EP1711765B1 - Cryogenic distillation method and installation for air separation - Google Patents
Cryogenic distillation method and installation for air separation Download PDFInfo
- Publication number
- EP1711765B1 EP1711765B1 EP05717658.8A EP05717658A EP1711765B1 EP 1711765 B1 EP1711765 B1 EP 1711765B1 EP 05717658 A EP05717658 A EP 05717658A EP 1711765 B1 EP1711765 B1 EP 1711765B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- column
- turbines
- pressure
- booster
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04054—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04387—Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/0446—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/0446—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
- F25J3/04466—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
- F25J2200/06—Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/52—Oxygen production with multiple purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/54—Oxygen production with multiple pressure O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/04—Multiple expansion turbines in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/10—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
Definitions
- the present invention relates to a method and an installation for air separation by cryogenic distillation.
- the whole turbine coupled to the cold booster is associated with a system of energy dissipation (oil brake), integrated on the axis of the machines and technologically limited to small powers (of the order of 70 KW ).
- the air supply diagrams is expanded in two turbines after being split into two parts upstream of the main exchange line. In addition, this scheme does not provide a mixing column.
- An object of the invention is to provide an alternative that allows for cold booster method diagrams without energy dissipation system integrated into the turbine blower axis, and therefore to consider using this scheme for almost near all sizes of air separation units.
- “Close in terms of pressure” means that the pressures differ by not more than 5 bar, preferably not more than 2 bar.
- “Close in terms of temperature” means that the temperatures differ by at most 15 ° C, preferably at most 10 ° C.
- a booster is a single-stage compressor.
- condensation includes pseudo condensation.
- vaporization includes pseudo vaporization.
- This invention differs from US-A-5,475,980 in that in Figure 4 (optional turbine 9), the two turbines 8, 32 aspire at very different pressures, the difference being at least 14 bars and in Figure 5, the pressure difference is about 13 bars and a turbine escapes the low pressure, which is penalizing for pure oxygen.
- Another part 2 of the air at 15 bars constituting the rest of the air is cooled in the exchange line at an intermediate temperature higher than the suction temperature of the turbines 17, 19, compressed in a second booster 23 until at about 30 bar and reintroduced into the exchange line 9 at a higher temperature to continue cooling.
- the air 37 to 30 bar approximately liquefies in the exchange line and the liquid oxygen vaporizes in the exchange line, the temperature of vaporization of the liquid being close to the suction temperature of the second booster 23.
- the liquefied air leaves the exchange line and is sent to the column system.
- a flow of residual nitrogen 27 is heated in the exchange line 9.
- the first booster 5 is coupled with one of the turbines 17, 19 and the second booster 23 is coupled with the other of the turbines 19, 17.
- the column system of an air separation apparatus is constituted by a medium pressure column 100 thermally connected with a low pressure column 200 to minaret, a mixing column 300 and an optional argon column (not shown).
- the low pressure column does not necessarily have a minaret.
- the medium pressure column operates at a pressure of 5.5 bar but can operate at a higher pressure.
- the air 121 coming from the two turbines 17, 19 is the flow rate sent to the bottom of the medium pressure column 100.
- the liquefied air 37 is expanded in the valve 39 or possibly in a turbine and sent to the column system.
- Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from the medium pressure column 100 to the low pressure column 200 after expansion stages in valves and subcooling.
- Liquid oxygen is pressurized by the pump 500 and sent as pressurized liquid 25 to the exchange line 9.
- Other liquids, pressurized or not, can vaporize in the exchange line.
- Nitrogen gas is optionally withdrawn from the medium pressure column and is also cooled in the exchange line 9.
- Nitrogen 33 is withdrawn at the top of the low pressure column and heats up in the exchange line, after having served to sub-cool the reflux liquids.
- Residual nitrogen 27 is withdrawn from a lower level of the low pressure column and heats up in the exchange line, after having been used to sub-cool the reflux liquids.
- the column can optionally produce argon by treating a flow 51 withdrawn in low pressure column 200.
- the flow 52 is the tank liquid returned from the argon column, if there is one.
- the mixing column 300 is fed at the top with an oxygen rich liquid withdrawn at an intermediate level of the low pressure column 200 pressurized by the pump 600 and in the tank by a flow of gaseous air 122 from the turbines 17, 19.
- the mixing column is essentially at medium pressure.
- a flow of oxygen gas 37 is withdrawn at the top of the mixing column and then warms in the exchange line 9 and a liquid flow 41 is withdrawn in the tank and sent to the low pressure column after expansion in a valve. It is possible to withdraw an intermediate flow from the column 300 which is sent to the low pressure column.
- an air flow at atmospheric pressure is compressed to about 15 bar in a main compressor (not shown).
- the air is then optionally cooled, before being purified to remove impurities (not shown).
- the clean air is divided in two.
- Part of the air 3 is sent to a booster 5 where it is compressed to a pressure of between 17 and 20 bars and then the air is cooled by a condenser water 7 before being sent at the hot end of the main exchange line 9 of the air separation apparatus.
- the supercharged air 11 cools to an intermediate temperature before being divided into two fractions 103, 123.
