EP0576314B2 - Process and installation for the production of gaseous oxygen under pressure - Google Patents
Process and installation for the production of gaseous oxygen under pressure Download PDFInfo
- Publication number
- EP0576314B2 EP0576314B2 EP93401395A EP93401395A EP0576314B2 EP 0576314 B2 EP0576314 B2 EP 0576314B2 EP 93401395 A EP93401395 A EP 93401395A EP 93401395 A EP93401395 A EP 93401395A EP 0576314 B2 EP0576314 B2 EP 0576314B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- pressure
- turbine
- column
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04236—Integration of different exchangers in a single core, so-called integrated cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/042—Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04678—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/54—Oxygen production with multiple pressure O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/10—Mathematical formulae, modeling, plot or curves; Design methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/912—External refrigeration system
- Y10S62/913—Liquified gas
Definitions
- the present invention relates to a production process gaseous oxygen under pressure by air distillation in an installation comprising a heat exchange line and a double column of distillation which itself has a first column, called a column medium pressure, operating under medium pressure, and a second column, called low pressure column, operating under a low pressure, pumping of liquid oxygen withdrawn from the bottom column tank pressure, and vaporization of compressed oxygen by heat exchange with compressed air at high air pressure, all of the air to be treated being compressed at a first pressure P1 significantly greater than the medium pressure, the air at pressure P1 is divided into only two parts, the first being cooled and the second part being overpressed to a second high pressure P2 and cooled, most of at least the separated oxygen being withdrawn in the liquid state from the low pressure column, compressed by a pump at least a first pressure of vaporization to which it vaporizes by condensation of air at one of said high pressures P1, P2, and vaporized by condensation of air at one of these pressures.
- the object of the invention is to provide a method using a unique air compressor with high thermodynamic efficiency overall.
- the invention also relates to an installation for producing gaseous oxygen under pressure for the implementation of the process described above, of the type comprising a double air distillation column comprising a column, called a low pressure column, operating under low pressure, and a column, called medium pressure column operating under medium pressure, a liquid oxygen compression pump drawn from the bottom of the low pressure column, compression means for bringing the air to be distilled to a high air pressure significantly higher than the medium pressure, and a heat exchange line for bringing the high pressure air and compressed liquid oxygen into heat exchange relationship, the compression means comprising a compressor for supplying all of the air to be distilled at a first high pressure P1 significantly higher than the medium pressure, and means for overpressuring a fraction of the air under this p first high pressure to a second high pressure P2, characterized in that these overpressure means comprise at least two blowers in series each coupled to an expansion turbine, one blower being coupled to an air expansion turbine under the first high pressure P1 and another blower being coupled to a second turbine for expanding part of the compressed air, and in that
- the installation shown in Figure 1 is intended to produce gaseous oxygen at two different pressures, nitrogen gas under two different pressures, liquid oxygen and liquid nitrogen.
- the installation essentially comprises a double column of distillation 1, a heat exchange line 2, an air compressor main 3, two blowers in series 4 and 5 provided with an outlet refrigerant 6, a "hot” turbine 7, a “cold” turbine 8, two pumps liquid oxygen 9, 10 and a liquid nitrogen pump 11.
- Double column 1 includes a column medium pressure operating at 5 to 6 bar, one low pressure column 13 of the "minaret" type operating a little above atmospheric pressure, a vaporizer-condenser 14 which puts the overhead vapor (nitrogen) from column 12 in heat exchange relationship with the tank liquid (oxygen) from column 13, and an auxiliary column 15 for the production of impure argon coupled to column 13.
- the fan wheel 4 is rigidly coupled to that of turbine 8, and, similarly, the wheel of fan 5 is rigidly coupled to that of the turbine 7.
- the air to be distilled is fully compressed by compressor 3 at one pressure P1 of the order of 25 to 35 bars and purified in water and carbon dioxide in an adsorber 21, then divided in two streams.
- the first current, at pressure P1, is cooled to an intermediate temperature T1 between 0 ° C and - 60 ° C. Part of this first current continues to cool, is liquefied, then is relieved at medium pressure in a valve trigger and sent to column 12 via a pipe 22. The rest of the first stream is out of the line exchange at temperature T1, relaxed to the average pressure in turbine 7, reintroduced into the line exchange, cooled and liquefied, then sent to the column 12 via a line 23.
- the rest of the air leaving the adsorber 21 is blown up in two stages by blowers 4 and 5, up to a pressure P2 of the order of 35 to 50 bars, precooled in 6 then cooled in the exchange line up to a second intermediate temperature T2 clearly less than T1 and between -80 ° C and -130 ° C. Part of this air continues to cool, is liquefied and then relaxed at medium pressure in an expansion valve and introduced into column 12 via line 22 above. The rest of the air under pressure P2 has left the exchange line at temperature T2, expanded at medium pressure in turbine 8 and introduced into column 12 via line 23 above.
- the exchange diagram includes a curve C1 corresponding to all of the heated fluids, and a curve C2 corresponding to the air treated during cooling.
- the installation may include a third turbine 30, for example braked by a alternator 31, adapted to relax at low pressure part of the medium pressure air from the turbine 7.
- the exhaust of the turbine 30 is connected to an intermediate point in column 13 or to the pipe carrying residual impure nitrogen. Admission of turbine 30 is at a temperature of -100 ° C to -150 ° C about.
- Such a low pressure turbine is interesting in two cases: on the one hand, to enhance the low separation energy when oxygen is product with a purity between 85% and 98%, in increasing fluid production without decreasing notable of the oxygen extraction yield; else hand, to increase the production of liquid at the expense that of oxygen. If, as shown, the installation argon product, it is better to send low pressure air in impure nitrogen to maintain a good argon extraction yield. In the case reverse, this low pressure air can be blown into column 13.
- the diagram in Figure 4 does not differ from that in Figure 1 only by mounting turbines 7 and 8. Indeed, it is the "hot” turbine 7 which is supplied by air at the highest pressure P2, while the “cold” turbine 8 is supplied with air at the pressure P1. In addition, the turbine 7 escapes a pressure P3 higher than medium pressure and, in practice, between this average pressure and the pressure P1.
- the air at pressure P3 is cooled and liquefied in the exchange line, by oxygen spraying, then expanded at medium pressure in an expansion valve 34 before to be sent in column 12. This provision is particularly interesting for oxygen pressure between 3 bars and 8 bars.
- the exchange line 2 of the installation includes three pressure air cooling passages different.
- One or more of these pressures can be used to condense air by vaporization to against the current, with a small temperature difference of around 2 ° C, at least most of the oxygen separated, compressed in the liquid state to a corresponding pressure and vaporized under this pressure, oxygen additional to another pressure and / or nitrogen which may also be compressed in liquid form and vaporized in exchange line 2.
