curve of the norm.
- the larger offset corresponds to an increased hearing threshold T kI
- the phenomenon of the fundamentally steeper loudness curve is referred to as loudness recruitment and corresponds to an increased ⁇ parameter.
- the width of the respective critical bands CB kI it can be stated that the presence of several such bands only becomes effective when psycho-acoustic processing of broadband audio signals, i.e. broadband signals, the spectrum of which is at least two adjacent critical bands. In hearing impaired people, a widening of the critical bands is typically noticeable, whereby primarily the loudness summation is impaired even after (1).
- individual I as shown, for example via headphones, electrically or by means of an electrical-acoustic transducer, is supplied with narrow-band norm-acoustic norm signals A ok lying in the frequency bands CB Nk .
- the individual I evaluates and quantifies the perceived loudness, L S (A ok ).
- the associated standard bandwidth CB kN and the parameter ⁇ N are provided on the output side via a selection unit 7 from a standard storage unit 9.
- the electrical signal S e (A ok ) corresponding to the sound pressure level of the signal A ok is fed together with the associated bandwidth CB kN to a computing unit 11 which, according to the preferred mathematical loudness model according to (1), calculates a loudness value L '(A ok ) , namely from S e , CB kN , ⁇ N and, as previously mentioned, predetermined hearing threshold value T kI stored in a memory unit 13.
- loudness L 'the computing unit 11 calculates on the basis of these predetermined parameters. Based on the use of the hearing threshold T kI of the individual and the parameter ⁇ N of the standard, a loudness value L 'is determined on the computing unit 11 at the given sound level, corresponding to S e of the signal A ok , as it corresponds to a scaling function N', which is determined by the Regression line with ⁇ N and the hearing threshold T kI is defined in a first approximation.
- this loudness value L ' is compared at a comparison unit 15 with the loudness value L I by the input unit 5.
- the difference .DELTA. (L ', L I ) appearing on the output side of the comparison unit 15 acts on an incrementing unit 17.
- the output of the incrementing unit 17 is superimposed on a superposition unit 19 with the ⁇ N parameter supplied to the computing unit 11 by the storage unit 9 with the correct sign.
- the incrementing unit 17 thus increments the signal corresponding to ⁇ N by increments ⁇ according to the number of increments n until the difference appearing on the output side of the comparison unit 15 reaches or falls below a predeterminable minimum dimension.
- the output signal of the comparison unit 15 in FIG. 4 is compared on a comparator unit 21 with an adjustable signal ⁇ r in accordance with a predeterminable, maximum error - as an abort criterion.
- the parameter ⁇ kI of the individual is thus found with the required accuracy corresponding to ⁇ r in the critical frequency band k considered.
- the process is optimally short or only as long as necessary.
- Fig. 6a analogous to Fig. 5, the scaling function N of the norm and I of a hearing impaired individual is shown again.
- an amplification G x must therefore be provided on the hearing device so that the individual perceives the loudness L x with the hearing device as the norm N. 6a, depending on various, for example, entered sound pressure levels S kx , a plurality of amplification values G x to be provided on the hearing aid are entered.
- FIG. 6b shows the gain curve resulting from the considerations of FIG. 6a as a function of S k , as can be realized on a transmission channel on the hearing aid corresponding to the critical frequency band k, as shown in FIG. 6c.
- the non-linear gain curve G k (S k ) shown in FIG. 6b is determined heuristically and schematically from the parameters T kI and ⁇ kI and the differences T kN -T kI and n ⁇ as determined with reference to FIGS. 4 and 5.
- the described procedure is optimally used in every critical one Frequency band k repeated. It has to be critical Frequency band and approximation with a regression line only presented a norm-acoustic signal to the individual become; more can be checked if necessary of the regression lines found are used.
- the model according to (1) which is preferably used becomes arbitrarily more precise (1 *) by using ⁇ k (S k ) instead of the level-independent parameters ⁇ k .
- ⁇ k is replaced by ⁇ k (S k ).
- FIG. 8 shows the scaling curve N of the norm and of an individual I in analogy to FIG. 5.
- the scaling curve N is sound pressure level-dependent slope parameter ⁇ N (S k) is approximated, ie by a polygon of support values S k of the curve N.
- This sound pressure level dependent parameter ⁇ N (S k) are assumed to be known by they can be easily determined from the known scaling curves N of the standard at the given support values S kx .
- a set of sound pressure level-dependent slope parameters ⁇ N (S k ) is stored in the memory unit 9.
- the individual I is again presented with normacoustic, narrow-band signals lying in the respective critical bands, but, in contrast to the procedure according to FIG. 4, per critical frequency band at different sound pressure levels S kx .
- the storage unit 9 supplies the bandwidth CB kN associated with the critical frequency band under consideration and the set of ⁇ parameters dependent on sound pressure level to the computing unit 11, in addition to the previously determined, individual, band-specific hearing threshold T kI .
- the frequency of the norm acoustic signal determines the critical frequency band k under consideration, and the values relevant for this are retrieved from the memory unit 9 accordingly.
- the sequence F of the following sound pressure level values S kx is preferably further stored in a memory device 10. As soon as the individual loudness perception values are recorded and stored in the storage unit 6, the sequence of the stored sound pressure level values S kx is also fed from the storage unit 10 to the computing unit 11, with which the latter, according to FIG.
- the width of the critical bands CB k becomes relevant for the loudness perception of the individual if the presented normacoustic signals have spectra that lie in two or more critical frequency bands, because loudness summation according to (1) or (1 *) then occurs ,
- frequency bands CB k and CB k + 1 for example critical frequencies for the standard N, are drawn in over the frequency axis f.
- the partially broadened, corresponding bands are entered for an individual I.
- the nonlinear reinforcements found so far have been channel-specific or band-specific with reference to the critical ones Bandwidths of the standard determined.
- the critical bandwidths of the individual is from Fig. 9a it can be seen that, for example, the hatched area ⁇ f in the individual falls within the broadened critical band k, while in the norm it falls in the band k + 1. This means but that, with the previous reference to the critical bandwidths the standard, signals e.g. in the hatched frequency range ⁇ f in the individual must be corrected for gain.
- FIG. 10 shows a further development as a function block signal flow diagram in which the parameters ⁇ k and CB k can be determined using a single method. Not only is one critical band after the other examined in accordance with FIGS. 4 and 7, but also, with broadband acoustic signals, the loudness summation is recorded and the width of the individual critical bands is thus also determined as a variable by optimization.
- the simulation model parameters of the standard namely ⁇ N , CB kN , are stored in a memory unit 41 and, in a preferred embodiment, not the hearing thresholds T kN of the standard, but rather the hearing thresholds T kI of the individual to be examined, determined beforehand by audiometry and taken from a memory unit 43.
- An individual is acoustically presented with signals A ⁇ k by a generator that is no longer shown here.
- the electrical signals corresponding to them in FIG. 10, also designated A ⁇ k are fed to a frequency-selective power measurement unit 45.
- the channel-specific average powers are determined on the unit 45 in accordance with the critical frequency bands of the standard, frequency-selective, and a set of such power values S ⁇ k is output on the output side.
- These signals are stored in a memory unit 47 in a channel-specific manner and specifically for the signal A ⁇ k (A No.) that is presented in each case.
- the computing module 53 calculates the loudness L 'according to (1) from the norm parameters ⁇ N , CB kN and the individual hearing threshold values T kI , taking into account the loudness summation , which would result for the norm if the latter had hearing thresholds (T kI ) such as the individual.
- the calculated value L ' N is stored in a storage unit 55 on the output side of the computing module 53.
- Each of the presented broadband ( ⁇ k) signals A ⁇ k is assessed or categorized by the individual in terms of loudness perception, the evaluation signal L I , again assigned to the respective presented acoustic signals A ⁇ k , stored in a storage unit 57. Both when determining L ' N and when determining L I , the loudness summation is taken into account arithmetically or by the individual due to the broadbandness ⁇ k of the signals A ⁇ k presented.
- the corresponding number of values L ' N is stored in the storage unit 55, as is the corresponding number L I values in the storage unit 57.
- the parameter modification unit 49 varies the start values ⁇ N , CB kN , but not the T kI values, for all critical frequency bands, while simultaneously recalculating the updated L ' N value until the difference signal ⁇ (L' N , L I ) runs within a predeterminable minimum course, which is checked on the unit 61.
- the standard parameters ⁇ N and CB kN entered as start values taking into account the signals S ⁇ k corresponding to the channel-specific sound pressure values retrieved from memory 47, are varied according to predetermined search algorithms until a maximum permissible deviation between the L ' N and the L I course has been reached.
- ⁇ and CB values on the output side of the modification unit 49 correspond to those which, used in (1), result in loudness values corresponding optimally with the individually perceived values L I for the acoustic signals A ⁇ k presented: by varying the standard parameters, the individual values in turn became individual determined.
- Control variables are determined from the parameter values present on the output side of the modification unit 49 when the search is terminated and their difference from the start values ⁇ N and CB kN in order to set the amplification functions on the frequency-selective channels of the hearing aid corresponding to the critical frequency bands.
- Solution parameter sets excluded from the outset can be, for example, only extremely difficult or unrealizable gain curves on the respective Channels of the hearing aid could lead through appropriate Specifications on the modification unit 49 from the outset be excluded.
- a shortening of the search process can also be achieved, for example for hearing-impaired individuals, by replacing the standard parameters ⁇ N or CB kN with the ⁇ kI or CB kI values estimated from the individual hearing thresholds T kI for hearing impaired people as search starting values in the Storage unit 41 are stored, especially if the hearing loss of the individual is determined from the outset.
- the arithmetic unit 51 can also do the mentioned Include storage devices integrated in terms of hardware; is its delimitation shown in dashed lines in FIG. 10 to understand, for example, including in particular the computing module 53 and the coefficient modification unit 49.