- the fraction 103 exits the exchange line and is divided again into two fractions.
- a fraction 13 is sent into a turbine 17 and the remainder a fraction 15 is sent into a turbine 19.
- the two turbines have the same temperature and suction pressure and at the same temperature and outlet pressure, but it is obviously possible that these temperatures and pressures are close to each other instead of being identical. Both flow rates are mixed to form a flow of air and sent to the double column.
- the turbine 19 may be an insufflation turbine opening to the pressure of the low pressure column.
- the fraction 123 continues cooling in the exchange line 9 and leaves it upstream of the cold end to be sent to the bottom reboiler 301 of the mixing column 300 where the fraction condenses at least partially to form the flow 125.
- Another part 2 of the air at 15 bars constituting the rest of the air is cooled in the exchange line at an intermediate temperature higher than the suction temperature of the turbines 17, 19, compressed in a second booster 23 until at about 30 bar and reintroduced into the exchange line 9 at a higher temperature to continue cooling.
- the air 37 to 30 bars approximately liquefies in the exchange line and the liquid oxygen 25 vaporizes in the exchange line, the vaporization temperature of the liquid being close to the suction temperature of the second
- the liquefied air exits the exchange line and is sent to the column system after being mixed with the liquefied air 125 from the reboiler 301.
- a flow of residual nitrogen 27 is heated in the exchange line 9.
- the first booster 5 is coupled with one of the turbines 17, 19 and the second booster 23 is coupled with the other of the turbines 19, 17.
- the column system of an air separation apparatus is constituted by a medium pressure column 100 thermally connected with a low pressure column 200 to minaret, a mixing column 300 and an optional argon column (not shown).
- the low pressure column does not necessarily have a minaret.
- the medium pressure column operates at a pressure of 5.5 bar but can operate at a higher pressure.
- the gaseous air 121 from the two turbines 17, 19 is the flow rate sent to the bottom of the medium pressure column 100.
- the liquefied air 37 is expanded in the valve 39 and sent at least to the medium pressure column 100.
- Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from the medium pressure column 100 to the low pressure column 200 after expansion stages in valves and subcooling.
- Liquid oxygen is pressurized by the pump 500 and sent as pressurized liquid 25 to the exchange line 9.
- other liquids pressurized or not, can vaporize in the exchange line.
- Nitrogen gas is optionally withdrawn from the medium pressure column and is also cooled in the exchange line 9.
- Nitrogen 33 is withdrawn at the top of the low pressure column and heats up in the exchange line, after having served to sub-cool the reflux liquids.
- Residual nitrogen 27 is withdrawn from a lower level of the low pressure column and heats up in the exchange line, after having been used to sub-cool the reflux liquids.
- the column may possibly produce argon by treating a flow 51 withdrawn in low pressure column 200.
- the mixing column 300 is fed solely at the top by an oxygen-rich liquid withdrawn at an intermediate level from the low pressure column 200 and pressurized in the pump 600.
- the mixing column is operated essentially at medium pressure. By changing the pressure of the flow 123, the mixing column 300 can operate at a pressure different from the average pressure. Possibly part of the rich liquid 51 can be sent to the bottom of the column 300.
- a flow of oxygen gas 37 is withdrawn at the top of the mixing column and is heated in the exchange line 9 and a liquid flow 41 is withdrawn in the tank and sent to the low pressure column after expansion in a valve.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
La présente invention est relative à un procédé et à une installation de séparation d'air par distillation cryogénique.The present invention relates to a method and an installation for air separation by cryogenic distillation.
Il est connu de produire un gaz de l'air sous pression par vaporisation de liquide pressurisé dans une ligne d'échange d'un appareil de séparation d'air par échange de chaleur avec un gaz comprimé à partir d'une température cryogénique. Des appareils de ce type sont connus de
L'efficacité énergétique des appareils connus n'est pas excellente car il faut évacuer les entrées thermiques liées à la compression cryogénique.The energy efficiency of known devices is not excellent because it is necessary to evacuate the thermal inputs related to cryogenic compression.
De plus, pour les schémas tels que celui de la Figure 7 de
Néanmoins, ce type de procédé paraît avoir un intérêt économique, en particulier lorsque l'énergie est peu valorisée ou disponible à faible coût. Il est donc potentiellement intéressant de pouvoir s'affranchir de la limite technologique du frein d'huile intégré à l'axe de l'ensemble turbine/booster.Nevertheless, this type of process seems to have an economic interest, in particular when the energy is little valorized or available at low cost. It is therefore potentially interesting to be able to overcome the technological limit of the oil brake integrated in the axis of the turbine / booster assembly.
L'application internationale
Un but de l'invention est de proposer une alternative qui permette de réaliser des schémas de procédé à surpresseur froid sans système de dissipation d'énergie intégré à l'axe turbine surpresseur, et donc d'envisager d'utiliser ce schéma pour à peu près toutes les tailles d'appareils de séparation d'air.An object of the invention is to provide an alternative that allows for cold booster method diagrams without energy dissipation system integrated into the turbine blower axis, and therefore to consider using this scheme for almost near all sizes of air separation units.