- the installation produces a fraction of oxygen and nitrogen in liquid form with excellent specific energy due to the use two temperature expansion turbines very different admission.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
La présente invention est relative à un procédé de production d'oxygène gazeux sous pression par distillation d'air dans une installation comprenant une ligne d'échange thermique et une double colonne de distillation qui comporte elle-même une première colonne, dite colonne moyenne pression, fonctionnant sous une moyenne pression, et une seconde colonne, dite colonne basse pression, fonctionnant sous une basse pression, pompage d'oxygène liquide soutiré en cuve de la colonne basse pression, et vaporisation de l'oxygène comprimé par échange de chaleur avec de l'air comprimé à une haute pression d'air, la totalité de l'air à traiter étant comprimée à une première pression P1 nettement supérieure à la moyenne pression, l'air à la pression P1 est divisé en seulement deux parties, la première étant refroidie et la deuxième partie étant surpressée à une seconde haute pression P2 et refroidie, la majeure partie au moins de l'oxygène séparé étant soutirée à l'état liquide de la colonne basse pression, comprimée par une pompe à au moins une première pression de vaporisation à laquelle il se vaporise par condensation d'air à l'une desdites hautes pressions P1, P2, et vaporisé par condensation d'air à une de ces pressions.The present invention relates to a production process gaseous oxygen under pressure by air distillation in an installation comprising a heat exchange line and a double column of distillation which itself has a first column, called a column medium pressure, operating under medium pressure, and a second column, called low pressure column, operating under a low pressure, pumping of liquid oxygen withdrawn from the bottom column tank pressure, and vaporization of compressed oxygen by heat exchange with compressed air at high air pressure, all of the air to be treated being compressed at a first pressure P1 significantly greater than the medium pressure, the air at pressure P1 is divided into only two parts, the first being cooled and the second part being overpressed to a second high pressure P2 and cooled, most of at least the separated oxygen being withdrawn in the liquid state from the low pressure column, compressed by a pump at least a first pressure of vaporization to which it vaporizes by condensation of air at one of said high pressures P1, P2, and vaporized by condensation of air at one of these pressures.
Un procédé de ce type est connu de EP-A-0.024.962.A process of this type is known from EP-A-0.024.962.
Les pressions dont il est question ci-dessous sont des pressions absolues. De plus, on entend par "condensation" et "vaporisation" soit une condensation ou une vaporisation proprement dite, soit une pseudo-condensation ou une pseudo-vaporisation, selon que les pressions en question sont subcritiques ou supercritiques.The pressures discussed below are pressures absolute. In addition, the term "condensation" and "vaporization" is a condensation or vaporization proper, or pseudo-condensation or a pseudo-vaporization, depending on whether the pressures in question are subcritical or supercritical.
Les procédés de ce type, dits "procédés à pompe", permettent de supprimer tout compresseur d'oxygène gazeux. Pour obtenir une dépense d'énergie acceptable, il est nécessaire de comprimer un débit d'air important, de l'ordre de 1,5 fois le débit d'oxygène à vaporiser, jusqu'à une pression suffisante permettant de le liquéfier à contre-courant de l'oxygène. Pour ceci, la technique habituelle, illustrée dans EP-A-0.024.962, utilise deux compresseurs en série, le second ne traitant que la fraction de l'air destinée à la vaporisation de l'oxygène liquide, ce qui accroít sensiblement l'investissement de l'installation. The processes of this type, called "pump processes", make it possible to remove any gaseous oxygen compressor. To obtain an expense of acceptable energy, it is necessary to compress an air flow important, of the order of 1.5 times the oxygen flow rate to vaporize, up to a sufficient pressure to liquefy it against the flow of oxygen. For this, the usual technique, illustrated in EP-A-0.024.962, uses two compressors in series, the second only treating the fraction of air intended for the vaporization of liquid oxygen, which appreciably increases the investment of the installation.
L'invention a pour but de fournir un procédé utilisant un compresseur d'air unique et ayant une grande efficacité thermodynamique globale.The object of the invention is to provide a method using a unique air compressor with high thermodynamic efficiency overall.
A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce que :
- la première partie de cet air est refroidie jusqu'à une première température intermédiaire T1, où une première fraction est détendue dans une première turbine, tandis que le reste est refroidi et liquéfié, détendu et introduit dans la colonne moyenne pression ;
- la deuxième partie est refroidie jusqu'à une seconde
température intermédiaire T2, où un premier débit est détendu dans une
seconde turbine, tandis que le reste de cette deuxième partie est refroidi et
liquéfié, détendu et introduit dans la colonne moyenne pression ;
- éventuellement la pression d'échappement de l'une des turbines est réglée à une pression P3 comprise entre ladite première haute pression P1 et la moyenne pression,
- et l'oxygène comprimé se vaporise par condensation d'air à une ou plusieurs des pressions P1, P2, P3.
- the first part of this air is cooled to a first intermediate temperature T1, where a first fraction is expanded in a first turbine, while the rest is cooled and liquefied, expanded and introduced into the medium pressure column;
- the second part is cooled to a second intermediate temperature T2, where a first flow is expanded in a second turbine, while the rest of this second part is cooled and liquefied, expanded and introduced into the medium pressure column;
- optionally the exhaust pressure of one of the turbines is adjusted to a pressure P3 between said first high pressure P1 and the medium pressure,
- and the compressed oxygen is vaporized by condensation of air at one or more of the pressures P1, P2, P3.
Suivant d'autres caractéristiques :
- les températures intermédiaires T1 et T2 sont choisies l'une entre 0°C et -60°C environ et l'autre entre -80°C et -130°C environ ;
- le débit d'air alimentant la turbine chaude est de l'ordre de 20 à 30 % du débit d'air traité ;
- l'oxygène liquide additionnel soutiré de la colonne basse pression est comprimé par pompe à au moins une seconde pression de vaporisation et vaporisé à cette ou à ces pressions dans la ligne d'échange thermique ;
- l'azote liquide est soutiré de la double colonne, comprimé par pompe à au moins une pression de vaporisation d'azote, et vaporisé à cette ou à ces pressions dans la ligne d'échange thermique ;
- on détend à la basse pression dans une troisième turbine une partie au moins de l'air issu de la première ou de la seconde turbine, l'air issu de la troisième turbine étant introduit dans la colonne basse pression ou dans le gaz résiduaire évacué de la partie supérieure de cette colonne ;
- on détend dans la troisième turbine la totalité dudit air issu de la première ou de la deuxième turbine, cet air se trouvant sensiblement à la moyenne pression, ainsi qu'un débit complémentaire d'air soutiré en cuve de la colonne moyenne pression ;
- la surpression de l'air est réalisée au moyen d'au moins deux soufflantes en série couplées chacune à l'une des turbines.
