EP0611218B2 - Process and installation for producing oxygen under pressure - Google Patents
Process and installation for producing oxygen under pressure Download PDFInfo
- Publication number
- EP0611218B2 EP0611218B2 EP94400300A EP94400300A EP0611218B2 EP 0611218 B2 EP0611218 B2 EP 0611218B2 EP 94400300 A EP94400300 A EP 94400300A EP 94400300 A EP94400300 A EP 94400300A EP 0611218 B2 EP0611218 B2 EP 0611218B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- air
- fraction
- column
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/04084—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04018—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04024—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04145—Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/042—Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04236—Integration of different exchangers in a single core, so-called integrated cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04278—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/10—Mathematical formulae, modeling, plot or curves; Design methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/912—External refrigeration system
- Y10S62/913—Liquified gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/939—Partial feed stream expansion, air
- Y10S62/94—High pressure column
Definitions
- the present invention relates to a method of production of gaseous oxygen under high pressure oxygen.
- EP-A-0 504 029 describes a process of this type in which the fraction of the air that is overpressed to the second high pressure is constituted by a very low air flow, the only function of which is to supply calories near the intake temperature of the turbine which expands the fraction of unpressurized air.
- the invention aims to improve this process known in order to increase thermodynamic performance without increasing the corresponding investment.
- the invention relates to a method of aforementioned type, according to claim 1.
- the air distillation installation shown in Figure 1 essentially comprises: a compressor air 1; a device 2 for purifying compressed air in water and CO2 by adsorption, this device comprising two adsorption bottles 2A, 2B, one of which works in adsorption while the other is being regeneration; a turbine-blower assembly 3 comprising an expansion turbine 4 and a blower or booster 5 with shafts coupled, the blower possibly being fitted with a retrigrant (not shown); a heat exchanger 6 constituting the line heat exchange of the installation; a double distillation column 7 comprising a column medium pressure B surmounted by a low column pressure 9, with a vaporizer-condenser 10 putting the overhead vapor (azole) of column 8 in relation heat exchange with the tank liquid (oxygen) from column 9; a liquid oxygen tank 11 of which the bottom is connected to a liquid oxygen pump 12; and a liquid nitrogen tank 13, the bottom of which is connected to a liquid nitrogen pump 14.
- This installation is intended to supply, via a pipe 15, gaseous oxygen under high pressure predetermined, which can be between a few bars and a few dozen bars (in this brief, the pressures considered are absolute pressures).
- liquid oxygen drawn from the tank from column 9 via line 16 and stored in the tank 11, is brought to high pressure by the pump 12 in the liquid state, then vaporized and reheated under this high pressure in passages 17 of the exchanger 6.
- the heat necessary for this vaporization and reheating, as well as reheating and possibly to the vaporization of other fluids drawn from the double column, is supplied by the air to be distilled, under the conditions following.
- All of the air to be distilled is compressed by the compressor 1 at a first high pressure markedly higher than average column pressure 8, in practice greater than 9 bars. Then the air, precooled in 18 and cooled to around room temperature in 19, is purified in one, 2A for example, bottles adsorption, and divided into two fractions.
- the first fraction representing at least 70% of the treated air flow, is boosted to a second high pressure by the booster 5, which is driven by the turbine 4.
- the first fraction of air is then introduced at the end heat exchanger 6 and completely cooled to an intermediate temperature. At this temperature, a fraction of the air continues to cool and is liquefied in passages 20 of the exchanger, then is relaxed at low pressure in an expansion valve 21 and introduced at an intermediate level in the column 9. The rest of the air is relaxed to average pressure in turbine 4 then sent directly, via a pipe 22, at the base of column 8.
- the second fraction is introduced under the first high pressure in exchange line 6, cooled and liquefied until cold end of it in passages 20A, relaxed in an expansion valve 21A and connected to the current from the expansion valve 21.
- Low pressure nitrogen is heated in passages 28 of exchanger 6 then recovered via a pipe 29, while the waste gas, after heating in passages 30 of the exchanger, is used to regenerate an adsorption bottle, the bottle 2B in the example considered, before being evacuated via a pipe 31.