Selon la présente invention, il est prévu un procédé selon la revendication 1.According to the present invention there is provided a method according to
Selon d'autres aspects facultatifs de l'invention :
- l'air envoyé à au moins une des turbines en amont de la colonne de mélange provient du surpresseur autre que le surpresseur froid et sort de ce surpresseur à une pression supérieure à la haute pression.
- l'air provenant d'au moins une des turbines est envoyé à la cuve de la colonne de mélange pour participer à l'échange de matière.
- the air sent to at least one of the turbines upstream of the mixing column comes from the booster other than the cold booster and leaves this booster at a pressure higher than the high pressure.
- air from at least one of the turbines is sent to the tank of the mixing column to participate in the exchange of material.
Selon un autre aspect de l'invention, il est prévu une installation selon la revendication 4. Selon d'autres aspects facultatifs, l'installation comprend
- des moyens pour envoyer une partie de l'air comprimé dans le surpresseur constituant le moyen de dissipation d'énergie ou faisant partie de celui-ci à au moins une turbine de détente en amont de la colonne de mélange,
- des moyens pour envoyer de l'air provenant d'au moins une des turbines dans la cuve de colonne de mélange pour participer à l'échange de matière.
- means for sending a portion of the compressed air into the blower constituting the energy dissipation means or forming part of it to at least one expansion turbine upstream of the mixing column,
- means for supplying air from at least one of the turbines into the mixing column vessel to participate in the exchange of material.
On utilisera une turbine complémentaire, fonctionnant en parallèle de la turbine du premier ensemble turbine surpresseur, et équipée de son propre système de dissipation d'énergie. Favorablement, ce système sera un surpresseur suivi d'un réfrigérant à eau installé en partie chaude.It will use a complementary turbine, operating in parallel with the turbine of the first blower assembly booster, and equipped with its own energy dissipation system. Favorably, this system will be a booster followed by a water cooler installed in the hot part.
« Proches en termes de pression » veut dire que les pressions diffèrent d'au plus 5 bars, de préférence d'au plus 2 bars. « Proches en termes de température » veut dire que les températures diffèrent d'au plus de 15°C, e préférence au plus 10°C."Close in terms of pressure" means that the pressures differ by not more than 5 bar, preferably not more than 2 bar. "Close in terms of temperature" means that the temperatures differ by at most 15 ° C, preferably at most 10 ° C.
Un surpresseur est un compresseur à un seul étage.A booster is a single-stage compressor.
Toutes les pressions mentionnées sont des pressions absolues.All pressures mentioned are absolute pressures.
Le terme « condensation » comprend la pseudo condensation. Le terme « vaporisation » comprend la pseudo vaporisation.The term "condensation" includes pseudo condensation. The term "vaporization" includes pseudo vaporization.
Cette invention se distingue de
L'invention sera décrite en plus de détails en se référant aux figures dans lesquelles :
- Les
Figures 1 et2 représentent un appareil de séparation d'air selon l'invention. - Dans la
Figure 1 , un débit d'air à la pression atmosphérique est comprimé à environ 15 bars dans un compresseur principal (non-illustré). L'air est ensuite éventuellement refroidi, avant d'être épuré pour enlever les Impuretés (non-illustré). L'air épuré est divisé en deux. Une partie de l'air 3 est envoyée à unsurpresseur 5 où elle est comprimée jusqu'à une pression d'entre 17 et 20 bars et ensuite l'air surpressé est refroidi par un réfrigérant à l'eau 7 avant d'être envoyé au bout chaud de la ligne d'échange principal 9 de l'appareil de séparation d'air. L'air surpressé 11 se refroidit jusqu'à une température intermédiaire avant de sortir de la ligne d'échange et d'être divisé en deux fractions. Il est évidemment possible qu'une fraction dudébit 11 poursuive son refroidissement jusqu'au bout froid de la ligne d'échange 9 d'où il sortira liquéfié. Unefraction 13 est envoyée dans uneturbine 17 et le reste, unefraction 15 est envoyée dans uneturbine 19. Les deux turbines ont la même température et pression d'aspiration et la même température et pression de sortie mais il est évidemment possible que ces températures et pression soient proches les unes des autres au lieu d'être identiques. Les deux débits turbinés sont mélangés pour former undébit 21 d'air dont unepartie 121 est envoyée vers la double colonne et lereste 122 vers la colonne demélange 300. Ledébit 122 constitue une partie dudébit 21 ou éventuellement une fraction de la partie gazeuse dudébit 21 dans le cas où celui-ci est diphasique. Il est évidemment possible d'envoyer tout ledébit 21 à la colonnemoyenne pression 100 et d'en sortir une partie gazeuse 122 pour envoi à la colonne de mélange, la colonne moyenne pression remplaçant dans ce cas, le séparateur de phases. Les pressions de la colonne moyenne pression et de la colonne de mélange peuvent être différentes. En variante, laturbine 19 peut être une turbine d'insufflation débouchant à la pression de la colonne basse pression.