- the intermediate temperatures T1 and T2 are chosen, one between approximately 0 ° C and -60 ° C and the other between approximately -80 ° C and -130 ° C;
- the air flow supplying the hot turbine is of the order of 20 to 30% of the treated air flow;
- the additional liquid oxygen withdrawn from the low pressure column is compressed by pump to at least a second vaporization pressure and vaporized at this or these pressures in the heat exchange line;
- the liquid nitrogen is withdrawn from the double column, compressed by pump to at least one nitrogen vaporization pressure, and vaporized at this or these pressures in the heat exchange line;
- at least part of the air from the first or second turbine is expanded at low pressure in a third turbine, the air from the third turbine being introduced into the low pressure column or into the waste gas discharged from the top of this column;
- all of said air from the first or second turbine is expanded in the third turbine, this air being substantially at medium pressure, as well as an additional flow of air drawn from the bottom of the medium pressure column;
- the air pressure is achieved by means of at least two blowers in series each coupled to one of the turbines.
L'invention a également pour objet une installation de production
d'oxygène gazeux sous pression pour la mise en oeuvre du procédé décrit
ci-dessus, du type comprenant une double colonne de distillation d'air
comprenant une colonne, dite colonne basse pression, fonctionnant sous
une basse pression, et une colonne, dite colonne moyenne pression
fonctionnant sous une moyenne pression, une pompe de compression
d'oxygène liquide soutiré en cuve de la colonne basse pression, des moyens
de compression pour amener de l'air à distiller à une haute pression d'air
nettement supérieure à la moyenne pression, et une ligne d'échange
thermique pour mettre en relation d'échange thermique l'air à la haute
pression et l'oxygène liquide comprimé, les moyens de compression
comprenant un compresseur pour amener la totalité de l'air à distiller à une
première haute pression P1 nettement supérieure à la moyenne pression, et
des moyens de surpression d'une fraction de l'air sous cette première haute
pression jusqu'à une seconde haute pression P2,
caractérisée en ce que ces moyens de surpression comprennent
au moins deux soufflantes en série couplées chacune à une turbine de
détente, une soufflante étant couplée à une turbine de détente d'air sous la
première haute pression P1 et une autre soufflante étant couplée à une
seconde turbine de détente d'une partie de l'air surpressé, et en ce que la
ligne d'échange thermique comprend des passages de refroidissement de
l'air issu de la turbine ayant la plus haute température d'admission et/ou la
température T1 d'admission de l'une des deux turbines est comprise entre
0°C et 60°C environ, tandis que celle T2 de l'autre turbine est comprise
entre -80°C et -130°C.The invention also relates to an installation for producing gaseous oxygen under pressure for the implementation of the process described above, of the type comprising a double air distillation column comprising a column, called a low pressure column, operating under low pressure, and a column, called medium pressure column operating under medium pressure, a liquid oxygen compression pump drawn from the bottom of the low pressure column, compression means for bringing the air to be distilled to a high air pressure significantly higher than the medium pressure, and a heat exchange line for bringing the high pressure air and compressed liquid oxygen into heat exchange relationship, the compression means comprising a compressor for supplying all of the air to be distilled at a first high pressure P1 significantly higher than the medium pressure, and means for overpressuring a fraction of the air under this p first high pressure to a second high pressure P2,
characterized in that these overpressure means comprise at least two blowers in series each coupled to an expansion turbine, one blower being coupled to an air expansion turbine under the first high pressure P1 and another blower being coupled to a second turbine for expanding part of the compressed air, and in that the heat exchange line comprises passages for cooling the air coming from the turbine having the highest inlet temperature and / or the temperature T1 intake of one of the two turbines is between 0 ° C and 60 ° C, while that T2 of the other turbine is between -80 ° C and -130 ° C.
Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels :
- la figure 1 représente schématiquement une installation de production d'oxygène gazeux conforme à l'invention ;
- la figure 2 est un diagramme d'échange thermique, obtenu par calcul, correspondant à cette installation ; et
- les figures 3 et 4 représentent schématiquement deux autres modes de réalisation de l'installation suivant l'invention.
- FIG. 1 schematically represents an installation for producing gaseous oxygen in accordance with the invention;
- Figure 2 is a heat exchange diagram, obtained by calculation, corresponding to this installation; and
- Figures 3 and 4 schematically show two other embodiments of the installation according to the invention.
L'installation représentée sur la figure 1 est destinée à produire de l'oxygène gazeux sous deux pressions différentes, de l'azote gazeux sous deux pressions différentes, de l'oxygène liquide et de l'azote liquide.The installation shown in Figure 1 is intended to produce gaseous oxygen at two different pressures, nitrogen gas under two different pressures, liquid oxygen and liquid nitrogen.
L'installation comprend essentiellement une double colonne de
distillation 1, une ligne d'échange thermique 2, un compresseur d'air
principal 3, deux soufflantes en série 4 et 5 munies en sortie d'un
réfrigérant 6, une turbine "chaude" 7, une turbine "froide" 8, deux pompes
d'oxygène liquide 9, 10 et une pompe d'azote liquide 11.The installation essentially comprises a double column of
distillation 1, a
La double colonne 1 comprend une colonne
moyenne pression fonctionnant sous 5 à 6 bars, une
colonne basse pression 13 du type "à minaret" fonctionnant
un peu au-dessus de la pression atmosphérique,
un vaporiseur-condenseur 14 qui met la vapeur de tête
(azote) de la colonne 12 en relation d'échange thermique
avec le liquide de cuve (oxygène) de la colonne 13, et
une colonne auxiliaire 15 de production d'argon impur
couplée à la colonne 13.Double column 1 includes a column
medium pressure operating at 5 to 6 bar, one
On retrouve les conduites classiques 16 de
remontée de "liquide riche" (air enrichi en oxygène) de
la cuve de la colonne 12 à un point intermédiaire de la
colonne 15 et/ou au condenseur de tête de la colonne 15,
17 de remontée de "liquide pauvre inférieur" (azote
impur) d'un point intermédiaire de la colonne 12 à un
point intermédiaire de la colonne 13, 18 de remontée de
"liquide pauvre supérieur" (azote pur) du sommet de la
colonne 12 au sommet de la colonne 13, les conduites 16,
17 et 18 étant chacune équipées d'une vanne de détente.
Les liquides véhiculés par ces trois conduites sont sous-refroidis
dans la partie froide de la ligne d'échange 2.