- this air pressure is the pressure of air condensation by heat exchange with oxygen during vaporization under high pressure, i.e. the pressure at which the knee G liquefies of one of the two air fractions, on the diagram heat exchange (temperatures on the abscissa, amounts of heat exchanged on the ordinate) is located slightly to the right of the vertical spraying stage P oxygen under high pressure ( Figure 2).
- the temperature difference at the hot end of the line is adjusted by means of the turbine 4, the suction temperature is indicated in A.
- the diagram in Figure 2 corresponds to the values following digital: first high pressure: 24.5 bars; high oxygen pressure: 10 bars; second high pressure: 31 bars; second fraction of air: 28% of the incoming flow liquefied fraction in 20: very low; liquid production: 40% of the amount of oxygen separate.
- the diagram in Figure 3 corresponds to the values following digital: first high pressure: 28.5 bars; purification temperature: + 12 ° C; second air fraction: 11% of the incoming flow; second high pressure: 36.4 bars; fraction relaxed in 4 to 5.7 bars: 77% of the incoming flow; liquefied fraction in 20: 12% of incoming air flow; high oxygen pressure: 40 bars: liquid production: 35% of the amount of oxygen separated.
- the air from the turbine 4 is sent to a separator pot 35.
- the phase resulting liquid is sent directly to the column 8, while the gas phase is, after heating partial in the heat exchange line, relaxed at low pressure in a second turbine 36 fitted with an appropriate brake 37, then blown into the column 9.
- This variant allows either to produce oxygen impure under good energy conditions thanks to the increased production of liquid which results from the presence of the second turbine, soil increase liquid production at the expense of amount of oxygen separated, or produce only liquid oxygen.
- Figure 6 illustrates another variant in which the first high pressure is that of the penultimate main compressor stage 1.
- the air is divided into two fractions as previously.
- the first fraction is reintroduced at the suction of the last stage of compressor 1, and comes out at higher pressure.
- this air is overpressed every second high pressure in 5 then is treated as explained more high.
- the second fraction of air is directly introduced in the passages 20A of the heat exchange line.
- the installation can produce, in addition to low pressure nitrogen gas coming directly from the head of column 9 and high pressure oxygen gas, nitrogen gas under pressure, obtained by spraying in the line heat exchange of a flow of liquid nitrogen sampled in line 33.
- This nitrogen vaporization can in particular by condensation of the contained air in passages 20 or 20A.
- the installation can produce gaseous oxygen and / or nitrogen gas under at least two pressures different, as explained in EP-A-0 504 029 cited above.
- a small part of the air coming from the blower 5 can be overpressed again by a second blower (not shown), for example coupled to the turbine 36 of FIG. 5, before being cooled and liquefied in the heat exchange line, according to the teaching of the request FR 91 15 935.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
La présente invention est relative à un procédé de production d'oxygène gazeux sous une haute pression d'oxygène.The present invention relates to a method of production of gaseous oxygen under high pressure oxygen.
Dans ce qui suit, le terme "condensation" doit être entendue au sens large, c'est-à-dire recouvrant également la pseudo-condensation, aux pressions supercritiques.In what follows, the term "condensation" should be understood in the broad sense, that is to say also covering pseudo-condensation, at supercritical pressures.
Le EP-A-0 504 029 décrit un procédé de ce type dans lequel la fraction de l'air qui est surpressée à la seconde haute pression est constituée par un très faible débit d'air, dont la seule fonction est d'apporter des calories au voisinage de la température d'admission de la turbine qui détend la fraction de l'air non surpressé.EP-A-0 504 029 describes a process of this type in which the fraction of the air that is overpressed to the second high pressure is constituted by a very low air flow, the only function of which is to supply calories near the intake temperature of the turbine which expands the fraction of unpressurized air.
L'invention a pour but de perfectionner ce procédé connu de manière à en accroítre les performances thermodynamiques sans augmenter l'investissement correspondant.The invention aims to improve this process known in order to increase thermodynamic performance without increasing the corresponding investment.