- The
Figures 1 and2 represent an air separation apparatus according to the invention. - In the
Figure 1 an air flow at atmospheric pressure is compressed to about 15 bar in a main compressor (not shown). The air is then optionally cooled, before being purified to remove impurities (not shown). The clean air is divided in two. Part of theair 3 is sent to abooster 5 where it is compressed to a pressure of between 17 and 20 bars and then the air is cooled by a condenser water 7 before being sent at the hot end of themain exchange line 9 of the air separation apparatus. The pressurizedair 11 cools to an intermediate temperature before exiting the exchange line and being divided into two fractions. It is obviously possible for a fraction of theflow 11 to continue cooling down to the cold end of theexchange line 9 from which it will exit liquefied. Afraction 13 is sent into aturbine 17 and the remainder, afraction 15 is sent into aturbine 19. The two turbines have the same temperature and suction pressure and the same temperature and outlet pressure but it is obviously possible that these temperatures and pressure are close to each other instead of being identical. The two turbined flow rates are mixed to form anair flow 21 of which aportion 121 is sent to the double column and theremainder 122 to themixing column 300. Theflow 122 constitutes a part of theflow 21 or possibly a fraction of the gas part of theflow 21 in the case where it is two-phase. It is obviously possible to send all theflow 21 to themedium pressure column 100 and to leave agaseous part 122 for sending to the mixing column, the medium pressure column replacing in this case the phase separator. The pressures of the medium pressure column and the mixing column may be different. Alternatively, theturbine 19 may be an insufflation turbine opening to the pressure of the low pressure column.
Une autre partie 2 de l'air à 15 bars constituant le reste de l'air est refroidie dans la ligne d'échange à une température intermédiaire supérieure à la température d'aspiration des turbines 17, 19, comprimée dans un deuxième surpresseur 23 jusqu'à 30 bars environ et reintroduite dans la ligne d'échange 9 à une température plus élevée afin de poursuivre son refroidissement.Another part 2 of the air at 15 bars constituting the rest of the air is cooled in the exchange line at an intermediate temperature higher than the suction temperature of the
Ainsi, l'air 37 à 30 bars environ se liquéfie dans la ligne d'échange et de l'oxygène liquide 25 se vaporise dans la ligne d'échange, la température de vaporisation du liquide étant proche de la température d'aspiration du deuxième surpresseur 23. L'air liquéfié sort de la ligne d'échange et est envoyé vers le système de colonnes.Thus, the
Un débit d'azote résiduaire 27 se réchauffe dans la ligne d'échange 9.A flow of
Le premier surpresseur 5 est couplé avec l'une des turbines 17, 19 et le deuxième surpresseur 23 est couplé avec l'autre des turbines 19, 17.The
Le système de colonnes d'un appareil de séparation d'air est constitué par une colonne moyenne pression 100 thermiquement reliée avec une colonne basse pression 200 à minaret, une colonne de mélange 300 et une colonne argon optionnelle (non-illustrée). La colonne basse pression ne comporte pas obligatoirement de minaret.The column system of an air separation apparatus is constituted by a
La colonne moyenne pression opère à une pression de 5,5 bars mais peut opérer à une pression plus élevée.The medium pressure column operates at a pressure of 5.5 bar but can operate at a higher pressure.
L'air 121 provenant des deux turbines 17, 19 est le débit envoyé en cuve de la colonne moyenne pression 100.The
L'air liquéfié 37 est détendu dans la vanne 39 ou éventuellement dans une turbine et envoyé au système de colonnes.The liquefied
Du liquide riche 51, du liquide pauvre inférieur 53 et du liquide pauvre supérieur 55 sont envoyés depuis la colonne moyenne pression 100 vers la colonne basse pression 200 après des étapes de détente dans des vannes et de sous-refroidissement.Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from the
De l'oxygène liquide est pressurisé par la pompe 500 et envoyé comme liquide pressurisé 25 vers la ligne d'échange 9. D'autres liquides, pressurisés ou non, peuvent se vaporiser dans la ligne d'échange.Liquid oxygen is pressurized by the
De l'azote gazeux est optionnellement soutiré de la colonne moyenne pression et se refroidit également dans la ligne d'échange 9.Nitrogen gas is optionally withdrawn from the medium pressure column and is also cooled in the
De l'azote 33 est soutiré en tête de la colonne basse pression et se réchauffe dans la ligne d'échange, après avoir servi à sous-refroidir les liquides de reflux.
De l'azote résiduaire 27 est soutiré d'un niveau inférieur de la colonne basse pression et se réchauffe dans la ligne d'échange, après avoir servi à sous-refroidir les liquides de reflux.