- the previously described procedure according to FIGS. 4, 7 and 10 are primarily suitable for the setting of a hearing aid ex situ.
- the determined manipulated variables may well be direct electronically transmitted to a hearing aid in situ, whereby but the real benefit of in situ adjustment, namely the consideration of the fundamental hearing impairment through a hearing aid, is not considered: First all manipulated variables are determined without a hearing aid, and then, without further acoustic signal presentation, its Setting made.
- the acoustic signals A ⁇ k are fed to the hearing aid system HG with transducers 63 and 65 on the input and output sides and individual I, the latter loading the perceived L I values into the memory 57 with the evaluation unit 5.
- the L I value is stored in the memory 57 for each presented standard-acoustic, broadband signal A ⁇ k .
- the loudness values L ' N are initially determined on the computing module 53 according to (1) or (1 *), as was explained with reference to FIG. 10 , calculated and, specifically assigned to the presented signals A ⁇ k , stored in the memory unit 55.
- the standard parameters from the memory unit 41 are then modified, as described, until they, when used in (1) or (1 *), give L ' N values with predeterminable accuracy corresponding to the L I values in memory 57.
- L ' N L I for all A. .delta..sub.k ,
- the hearing aid HG has a number k o frequency-selective transmission channels K between the converter 63 and converter 65.
- Actuators for the transmission behavior of the channels are connected to an actuating unit 70 via a corresponding interface. The latter are fed the initial manipulated variables SG o previously determined as optimal.
- the changed parameters ⁇ ' Nk , CB' Nk have been determined for a predetermined number of presented normacoustic, broadband signals A ⁇ k by means of the computing module 53 and the modification unit 49, by means of which, according to FIG. 8, the Scaling curves N 'have been adapted to those of the individual I with a hearing aid HG that has not yet been adjusted, the parameter changes found act ⁇ ⁇ k , ⁇ ⁇ CB k , ⁇ ⁇ T k or the parameters ⁇ N , T kN , CB kN and ⁇ kI , T kI , CB kI via the manipulated variable control unit 70 in such a way that it controls the hearing aid in such a way that its channel-specific frequency and amplitude transmission behavior for the signals A ⁇ k , on the output side, produce the correction loudness L Kor .
- the loudness behavior of the hearing aid forms the intrinsic, i.e. "own” loudness perception of the individual that of the norm, the loudness perception of the individual with hearing aid becomes or is the same as that of the norm, based on that of the standard, can be specified.
- Fig. 12a) and b) are two basic implementation variants of a hearing aid according to the invention, using simplified signal flow function block diagrams, which are "ex situ”, but preferably “in situ” as described can be put.
- the hearing aid should, when optimally set, transmit received acoustic signals with the correction loudness L Kor to its output, so that the system hearing aid and individual has a perception that is equal to that of the standard or ( ⁇ L in Fig. 12a) deviates from this by a predeterminable amount.
- channels 1 to k o are provided on a hearing aid according to the invention, followed by an acoustic-electrical input converter 63, each assigned to a critical frequency band CB kN .
- the entirety of these transmission channels forms the signal transmission unit of the hearing aid.
- the frequency selectivity for channels 1 to k o is implemented by filter 64.
- Each channel also has a signal processing unit 66, for example with multipliers or programmable amplifiers.
- the non-linear, band- or channel-specific amplifications described above are implemented on the units 66.
- All signal processing units 66 act on the output side to a summation unit 68, which in turn is on the output side to the electrical-acoustic output transducer 65 of the hearing aid acts. Until then, the two versions are correct according to FIGS. 12a) and 12b).
- the converted acoustic input signals present on the output side of the converter 63 are converted into their frequency spectrum at a unit 64a.
- the aforementioned channel-specific correction parameters and the corresponding correction loudness L KOR are converted into actuating signals SG 66 on the computing unit 53 ', with which the units 66 are set.
- the values .DELTA.SG supplied to the hearing aid according to FIG. 12a) according to FIG. 11 therefore essentially correspond to the channel-specific correction parameters in this embodiment variant.
- the hearing aid transmits the input signals mentioned with the correction loudness L KOR .
- the system individual with hearing aid thus perceives the required loudness, be it preferably the same as the standard or in this respect in a predetermined ratio.
- a controller 116 compares the loudness values L N and L I determined by standard and individual modeling and, channel-specifically, the parameters of the standard model and the individual model and, on the output side, sends control signals SG 66 to the transmission units 66 in accordance with the determined differences, such that the modeled loudness L I becomes equal to the currently required standard loudness L N.
- controller 116 In contrast to the correction model variant of FIG. 12a), controller 116 first determines the necessary correction loudness L KOR in accordance with FIG. 12b).
- FIG. 11 An embodiment of a hearing aid according to the invention, combined from the procedure according to FIG. 11 and the structure 12a) is shown in FIG. It is for the same Function blocks have the same position symbols as in Fig. 11 and 12 used. For reasons of clarity, only one Channel X of the hearing aid shown.
- Switching unit 81 according to the storage unit (41, 43, 44) Fig. 11, shown here as a unit, with the unit 49.
- a switching unit 80 is in the position shown, i.e. is open, a switchover unit 84 is also initially effective in the position shown.
- the arrangement works exactly as shown in FIG. 11 and explained in this context.
- the determined parameter changes ⁇ k , ⁇ CB k , ⁇ T k , which convert the individual loudness model (I) into the standard loudness model (N), when the hearing aid is put into operation by switching over the switching unit 80 in the storage unit 41 ', 43', 44 'acting in the same way as the storage unit 41, 43, 44 is loaded.
- the switching unit 81 is switched to the output of the last-mentioned storage unit.
- the modification unit 49 is deactivated (DIS), so that it directly supplies the data from the storage unit 41 'to 44' unmodified and permanently to the computing unit 53c.
- the switchover unit 84 is switched over so that the output on the arithmetic unit 53c, now acting as arithmetic unit 53 'according to FIG. 12a), acts via the manipulated variable control unit 70a on the transmission path with the units 66 of the hearing aid.
- the ⁇ Z k parameters ⁇ k , ⁇ CB k , ⁇ T k act together with L KOR on the manipulated variable control unit 70a.
- the loudness model arithmetic unit 53c integrated in the hearing aid is initially used to determine the model parameter changes ⁇ k , ⁇ CB k , ⁇ T k required for correction and then, in operation, to guide the transmission manipulated variables of the hearing aid in a time-variable manner - in accordance with the current acoustic signals Relationships - used.
- the determination of the correction loudness model parameters on the hearing aid and thus the necessary manipulated variables for generally non-linear channel-specific amplifications, e.g. for the hearing impaired, allows different target functions, or the loudness requirements can be used as a target function, as mentioned, with different sets of correction loudness model parameters and therefore manipulated variables ⁇ SG 66 can be achieved.
- the hearing aid optimally set the gain frequency selective, i.e. in certain transmission channels, raised, the correction loudness changes.
- FIG. 14 shows that in addition to the precautions of FIG. 11 measures to be taken; the same functional blocks which already listed in FIG. 11 and thus explained, have the same item numbers.
- a sound sensation structured according to specific categories can also be numerically scaled, for example according to the criteria known from Nielsen. 14 and 11, after hearing device HG has been set by finding a correction parameter set ( ⁇ k , ⁇ CB k , ⁇ T k ) such that the individual with the hearing device has at least approximately the same loudness perception as the norm, the individual states: for example, in the case of the same broadband norm-acoustic signals A ⁇ k presented , on a sound scaling unit 90. A numerical value is assigned to each sound category on the unit 90.
- the individually quantified sound sensation KL I is compared with the sound sensation KL N of the norm, for example, which is statistically determined for the same acoustic signals A ⁇ k . These are stored in a memory unit 94 so that they can be called up.
- 14 becomes a sound characterization unit according to FIG 96, for example between comparison unit 59 and parameter modification incrementing unit 49, activated, which the parameter modification on the unit 49 in limited in their degree of freedom, i.e. one or more of the mentioned parameters, regardless of the minimum at unit 59 received difference, changed and constant.
- the sound characterization unit 96 is preferably connected to an expert database, shown schematically at 98 in FIG. 14, to which the information relating to individual sound sensitivity deviation from the norm is supplied.
- Information for example, is stored in the expert database 98 "shrill at A ⁇ k is the result of too much amplification in channels No. ."
- a specific constellation of simultaneously prevailing correction coefficients ⁇ k , ⁇ CB k and ⁇ T k in a critical frequency band k can be regarded as a band-specific state vector Z k ( ⁇ k , ⁇ CB k , ⁇ T k ) of the correction loudness model.
- the entirety of all band-specific state vectors Z k forms the band-specific state space, which is three-dimensional in the case considered here.
- Band-specific state vectors Z k are primarily responsible for every sound feature that can occur during sound scaling, with "shrill” and "muffled” in high-frequency critical bands. This expert knowledge must be stored as rules in the sound characterization unit 96 or the expert system 98.
- band-specific correction state vectors Z k which give the individual a sense of loudness with the hearing aid essentially the same as that of the standard, as described above, have been found, then a changed state vector Z ' k must be sought in at least one of the critical bands to change the sound.
- a changed state vector Z ' k When changing the one band-specific state vector, it must either be changed further so that the loudness remains the same, or at least one other band-specific state vector must also be changed.
- the parameters of the correction loudness model on the hearing device thus result, based on the parameters of the standard, from a first incremental change “ ⁇ ” for conforming loudness adjustment and from second incremental changes ⁇ for sound matching.
- FIG. 12b again in functional block representation, is Hearing aid according to the invention according to FIG. 12b) (model difference variant) presented in a form as is preferred is realized. To make the overview easier the same reference numerals used as for the hearing aid according to FIG. 12b) were used.