A cet effet, l'invention a pour objet un procédé du
type précité, selon
la revendication 1.To this end, the invention relates to a method of
aforementioned type, according to
D'autres modes particuliers de réalisation du procédé
suivant l'invention sont décrits dans les revendications
2 à 5.Other particular embodiments of the process
according to the invention are described in the
Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels :
- la Figure 1 représente schématiquement une installation capable d'opérer selon un procédé conforme à l'invention;
- la Figure 2 est un diagramme d'échange thermique, obtenu par calcul, correspondant à l'installation de la Figure 1, dans un premier mode de fonctionnement de cette installation; sur ce diagramme, on a porté en abscisses les températures, en degrés Celsius, et en ordonnées les quantités de chaleur échangées;
- la Figure 3 est un diagramme analogue à celui de la Figure 2 mais correspondant à un autre mode de fonctionnement de l'installation de la Figure 1; et
- les Figures 4 à 5 sont des vues analogues à la Figure 1 représentant respectivement trois variantes.
- Figure 1 schematically shows an installation capable of operating according to a method according to the invention;
- Figure 2 is a heat exchange diagram, obtained by calculation, corresponding to the installation of Figure 1, in a first mode of operation of this installation; on this diagram, the temperatures have been plotted on the abscissa, in degrees Celsius, and the quantities of heat exchanged on the ordinate;
- Figure 3 is a diagram similar to that of Figure 2 but corresponding to another mode of operation of the installation of Figure 1; and
- Figures 4 to 5 are views similar to Figure 1 respectively representing three variants.
L'installation de distillation d'air représentée à la Figure
1 comprend essentiellement: un compresseur
d'air 1; un appareil 2 d'épuration de l'air comprimé en
eau et en CO2 par adsorption, cet appareil comprenant
deux bouteilles d'adsorption 2A, 2B dont l'une fonctionne
en adsorption pendant que l'autre est en cours de
régénération; un ensemble turbine-soufflante 3 comprenant
une turbine de détente 4 et une soufflante ou surpresseur
5 dont les arbres sont couplés, la soufflante
étant éventuellement équipée d'un rétrigérant (non représenté);
un échangaur de chaleur 6 constituant la ligne
d'échange thermique de l'installation; une double
colonne de distillation 7 comprenant une colonne
moyenne pression B surmontée d'une colonne basse
pression 9, avec un vaporiseur-condenseur 10 mettant
la vapeur de tête (azole) de la colonne 8 en relation
d'échange thermique avec le liquide de cuve (oxygène)
de la colonne 9; un réservoir d'oxygène liquide 11 dont
le fond est relié à une pompe d'oxygène liquide 12; et
un réservoir d'azote liquide 13 dont le fond est relié à
une pompe d'azote liquide 14.The air distillation installation shown in Figure
1 essentially comprises: a
Cette installation est destinée à fournir, via une conduite
15, de l'oxygène gazeux sous une haute pression
prédéterminée, qui peut être comprise entre quelques
bars et quelques dizaines de bars (dans la présent mémoire,
les pressions considérées sont des pressions absolues).This installation is intended to supply, via a
Pour cela, de l'oxygène liquide soutiré de la cuve
de la colonne 9 via une conduite 16 et stocké dans le
réservoir 11, est amené à la haute pression par la pompe
12 à l'état liquide, puis vaporisé et réchauffé sous
cette haute pression dans des passages 17 de l'échangeur
6.For this, liquid oxygen drawn from the tank
from
La chaleur nécessaire à cette vaporisation et à ce réchauffage, ainsi qu'au réchauffage et éventuellement à la vaporisation d'autres fluides soutirés de la double colonne, est fournie par l'air à distiller, dans les conditions suivantes.The heat necessary for this vaporization and reheating, as well as reheating and possibly to the vaporization of other fluids drawn from the double column, is supplied by the air to be distilled, under the conditions following.