La colonne peut éventuellement produire de l'argon en traitant un débit 51 soutiré en colonne basse pression 200. Le débit 52 est le liquide de cuve renvoyé de la colonne argon, s'il y en a une.The column can optionally produce argon by treating a
La colonne de mélange 300 est alimentée en tête par un liquide 35 riche en oxygène soutiré à un niveau intermédiaire de la colonne basse pression 200 pressurisé par la pompe 600 et en cuve par un débit d'air gazeux 122 provenant des turbines 17, 19. La colonne de mélange s'opère essentiellement à la moyenne pression.The
Un débit d'oxygène gazeux 37 est soutiré en tête de la colonne de mélange et se réchauffe ensuite dans la ligne d'échange 9 et un débit liquide 41 est soutiré en cuve et envoyé à la colonne basse pression après détente dans une vanne. Il est possible de soutirer un débit intermédiaire de la colonne 300 qui est envoyé à la colonne basse pression.A flow of
Dans la
La fraction 123 poursuit son refroidissement dans la ligne d'échange 9 et en sort en amont du bout froid pour être envoyé au rebouilleur de cuve 301 de la colonne de mélange 300 où la fraction se condense au moins partiellement pour former le débit 125.The
Une autre partie 2 de l'air à 15 bars constituant le reste de l'air est refroidie dans la ligne d'échange à une température intermédiaire supérieure à la température d'aspiration des turbines 17, 19, comprimée dans un deuxième surpresseur 23 jusqu'à 30 bars environ et réintroduite dans la ligne d'échange 9 à une température plus élevée afin de poursuivre son refroidissement.Another part 2 of the air at 15 bars constituting the rest of the air is cooled in the exchange line at an intermediate temperature higher than the suction temperature of the
Ainsi, l'air 37 à 30 bars environ se liquéfie dans la ligne d'échange et de l'oxygène liquide 25 se vaporise dans la ligne d'échange, la température de vaporisation du liquide étant proche de la température d'aspiration du deuxième surpresseur 23. L'air liquéfié sort de la ligne d'échange et est envoyé vers le système de colonnes après être mélangé avec l'air liquéfié 125 provenant du rebouilleur 301.Thus, the
Un débit d'azote résiduaire 27 se réchauffe dans la ligne d'échange 9.A flow of
Le premier surpresseur 5 est couplé avec l'une des turbines 17, 19 et le deuxième surpresseur 23 est couplé avec l'autre des turbines 19, 17.The
Le système de colonnes d'un appareil de séparation d'air est constitué par une colonne moyenne pression 100 thermiquement reliée avec une colonne basse pression 200 à minaret, une colonne de mélange 300 et une colonne argon optionnelle (non-illustrée). La colonne basse pression ne comporte pas obligatoirement de minaret.The column system of an air separation apparatus is constituted by a
La colonne moyenne pression opère à une pression de 5,5 bars mais peut opérer à une pression plus élevée.The medium pressure column operates at a pressure of 5.5 bar but can operate at a higher pressure.
L'air gazeux 121 provenant des deux turbines 17, 19 est !e débit envoyé en cuve de la colonne moyenne pression 100.The
L'air liquéfié 37 est détendu dans la vanne 39 et envoyé au moins à la colonne moyenne pression 100.The liquefied
Du liquide riche 51, du liquide pauvre inférieur 53 et du liquide pauvre supérieur 55 sont envoyés depuis la colonne moyenne pression 100 vers la colonne basse pression 200 après des étapes de détente dans des vannes et de sous-refroidissement.Rich liquid 51, lower lean liquid 53 and upper lean liquid 55 are sent from the
De l'oxygène liquide est pressurisé par la pompe 500 et envoyé comme liquide pressurisé 25 vers la ligne d'échange 9. En addition ou alternativement d'autres liquides, pressurisés ou non, peuvent se vaporiser dans la ligne d'échange.Liquid oxygen is pressurized by the
De l'azote gazeux est optionnellement soutiré de la colonne moyenne pression et se refroidit également dans la ligne d'échange 9.Nitrogen gas is optionally withdrawn from the medium pressure column and is also cooled in the
De l'azote 33 est soutiré en tête de la colonne basse pression et se réchauffe dans la ligne d'échange, après avoir servi à sous-refroidir les liquides de reflux.
De l'azote résiduaire 27 est soutiré d'un niveau inférieur de la colonne basse pression et se réchauffe dans la ligne d'échange, après avoir servi à sous-refroidir les liquides de reflux.