- the output signal of the input converter 63 of the hearing aid is subjected to a time / frequency transformation at a transformation unit TFT 110.
- the resulting signal in the frequency domain, is transmitted in the multi-channel time-variant loudness filter unit 112 with the channels 66 to the frequency / time domain FTT transformation unit 114 and from there, in the time domain, to the output converter 65, for example a loudspeaker or another stimulus transducer for the Individual.
- the standard loudness L N is calculated from the input signal in the frequency domain and the standard model parameters in accordance with Z kN .
- the individual loudness L I is calculated analogously on the output side of the loudness filter 112.
- the loudness values L N and L I are supplied to the controller unit 116.
- the individual Loudness corrected to the standard loudness by the isophones of an individual are brought into line with those of the norm.
- the objective function "standard loudness" and possibly also achieved sound perception optimization language is understandable not yet optimal. This is due to the masking behavior of human hearing, which in a damaged individual hearing is different from the norm.
- the frequency masking phenomenon states that soft tones in close frequency neighborhood of loud tones faded out will not contribute to loudness perception.
- the intelligibility is to be further increased, then it must ensure that those spectral components, that are unmasked in the standard, i.e. perceived, also if individual hearing is damaged are perceived, the latter mostly through a distinguishes widened masking behavior. With the injured Hearing components were usually masked, which are unmasked in the standard hearing.
- the input signal of the hearing aid is in the frequency range supplied to a standard masking model unit 118a, where the input signal is masked as with the Standard. How the masking model is determined will be shown later explained.
- the output signal of the hearing aid in the frequency domain is analog, supplied to the individual masking model unit 118b, whereupon the output signal of the hearing aid the masking model of the intrinsic individual.
- the input and output signals masked with the N and I models are supplied to the masking controller 122 and compared it. In function of the comparison results Controller 122 accesses a masking filter in a regulatory sense 124 until the mask "hearing aid transmission and individual "are aligned with those of the norm is.
- the multichannel time-variable loudness filter 112 is followed by the likewise multichannel time-variable masking filter 124, which, as mentioned, is set in function of the difference determined at the masking controller 122 such that the norm-masked input signal at unit 118a equals the "individual + hearing aid" -masked output signal at unit 118b will. If the transmission behavior of the hearing aid has now been changed via the masking controller 122 and the masking filter unit 124, the correction loudness L KOR of the transmission no longer corresponds to the required one, and the loudness controller 116 adjusts the manipulated variables on the multi-channel time-variable loudness filter 112, that the controller 116 again determines the same loudness L I , L N.
- Masking correction via controller 122 and loudness tracking via controller 116 are thus carried out iteratively, the loudness model used, defined by the state vectors Z LN , Z LI , remaining unchanged. It is only when both the loudness controller 116 and the masking controller 122 that the iterative matching of the filters 112 and 124 achieves the same within narrow tolerances, is the transmitted signal at the frequency / time transformation unit 114 converted back into the time domain and to the individual transfer.
- the frequency masking model is parameterized by state vectors Z FMN or Z FMI .
- a masking curve F fx is assigned to each frequency component in accordance with its loudness. Only the level components that exceed the masking limits, corresponding to the F f functions, contribute to the sound and loudness perception of the broadband signal presented, for example with the frequency components f 1 -f 3 .
- the norm perceives a loudness to which the unmasked components L f1N -L f3N contribute.
- the slopes m unN and m obN of the masking curves F f are essentially independent of frequency and level if, as shown, the frequency scaling takes place in "bark", according to E. Zwicker (in critical bands).
- the masking curves F f are broadened as far as the gradients m are concerned, and they are also raised.
- the frequency masking behavior of the standard N is again shown in dashed lines in characteristic I of FIG. 17.
- the total masking limit FMG formed by all frequency-specific masking characteristic curves F f naturally also varies over the entire frequency spectrum, with which the filter 126 or the channel-specific filter must be guided in a time-variable manner.
- the frequency masking model for the standard is known from E. Zwicker or from ISO / MPEG according to the literature reference below.
- the applicable individual frequency masking model with FMG I must first be determined in order to be able to carry out the individually necessary correction, as shown schematically with the unmasking filter 126 in FIG. 17.
- frequency components which according to the frequency masking model of the norm be masked, so don't contribute to loudness at all not taken into account, i.e. not broadcast.
- Narrow band noise R o preferably centered with respect to the center frequency f o of a critical frequency band CB k of the standard or, if already determined as described above, the individual, is presented to the individual via headphones or, and preferably, via the already loudness-optimized hearing aid.
- a sinusoidal signal preferably at the center frequency f o , is added to the noise R o , as are sinusoidal signals at f un and f ob above and below the noise spectrum. These test sinus signals are added sequentially in time. By varying the amplitude of the signals to f un , f o and f ob , it is determined when the individual to whom the noise R o is presented perceives a change in this noise.
- the corresponding perception limits determine three points of the frequency masking behavior F foI of the individual.
- certain estimates are preferably used in advance in order to shorten the investigation process.
- the masking at the center frequency f o is initially estimated to be -6dB for the hearing impaired.
- the frequencies f un and f ob are chosen to be offset by one to three critical bandwidths with respect to f o . This procedure is preferably carried out at two to three different center frequencies f o , distributed over the hearing range of the individual, in order to determine FMG I , the frequency masking model of the individual or its parameters, such as in particular m obf , m unf .
- FIG. 19 schematically shows the experimental setup for determining the frequency masking behavior of an individual according to FIG. 18.
- Noise center frequency f o , noise bandwidth B and the average noise power A N are set on a noise generator 128.
- the output signal of the noise generator 128 is superimposed on a superposition unit 130 with the respective test sinusoidal signals, which are set on a sine generator 132.
- Amplitude A S , frequency f S can be set on the test sine generator 132.
- the test sine generator 132 is preferably operated in a clocked manner, for which purpose it is activated cyclically, for example via a clock generator 134.
- the superimposition signal is fed to the individual via an amplifier 136 via calibrated headphones or, and preferably, directly via the hearing aid according to FIG. 16, which is still to be optimized with regard to frequency masking.
- the noise signals R o are presented to the individual, for example every second, and the respective test sinusoidal signal TS. Is added to one of the noise packets. The individual is asked whether and, if so, which of the noise packages sounds different from the others. If all noise packets sound the same to the individual, the amplitude of the test signal TS is increased until the corresponding noise packet is perceived differently from the others, then the associated point A W is found on the frequency masking characteristic FMG I according to FIG. 18.
- the unmasking model according to block 126 of FIG. 17 can be determined from the masking model of the individual determined in this way and the known standard.
- the TARGET masking is actually at block 118a calculated according to the acoustic signal presented and, via masking controller 122, filter 124 in FIG Signal transmission path adjusted until the masking on it and on the individual - model on 118b - the same Result delivers, as from the leadership masking model in block 118a required.
- changes with frequency masking correction generally also the loudness transmission, so that loudness control and frequency masking control alternately until both are made Only then will criteria be met with the required accuracy via block 114, the "quasi currently" acoustic signal is present Signal converted back into the time domain and the individual transmitted.
- the frequency / time inverse transformation unit 114 (Wigner inverse transformation or Wigner synthesis) is an analog to Buffer 140 acting spectrum / time buffer 142 upstream.
- a further computing device 53 ′ b determines the time image of the L I values determined on the basis of the spectra. This time image is compared with the time image of the L N values at controller 116a, and the comparison result is used to control a multi-channel loudness filter unit 112a with controlled, time-variable dispersion (phase shift, time delay).
- the filter 112a thus ensures that the temporal correction loudness image of the transmission with the loudness image of the individual corresponds to that of the norm.
- the 142 respectively stored spectra in the buffers 140, the total of signals over a predetermined time period, for example from 20 to 100 msec depict, time and frequency masking model computers for the standard 118 'a and the individual 118' are further b supplied to the are parameterized with the norm and individual parameters or state vectors, Z FM , Z TM . Both frequency masking model F N , analogous to FIG. 16, and time masking model T M are implemented therein.
- the outputs of the computers 118 ' a , 118' b act on a masking controller unit 122a, the latter acting on the multi-channel unmasking filter 124a, which can now also be used to control the dispersion in a time-variable manner in addition to 124 from FIG. 16.
- Driving the loudness filter 112a and the masking correction filter 124a is preferably carried out alternately until both assigned controllers 116a and 122a Detect predetermined minimum deviation criteria. First then the spectra in the buffer unit 142 are correct Time sequence on unit 114 converted back into the time domain and transmitted to the individual wearing the hearing aid.
- 21 shows a hearing device structure in the case of loudness correction, Frequency masking correction and time masking correction on signals converted into the frequency range.
- a technically possibly simpler design variant 22 consistently takes time phenomena in signals into account in the time domain and phenomena related to frequency response Signals in the frequency domain. This is done before the time / frequency transformation unit 110, which according to the execution 16 preferably shows an instantaneous spectrum transformation executes a time mask correction unit, as shown schematically 141 upstream or, if necessary also as a supplement or replacement, between reverse transformation unit 114 and output transducer 65, such as speakers, Stimulator, e.g. an electrode stimulated cochlear Implant.
- the time mask correction unit designated 140 in FIG. 22 is shown in more detail in FIG. it includes a time-loudness model unit 142 on which, preferably as a performance integral, the course of the loudness over the Time of the acoustic input signal is tracked. Analogous is in another time-loudness model unit 142 instantaneous loudness of the signal in the time range before it Conversion determined at the time / frequency transformation unit 110.
- the loudness curves in the time of the input signal mentioned and the output signal mentioned are on compared to a (simplified) time-loudness controller 144, and on a filter unit 146, namely essentially a gain control unit GK, the loudness of the output signal, considered over time, that of the input signal equalized.