Un embranchement 19 de la conduite 18, équipé d'une vanne
de détente, conduit à un stockage d'azote liquide 20.We find the
La roue de la soufflante 4 est rigidement
accouplée à celle de la turbine 8, et, de même, la roue
de la soufflante 5 est rigidement accouplée à celle de
la turbine 7.The
En fonctionnement, l'air à distiller est
comprimé en totalité par le compresseur 3 à une pression
P1 de l'ordre de 25 à 35 bars et épuré en eau et en
anhydride carbonique dans un adsorbeur 21, puis divisé
en deux courants.In operation, the air to be distilled is
fully compressed by compressor 3 at one pressure
P1 of the order of 25 to 35 bars and purified in water and
carbon dioxide in an
Le premier courant, à la pression P1, est
refroidi jusqu'à une température intermédiaire T1
comprise entre 0°C et - 60°C. Une partie de ce premier
courant poursuit son refroidissement, est liquéfiée, puis
est détendue à la moyenne pression dans une vanne de
détente et envoyée dans la colonne 12 via une conduite
22. Le reste du premier courant est sorti de la ligne
d'échange à la température T1, détendu à la moyenne
pression dans la turbine 7, réintroduit dans la ligne
d'échange, refroidi et liquéfié, puis envoyé dans la
colonne 12 via une conduite 23.The first current, at pressure P1, is
cooled to an intermediate temperature T1
between 0 ° C and - 60 ° C. Part of this first
current continues to cool, is liquefied, then
is relieved at medium pressure in a valve
trigger and sent to
Le reste de l'air sortant de l'adsorbeur 21
est surpressé en deux stades par les soufflantes 4 et 5,
jusqu'à une pression P2 de l'ordre de 35 à 50 bars,
prérefroidi en 6 puis refroidi dans la ligne d'échange
jusqu'à une seconde température intermédiaire T2 nettement
inférieure à T1 et comprise entre -80°C et -130°C.
Une partie de cet air poursuit son refroidissement, est
liquéfiée, puis est détendue à la moyenne pression dans
une vanne de détente et introduite dans la colonne 12 via
la conduite 22 précitée. Le reste de l'air à la pression
P2 est sorti de la ligne d'échange à la température T2,
détendu à la moyenne pression dans la turbine 8 et
introduit dans la colonne 12 via la conduite 23 précitée.The rest of the air leaving the
Le refroidissement de l'air est assuré par circulation à contre-courant, dans la ligne d'échange 2, de plusieurs fluides :
- l'azote gazeux basse pression issu du
sommet de la
colonne 13, et l'azote impur ou "waste" produit par cette même colonne, ces deux gaz parcourant la ligne d'échange de son bout froid à son bout chaud, puis étant évacués via des conduites respectives 24 et 25. - la majeure partie de l'oxygène séparé est
soutirée en cuve de la
colonne 13 sous forme liquide, amenée à une première pression PO1, relativement basse, par la pompe 9, vaporisée en condensant de l'air soit à la pression P1, ce qui correspond à PO1 = 11 à 17 bars, soit à la pression P2, ce qui correspond à PO1 = 17 à 22 bars, réchauffée à la température ambiante puis évacuée en tant que produit via une conduite 26; - une autre partie de l'oxygène séparé, que
l'on désire, dans cet exemple, produire sous forme
gazeuse à une seconde pression PO2, relativement élevée,
typiquement comprise entre 11 et 60 bars, soutirée en
cuve de la
colonne 13 sous forme liquide, amenée à cette seconde pression PO2, vaporisée dans la ligne d'échange par prélèvement de chaleur sur l'air, sans que cette vaporisation soit nécessairement concomitante à la condensation de cet air, puis réchauffée à la température ambiante et évacuée en tant que produit via uneconduite 27; et - de l'azote, que l'on désire, dans cet
exemple, produire sous forme gazeuse sous une pression
de l'ordre de 5 à 60 bars et de préférence de 25 à 35
bars, soutiré sous forme liquide en tête de la
colonne 12, amené par lapompe 11 à cette pression de production, vaporisé dans la ligne d'échange par prélèvement de chaleur sur l'air sans que cette vaporisation soit nécessairement concomitante à la condensation de cet air, réchauffé à la température ambiante, et évacué en tant que produit via une conduite 28.
- low pressure gaseous nitrogen from the top of
column 13, and impure nitrogen or "waste" produced by this same column, these two gases passing through the exchange line from its cold end to its hot end, then being discharged via respective lines 24 and 25. - most of the separated oxygen is drawn off in the bottom of
column 13 in liquid form, brought to a first pressure PO1, relatively low, by pump 9, vaporized by condensing air either at pressure P1, which corresponds to PO1 = 11 to 17 bars, that is to say the pressure P2, which corresponds to PO1 = 17 to 22 bars, warmed up to room temperature and then discharged as a product via a line 26; - another part of the separated oxygen, which it is desired, in this example, to produce in gaseous form at a second PO2 pressure, relatively high, typically between 11 and 60 bars, drawn off from the bottom of
column 13 in liquid form , brought to this second pressure PO2, vaporized in the exchange line by drawing heat from the air, without this vaporization necessarily being concomitant with the condensation of this air, then warmed to ambient temperature and discharged as a product via apipe 27; and - nitrogen, which it is desired, in this example, to produce in gaseous form under a pressure of the order of 5 to 60 bars and preferably from 25 to 35 bars, withdrawn in liquid form at the top of the
column 12 , brought by thepump 11 to this production pressure, vaporized in the exchange line by taking heat from the air without this vaporization necessarily being concomitant with the condensation of this air, warmed to ambient temperature, and evacuated in as a product via a pipe 28.
Simultanément à la production d'oxygène et
d'azote gazeux, l'installation produit des quantités
notables de liquide (oxygène et/ou azote). Pour de l'air
à 25 bars à la sortie du compresseur 3, la quantité de
liquide peut atteindre 40% du débit d'oxygène séparé. On
a indiqué sur la Figure 1, outre la conduite 19 d'azote
liquide, une conduite 29 de production d'oxygène liquide.Simultaneously with the production of oxygen and
nitrogen gas, the installation produces quantities
notable liquids (oxygen and / or nitrogen). For air
at 25 bar at the outlet of compressor 3, the amount of
liquid can reach 40% of the separated oxygen flow. We
indicated in Figure 1, in addition to the
Le diagramme d'échange thermique de la Figure 2 correspond au schéma de la Figure 1 décrit ci-dessus, avec les données numériques suivantes :
- débit d'air traité : 26.000 Nm2/h
- P1 = 27,5 bars, P2 = 39,5 bars
- T1 = - 35°C, T2 = - 122°C
- la production d'oxygène gazeux est répartie en deux tiers à 12 bars (conduite 26) et un tiers à 42 bars (conduite 27)
- l'installation produit également 1.600 Nm2/h d'azote gazeux pur sous 42 bars (conduite 28), et 1.900 Nm2/h de liquide.
- treated air flow: 26,000 Nm 2 / h
- P1 = 27.5 bars, P2 = 39.5 bars
- T1 = - 35 ° C, T2 = - 122 ° C
- the production of gaseous oxygen is divided into two thirds at 12 bars (line 26) and one third at 42 bars (line 27)
- the installation also produces 1,600 Nm 2 / h of pure nitrogen gas at 42 bars (line 28), and 1,900 Nm 2 / h of liquid.
Le diagramme d'échange comporte une courbe C1 correspondant à l'ensemble des fluides réchauffés, et une courbe C2 correspondant à l'air traité en cours de refroidissement.The exchange diagram includes a curve C1 corresponding to all of the heated fluids, and a curve C2 corresponding to the air treated during cooling.