La colonne peut éventuellement produire de l'argon en traitant un débit 51 soutiré en colonne basse pression 200.The column may possibly produce argon by treating a
La colonne de mélange 300 est alimentée uniquement en tête par un liquide 35 riche en oxygène soutiré à un niveau Intermédiaire de la colonne basse pression 200 et pressurisé dans la pompe 600. La colonne de mélange s'opère essentiellement à la moyenne pression. En modifiant la pression du débit 123, la colonne de mélange 300 peut opérer à une pression différente de la moyenne pression. Eventuellement une partie du liquide riche 51 peut être envoyée en cuve de la colonne 300.The
Un débit d'oxygène gazeux 37 est soutiré en tête de la colonne de mélange et se réchauffe dans la ligne d'échange 9 et un débit liquide 41 est soutiré en cuve et envoyé à la colonne basse pression après détente dans une vanne.A flow of
Claims (6)
- Process for separating air by cryogenic distillation in an installation comprising a double or triple air separation column (100, 200), the column of which operating at the higher pressure (100) operates at what is called the medium pressure, an exchange line (9), and in addition to the double or triple column, a mixing column (300), in which:a) all the air is raised to a high pressure, optionally at least 5 bar above the medium pressure, and purified, optionally at this high pressure;b) one portion of the stream of purified air is cooled in the exchange line and is then divided into two fractions;c) each fraction is expanded in a turbine (17, 19);d) the intake pressure of the two turbines is respectively the intake pressures of the two turbines are at least 5 bar above the medium pressure;e) the delivery pressure of at least one of the two turbines is substantially equal to the medium pressure;f) at least one portion of the air expanded in at least one of the turbines is sent to the medium-pressure column of a double or triple column;g) a cold booster (23) mechanically coupled to one of the expansion turbines takes in air, which has undergone cooling in the exchange line, and delivers the air at a temperature above the intake temperature, and the fluid thus compressed is reintroduced into the exchange line in which at least one portion of the fluid undergoes condensation or pseudo condensation;h) at least one pressurized liquid coming from one of the columns undergoes (pseudo)vaporization in the exchange line at a vaporization temperature, andi) the turbine (17) not coupled to the cold booster is coupled to a booster (5) followed by a cooler; and, optionally,j) the intake temperature of the cold booster (23) is close to the vaporization or pseudo vaporization temperature of the liquid, andk) either air coming from at least one of the turbines (17, 19) is sent to the mixing column, optionally after having passed through the medium-pressure column (100), or air (123) at least at the high pressure is sent to a bottom reboiler (301) of the mixing column (300) where it at least partially condenses before being sent to the double or triple column.
- Process according to Claim 1, in which the air sent to at least one of the turbines (17, 19) upstream of the mixing column comes from the booster (5) other than the cold booster (23) and leaves this booster at a pressure above the high pressure.
- Process according to either of Claims 1 and 2, in which air (13, 15) expanded in at least one of the turbines (17, 19) is sent to the bottom of the mixing column (300), in order to participate in mass exchange therein.
- Installation for separating air by cryogenic distillation, comprising:a) a double or triple air separation column (100, 200), the column (100) of which, operating at the higher pressure, operates at what is called the medium pressure;b) an exchange line (9);c) means for raising all the air to a high pressure, above the medium pressure, and means for purifying it, optionally at this high pressure;d) means for sending one portion of the purified air stream into the exchange line in order to cool it and means for dividing this cooled air into two fractions;e) two turbines (17, 19) and means for sending one air fraction to each turbine;f) means for sending at least one portion of the air expanded in at least one of the turbines to the medium-pressure column of the double or triple column;g) a cold booster (23), means for sending air, preferably withdrawn from an intermediate point on the main exchange line, to the cold booster and means for sending air boosted in the cold booster into the exchange line at an intermediate point upstream of the withdrawal point;h) means (500) for pressurizing at least one liquid coming from one of the columns, means for sending the at least one pressurized liquid into the exchange line, and means for expelling a vaporized liquid from the exchange line;i) the cold booster is coupled to one of the turbines (19);j) the turbine (17) not coupled to the cold booster is coupled to a booster (5) followed by a cooler; andk) a mixing column and either means for sending air to the mixing column from at least one of the turbines (17, 19), or means for sending air (123) at least at the high pressure into a bottom reboiler (301) of the mixing column (300) and means for sending air at least partially condensed in this bottom reboiler to the double or triple column.
- Installation according to Claim 4, which includes means for sending one portion of the air compressed in the booster (5) constituting the energy dissipation means, or forming part of the latter, to at least one expansion turbine (17, 19) upstream of the mixing column.