La totalité de l'air à distiller est comprimée par le
compresseur 1 à une première haute pression nettement
supérieure à la moyenne pression de la colonne
8, en pratique supérieure à 9 bars. Puis l'air, prérefroidi
en 18 et refroidi au voisinage de la température ambiante
en 19, est épuré dans l'une, 2A par exemple, des bouteilles
d'adsorption, et divisé en deux fractions.All of the air to be distilled is compressed by the
La première fraction, représentant au moins 70%
du débit d'air traité, est surpressée à une deuxième haute
pression par la surpresseur 5, lequel est entraíné par
la turbine 4.The first fraction, representing at least 70%
of the treated air flow, is boosted to a second high
pressure by the booster 5, which is driven by
the
La première fraction d'air est alors introduite au bout
chaud de l'échangeur 6 et refroidie en totalité jusqu'à
une température intermédiaire. A cette température,
une fraction de l'air poursuit son refroidissement et est
liquéfiée dans des passages 20 de l'échangeur, puis est
détendue à la basse pression dans une vanne de détente
21 et introduite à un niveau intermédiaire dans la
colonne 9. Le reste de l'air est détendu à la moyenne
pression dans la turbine 4 puis envoyé directement, via
une conduite 22, à la base de la colonne 8.The first fraction of air is then introduced at the
La deuxième fraction, éventuellement prérefroidie
vers -40°C par un groupe trigorifique 6A indiqué en traits
mixtes, est introduite sous la première haute pression
dans la ligne d'échange 6, refroidie et liquéfiée jusqu'au
bout froid de celle-ci dans des passages 20A, détendue
dans une vanne de détente 21A et réunie au courant
issu de la vanne de détente 21.The second fraction, possibly pre-cooled
around -40 ° C by a
On reconnaít par ailleurs sur la Figure 1 les conduites
habituelles des installations à double colonne, celle
représentée étant du type dit "à minaret", c'est-à-dire
avec production d'azote sous la basse pression : les
conduites 23 à 25 d'injection dans la colonne 9, à des
niveaux croissants, de "liquide riche" (air enrichi en oxygène)
détendu, de "liquide pauvre inférieur" (azote impur)
détendu et de "liquide pauvre supérieur" (azote pratiquement
pur) détendu, respectivement, ces trois fluides
étant respectivement soutirés à la base, en un point
intermédiaire et au sommet de la colonne 8; et les conduites
26 de soutirage d'azote gazeux partant du sommet
de la colonne 9 et 27 d'évacuation du gaz résiduaire
(azote impur) partant du niveau d'injection du liquide
pauvre inférieur. L'azote basse pression est réchauffé
dans des passages 28 de l'échangeur 6 puis récupéré
via une conduite 29, tandis que le gaz résiduaire, après
réchauffement dans des passages 30 de l'échangeur,
est utilisé pour régénérer une bouteille d'adsorption, la
bouteille 2B dans l'exemple considéré, avant d'être évacué
via une conduite 31.We also recognize in Figure 1 the pipes
usual double column installations, that
represented being of the type called "minaret", that is to say
with nitrogen production under low pressure:
On voit encore sur la Figure 1 qu'une partie de l'azote
liquide moyenne pression est, après détente dans
une vanne de détente 32, stockée dans le réservoir 13,
et qu'une production d'azote liquide et/ou d'oxygène liquide
est fournie via une conduite 33 (pour l'azote) et/ou
34 (pour l'oxygène).We can still see in Figure 1 that part of the nitrogen
medium pressure liquid is, after expansion in
an
De même que dans le procédé du EP-A-0 504 029 précité, pour le choix de la pression de l'air surpressé, on distingue deux cas.As in the process of EP-A-0 504 029 above, for the choice of the pressure of the compressed air, there are two cases.
Lorsque la haute pression d'oxygène est inférieure
à 20 bars environ, cette pression d'air est la pression de
condensation de l'air par échange de chaleur avec l'oxygène
en cours de vaporisation sous la haute pression,
c'est-à-dire la pression pour laquelle le genou G de liquéfaction
de l'une des deux fractions d'air, sur le diagramme
d'échange thermique (températures en abscisses,
quantités de chaleur échangées en ordonnées) est
situé légèrement à droite du palier vertical P de vaporisation
de l'oxygène sous la haute pression (Figure 2).