Sur la courbe C1, on voit en A le palier de vaporisation de l'oxygène sous 12 bars, en B une inflexion correspondant au pseudo-palier de vaporisation de l'azote sous 42 bars, et en C le palier de vaporisation de l'oxygène sous 42 bars (plus court que le palier A puisque le débit est plus faible).On curve C1, we see in A the level of vaporization of oxygen at 12 bars, at B an inflection corresponding to the pseudo-level of vaporization nitrogen under 42 bars, and in C the vaporization level oxygen under 42 bars (shorter than the landing A since the flow is lower).
Sur la courbe C2, le point D correspond à
l'entrée d'air à la pression P2, à = 32°C, E à l'entrée
d'air à la pression P1, à = 12°C, où l'écart de température
entre les courbes C2 et C1 est minimal (2°C), ce qui
est très favorable, F à l'admission de la turbine 7, qui
réduit la pente de la courbe, G à l'admission de la
turbine 8, au voisinage du palier C, qui provoque un
effet analogue, H au pseudo-palier de condensation de
l'air sous la pression P2, au voisinage du pseudo-palier
B, et I au genou de condensation de l'air sous la
pression P1, en regard du palier A, avec un écart de
température minimal et à peu près de même longueur que
ce palier A.On curve C2, point D corresponds to
air inlet at pressure P2, at = 32 ° C, E at inlet
air at pressure P1, at = 12 ° C, where the temperature difference
between curves C2 and C1 is minimal (2 ° C), which
is very favorable, F to the admission of the
On voit sur la Figure 2 que, sur toute la gamme des températures couverte par la ligne d'échange, les deux courbes sont remarquablement proches l'une de l'autre, ce qui correspond à une grande efficacité thermodynamique globale du procédé. We see in Figure 2 that over the entire range of temperatures covered by the exchange line, the two curves are remarkably close one of the other, which corresponds to high efficiency overall thermodynamics of the process.
En variante, comme représenté en trait
interrompu sur la Figure 1, l'installation peut comporter
une troisième turbine 30, par exemple freinée par une
alternateur 31, adaptée pour détendre à la basse pression
une partie de l'air moyenne pression issu de la turbine
7. Comme représenté, l'échappement de la turbine 30 est
relié à un point intermédiaire de la colonne 13 ou à la
conduite véhiculant l'azote impur résiduaire. L'admission
de la turbine 30 est à une température de -100°C à -150°C
environ.Alternatively, as shown in line
interrupted in Figure 1, the installation may include
a
Une telle turbine basse pression est intéressante
dans deux cas : d'une part, pour valoriser la
faible énergie de séparation lorsque l'oxygène est
produit à une pureté comprise entre 85% et 98%, en
augmentant la production de liquide sans diminution
notable du rendement d'extraction en oxygène; d'autre
part, pour augmenter la production de liquide au détriment
de celle d'oxygène. Si, comme représenté, l'installation
produit de l'argon, il est préférable d'envoyer
l'air basse pression dans l'azote impur pour maintenir
un bon rendement d'extraction en argon. Dans le cas
inverse, cet air basse pression peut être insufflé dans
la colonne 13.Such a low pressure turbine is interesting
in two cases: on the one hand, to enhance the
low separation energy when oxygen is
product with a purity between 85% and 98%, in
increasing fluid production without decreasing
notable of the oxygen extraction yield; else
hand, to increase the production of liquid at the expense
that of oxygen. If, as shown, the installation
argon product, it is better to send
low pressure air in impure nitrogen to maintain
a good argon extraction yield. In the case
reverse, this low pressure air can be blown into
L'installation de la Figure 3 diffère de la précédente par les points suivants :
- la turbine basse
pression 30 est freinée par une troisième soufflante 32, dont la roue est rigidement accouplée à celle de cette turbine et qui est montée en série avec les soufflantes 4et 5, en amont de celles-ci; - le débit à détendre dans la
turbine 30 est supérieur à celui détendu dans laturbine 7. Par suite,la turbine 30 est alimentée d'une part par la totalité de l'air moyenne pression issu de laturbine 7, d'autre part par un complément d'air moyenne pression provenant de la colonne 12 viaune conduite 33 et réchauffé dans la ligne d'échange jusqu'à la température convenable; - seule la pompe 9 est affectée à l'oxygène,
qui est donc produit sous une seule pression et vaporisé
en totalité par condensation d'air à l'une des trois
pressions disponibles (P1, P2 et la moyenne pression),
tandis que les pompes 10
et 11 sont affectées à l'azote, qui est ainsi produit sous deux pressions différentes et, également, vaporisé par condensation d'air.
- the
low pressure turbine 30 is braked by a third blower 32, the wheel of which is rigidly coupled to that of this turbine and which is mounted in series with the 4 and 5, upstream thereof;blowers - the flow to be expanded in the
turbine 30 is greater than that expanded in theturbine 7. As a result, theturbine 30 is supplied on the one hand by all of the medium pressure air coming from theturbine 7, on the other hand by additional medium pressure air fromcolumn 12 vialine 33 and heated in the exchange line to the appropriate temperature; - only the pump 9 is assigned to the oxygen, which is therefore produced under a single pressure and vaporized entirely by condensation of air at one of the three available pressures (P1, P2 and the medium pressure), while the
10 and 11 are assigned to nitrogen, which is thus produced under two different pressures and, also, vaporized by air condensation.pumps
Le schéma de la Figure 4 ne diffère de celui
de la Figure 1 que par le montage des turbines 7 et 8.
En effet, c'est la turbine "chaude" 7 qui est alimentée
par de l'air à la plus haute pression P2, tandis que la
turbine "froide" 8 est alimentée par de l'air à la
pression P1. De plus, la turbine 7 échappe à une pression
P3 supérieure à la moyenne pression et, en pratique,
comprise entre cette moyenne pression et la pression P1.
L'air à la pression P3 est refroidi et liquéfié dans la
ligne d'échange, par vaporisation d'oxygène, puis détendu
à la moyenne pression dans une vanne de détente 34 avant
d'être envoyé dans la colonne 12. Cette disposition est
particulièrement intéressante pour une pression d'oxygène
comprise entre 3 bars et 8 bars.The diagram in Figure 4 does not differ from that
in Figure 1 only by mounting
Dans chacun des exemples décrits ci-dessus,
la ligne d'échange 2 de l'installation comporte des
passages de refroidissement d'air à trois pressions
différentes. Une ou plusieurs de ces pressions peuvent
être utilisées pour condenser l'air par vaporisation à
contre-courant, avec un faible écart de températures de
l'ordre de 2°C, d'au moins la majeure partie de l'oxygène
séparé, comprimé à l'état liquide à une pression correspondante
et vaporisé sous cette pression, de l'oxygène
additionnel à une autre pression et/ou de l'azote pouvant
éventuellement être, en outre, comprimés à l'état liquide
et vaporisés dans la ligne d'échange 2. In each of the examples described above,
the
Comme on peut choisir à volonté les pressions
P1 et P3, et régler la pression P2 en jouant sur les
débits d'air turbiné et sur la pression P1, il en résulte
une très grande souplesse de choix des pressions de
vaporisation de l'oxygène et éventuellement de l'azote.