- Installation according to either of Claims 4 and 5, where the means for sending air, coming from at least one of the turbines (17, 19), into the mixing column are connected to the bottom of the mixing column (300) in order to participate in mass exchange therein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL05717658T PL1711765T3 (en) | 2004-01-12 | 2005-01-07 | Cryogenic distillation method and installation for air separation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0450067A FR2865024B3 (en) | 2004-01-12 | 2004-01-12 | METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION |
PCT/FR2005/050011 WO2005073651A1 (en) | 2004-01-12 | 2005-01-07 | Cryogenic distillation method and installation for air separation |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1711765A1 EP1711765A1 (en) | 2006-10-18 |
EP1711765B1 true EP1711765B1 (en) | 2013-06-19 |
EP1711765B8 EP1711765B8 (en) | 2013-08-28 |
Family
ID=34685057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05717658.8A Expired - Lifetime EP1711765B8 (en) | 2004-01-12 | 2005-01-07 | Cryogenic distillation method and installation for air separation |
Country Status (11)
Country | Link |
---|---|
US (1) | US20080223076A1 (en) |
EP (1) | EP1711765B8 (en) |
JP (1) | JP2007518054A (en) |
CN (1) | CN100432601C (en) |
BR (1) | BRPI0506789B1 (en) |
ES (1) | ES2425944T3 (en) |
FR (1) | FR2865024B3 (en) |
PL (1) | PL1711765T3 (en) |
RU (1) | RU2360194C2 (en) |
UA (1) | UA89365C2 (en) |
WO (1) | WO2005073651A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2005225027A1 (en) * | 2005-07-21 | 2007-02-08 | L'air Liquide Societe Anonyme Pour L'etude Et L"Exploitation Des Procedes Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
FR2895068B1 (en) * | 2005-12-15 | 2014-01-31 | Air Liquide | AIR SEPARATION METHOD BY CRYOGENIC DISTILLATION |
FR2913759B1 (en) * | 2007-03-13 | 2013-08-16 | Air Liquide | METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION |
DE102012017484A1 (en) * | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Process and plant for the production of liquid and gaseous oxygen products by cryogenic separation of air |
ES2834478T3 (en) * | 2012-11-02 | 2021-06-17 | Linde Gmbh | Cryogenic air separation method in air separation plant and air separation plant |
IT201700042150A1 (en) * | 2017-04-14 | 2018-10-14 | Cristiano Galbiati | SEPARATION EQUIPMENT |
EP3438584B1 (en) | 2017-08-03 | 2020-03-11 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and device for air separation by cryogenic distilling |
US20200355429A1 (en) * | 2017-11-29 | 2020-11-12 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Cryogenic distillation method and apparatus for producing pressurized air by means of expander booster in linkage with nitrogen expander for braking |
WO2020124427A1 (en) * | 2018-12-19 | 2020-06-25 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for starting up a cryogenic air separation unit and associated air separation unit |
FR3090831B1 (en) * | 2018-12-21 | 2022-06-03 | L´Air Liquide Sa Pour L’Etude Et L’Exploitation Des Procedes Georges Claude | Cryogenic distillation air separation apparatus and method |
WO2021016756A1 (en) * | 2019-07-26 | 2021-02-04 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for the separation of air by cryogenic distillation |
CN115885146A (en) * | 2020-07-22 | 2023-03-31 | 乔治洛德方法研究和开发液化空气有限公司 | Argon enhancement method and apparatus |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3216510A1 (en) * | 1982-05-03 | 1983-11-03 | Linde Ag, 6200 Wiesbaden | Process for recovery of gaseous oxygen under elevated pressure |
GB9008752D0 (en) * | 1990-04-18 | 1990-06-13 | Boc Group Plc | Air separation |
JP2909678B2 (en) * | 1991-03-11 | 1999-06-23 | レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method and apparatus for producing gaseous oxygen under pressure |
US5379598A (en) * | 1993-08-23 | 1995-01-10 | The Boc Group, Inc. | Cryogenic rectification process and apparatus for vaporizing a pumped liquid product |
US5475980A (en) * | 1993-12-30 | 1995-12-19 | L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude | Process and installation for production of high pressure gaseous fluid |
FR2721383B1 (en) * | 1994-06-20 | 1996-07-19 | Maurice Grenier | Process and installation for producing gaseous oxygen under pressure. |
US5454227A (en) * | 1994-08-17 | 1995-10-03 | The Boc Group, Inc. | Air separation method and apparatus |
US5490391A (en) * | 1994-08-25 | 1996-02-13 | The Boc Group, Inc. | Method and apparatus for producing oxygen |
FR2731781B1 (en) * | 1995-03-15 | 1997-05-23 | Air Liquide | METHOD AND APPARATUS FOR VAPORIZING LIQUID FLOW |
GB9515907D0 (en) * | 1995-08-03 | 1995-10-04 | Boc Group Plc | Air separation |
FR2744795B1 (en) * | 1996-02-12 | 1998-06-05 | Grenier Maurice | PROCESS AND PLANT FOR THE PRODUCTION OF HIGH-PRESSURE GASEOUS OXYGEN |
JP3737611B2 (en) * | 1997-08-08 | 2006-01-18 | 大陽日酸株式会社 | Method and apparatus for producing low purity oxygen |
FR2787560B1 (en) * | 1998-12-22 | 2001-02-09 | Air Liquide | PROCESS FOR CRYOGENIC SEPARATION OF AIR GASES |
DE19951521A1 (en) * | 1999-10-26 | 2001-05-03 | Linde Ag | Recovering pressurized product by low temperature decomposition of air in rectification system comprises cold compressing heat carrier stream before introducing into mixing column |
FR2851330B1 (en) * | 2003-02-13 | 2006-01-06 | Air Liquide | PROCESS AND PLANT FOR THE PRODUCTION OF A GASEOUS AND HIGH PRESSURE PRODUCTION OF AT LEAST ONE FLUID SELECTED AMONG OXYGEN, ARGON AND NITROGEN BY CRYOGENIC DISTILLATION OF AIR |
FR2854682B1 (en) * | 2003-05-05 | 2005-06-17 | Air Liquide | METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION |
FR2854683B1 (en) * | 2003-05-05 | 2006-09-29 | Air Liquide | METHOD AND INSTALLATION FOR PRODUCING PRESSURIZED AIR GASES BY AIR CRYOGENIC DISTILLATION |
-
2004
- 2004-01-12 FR FR0450067A patent/FR2865024B3/en not_active Expired - Lifetime
-
2005
- 2005-01-07 EP EP05717658.8A patent/EP1711765B8/en not_active Expired - Lifetime