- the input signal is used to carry out the time masking correction fed to a time buffer unit 148, according to which W. Verhelst, M. Roelands, "An overlap-add technique based on waveform similarity ... ", ICASSP 93, pp. 554-557, 1993, WSOLA algorithms or, according to E. Moulines, F. Charpentier, "Pitch Synchronous Waveform Processing Techniques for Text to Speech Synthesis Using Diphones ", Speech Communication Vol. 9 (5/6), pp. 453-467, 1990, PSOLA algorithms used become.
- a standard time masking model unit 150 N the standard time masking to be described is modeled on the input signals, on the further unit 150 I , on the output signals of the time buffer unit 148, the individual time masking.
- the time maskings modeled on the signals on the input and output sides of the time buffer unit 148 are compared on a time masking control unit 152, and in accordance with the comparison result, the signal output on the time buffer unit 148 is time-controlled via the algorithms mentioned, preferably used, ie the transmission via the time buffer 148 controlled time-variable expansion factor or delay.
- the time masking behavior of the standard is again from E. Zwicker known.
- the time masking behavior of an individual is to be explained with reference to FIG. 24.
- a second acoustic signal A 2 which is subsequently presented, is only perceived if its level is above the time masking limit TMG N shown in broken lines.
- TMG N time masking limit
- FIG. 24 shows the time masking limit profile ZMG of, for example, a hearing-impaired individual under representation I with the same, schematically represented acoustic signals A 1 and A 2 . It can be seen that the second in the time signal A 2 is not perceptible when the hearing impaired may.
- the dot-time masking behavior TMG N assumed for example, of the curve N is again shown in dash-dotted lines in the course of I. From the difference it can be seen that a time masking correction basically involves either delaying the second signal A 2 on the individual - using the hearing aid - until his individual time masking limit has dropped sufficiently, or the signal A 2 to be strengthened in such a way that the individual is also above his time masking limit.
- the perceived area of the signal A 2 is designated L in the course of N, the last-mentioned procedure on the individual reveals that A 2 must be amplified so that, in the best case, the same perceived area L is above the individual's time masking limit.
- the decay time T at the time masking TMG limit N to the standard is essentially independent of the level or loudness of the time masking triggering signal, as shown in FIG. 24 of A 1. This also applies to hearing impaired people, so that in most cases it is sufficient to determine the decay time T AI of the time masking limit TMG I regardless of the level.
- the individual time masking limit decay time T AI 25 to determine the individual time masking limit decay time T AI, the individual is presented with a click-free and click-free narrow-band noise signal R o . After exposure of the noise signal R o a test sinusoidal signal with Gaussian wrap-around him will be presented after a set interval T Paus. A point corresponding to A ZM of the individual time masking limit TMG I is determined by varying the envelope amplitude and / or the pause time T Paus . Further changes in the pause time and / or the envelope amplitude of the test signal determine two or more points of the individual time masking limit.
- test sine generator 132 which emits a Gauss-encased sine signal. The individual is asked at which pair of values T Paus and amplitude of the Gauss envelope the test signal after the noise signal is currently being perceived.
- the individual masking behavior can also be estimated from diagnostic data, which results in a significant reduction in the time for the identification of the individual time masking model TMG I.
- the essential parameter of this model is the decay time T AN or T AI .
Landscapes
- Acoustics & Sound (AREA)
- Neurosurgery (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Adornments (AREA)
- Auxiliary Devices For And Details Of Packaging Control (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Description
- Fig. 1
- schematisch, eine Quantifizierungseinheit zur Quantifizierung einer individuell wahrgenommenen, psycho-akustischen Wahrnehmungsgrösse;
- Fig. 2
- schematisch, in Form eines Blockdiagrammes, ein grundsätzliches Vorgehen;
- Fig. 3
- in Abhängigkeit des Schallpegels, die wahrgenommene Lautheit der Norm (N) sowie eines schwerhörigen Individuums (I) in einem kritischen Frequenzband k;
- Fig. 4
- in Form eines Funktionsblock-Signalflussdiagrammes, eine erste Ausführungsvariante einer erfindungsgemässen Vorrichtung, nach dem erfindungsgemässen Verfahren arbeitend, womit erfindungsgemäss Stellgrössen für die Uebertragung eines Hörgerätes ermittelt werden;
- Fig. 5
- anhand einer Darstellung analog zu Fig. 3, eine vereinfachte graphische Darstellung des mit der Vorrichtung gemäss Fig. 4 vorgenommenen erfindungsgemässen Vorgehens;
- Fig. 6a
- vereinfacht, das Vorgehen nach Fig. 5, mit in
- Fig. 6b
- vereinfachter Darstellung des resultierenden Verstärkungsverlaufes in einem betrachteten kritischen Frequenzband, einzustellen am Uebertragungsverhalten eines erfindungsgemässen Hörgerätes, das in
- Fig. 6c
- in seinem prinzipiellen Aufbau betreffs Uebertragungsstrecke dargestellt ist;
- Fig. 7
- eine ausgehend von der Anordnung nach Fig. 4 weiterentwickelte Anordnung, bei der das in Fig. 4 implementierte Lautheitsmodell verfeinert implementiert ist;
- Fig. 8
- in Analogie zu Fig. 5, graphisch vereinfacht, das Verarbeitungsvorgehen an der Vorrichtung gemäss Fig. 7;
- Fig. 9
- über der Frequenzachse, schematisch, kritische Frequenzbänder der Norm und beispielsweise eines Individuums (a) mit einer beispielsweise resultierenden Korrekturverstärkungsfunktion (b), schallpegel- und frequenzabhängig, für einen einem betrachteten kritischen Frequenzband entsprechenden Hörgerät-Uebertragungskanal;
- Fig. 10
- analog zur Darstellung der Vorrichtung nach Fig. 4, deren Weiterentwicklung zur Mitberücksichtigung beim Individuum bezüglich der Norm veränderter kritischer Frequenzbandbreiten;
- Fig. 11
- in Analogie zur Darstellung von Fig. 10, eine erfindungsgemässe Vorrichtung, mittels welcher "in situ" ein erfindungsgemässes Hörgerät betreffs Uebertragungsverhalten eingestellt wird;
- Fig.12a) und b)
- je in Form eines Funktionsblock-Signalflussdiagrammes, die Struktur erfindungsgemässer Hörgeräte, woran die Uebertragung einer psycho-akustischen Grösse korrigierend gesteuert wird, insbesondere die Lautheitsübertragung;
- Fig. 13
- eine Ausführungsvariante eines erfindungsgemässen Hörgerätes, woran die Vorkehrungen der Vorrichtung nach Fig. 11 sowie diejenigen nach Fig. 12a) kombiniert am Hörgerät implementiert sind;
- Fig. 14
- als Beispiel ausgehend von einer erfindungsgemässen Vorrichtung nach Fig. 11, deren Weiterentwicklung zur Mitberücksichtigung des Klangempfindens eines Individuums;
- Fig. 15
- ausgehend von der Darstellung eines erfindungsgemässen Hörgerätes nach Fig. 12b), eine bevorzugte Realisationsform, bei der die Korrekturübertragung einer psycho-akustischen Wahrnehmungsgrösse, am bevorzugten Beispiel der Lautheit, im Frequenzbereich aufbereitet wird;
- Fig. 16
- ausgehend von der Darstellung eines erfindungsgemässen Hörgerätes nach Fig. 15, dessen Weiterentwicklung zur Mitberücksichtigung einer weiteren psycho-akustischen Wahrnehmungsgrösse, nämlich der Frequenzmaskierung;
- Fig. 17
- schematisch, das Frequenzmaskierungsverhalten der Norm und eines schwerhörenden Individuums mit daraus sich ergebendem, qualitativ dargestelltem, zu realisierendem Korrekturverhalten an einem erfindungsgemässen Hörgerät nach Fig. 16;
- Fig. 18
- anhand einer Frequenz/Pegelcharakteristik, das Vorgehen zur Eruierung des Frequenzmaskierungsverhaltens eines Individuums;
- Fig. 19
- in Form eines Funktionsblock-Signalflussdiagrammes eine Messanordnung zur Durchführung des Ermittlungsverfahrens, wie anhand von Fig. 18 erläutert;
- Fig. 20
- über der Zeitachse einem Individuum präsentierte Signale bei der Eruierung, wie sie anhand von Fig. 18 erläutert wurde;
- Fig. 21
- ausgehend von einem erfindungsgemässen Hörgerät mit der in Fig. 15 bzw. 16 dargestellten Struktur, dessen Weiterentwicklung zur Mitberücksichtigung des Zeitmaskierungsverhaltens als eine weitere psychoakustische Wahrnehmungsgrösse;
- Fig. 22
- das vereinfachte Blockdiagramm eines erfindungsgemässen Hörgerätes, welches wie das in Fig. 21 dargestellte als weitere psycho-akustische Wahrnehmungsgrösse das Zeitmaskierungsverhalten berücksichtigt, aber in anderer Ausführungsform;
- Fig. 23
- die am erfindungsgemässen Hörgerät gemäss Fig. 22 vorgesehene Zeitmaskierungs-Korrektureinheit;
- Fig. 24
- schematisch, das Zeitmaskierungsverhalten der Norm und eines Individuums als Beispiel zur Erläuterung daraus resultierender Korrekturmassnahmen, um mit einem erfindungsgemässen Hörgerät das Zeitmaskierungsverhalten eines Individuums auf dasjenige der Norm zu korrigieren;
- Fig. 25
- schematisch, über der Zeitachse, bei der Eruierung des Zeitmaskierungsverhaltens einem Individuum zu präsentierende Signale.