L'écart de température au bout chaud de la ligne
d'échange est ajusté au moyen de la turbine 4, dont la
température d'aspiration est indiquée en A. Cet écart
est rendu minimal, c'est-à-dire de l'ordre de 2 à 3°C,
vers une température de l'ordre de +10 à +15°C, comme
indiqué en B sur la Figure 2, grâce à l'introduction à cette
température de la seconde fraction d'air dans la ligne
d'échange thermique. C'est cette caractéristique, combinée
à la présence du second genou de liquéfaction
G', correspondant à la liquéfaction de l'autre fraction
d'air, qui permet de resserrer davantage le diagramme
d'échange thermique que dans le cas du FR-A précité.
Il est à noter que ce résultat peut s'obtenir sans machine
supplémentaire. La présence du groupe frigorifique 6A
accentue encore ce phénomène favorable.When the high oxygen pressure is lower
at about 20 bars, this air pressure is the pressure of
air condensation by heat exchange with oxygen
during vaporization under high pressure,
i.e. the pressure at which the knee G liquefies
of one of the two air fractions, on the diagram
heat exchange (temperatures on the abscissa,
amounts of heat exchanged on the ordinate) is
located slightly to the right of the vertical spraying stage P
oxygen under high pressure (Figure 2).
The temperature difference at the hot end of the line
is adjusted by means of the
Le diagramme de la Figure 2 correspond aux valeurs numériques suivantes : première haute pression : 24,5 bars; haute pression d'oxygène : 10 bars; deuxième haute pression : 31 bars; seconde fraction d'air : 28% du débit entrant fraction liquéfiée en 20 : très faible; production de liquide : 40% de la quantité d'oxygène séparé.The diagram in Figure 2 corresponds to the values following digital: first high pressure: 24.5 bars; high oxygen pressure: 10 bars; second high pressure: 31 bars; second fraction of air: 28% of the incoming flow liquefied fraction in 20: very low; liquid production: 40% of the amount of oxygen separate.
Lorsque la haute pression d'oxygène est supérieure
à 20 bars environ, on choisit une pression d'air comprise
entre 30 bars et la pression de condensation de l'air
dans l'oxygène en cours de vaporisation. Dans ce cas
(Figure 3), les genoux de liquéfaction des deux fractions
d'air se décalent vers la gauche par rapport au palier P
de vaporisation de l'oxygène, et la température d'aspiration
de la turbine devient inférieure à celle du palier P.
Par suite, une fraction importante de l'air turbiné se trouve
en moyenne pression sous forme liquide, et le bilan
frigorifique de l'installation est équilibré, avec un écart
de température au bout chaud de la ligne d'échange
thermique de l'ordre de 3°C, en soutirant de l'installation
au moins un produit (oxygène et/ou azote) sous forme
liquide via les conduites 33 et/ou 34. Lorsque la pression
de l'air est de l'ordre de 30 bars, cet équilibre s'obtient
pour un soutirage de liquide de l'ordre de 25% de la production
d'oxygène gazeux sous haute pression, proportion
qui est accrue si la pression de l'air est supérieure
à 30 bars.When the high oxygen pressure is higher
at around 20 bars, an air pressure is chosen
between 30 bars and the condensing air pressure
in oxygen during vaporization. In that case
(Figure 3), the knees liquefying the two fractions
of air shift to the left with respect to bearing P
oxygen vaporization, and suction temperature
of the turbine becomes lower than that of the bearing P.
As a result, a significant fraction of the turbined air is found
at medium pressure in liquid form, and the balance
installation refrigeration system is balanced, with a difference
temperature at the hot end of the exchange line
thermal about 3 ° C, drawing from the installation
at least one product (oxygen and / or nitrogen) in the form
liquid via
Le diagramme de la Figure 3 correspond aux valeurs numériques suivantes : première haute pression: 28,5 bars; température d'épuration : +12°C; seconde fraction d'air: 11% du débit entrant; deuxième haute pression : 36,4 bars; fraction détendue en 4 à 5,7 bars: 77% du débit entrant; fraction liquéfiée en 20 : 12% du débit d'air entrant; haute pression d'oxygène : 40 bars: production de liquide : 35% de la quantité d'oxygène séparé.The diagram in Figure 3 corresponds to the values following digital: first high pressure: 28.5 bars; purification temperature: + 12 ° C; second air fraction: 11% of the incoming flow; second high pressure: 36.4 bars; fraction relaxed in 4 to 5.7 bars: 77% of the incoming flow; liquefied fraction in 20: 12% of incoming air flow; high oxygen pressure: 40 bars: liquid production: 35% of the amount of oxygen separated.