Lorsque la vaporisation majoritaire d'oxygène condense
l'air à la pression P3, on peut ajuster le débit de cet
air au débit d'oxygène à vaporiser, c'est-à-dire que ce
débit d'air est réglé entre 20% à 30% du débit d'air
traité; un tel débit à travers la turbine "chaude" 7
permet en effet de rester au voisinage de l'optimum
thermodynamique.As one can choose at will the pressures
P1 and P3, and adjust the pressure P2 by playing on the
turbinated air flows and on pressure P1, this results
great flexibility in the choice of pressure
vaporization of oxygen and possibly nitrogen.
When the majority vaporization of oxygen condenses
air at pressure P3, we can adjust the flow of this
air at the flow of oxygen to be vaporized, that is to say that
air flow is set between 20% to 30% of the air flow
treaty; such a flow through the "hot"
Il est à noter que, en ce qui concerne la partie minoritaire de l'oxygène et l'azote, leurs pressions de vaporisation peuvent n'être liées en aucune façon aux pressions P1, P2 et P3.It should be noted that, with regard to the minority of oxygen and nitrogen, their spray pressures may not be related in any way so at pressures P1, P2 and P3.
Par ailleurs, l'installation produit une fraction de l'oxygène et de l'azote sous forme liquide avec une excellente énergie spécifique du fait de l'utilisation de deux turbines de détente à températures d'admission très différentes.Furthermore, the installation produces a fraction of oxygen and nitrogen in liquid form with excellent specific energy due to the use two temperature expansion turbines very different admission.
Claims (14)
- Process for producing gaseous oxygen under pressure by distilling air in an installation comprising a heat exchange line (2) and a double distillation column (1) which itself comprises a first column (12), a so-called medium pressure column, operating at a medium pressure, and a second column (13), a so-called low pressure column, operating at a low pressure, pumping (in 9, 10) liquid oxygen withdrawn from the bottom of the low pressure column, and vaporizing compressed oxygen by heat exchange with air compressed to a high air pressure, all the air to be treated being compressed to a first pressure P1 markedly greater than the medium pressure, the air at pressure P1 being divided into only two parts, the first being cooled and the second part being boosted to a second high pressure P2 and cooled, at least the major part of the oxygen separated being withdrawn in the liquid state from the low pressure column (13), compressed by a pump (9, 10) to at least a first vaporization pressure at which it vaporizes by condensation of air and is vaporized by condensation of air,
characterized in that :the first part of this air is cooled to a first intermediate temperature T1, where a first fraction is expanded in a first turbine (7), while the remainder of this second part is cooled and liquefied, expanded and introduced into the medium pressure column (12);the second part is cooled to a second intermediate temperature T2, where a first stream is expanded in a second turbine (8), while the remainder of this first part is cooled and liquefied, expanded and introduced into the medium pressure column (12);as required, the exhaust pressure from one of the turbines (7, 8) is adjusted to a pressure P3 between the said first high pressure P1 and the medium pressure,and the compressed oxygen vaporizes by condensation of air at one or more of the pressures P1, P2, P3. - Process according to claim 1, characterized in that the intermediate temperatures T1 and T2 are selected, one between about 0°C and -60°C and the other between about -80°C and -130°C.
- Process according to either of claims 1 or 2, characterized in that the air flow feeding the first turbine (7) is of the order of 20 to 30 % of the flow of treated air.
- Process according to any one of claims 1 to 3, characterized in that additional liquid oxygen withdrawn from the low pressure column (13) is compressed by a pump to at least a second vaporization pressure and vaporized at this pressure or at these pressures in the heat exchange line (2).
- Process according to any one of claims 1 to 4, characterized in that liquid nitrogen is withdrawn from the double column (1), compressed by a pump (10, 11) to at least a vaporization pressure of nitrogen, and vaporized at this pressure or at these pressures in the heat exchange line (2).
- Process according to any one of claims 1 to 5, characterized in that at least part of the air coming from the first or second turbine (7, 8) is expanded to the low pressure in a third turbine (30), the air coming from the third turbine being introduced into the low pressure column (13) or into the residual gas evacuated from the upper part of this column.
- Process according to claim 6, characterized in that there is expanded in the third turbine (30) all the said air coming from the first or second turbine (7, 8), this air being substantially at the medium pressure, as well as a supplementary stream of air withdrawn from the bottom of the medium pressure column (12).
- Process according to any one of claims 1 to 7, characterized in that the air is boosted in pressure by means of at least two blowers (4, 5, 32) in series, each coupled to one of the turbines (7, 8, 30).
- Installation for producing gaseous oxygen under pressure for the application of a process according to any one of claims 1 to 8, of the type comprising a double air distillation column (1) comprising a column, the so-called low pressure column (13), operating at a low pressure, and a column, the so-called medium pressure column (12) operating at a medium pressure, a pump (9, 10) for compressing liquid oxygen withdrawn from the bottom of the low pressure column (13), means of compression (3, 4, 5, 32) for bringing the air to be distilled to a high air pressure, markedly greater than the medium pressure, and a heat exchange line (2) for putting the air at a high pressure and the compressed liquid oxygen in a heat exchange relationship, the means of compression comprising a compressor (3) for bringing all the air to be distilled to a first high pressure P1 markedly greater than the medium pressure, and means (4, 5, 32) for boosting a fraction of the air at this first high pressure to a second high pressure P2,
characterized in that these means of boosting the pressure comprise at least two blowers in series, each coupled to an expansion turbine (7, 8, 30), one blower (4, 5) being coupled to a first turbine (7) for expanding air at the first high pressure P1 and another blower (5, 4) being coupled to a second turbine (8) for expanding part of the boosted air, and in that the heat exchange line (2) comprises passages for cooling the air coming from the first turbine (7) having the higher inlet temperature and/or the inlet temperature T1 of one (7) of the two turbines is between about 0°C and -60°C, while that T2 of the second turbine (8) is between about -80°C and -130°C. - Installation according to claim 9, characterized in that it comprises a second pump (10) for liquid oxygen or liquid nitrogen, and possibly a third pump (11) for liquid oxygen or liquid nitrogen, and in that the heat exchange line (2) comprises corresponding vaporization-reheating passages.
- Installation according to either of claims 9 or 10, characterized in that it comprises a third turbine (30) for expanding to the low pressure at least part of the air coming from the turbine (7) having the higher inlet temperature, and means for introducing the air coming from the third turbine into the low pressure column (13) or into a residual gas conduit of this column.
- Installation according to claim 11, characterized in that it comprises means (33) for supplementing the feed to the third turbine (30) with air withdrawn from the bottom of the medium pressure column (12), the said air coming from the turbine (7) having the higher inlet temperature being substantially at the medium pressure.
- Installation according to either of claims 11 or 12, wherein the third turbine (30) is braked by an alternator (31) or by an air blower (32).