- k:
- Laufparameter mit 1 ≤ k ≤ ko, Numerierung der Anzahl ko berücksichtigter kritischer Bänder;
- CBk:
- spektrale Breite des betrachteten kritischen Bandes mit der Nummer k;
- αk:
- Anstieg einer linearen Approximation der in Kategorien skalierten Lautheitsempfindung bei logarithmischem Auftrag des Pegels eines präsentierten sinusförmigen oder schmalbandigen akustischen Signals, dessen Frequenz circa bandmittig des betrachteten kritischen Bandes CBk liegt;
- Tk:
- Hörschwelle beim erwähnten Sinussignal;
- Sk:
- den mittleren Schalldruckpegel eines präsentierten akustischen Signals im betrachteten kritischen Frequenzband CBk.
- die individuellen αkI-Parameter sich aus den Regressionsgeraden gemäss Fig. 1 ermitteln lassen,
- die individuellen Hörschwellen TkI sich durch Schwellenaudiometrie bestimmen lassen,
- die individuellen Bandbreiten CBkI der kritischen Bänder sich, wie in obgenannter Literatur angegeben, bestimmen lassen, wobei
- diese Grössen für die Norm, d.h. für die Normalhörenden, bekannt und normiert sind.
- dass, wie anhand der Fig. 1 bis 11 erläutert, ausgehend von einem gegebenen mathematischen Norm-Lautheitsmodell, Parameteränderungen ermittelt werden, welche dem Lautheits-Empfindungsunterschied von Norm und Individuum entsprechen. Damit sind Modellunterschiede und Individuummodell bekannt.
- An einem Hörgerät wird dasselbe mathematische Modell vorgesehen.
- Das Lautheitsmodell am Hörgerät wird in Funktion der Parameterunterschiede (Δ) betrieben, welche das Lautheitsmodell des Individuums demjenigen der Norm angleichen, wozu die gefundenen Modell-Parameterunterschiede und/oder die Norm-Parameter und die Individuum-Parameter dem Hörgerät zugespiesen werden.
- Am Hörgerätemodell wird im letzterwähnten Fall laufend überprüft, ob die aus den momentanen Eingangssignalen nach dem Modell der Norm berechnete Lautheit auch der durch das Individuum-Modell aufgrund der Ausgangssignale errechneten entspricht. Aufgrund der Modell-Parameterunterschiede und gegebenenfalls der modellierten Lautheitsunterschiede wird die Uebertragung am Hörgerät in regelndem Sinne so geführt, dass modellierte Lautheiten LI, LN in vorgebbare Relation kommen, vorzugsweise gleich werden.
"schrill bei AΔk ist die Folge von zuviel Verstärkung in den Kanälen Nr. ...."
- 1)
- E. Zwicker, Psychoakustik, Springer Verlag Berlin, Hochschultext, 1982
- 2)
- O. Heller, Hörfeldaudiometrie mit dem Verfahren der Kategorienunterteilung, Psychologische Beiträge 26, 1985
- 3)
- A. Leijon, Hearing Aid Gain for Loudness-Density Normalization in Cochlear Hearing Losses with Impaired Frequency Resolution, Ear and Hearing, Vol. 12, NO. 4, 1990
- 4)
- ANSI, American National Standard Institute, American National Standard Methods for the Calculation of the Articulation Index, Draft WG S3.79; May 1992, V2.1
- 5)
- B.R. Glasberg & B.C.J. Moore, Derivation of the auditory filter shapes from notched-noise data, Hearing Research, 47, 1990
- 6)
- P. Bonding et al., Estimation of the Critical Bandwidth from Loudness Summation Data, Scandinavian Audiolog, Vol. 7, No. 2, 1978
- 7)
- V. Hohmann, Dynamikkompression für Hörgeräte, Psychoakustische Grundlagen und Algorithmen, Dissertation UNI Göttingen, VDI-Verlag, Reihe 17, Nr. 93
- 8)
- A.C. Neuman & H. Levitt, The Application of Adaptive Test Strategies to Hearing Aid Selection, Chapter 7 of Acoustical Factors Affecting Hearing Aid Performance, Allyn and Bacon, Needham Heights, 1993
- 9)
- ISO/MPEG Normen, ISO/IEC 11172, 1993-08-01
- 10)
- PSOLA, E. Moulines, F. Charpentier, Pitch Synchronous Waveform Processing Techniques for Text to Speech Synthesis Using Diphones, Speech Communication Vol. 9 (5/6), S. 453-467, 1990
- 11)
- WSOLA, W. Verhelst, M. Roelands, An overlap-add technique based on waveform similarity ..., ICASSP 93, S. 554-557, 1993
- 12)
- Lars Bramsløw Nielsen, Objective Scaling of Sound Quality for Normal-Hearing and Hearing-Impaired Listeners, The Acoustics Laboratory, Technical University of Denmark, Report No. 54, 1993
- 13)
- B.V.K. Vijaya Kumar, Charles P. Neuman and Keith J. DeVos, Discrete Wigner Synthesis, Signal Processing 11 (1986) 277-304, Elsevier Science Publishers B.V. (North-Holland)
- 14)
- Françoise Peyrin and Rémy Prost, A Unified Definition for the Discrete-Time, Discrete-Frequency, and Discrete-Time/Frequency Wigner Distributions, S. 858 ff., IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-34, No. 4, August 1986
Claims (40)
- Verfahren zur Anpassung eines Hörgerätes (HG) an ein Individuum (I), bei dem manmindestens eine psycho-akustische Wahrnehmungsgrösse (L, Ff) einer Norm (N) auf gegebene akustische Signale quantifiziert;dieselbe psycho-akustische Wahrnehmungsgrösse (L, Ff), wie sie das Individuum (I) bei den gegebenen akustischen Signalen wahrnimmt, quantifiziert;aus Abweichungen der erwähnten quantifizierten psychoakustischen Wahrnehmungsgrössen das Hörgerät für das Individuum so einstellt oder konzipiert, dass die psycho-akustische Wahrnehmungsgrösse, wie sie vom Individuum mit dem Hörgerät wahrgenommen wird, mindestens genähert zu derjenigen, wie sie von der Norm wahrgenommen wird, in vorgebbarer Relation steht,
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die vorgebbare Relation Gleichheit ist.
- Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass man die Quantifizierungen, die Bestimmung der Abweichungen mit einer vom Hörgerät getrennten Vorrichtung vornimmt und die akustischen Signale dem Individuum ohne Hörgerät zur Quantifizierung präsentiert.
- Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass man die Quantifizierung, die Bestimmung der Abweichungen mit einer vom Hörgerät getrennten Vorrichtung vornimmt und die akustischen Signale dem Individuum mit Hörgerät zur Quantifizierung präsentiert und vorzugsweise zwischen Vorrichtung und Hörgerät eine steuerbare Verbindung erstellt für die Uebergabe von Daten, die von den Abweichungen abhängen.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man die Quantifizierung der psycho-akustischen Wahrnehmurigsgrösse durch das Individuum abbricht, wenn die Abweichungen mit vorgebbarer (ΔR) Genauigkeit ermittelt sind.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man die Anzahl vom Individuum zu quantifizierender Grössen dadurch reduziert, dass man seine Wahrnehmung, vorzugsweise aufgrund diagnostischer Information, vorab schätzt und die Schätzung durch die Quantifizierung überprüft und gegebenenfalls präzisiert.
- Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man als psycho-akustische Wahrnehmungsgrösse mindestens Lautheit oder Frequenzmaskierung einsetzt.
- Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man zur Ermittlung der Abhängigkeit der psycho-akustischen Wahrnehmungsgrösse von akustischen Signalen die Modellparameter so bestimmt, dass die aufgrund der akustischen Signale modellierte psycho-akustische Grösse gleich der von der Norm bei den erwähnten akustischen Signalen wahrgenommenen wird, dass man weiter die vom Individuum ohne Hörgerät wahrgenommene psycho-akustische Grösse auf akustische Signale hin quantifiziert (5) und die bestimmten Modellparameter am Modell so ändert, dass die berechnet modellierte psycho-akustische Grösse in vorgebbarem Masse mit der vom Individuum quantifizierten übereinstimmt.
- Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man die Bestimmung der Parameter für die Modellierung der vom Individuum wahrgenommenen Grösse dann abbricht, wenn die Parameter das Modell mit vorgebbarer Genauigkeit festlegen.
- Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Bestimmung der Parameter mit Schätzwerten hierfür beginnt.
- Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass lediglich Parameter bestimmt werden, die die Modellierung mit vorgebbarer Genauigkeit festlegen.
- Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man am Hörgerät das Modell (53'; 118, 120; 53a, 118a; 150) implementiert und dessen Parameter zur Bildung eines Korrekturmodells, entsprechend den erwähnten Unterschieden bzw. Aenderungen, festsetzt.
- Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man am Hörgerät das Modell für die Norm und für das Individuum implementiert, je eines auf Ein- und Ausgangssignale des Hörgerätes appliziert und abhängig von Modellierungsdifferenzen die Hörgerät-Uebertragung stellt.
- Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man ein Modell (1) wählt, bei dem Veränderungen von Parametern (α, CB, T) gleiche Aenderungen der modellierten psycho-akustischen Grösse ergeben, wie Veränderungen zugeordneter physikalischer Stellgrössen (66) Aenderungen der psycho-akustischen Grösse an der Uebertragungsstrecke am Hörgerät ergeben.
- Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass mehrere Parameteränderungssätze, die die genannten Bedingungen erfüllen, bestimmt werden und derjenige Satz für die Konzeption oder das Stellen des Hörgerätes oder das Führen seiner Uebertragung eingesetzt wird, der für das Individuum mit dem Hörgerät einen individuell zufriedenstellenden Klangeindruck ergibt.
- Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass als psycho-akustische Wahrnehmungsgrösse die Lautheit eingesetzt wird und diese durch modelliert wird, worin bedeuten:
- k:
- Laufparameter mit 1 ≤ k ≤ ko, Numerierung der Anzahl ko berücksichtigter kritischer Bänder;
- CBk:
- spektrale Breite des betrachteten kritischen Bandes mit der Nummer k;
- αk:
- Anstieg einer linearen Approximation der in Kategorien skalierten Lautheitsempfindung bei logarithmischem Auftrag des Pegels eines präsentierten sinusförmigen oder schmalbandigen akustischen Signals, dessen Frequenz circa bandmittig des betrachteten kritischen Bandes CBk liegt;
- Tk:
- Hörschwelle beim erwähnten Sinussignal;
- Sk:
- der mittlere Schalldruckpegel eines präsentierten akustischen Signals im betrachteten kritischen Frequenzband CBk;
- Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass bei der Modellierung des Individuums die Hörschwellen individuell berücksichtigt werden, vorzugsweise auch die αk und gegebenenfalls auch die CBk individuell berücksichtigt werden.
- Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das Modell individuell mit mindestens einem Teil der kritischen Frequenzbänder parametrisiert wird.
- Verfahren nach einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, dass zusätzlich als psycho-akustische Wahrnehmungsgrösse die Frequenz- und/oder Zeitmaskierung eingesetzt wird.
- Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass man die Abhängigkeit von akustischen Signalen einer psycho-akustischen Grösse am Hörgerät für die Norm und für ein Individuum modelliert und die Modelle auf den akustischen Signalen entsprechende elektrische Eingangs- und/oder Ausgangssignale des Hörgerätes im Zeitbereich und/oder im Frequenzbereich anwendet.
- Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass man intermittierend am Hörgerät mindestens ein Lautheitsmodell und mindestens ein Maskierungsmodell für das Führen von Uebertragungsstellgrössen einsetzt.
- Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass man als eine psycho-akustische Wahrnehmungsgrösse die Zeitmaskierung einsetzt und am Hörgerät diese mit gesteuert zeitvariabler Uebertragungsverzögerung berücksichtigt, vorzugsweise unter Verwendung von WSOLA-Algorithmen.
- Vorrichtung zur Anpassung eines Hörgerätes an ein Individuum mit mindestens einer Recheneinheit (11; 53, 53'; 118, 120; 53a, 118a; 150), worin mindestens ein Modell (L, Ff, ZMG) implementiert ist, das die Abhängigkeit einer psychoakustischen Wahrnehmungsgrösse des Menschen von akustischen Signalen modelliert, und mit der, eingangsseitig, ein Eingang für von akustischen Signalen abhängige Signale wirkverbunden ist, dadurch gekennzeichnet, dass eine Vergleichseinheit (15; 59; 116; 122; 116a, 122a; 152) vorgesehen ist, deren Eingang mit dem Ausgang der Recheneinheit wirkverbunden ist und die einen weiteren Eingang aufweist, welcher mit einem Eingang für die Eingabe einer quantifizierten psychoakustischen Wahrnehmungsgrösse wirkverbindbar ist, wobei der Ausgang der Vergleichseinheit Signale für die Konzipierung oder für das Stellen oder für das Führen des Uebertragungsverhaltens des Hörgerätes abgibt.
- Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, dass der Recheneinheit eine Speichereinheit mit Festdaten eingangsseitig zugeschaltet ist und der Ausgang der Vergleichseinheit auf einen Steuereingang einer Datenmodifikationseinheit wirkt, woran die von der Speichereinheit der Recheneinheit zugeführten Daten in Abhängigkeit vom Signal am Vergleichseinheitsausgang verändert werden.
- Vorrichtung nach Anspruch 24, dadurch gekennzeichnet, dass der Ausgang der Vergleichseinheit auf eine Schwellwerteinheit wirkt, deren Ausgang die Modifikationseinheit aktiviert bzw. stillsetzt, wobei der Schwellwerteinheit ein vorgebbares Schwellwertsignal zugeführt ist.
- Vorrichtung nach einem der Ansprüche 23 bis 25, dadurch gekennzeichnet, dass die Vorrichtung am Hörgerät mindestens eine Recheneinheit umfasst, welche eingangsseitig mit einer Speichereinheit verbunden ist und der Signale in Abhängigkeit von den Ein- und/oder Ausgangssignalen des Hörgerätes zugeführt sind, wobei die Recheneinheit ausgangsseitig auf Stellglieder für die Uebertragung am Hörgerät wirkt.
- Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, dass der Recheneinheit sowohl Ein- wie auch Ausgangssignale zugeführt sind und auf die Stellglieder Signale in Funktion einer Differenz des Recheneinheits-Ausgangssignals wirken, sich jeweils mit den Ein- bzw. Ausgangssignalen ergebend.
- Vorrichtung nach einem der Ansprüche 22 bis 27, dadurch gekennzeichnet, dass an der Recheneinheit mindestens ein Modell implementiert ist, das mindestens eine der psycho-akustischen Wahrnehmungsgrössen Lautheit, Frequenzmaskierung, Zeitmaskierung modelliert, vorzugsweise mindestens die Lautheit modelliert.
- Vorrichtung nach Anspruch 28, dadurch gekennzeichnet, dass eine Recheneinheit vom Hörgerät abgesetzt vorgesehen ist, auf die eingangsseitig über eine Datenmodifikationseinheit eine Speichereinheit für Festdaten wirkt, wobei die Vergleichseinheit ausgangsseitig auf einen Steuereingang an der Datenmodifikationseinheit wirkt, und weiter ein Signalgenerator vorgesehen ist, welcher einerseits auf einen Ausgabesteuereingang an der Speichereinheit, anderseits auf einen elektrisch/akustischen Wandler wirkt, wobei die Recheneinheit eine psycho-akustische Grösse modelliert, parametrisiert mit den von der Speichereinheit zugeführten modifizierten Daten.
- Vorrichtung nach Anspruch 29, dadurch gekennzeichnet, dass die Vergleichseinheit eingangsseitig mit einer Kategorienskalierungseinheit wirkverbunden ist, an der individuell die Wahrnehmung kategorisierbar ist.
- Vorrichtung nach Anspruch 28, dadurch gekennzeichnet, dass am Hörgerät mindestens eine Recheneinheit vorgesehen ist, woran das Modell implementiert ist, und dass ihr eine Speichereinheit für Parameterdaten zugeordnet ist, wobei sie ausgangsseitig auf Stellglieder für die Signalübertragung am Hörgerät wirkt.
- Vorrichtung nach Anspruch 31, dadurch gekennzeichnet, dass an der Speichereinheit mindestens zwei Datensätze abgespeichert sind, die auf die Recheneinheit je mit den Ein- und Ausgangssignalen des Hörgerätes wirken, daran die Modellierungsdifferenz gebildet wird, in deren Abhängigkeit die Recheneinheit auf die Stellglieder wirkt.
- Vorrichtung nach einem der Ansprüche 23 bis 32, dadurch gekennzeichnet, dass an der mindestens einen Recheneinheit ein Lautheitsmodell gemäss implementiert ist, worin bedeuten:
- k:
- Laufparameter mit 1 ≤ k ≤ ko, Numerierung der Anzahl ko berücksichtigter kritischer Bänder;
- CBk:
- spektrale Breite des betrachteten kritischen Bandes mit der Nummer k;
- αk:
- Anstieg einer linearen Approximation der in Kategorien skalierten Lautheitsempfindung bei logarithmischem Auftrag des Pegels eines präsentierten sinusförmigen oder schmalbandigen akustischen Signals, dessen Frequenz circa bandmittig des betrachteten kritischen Bandes CBk liegt;
- Tk:
- Hörschwelle beim erwähnten Sinussignal;
- Sk:
- der mittlere Schalldruckpegel eines präsentierten akustischen Signals im betrachteten kritischen Frequenzband CBk;
- Vorrichtung nach einem der Ansprüche 23 bis 33, dadurch gekennzeichnet, dass beiden Eingängen der Vergleichseinheit eine Zwischenspeichereinheit (55, 57) vorgeschaltet ist.
- Vorrichtung nach einem der Ansprüche 24 bis 34, dadurch gekennzeichnet, dass der Recheneinheit ein Eingang für akustische Signale über eine Leistungs-Bildungseinheit (45, 47) zugeführt ist.
- Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, dass die Uebertragungsstrecke (117) am Hörgerät zwischen einer Zeitbereich-in-Frequenzbereich-Transformationseinheit (110) und einer Frequenzbereich-in-Zeitbereich-Transformationseinheit (114) angeordnet ist und die Recheneinheit mit Uebertragungsstrecken-Eingang und -Ausgang wirkverbunden ist.
- Vorrichtung nach Anspruch 36, dadurch gekennzeichnet, dass eine weitere Uebertragungsstrecke (148) vor der Zeitbereich-in-Frequenzbereich-Transformationseinheit (110) vorgesehen ist und eine Recheneinheit (150) eingangsseitig sowohl mit dem Eingang wie auch mit dem Ausgang der weiteren Uebertragungsstrecke (148) wirkverbunden ist und Modellierungen anhand der Ausgangs- und Eingangssignale der weiteren Uebertragungsstrecke (148) vornimmt, wobei eine Vergleichseinheit (152) die Modellierungsresultate vergleicht und ausgangsseitig die weitere Uebertragungsstrecke (148) ansteuert.
- Vorrichtung nach Anspruch 37, dadurch gekennzeichnet, dass die weitere Uebertragungsstrecke steuerbare Zeitverzögerungsmittel umfasst, vorzugsweise mit WSOLA-Algorithmus.
- Hörgerät mit einer Recheneinheit, welche die Wahrnehmung mindestens einer psycho-akustischen Grösse durch den Menschen auf empfangene akustische Signale hin modelliert, dadurch gekennzeichnet, dass die Recheneinheit die psycho-akustische Grösse mit kritischen Frequenzbändern des menschlichen Gehörs parametrisiert.