Dans la variante de la Figure 4, l'air issu de la turbine
4 est envoyé dans un pot séparateur 35. La phase
liquide résultante est directement envoyée à la colonne
8, tandis que la phase gazeuse est, après réchauffement
partiel dans la ligne d'échange thermique, détendue
à la basse pression dans une seconde turbine 36
munie d'un frein approprié 37, puis insufflée dans la colonne
9. Cette variante permet soit de produire de l'oxygène
impur dans de bonnes conditions énergétiques
grâce à l'augmentation de la production de liquide qui
résulte de la présence de la deuxième turbine, soil
d'augmenter la production de liquide aux dépens de la
quantité d'oxygène séparé, ou de produire uniquement
de l'oxygène liquide.In the variant of Figure 4, the air from the
Comme représenté sur la Figure 5, il peut être alors
préférable, dans le même contexte, de réchauffer la
phase gazeuse issue du séparateur 35 jusqu'à une température
supérieure à la température d'admission de la
turbine principale 4, avant d'introduire cette phase gazeuse
à l'admission de la turbine 36. Dans ce cas, il peut
être nécessaire, comme représenté, d'introduire dans
la ligne d'échange thermique l'air qui s'échappe de la
turbine 36 et de le refroidir jusqu'au bout froid de cette
ligne d'échange, avant de l'introduire dans la colonne 8.As shown in Figure 5, it can then be
preferable, in the same context, to warm the
gas phase from
La Figure 6 illustre une autre variante dans laquelle
la première haute pression est celle de l'avant-dernier
étage du compresseur principal 1. Après épuration en
2 à cette pression, l'air est divisé en deux fractions comme
précédemment. La première fraction est réintroduite
à l'aspiration du dernier étage du compresseur 1, et en
ressort à une pression plus élevée. Puis, après prérefroidissement
en 38, cet air est surpressé à la seconde
haute pression en 5 puis est traité comme expliqué plus
haut. La seconde fraction d'air est directement introduite
dans les passages 20A de la ligne d'échange thermique.Figure 6 illustrates another variant in which
the first high pressure is that of the penultimate
On a également montré sur la Figure 6 que l'installation
peut produire, outre l'azote gazeux basse pression
provenant directement de la tête de la colonne 9 et
l'oxygène gazeux haute pression, de l'azote gazeux
sous pression, obtenu par vaporisation dans la ligne
d'échange thermique d'un débit d'azote liquide prélevé
dans la conduite 33. Cette vaporisation d'azote peut notamment
s'effectuer par condensation de l'air contenu
dans les passages 20 ou 20A.It has also been shown in Figure 6 that the installation
can produce, in addition to low pressure nitrogen gas
coming directly from the head of
De plus, l'installation peut produire de l'oxygène gazeux et/ou de l'azote gazeux sous au moins deux pressions différentes, de la manière expliquée dans le EP-A-0 504 029 précité.In addition, the installation can produce gaseous oxygen and / or nitrogen gas under at least two pressures different, as explained in EP-A-0 504 029 cited above.