- 2005-01-07 US US10/585,834 patent/US20080223076A1/en not_active Abandoned
- 2005-01-07 WO PCT/FR2005/050011 patent/WO2005073651A1/en active Application Filing
- 2005-01-07 BR BRPI0506789-8A patent/BRPI0506789B1/en not_active IP Right Cessation
- 2005-01-07 RU RU2006129296/06A patent/RU2360194C2/en not_active IP Right Cessation
- 2005-01-07 ES ES05717658T patent/ES2425944T3/en not_active Expired - Lifetime
- 2005-01-07 CN CNB200580002063XA patent/CN100432601C/en not_active Expired - Fee Related
- 2005-01-07 JP JP2006548362A patent/JP2007518054A/en active Pending
- 2005-01-07 PL PL05717658T patent/PL1711765T3/en unknown
- 2005-07-01 UA UAA200607616A patent/UA89365C2/en unknown
Also Published As
Publication number | Publication date |
---|---|
FR2865024A1 (en) | 2005-07-15 |
WO2005073651A1 (en) | 2005-08-11 |
RU2006129296A (en) | 2008-02-20 |
CN100432601C (en) | 2008-11-12 |
FR2865024B3 (en) | 2006-05-05 |
UA89365C2 (en) | 2010-01-25 |
EP1711765A1 (en) | 2006-10-18 |
EP1711765B8 (en) | 2013-08-28 |
ES2425944T3 (en) | 2013-10-18 |
PL1711765T3 (en) | 2013-10-31 |
RU2360194C2 (en) | 2009-06-27 |
US20080223076A1 (en) | 2008-09-18 |
CN1910419A (en) | 2007-02-07 |
BRPI0506789A (en) | 2007-05-22 |
JP2007518054A (en) | 2007-07-05 |
BRPI0506789B1 (en) | 2018-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1623171B1 (en) | Cryogenic distillation method and system for air separation | |
EP0576314B1 (en) | Process and installation for the production of gaseous oxygen under pressure | |
EP0689019B1 (en) | Process and apparatus for producing gaseous oxygen under pressure | |
EP0628778B1 (en) | Process and high pressure gas supply unit for an air constituent consuming installation | |
EP0547946B1 (en) | Process and apparatus for the production of impure oxygen | |
EP1623172B1 (en) | Method and system for the production of pressurized air gas by cryogenic distillation of air | |
WO2007068858A2 (en) | Process for separating air by cryogenic distillation | |
EP3631327B1 (en) | Method and apparatus for air separation by cryogenic distillation | |
EP1711765B1 (en) | Cryogenic distillation method and installation for air separation | |
EP2475945A2 (en) | Method and facility for producing oxygen through air distillation | |
EP1189003B1 (en) | Process and apparatus for air separation by cryogenic distillation | |
EP0914584B1 (en) | Method and plant for producing an air gas with a variable flow rate | |
CA2146831A1 (en) | Process and unit for producing oxygen by air distillation | |
EP3058297B1 (en) | Method and device for separating air by cryogenic distillation | |
FR2701553A1 (en) | Method and installation for producing oxygen under pressure. | |
EP1132700B1 (en) | Process and apparatus for air separation by cryogenic distillation | |
FR2973485A1 (en) | Method for separating air by cryogenic distillation in column system, involves withdrawing liquid containing specific mol percent of oxygen from bottom of low pressure column, where liquid is pressurized and vaporized to form gaseous oxygen | |
EP2938414B1 (en) | Method and apparatus for separating a carbon dioxide-rich gas | |
CA2828716C (en) | Device and method for separating air by cryogenic distillation | |
FR2929697A1 (en) | PROCESS FOR PRODUCING VARIABLE GASEOUS NITROGEN AND VARIABLE GAS OXYGEN BY AIR DISTILLATION | |
WO2005047790A2 (en) | Method and installation for enriching a gas stream with one of the components thereof | |
EP4279848B1 (en) | Method and apparatus for cooling a co2-rich flow | |
EP4285061B1 (en) | Method and apparatus for separating a flow rich in carbon dioxide by distillation to produce liquid carbon dioxide | |
FR3014181A1 (en) | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060814 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E |
|
17Q | First examination report despatched |
Effective date: 20090224 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LE BOT, PATRICK |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 617884 Country of ref document: AT Kind code of ref document: T Effective date: 20130715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005040043 Country of ref document: DE Effective date: 20130808 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2425944 Country of ref document: ES Kind code of ref document: T3 Effective date: 20131018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130920 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 617884 Country of ref document: AT Kind code of ref document: T Effective date: 20130619 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130919 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131021 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 |
|
26N | No opposition filed |
Effective date: 20140320 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005040043 Country of ref document: DE Effective date: 20140320 |
|
BERE | Be: lapsed |
Owner name: L'AIR LIQUIDE, S.A. POUR L'ETUDE ET L'EXPLOITATIO Effective date: 20140131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140107 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140930 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140107 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20050107 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130619 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20171220 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20180227 Year of fee payment: 14 Ref country code: DE Payment date: 20180122 Year of fee payment: 14 Ref country code: GB Payment date: 20180119 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20180129 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005040043 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190107 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20200309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190107 |