- Hörgerät nach Anspruch 39, dadurch gekennzeichnet, dass die Recheneinheit das Modell mit mindestens zwei Parametersätzen, je ausgehend von Hörgeräte-Ein- und -Ausgangssignalen, berechnet und in Funktion der Modelldifferenz die Uebertragung zwischen Ein- und Ausgangssignalen stellt.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT95103571T ATE229729T1 (de) | 1995-03-13 | 1995-03-13 | Verfahren zur anpassung eines hörgerätes, vorrichtung hierzu und hörgerät |
EP01128611A EP1207718A3 (de) | 1995-03-13 | 1995-03-13 | Verfahren zur Anpassung eines Hörgerätes, Vorrichtung hierzu und Hörgerät |
EP95103571A EP0661905B1 (de) | 1995-03-13 | 1995-03-13 | Verfahren zur Anpassung eines Hörgerätes, Vorrichtung hierzu und Hörgerät |
DE59510501T DE59510501D1 (de) | 1995-03-13 | 1995-03-13 | Verfahren zur Anpassung eines Hörgerätes, Vorrichtung hierzu und Hörgerät |
DK95103571T DK0661905T3 (da) | 1995-03-13 | 1995-03-13 | Fremgangsmåde til tilpasnning af et høreapparat, anordning hertil og høreapparat |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95103571A EP0661905B1 (de) | 1995-03-13 | 1995-03-13 | Verfahren zur Anpassung eines Hörgerätes, Vorrichtung hierzu und Hörgerät |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01128611A Division EP1207718A3 (de) | 1995-03-13 | 1995-03-13 | Verfahren zur Anpassung eines Hörgerätes, Vorrichtung hierzu und Hörgerät |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0661905A2 EP0661905A2 (de) | 1995-07-05 |
EP0661905A3 EP0661905A3 (de) | 1995-10-04 |
EP0661905B1 true EP0661905B1 (de) | 2002-12-11 |
Family
ID=8219068
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95103571A Expired - Lifetime EP0661905B1 (de) | 1995-03-13 | 1995-03-13 | Verfahren zur Anpassung eines Hörgerätes, Vorrichtung hierzu und Hörgerät |
EP01128611A Withdrawn EP1207718A3 (de) | 1995-03-13 | 1995-03-13 | Verfahren zur Anpassung eines Hörgerätes, Vorrichtung hierzu und Hörgerät |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01128611A Withdrawn EP1207718A3 (de) | 1995-03-13 | 1995-03-13 | Verfahren zur Anpassung eines Hörgerätes, Vorrichtung hierzu und Hörgerät |
Country Status (4)
Country | Link |
---|---|
EP (2) | EP0661905B1 (de) |
AT (1) | ATE229729T1 (de) |
DE (1) | DE59510501D1 (de) |
DK (1) | DK0661905T3 (de) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7715571B2 (en) | 2006-03-23 | 2010-05-11 | Phonak Ag | Method for individually fitting a hearing instrument |
EP2278827A1 (de) | 2006-03-23 | 2011-01-26 | Phonak Ag | Verfahren zur individuellen Anpassung eines Hörgeräts |
US8019095B2 (en) | 2006-04-04 | 2011-09-13 | Dolby Laboratories Licensing Corporation | Loudness modification of multichannel audio signals |
US8090120B2 (en) | 2004-10-26 | 2012-01-03 | Dolby Laboratories Licensing Corporation | Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal |
US8144881B2 (en) | 2006-04-27 | 2012-03-27 | Dolby Laboratories Licensing Corporation | Audio gain control using specific-loudness-based auditory event detection |
US8199933B2 (en) | 2004-10-26 | 2012-06-12 | Dolby Laboratories Licensing Corporation | Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal |
US8315398B2 (en) | 2007-12-21 | 2012-11-20 | Dts Llc | System for adjusting perceived loudness of audio signals |
US8396574B2 (en) | 2007-07-13 | 2013-03-12 | Dolby Laboratories Licensing Corporation | Audio processing using auditory scene analysis and spectral skewness |
US8437482B2 (en) | 2003-05-28 | 2013-05-07 | Dolby Laboratories Licensing Corporation | Method, apparatus and computer program for calculating and adjusting the perceived loudness of an audio signal |
US8504181B2 (en) | 2006-04-04 | 2013-08-06 | Dolby Laboratories Licensing Corporation | Audio signal loudness measurement and modification in the MDCT domain |
US8521314B2 (en) | 2006-11-01 | 2013-08-27 | Dolby Laboratories Licensing Corporation | Hierarchical control path with constraints for audio dynamics processing |
US8538042B2 (en) | 2009-08-11 | 2013-09-17 | Dts Llc | System for increasing perceived loudness of speakers |
US8849433B2 (en) | 2006-10-20 | 2014-09-30 | Dolby Laboratories Licensing Corporation | Audio dynamics processing using a reset |
US9312829B2 (en) | 2012-04-12 | 2016-04-12 | Dts Llc | System for adjusting loudness of audio signals in real time |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6118877A (en) * | 1995-10-12 | 2000-09-12 | Audiologic, Inc. | Hearing aid with in situ testing capability |
US6108431A (en) * | 1996-05-01 | 2000-08-22 | Phonak Ag | Loudness limiter |
DK0820212T3 (da) * | 1996-07-19 | 2010-08-02 | Bernafon Ag | Lydstyrkestyret bearbejdning af akustiske signaler |
DE19639236A1 (de) * | 1996-09-24 | 1998-03-26 | Geers Hoergeraete | Verfahren zur direkten Einstellung von programmierbaren Hörgeräten über eine definierte Datenschnittstelle |
EP0836363B1 (de) * | 1996-10-01 | 2003-09-03 | Phonak Ag | Lautstärkebegrenzung |
JP2002541683A (ja) | 1999-07-29 | 2002-12-03 | フォーナック アーゲー | 補聴器調整装置 |
EP1205090A2 (de) | 1999-08-17 | 2002-05-15 | Phonak Ag | Hörgerät-anpasseinrichtung |
WO2001049068A2 (de) * | 2001-04-10 | 2001-07-05 | Phonak Ag | Verfahren zur anpassung eines hörgerätes an ein individuum |
US8036753B2 (en) | 2004-01-09 | 2011-10-11 | Cochlear Limited | Stimulation mode for cochlear implant speech coding |
US8369958B2 (en) | 2005-05-19 | 2013-02-05 | Cochlear Limited | Independent and concurrent processing multiple audio input signals in a prosthetic hearing implant |
DE102005049507B4 (de) * | 2005-09-19 | 2007-10-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zum Erzeugen eines Kombinationssignals sowie entsprechendes Verfahren und Computerprogramm zur Ausführung des Verfahrens |
DE102005061569B3 (de) | 2005-12-22 | 2007-05-24 | Siemens Audiologische Technik Gmbh | Verfahren zum Konstruieren einer Otoplastik und zum Einstellen eines Hörgeräts |
US8019430B2 (en) | 2007-03-21 | 2011-09-13 | Cochlear Limited | Stimulating auditory nerve fibers to provide pitch representation |
DE102007035173A1 (de) | 2007-07-27 | 2009-02-05 | Siemens Medical Instruments Pte. Ltd. | Verfahren zum Einstellen eines Hörsystems mit einem perzeptiven Modell für binaurales Hören und entsprechendes Hörsystem |
DE102007035175A1 (de) | 2007-07-27 | 2009-02-05 | Siemens Medical Instruments Pte. Ltd. | Verfahren zum Gewinnen individueller Hörsituationsdaten und entsprechendes Aufzeichnungsgerät |
DE102007035172A1 (de) | 2007-07-27 | 2009-02-05 | Siemens Medical Instruments Pte. Ltd. | Hörsystem mit visualisierter psychoakustischer Größe und entsprechendes Verfahren |
DE102007035174B4 (de) * | 2007-07-27 | 2014-12-04 | Siemens Medical Instruments Pte. Ltd. | Hörvorrichtung gesteuert durch ein perzeptives Modell und entsprechendes Verfahren |
DE102007035171A1 (de) | 2007-07-27 | 2009-02-05 | Siemens Medical Instruments Pte. Ltd. | Verfahren zum Anpassen eines Hörgeräts mit Hilfe eines perzeptiven Modells |
US8265288B2 (en) | 2007-07-27 | 2012-09-11 | Siemens Medical Instruments Pte. Ltd. | Method for adapting a hearing aid by a perceptive model |
DE102009030551B4 (de) | 2009-04-02 | 2020-03-26 | Sivantos Pte. Ltd. | Verfahren zum lautheitsbasierten Einstellen der Verstärkung eines Hörgeräts und zugehöriges Hörgerät |
EP2904972B1 (de) | 2014-02-05 | 2021-06-30 | Oticon A/s | Vorrichtung zur Bestimmung einer toten kochlearen Region |
AT516046B1 (de) * | 2014-12-30 | 2016-02-15 | Audio Lab Swiss Ag | Verfahren und vorrichtung zur bestimmung der qualität eines übertragungssystems |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2843923C2 (de) * | 1978-10-09 | 1985-09-12 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Verfahren und Anordnung zum Anpassen eines Hörgerätes |
US4489610A (en) * | 1984-04-11 | 1984-12-25 | Intech Systems Corp. | Computerized audiometer |
GB2184629B (en) * | 1985-12-10 | 1989-11-08 | Colin David Rickson | Compensation of hearing |
AU596633B2 (en) * | 1986-01-21 | 1990-05-10 | Antin, Mark | Digital hearing enhancement apparatus |
DE3900588A1 (de) * | 1989-01-11 | 1990-07-19 | Toepholm & Westermann | Fernsteuerbares, programmierbares hoergeraetesystem |
WO1990009760A1 (en) * | 1989-03-02 | 1990-09-07 | Ensoniq Corporation | Apparatus and a method for fitting a hearing aid |
US5303306A (en) * | 1989-06-06 | 1994-04-12 | Audioscience, Inc. | Hearing aid with programmable remote and method of deriving settings for configuring the hearing aid |
US5274711A (en) * | 1989-11-14 | 1993-12-28 | Rutledge Janet C | Apparatus and method for modifying a speech waveform to compensate for recruitment of loudness |
ATE150609T1 (de) * | 1991-10-03 | 1997-04-15 | Ascom Audiosys Ag | Verfahren zur verstärkung von akustischen signalen für hörbehinderte, sowie vorrichtung zur durchführung des verfahrens |