Eventuellement, une faible partie de l'air issu de la
soufflante 5 peut être de nouveau surpressée par une
seconde soufflante (non représentée), par exemple
couplée à la turbine 36 de la Figure 5, avant d'être refroidie
et liquéfiée dans la ligne d'échange thermique,
suivant l'enseignement de la demande FR 91 15 935.Possibly, a small part of the air coming from the
blower 5 can be overpressed again by a
second blower (not shown), for example
coupled to the
Claims (5)
- Process for the production of gaseous oxygen under a high oxygen pressure by distilling air in a double-column unit (7) comprising a medium-pressure column (8), which operates at a pressure called medium pressure, and a low-pressure column (9), which operates at a pressure called low pressure, pumping (at 12) liquid oxygen withdrawn from the bottom of the low-pressure column (9), and vaporizing (at 6) the compressed liquid oxygen by heat exchange with air in a heat exchange line (6) of the unit, in which process:all of the air to be distilled is compressed by means of a main air compressor (1) of the unit to a first high pressure substantially higher than the medium pressure, and this is divided into a first and a second fraction;the said first fraction is pressurized further to a second high pressure; andthe entire first fraction is cooled in the heat exchange line down to an intermediate temperature, at which temperature one portion is expanded in a first turbine (4) down to the medium pressure, then fed into the medium-pressure column (8), while the remainder continues its cooling and is liquefied, expanded in an expansion valve (21) and fed into the double-column (7); the said first fraction representing at least 70% of the flow of treated air, and in which process the said second fraction is cooled and liquefied in a single stream at the said first high pressure and, after expansion in an expansion valve (21A), it is fed into the double column.
- Process according to Claim 1, characterized in that the gaseous fraction of the air from the first turbine (4) is expanded in a second turbine (36), down to the low pressure, this gaseous fraction being partly warmed before its expansion in the second turbine, and the output from the latter turbine being injected into the low-pressure column (9), possibly after cooling.
- Process according to Claim 1 or 2, characterized in that the air is brought to the first high pressure by means of only some of the stages of the air compressor (1), the air is purified of water and of carbon dioxide (at 2) at this first high pressure, and then the said first fraction is compressed by means of the last stage or stages of this compressor.
- Process according to Claim 3, characterized in that at least some of the air leaving the last stage of the compressor (1) is further pressurized by means of a blower (5), coupled to the first turbine (4).
- Process according to any one of Claims 1 to 4, characterized in that the said second fraction is precooled by means of a refrigerating unit (6A) before it is fed into the heat exchange line (6).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9301622A FR2701553B1 (en) | 1993-02-12 | 1993-02-12 | Method and installation for producing oxygen under pressure. |
FR9301622 | 1993-02-12 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0611218A1 EP0611218A1 (en) | 1994-08-17 |
EP0611218B1 EP0611218B1 (en) | 1998-11-04 |
EP0611218B2 true EP0611218B2 (en) | 2002-08-07 |
Family
ID=9444023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94400300A Expired - Lifetime EP0611218B2 (en) | 1993-02-12 | 1994-02-11 | Process and installation for producing oxygen under pressure |
Country Status (10)
Country | Link |
---|---|
US (1) | US5426947A (en) |
EP (1) | EP0611218B2 (en) |
JP (1) | JPH06241650A (en) |
CN (1) | CN1101924C (en) |
AU (1) | AU660385B2 (en) |
CA (1) | CA2115399C (en) |
DE (1) | DE69414282T3 (en) |
ES (1) | ES2124856T5 (en) |
FR (1) | FR2701553B1 (en) |
ZA (1) | ZA94968B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19815885A1 (en) * | 1998-04-08 | 1999-10-14 | Linde Ag | Air separation method producing gas, or gas and liquid e.g. for steel plant |
FR2782544B1 (en) * | 1998-08-19 | 2005-07-08 | Air Liquide | PUMP FOR A CRYOGENIC LIQUID AND PUMP GROUP AND DISTILLATION COLUMN EQUIPPED WITH SUCH A PUMP |