- Installation according to claim 13, wherein the blower (32) coupled to the third turbine (30) is mounted in series with the other blowers (4, 5).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9207662 | 1992-06-23 | ||
FR9207662A FR2692664A1 (en) | 1992-06-23 | 1992-06-23 | Process and installation for producing gaseous oxygen under pressure. |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0576314A1 EP0576314A1 (en) | 1993-12-29 |
EP0576314B1 EP0576314B1 (en) | 1996-10-09 |
EP0576314B2 true EP0576314B2 (en) | 2000-03-29 |
Family
ID=9431071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93401395A Expired - Lifetime EP0576314B2 (en) | 1992-06-23 | 1993-06-02 | Process and installation for the production of gaseous oxygen under pressure |
Country Status (9)
Country | Link |
---|---|
US (1) | US5400600A (en) |
EP (1) | EP0576314B2 (en) |
JP (1) | JPH0658662A (en) |
CN (1) | CN1077275C (en) |
AU (1) | AU660260B2 (en) |
CA (1) | CA2098895A1 (en) |
DE (1) | DE69305246T3 (en) |
FR (1) | FR2692664A1 (en) |
ZA (1) | ZA934204B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6321566B1 (en) | 1999-05-21 | 2001-11-27 | Kabushiki Kaisha Kobe Seiko Sho. | Method for producing oxygen gas |
DE10106480B4 (en) * | 2000-02-23 | 2008-01-31 | Kabushiki Kaisha Kobe Seiko Sho, Kobe | Process for the production of oxygen |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4411533C1 (en) * | 1994-04-02 | 1995-04-06 | Draegerwerk Ag | Anaesthesia apparatus |
GB9410686D0 (en) | 1994-05-27 | 1994-07-13 | Boc Group Plc | Air separation |
FR2723184B1 (en) | 1994-07-29 | 1996-09-06 | Grenier Maurice | PROCESS AND PLANT FOR THE PRODUCTION OF GAS OXYGEN UNDER PRESSURE WITH VARIABLE FLOW RATE |
FR2726046B1 (en) * | 1994-10-25 | 1996-12-20 | Air Liquide | METHOD AND INSTALLATION FOR EXPANSION AND COMPRESSION OF AT LEAST ONE GAS STREAM |
GB9521782D0 (en) * | 1995-10-24 | 1996-01-03 | Boc Group Plc | Air separation |
GB9521996D0 (en) * | 1995-10-27 | 1996-01-03 | Boc Group Plc | Air separation |
US6113851A (en) * | 1996-03-01 | 2000-09-05 | Phygen | Apparatus and process for dry sterilization of medical and dental devices and materials |
US5799508A (en) * | 1996-03-21 | 1998-09-01 | Praxair Technology, Inc. | Cryogenic air separation system with split kettle liquid |
US5758515A (en) * | 1997-05-08 | 1998-06-02 | Praxair Technology, Inc. | Cryogenic air separation with warm turbine recycle |
US5802873A (en) * | 1997-05-08 | 1998-09-08 | Praxair Technology, Inc. | Cryogenic rectification system with dual feed air turboexpansion |
US5873264A (en) * | 1997-09-18 | 1999-02-23 | Praxair Technology, Inc. | Cryogenic rectification system with intermediate third column reboil |
FR2776760B1 (en) * | 1998-03-31 | 2000-05-05 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
GB9810587D0 (en) * | 1998-05-15 | 1998-07-15 | Cryostar France Sa | Pump |
GB9925097D0 (en) * | 1999-10-22 | 1999-12-22 | Boc Group Plc | Air separation |
FR2831249A1 (en) * | 2002-01-21 | 2003-04-25 | Air Liquide | Air separation in an apparatus containing at least two columns which can be operated normally or with air expanded to a low pressure in the turbine before distillation in the low pressure column |
FR2853407B1 (en) * | 2003-04-02 | 2012-12-14 | Air Liquide | METHOD AND INSTALLATION FOR SUPPLYING GAS UNDER PRESSURE |
FR2854683B1 (en) * | 2003-05-05 | 2006-09-29 | Air Liquide | METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED AIR GASES BY AIR CRYOGENIC DISTILLATION |
FR2872262B1 (en) * | 2004-06-29 | 2010-11-26 | Air Liquide | METHOD AND INSTALLATION FOR PROVIDING SUPPORT OF A PRESSURIZED GAS |
US7299656B2 (en) * | 2005-02-18 | 2007-11-27 | Praxair Technology, Inc. | Cryogenic rectification system for neon production |
EP1726900A1 (en) * | 2005-05-20 | 2006-11-29 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
US7437890B2 (en) * | 2006-01-12 | 2008-10-21 | Praxair Technology, Inc. | Cryogenic air separation system with multi-pressure air liquefaction |
US7533540B2 (en) * | 2006-03-10 | 2009-05-19 | Praxair Technology, Inc. | Cryogenic air separation system for enhanced liquid production |
FR2913760B1 (en) * | 2007-03-13 | 2013-08-16 | Air Liquide | METHOD AND APPARATUS FOR PRODUCING GAS-LIKE AIR AND HIGH-FLEXIBILITY LIQUID AIR GASES BY CRYOGENIC DISTILLATION |
FR2913759B1 (en) * | 2007-03-13 | 2013-08-16 | Air Liquide | METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION |
US8191386B2 (en) * | 2008-02-14 | 2012-06-05 | Praxair Technology, Inc. | Distillation method and apparatus |
FR2948184B1 (en) * | 2009-07-20 | 2016-04-15 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
EP2963367A1 (en) | 2014-07-05 | 2016-01-06 | Linde Aktiengesellschaft | Method and device for cryogenic air separation with variable power consumption |
EP2963371B1 (en) * | 2014-07-05 | 2018-05-02 | Linde Aktiengesellschaft | Method and device for creating a pressurised gas product by the cryogenic decomposition of air |
US20160025408A1 (en) * | 2014-07-28 | 2016-01-28 | Zhengrong Xu | Air separation method and apparatus |
US20160245585A1 (en) | 2015-02-24 | 2016-08-25 | Henry E. Howard | System and method for integrated air separation and liquefaction |
EP3290843A3 (en) * | 2016-07-12 | 2018-06-13 | Linde Aktiengesellschaft | Method and device for extracting pressurised nitrogen and pressurised nitrogen by cryogenic decomposition of air |
US11262125B2 (en) * | 2018-01-02 | 2022-03-01 | Praxair Technology, Inc. | System and method for flexible recovery of argon from a cryogenic air separation unit |
WO2021230912A1 (en) * | 2020-05-11 | 2021-11-18 | Praxair Technology, Inc. | System and method for recovery of nitrogen, argon, and oxygen in moderate pressure cryogenic air separation unit |
WO2021230911A1 (en) | 2020-05-15 | 2021-11-18 | Praxair Technology, Inc. | Integrated nitrogen liquefier for a nitrogen and argon producing cryogenic air separation unit |
WO2022053173A1 (en) * | 2020-09-08 | 2022-03-17 | Linde Gmbh | Method and plant for cryogenic fractionation of air |
EP4251938A1 (en) | 2020-11-24 | 2023-10-04 | Linde GmbH | Process and plant for cryogenic separation of air |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB929798A (en) * | 1960-04-11 | 1963-06-26 | British Oxygen Co Ltd | Low temperature separation of air |