US5402496A (en) * | 1992-07-13 | 1995-03-28 | Minnesota Mining And Manufacturing Company | Auditory prosthesis, noise suppression apparatus and feedback suppression apparatus having focused adaptive filtering |
US6563931B1 (en) * | 1992-07-29 | 2003-05-13 | K/S Himpp | Auditory prosthesis for adaptively filtering selected auditory component by user activation and method for doing same |
US5396560A (en) * | 1993-03-31 | 1995-03-07 | Trw Inc. | Hearing aid incorporating a novelty filter |
-
1995
- 1995-03-13 DK DK95103571T patent/DK0661905T3/da active
- 1995-03-13 EP EP95103571A patent/EP0661905B1/de not_active Expired - Lifetime
- 1995-03-13 DE DE59510501T patent/DE59510501D1/de not_active Expired - Lifetime
- 1995-03-13 AT AT95103571T patent/ATE229729T1/de not_active IP Right Cessation
- 1995-03-13 EP EP01128611A patent/EP1207718A3/de not_active Withdrawn
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8437482B2 (en) | 2003-05-28 | 2013-05-07 | Dolby Laboratories Licensing Corporation | Method, apparatus and computer program for calculating and adjusting the perceived loudness of an audio signal |
US8090120B2 (en) | 2004-10-26 | 2012-01-03 | Dolby Laboratories Licensing Corporation | Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal |
US8199933B2 (en) | 2004-10-26 | 2012-06-12 | Dolby Laboratories Licensing Corporation | Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal |
US9350311B2 (en) | 2004-10-26 | 2016-05-24 | Dolby Laboratories Licensing Corporation | Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal |
US8488809B2 (en) | 2004-10-26 | 2013-07-16 | Dolby Laboratories Licensing Corporation | Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal |
EP2278827A1 (de) | 2006-03-23 | 2011-01-26 | Phonak Ag | Verfahren zur individuellen Anpassung eines Hörgeräts |
US7715571B2 (en) | 2006-03-23 | 2010-05-11 | Phonak Ag | Method for individually fitting a hearing instrument |
US8504181B2 (en) | 2006-04-04 | 2013-08-06 | Dolby Laboratories Licensing Corporation | Audio signal loudness measurement and modification in the MDCT domain |
US8019095B2 (en) | 2006-04-04 | 2011-09-13 | Dolby Laboratories Licensing Corporation | Loudness modification of multichannel audio signals |
US8600074B2 (en) | 2006-04-04 | 2013-12-03 | Dolby Laboratories Licensing Corporation | Loudness modification of multichannel audio signals |
US9584083B2 (en) | 2006-04-04 | 2017-02-28 | Dolby Laboratories Licensing Corporation | Loudness modification of multichannel audio signals |
US8428270B2 (en) | 2006-04-27 | 2013-04-23 | Dolby Laboratories Licensing Corporation | Audio gain control using specific-loudness-based auditory event detection |
US8144881B2 (en) | 2006-04-27 | 2012-03-27 | Dolby Laboratories Licensing Corporation | Audio gain control using specific-loudness-based auditory event detection |
US9136810B2 (en) | 2006-04-27 | 2015-09-15 | Dolby Laboratories Licensing Corporation | Audio gain control using specific-loudness-based auditory event detection |
US9450551B2 (en) | 2006-04-27 | 2016-09-20 | Dolby Laboratories Licensing Corporation | Audio control using auditory event detection |
US8849433B2 (en) | 2006-10-20 | 2014-09-30 | Dolby Laboratories Licensing Corporation | Audio dynamics processing using a reset |
US8521314B2 (en) | 2006-11-01 | 2013-08-27 | Dolby Laboratories Licensing Corporation | Hierarchical control path with constraints for audio dynamics processing |
US8396574B2 (en) | 2007-07-13 | 2013-03-12 | Dolby Laboratories Licensing Corporation | Audio processing using auditory scene analysis and spectral skewness |
US8315398B2 (en) | 2007-12-21 | 2012-11-20 | Dts Llc | System for adjusting perceived loudness of audio signals |
US9264836B2 (en) | 2007-12-21 | 2016-02-16 | Dts Llc | System for adjusting perceived loudness of audio signals |
US8538042B2 (en) | 2009-08-11 | 2013-09-17 | Dts Llc | System for increasing perceived loudness of speakers |
US9820044B2 (en) | 2009-08-11 | 2017-11-14 | Dts Llc | System for increasing perceived loudness of speakers |
US9312829B2 (en) | 2012-04-12 | 2016-04-12 | Dts Llc | System for adjusting loudness of audio signals in real time |
US9559656B2 (en) | 2012-04-12 | 2017-01-31 | Dts Llc | System for adjusting loudness of audio signals in real time |
Also Published As
Publication number | Publication date |
---|---|
EP1207718A3 (de) | 2003-02-05 |
DK0661905T3 (da) | 2003-04-07 |
ATE229729T1 (de) | 2002-12-15 |
EP0661905A3 (de) | 1995-10-04 |
EP0661905A2 (de) | 1995-07-05 |
DE59510501D1 (de) | 2003-01-23 |
EP1207718A2 (de) | 2002-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0661905B1 (de) | Verfahren zur Anpassung eines Hörgerätes, Vorrichtung hierzu und Hörgerät | |
DE60222813T2 (de) | Hörgerät und methode für das erhöhen von redeverständlichkeit | |
DE68919349T2 (de) | Verfahren und Apparat zur Bestimmung der akustischen Parameter eines Hörgerätes unter Verwendung eines Software-Modells. | |
DE69933141T2 (de) | Tonprozessor zur adaptiven dynamikbereichsverbesserung | |
US7231055B2 (en) | Method for the adjustment of a hearing device, apparatus to do it and a hearing device | |
DE69931580T2 (de) | Identifikation einer akustischer Anordnung mittels akustischer Maskierung | |
EP3520441B1 (de) | Aktive unterdrückung des okklusionseffektes in hörhilfen | |
EP1379102A2 (de) | Richtungshören bei binauraler Hörgeräteversorgung | |
DE102006047965A1 (de) | Hörhilfsgerät mit einer Okklusionsreduktionseinrichtung und Verfahren zur Okklusionsreduktion | |
EP1404152B1 (de) | Vorrichtung und Verfahren zum Anpasssen eines Hörgeräts | |
EP3266222B1 (de) | Vorrichtung und verfahren zum ansteuern der dynamikkompressoren einer binauralen hörhilfe | |
EP1290914A2 (de) | Verfahren zur anpassung eines hörgerätes an ein individuum | |
EP2229010A2 (de) | Verfahren zum Kompensieren eines Störschalls bei einer Hörvorrichtung, Hörvorrichtung und Verfahren zum Anpassen derselben | |
EP1453358A2 (de) | Vorrichtung und Verfahren zur Einstellung eines Hörgeräts | |
DE60016144T2 (de) | Hörhilfegerät | |
DE102006019694B3 (de) | Verfahren zum Einstellen eines Hörgeräts mit Hochfrequenzverstärkung | |
DE69629814T2 (de) | Lautstärkebegrenzung | |
EP2584795B1 (de) | Verfahren zum Ermitteln einer Kompressionskennlinie | |
DE102012203349B4 (de) | Verfahren zum Anpassen einer Hörvorrichtung anhand des Sensory Memory und Anpassvorrichtung | |
EP1351550B1 (de) | Verfahren zur Anpassung einer Signalverstärkung in einem Hörgerät sowie ein Hörgerät | |
DE60310084T2 (de) | Vorrichtung und verfahren zur verteilten verstärkungsregelung zur spektralen verbesserung | |
DE112017003954T5 (de) | Adaptive Stimulationstoneinstellung zur Behandlung von Tinnitus in akustischen Neuromodulationssystemen, -vorrichtungen, -komponenten und -verfahren mit koordinierter Rücksetzung | |
EP1416764B1 (de) | Verfahren zur Einstellung eines Hörgerätes sowie Vorrichtung zur Durchführung des Verfahrens | |
EP1453355A1 (de) | Signalverarbeitung in einem Hörgerät | |
EP0535425A2 (de) | Verfahren zur Verstärkung von akustischen Signalen für Hörbehinderte, sowie Vorrichtung zur Durchführung des Verfahrens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT CH DE DK FR GB LI NL SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BAECHLER, HERBERT, DR. SC. TECH. Inventor name: UVACEK, BOHUMIR, DR. SC.TECHN. B.B.A. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 19951027 |
|
17Q | First examination report despatched |
Effective date: 19960108 |
|
TPAD | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOS TIPA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT CH DE DK FR GB LI NL SE |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE DK FR GB LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021211 |
|
REF | Corresponds to: |
Ref document number: 229729 Country of ref document: AT Date of ref document: 20021215 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59510501 Country of ref document: DE Date of ref document: 20030123 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: TROESCH SCHEIDEGGER WERNER AG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030313 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030325 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030912 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20110310 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110317 Year of fee payment: 17 Ref country code: CH Payment date: 20110314 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110309 Year of fee payment: 17 Ref country code: DE Payment date: 20110309 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120313 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20121130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120313 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120402 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59510501 Country of ref document: DE Effective date: 20121002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121002 |