US3414925A (en) * | 1966-06-24 | 1968-12-10 | Andrew H. Stavros | Cleaner for meat grinder heads |
DE1551621A1 (en) * | 1967-07-13 | 1972-02-24 | Sp Kt Bjuro Kislorodnogo Kompr | Process for extracting oxygen from the air |
US3760596A (en) * | 1968-10-23 | 1973-09-25 | M Lemberg | Method of liberation of pure nitrogen and oxygen from air |
DE1907525A1 (en) * | 1969-02-14 | 1970-08-20 | Vnii Kriogennogo Masinostrojen | Process for separating nitrogen and oxygen from the air |
FR2461906A1 (en) * | 1979-07-20 | 1981-02-06 | Air Liquide | CRYOGENIC AIR SEPARATION METHOD AND INSTALLATION WITH OXYGEN PRODUCTION AT HIGH PRESSURE |
US4555256A (en) * | 1982-05-03 | 1985-11-26 | Linde Aktiengesellschaft | Process and device for the production of gaseous oxygen at elevated pressure |
DE3610973A1 (en) * | 1986-04-02 | 1987-10-08 | Linde Ag | METHOD AND DEVICE FOR PRODUCING NITROGEN |
DE3738559A1 (en) * | 1987-11-13 | 1989-05-24 | Linde Ag | METHOD FOR AIR DISASSEMBLY BY DEEP TEMPERATURE RECTIFICATION |
FR2652409A1 (en) * | 1989-09-25 | 1991-03-29 | Air Liquide | REFRIGERANT PRODUCTION PROCESS, CORRESPONDING REFRIGERANT CYCLE AND THEIR APPLICATION TO AIR DISTILLATION. |
GB9100814D0 (en) * | 1991-01-15 | 1991-02-27 | Boc Group Plc | Air separation |
JP2909678B2 (en) * | 1991-03-11 | 1999-06-23 | レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method and apparatus for producing gaseous oxygen under pressure |
US5228296A (en) * | 1992-02-27 | 1993-07-20 | Praxair Technology, Inc. | Cryogenic rectification system with argon heat pump |
US5228297A (en) * | 1992-04-22 | 1993-07-20 | Praxair Technology, Inc. | Cryogenic rectification system with dual heat pump |
-
1992
- 1992-06-23 FR FR9207662A patent/FR2692664A1/en not_active Withdrawn
-
1993
- 1993-06-02 EP EP93401395A patent/EP0576314B2/en not_active Expired - Lifetime
- 1993-06-02 DE DE69305246T patent/DE69305246T3/en not_active Expired - Fee Related
- 1993-06-07 US US08/072,991 patent/US5400600A/en not_active Expired - Lifetime
- 1993-06-14 ZA ZA934204A patent/ZA934204B/en unknown
- 1993-06-16 JP JP5144912A patent/JPH0658662A/en active Pending
- 1993-06-18 AU AU41357/93A patent/AU660260B2/en not_active Ceased
- 1993-06-21 CA CA002098895A patent/CA2098895A1/en not_active Abandoned
- 1993-06-22 CN CN93107602A patent/CN1077275C/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6321566B1 (en) | 1999-05-21 | 2001-11-27 | Kabushiki Kaisha Kobe Seiko Sho. | Method for producing oxygen gas |
DE10024708B4 (en) * | 1999-05-21 | 2007-10-25 | Kabushiki Kaisha Kobe Seiko Sho, Kobe | Process for the production of oxygen gas |
DE10106480B4 (en) * | 2000-02-23 | 2008-01-31 | Kabushiki Kaisha Kobe Seiko Sho, Kobe | Process for the production of oxygen |
Also Published As
Publication number | Publication date |
---|---|
CN1080390A (en) | 1994-01-05 |
AU4135793A (en) | 1994-01-06 |
US5400600A (en) | 1995-03-28 |
EP0576314A1 (en) | 1993-12-29 |
DE69305246T2 (en) | 1997-05-07 |
CA2098895A1 (en) | 1993-12-24 |
DE69305246T3 (en) | 2001-03-08 |
CN1077275C (en) | 2002-01-02 |
DE69305246D1 (en) | 1996-11-14 |
AU660260B2 (en) | 1995-06-15 |
ZA934204B (en) | 1994-01-10 |
FR2692664A1 (en) | 1993-12-24 |
EP0576314B1 (en) | 1996-10-09 |
JPH0658662A (en) | 1994-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0576314B2 (en) | Process and installation for the production of gaseous oxygen under pressure | |
EP0504029B1 (en) | Process for the production of gaseous pressurised oxygen | |
EP0689019B1 (en) | Process and apparatus for producing gaseous oxygen under pressure | |
EP0562893B1 (en) | Process for the production of high pressure nitrogen and oxygen | |
EP0605262B1 (en) | Process and apparatus for the production of gaseous oxygen under pressure | |
FR2757282A1 (en) | METHOD AND INSTALLATION FOR PROVIDING A VARIABLE FLOW OF AN AIR GAS | |
EP0618415B1 (en) | Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air | |
EP0789208A1 (en) | Process and installation for the production of gaseous oxygen under high pressure | |
EP0694746B1 (en) | Process for the production of a gas under pressure in variable quantities | |
FR2690982A1 (en) | Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine | |
FR2711778A1 (en) | Method and installation for producing oxygen and/or nitrogen under pressure | |
EP1711765B1 (en) | Cryogenic distillation method and installation for air separation | |
EP0914584B1 (en) | Method and plant for producing an air gas with a variable flow rate | |
EP0677713B1 (en) | Process and installation for the production of oxygen by distillation of air | |
EP0641983B1 (en) | Process and installation for the production of gaseous oxygen and/or nitrogen under pressure | |
EP0611218B2 (en) | Process and installation for producing oxygen under pressure | |
EP0612967B1 (en) | Process for the production of oxygen and/or nitrogen under pressure | |
EP0641982A1 (en) | Process and installation for the production of at least a gas from air under pressure | |
FR2685460A1 (en) | Method and installation for producing gaseous oxygen under pressure by distillation of air |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930607 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 19950714 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960927 |
|
REF | Corresponds to: |
Ref document number: 69305246 Country of ref document: DE Date of ref document: 19961114 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: LINDE AKTIENGESELLSCHAFT Effective date: 19970707 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20000329 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): DE FR GB IT |
|
ITF | It: translation for a ep patent filed | ||
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8570 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070524 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070517 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070607 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070515 Year of fee payment: 15 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080602 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080602 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080630 |