FR2828273A1 (en) * | 2001-07-31 | 2003-02-07 | Air Liquide | Air distillation method uses two adsorbers to purify air in operating cycle with adsorption and regeneration phases |
US7437890B2 (en) * | 2006-01-12 | 2008-10-21 | Praxair Technology, Inc. | Cryogenic air separation system with multi-pressure air liquefaction |
US7487648B2 (en) * | 2006-03-10 | 2009-02-10 | Praxair Technology, Inc. | Cryogenic air separation method with temperature controlled condensed feed air |
FR2928446A1 (en) * | 2008-03-10 | 2009-09-11 | Air Liquide | METHOD FOR MODIFYING AN AIR SEPARATION APPARATUS BY CRYOGENIC DISTILLATION |
DE102009048456A1 (en) * | 2009-09-21 | 2011-03-31 | Linde Aktiengesellschaft | Method and apparatus for the cryogenic separation of air |
DE102012017488A1 (en) | 2012-09-04 | 2014-03-06 | Linde Aktiengesellschaft | Method for building air separation plant, involves selecting air separation modules on basis of product specification of module set with different air pressure requirements |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4303428A (en) † | 1979-07-20 | 1981-12-01 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Cryogenic processes for separating air |
EP0464630A1 (en) † | 1990-06-27 | 1992-01-08 | Praxair Technology, Inc. | Cryogenic air separation with dual product boiler |
US5157926A (en) † | 1989-09-25 | 1992-10-27 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for refrigerating, corresponding refrigerating cycle and their application to the distillation of air |
EP0588690A1 (en) † | 1992-09-16 | 1994-03-23 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Cryogenic treatment installation, particularly for the destillation of air |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102074A (en) * | 1985-10-30 | 1987-05-12 | 株式会社日立製作所 | Method of separating gas |
JP2909678B2 (en) * | 1991-03-11 | 1999-06-23 | レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method and apparatus for producing gaseous oxygen under pressure |
FR2674011B1 (en) * | 1991-03-11 | 1996-12-20 | Maurice Grenier | PROCESS AND PLANT FOR PRODUCING PRESSURE GAS OXYGEN. |
-
1993
- 1993-02-12 FR FR9301622A patent/FR2701553B1/en not_active Expired - Fee Related
-
1994
- 1994-01-27 US US08/186,844 patent/US5426947A/en not_active Expired - Lifetime
- 1994-02-07 JP JP6013677A patent/JPH06241650A/en active Pending
- 1994-02-08 CN CN94101375A patent/CN1101924C/en not_active Expired - Fee Related
- 1994-02-10 CA CA002115399A patent/CA2115399C/en not_active Expired - Fee Related
- 1994-02-11 EP EP94400300A patent/EP0611218B2/en not_active Expired - Lifetime
- 1994-02-11 ZA ZA94968A patent/ZA94968B/en unknown
- 1994-02-11 AU AU55060/94A patent/AU660385B2/en not_active Ceased
- 1994-02-11 ES ES94400300T patent/ES2124856T5/en not_active Expired - Lifetime
- 1994-02-11 DE DE69414282T patent/DE69414282T3/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4303428A (en) † | 1979-07-20 | 1981-12-01 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Cryogenic processes for separating air |
US5157926A (en) † | 1989-09-25 | 1992-10-27 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for refrigerating, corresponding refrigerating cycle and their application to the distillation of air |
EP0464630A1 (en) † | 1990-06-27 | 1992-01-08 | Praxair Technology, Inc. | Cryogenic air separation with dual product boiler |
EP0588690A1 (en) † | 1992-09-16 | 1994-03-23 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Cryogenic treatment installation, particularly for the destillation of air |
Non-Patent Citations (1)
Title |
---|
De Percin, G.: "La production d'oxygène sous pression", Bulletin of the International Institute of Refrigeration (Supplement) 1955, pp. 27 to 37 † |
Also Published As
Publication number | Publication date |
---|---|
DE69414282T3 (en) | 2003-03-20 |
FR2701553B1 (en) | 1995-04-28 |
DE69414282T2 (en) | 1999-06-17 |
FR2701553A1 (en) | 1994-08-19 |
CA2115399A1 (en) | 1994-08-13 |
EP0611218A1 (en) | 1994-08-17 |
EP0611218B1 (en) | 1998-11-04 |
ES2124856T3 (en) | 1999-02-16 |
JPH06241650A (en) | 1994-09-02 |
ZA94968B (en) | 1994-08-24 |
AU660385B2 (en) | 1995-06-22 |
CN1101924C (en) | 2003-02-19 |
CN1100514A (en) | 1995-03-22 |
DE69414282D1 (en) | 1998-12-10 |
ES2124856T5 (en) | 2003-03-01 |
US5426947A (en) | 1995-06-27 |
CA2115399C (en) | 2005-04-26 |
AU5506094A (en) | 1994-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0504029B1 (en) | Process for the production of gaseous pressurised oxygen | |
EP0576314B2 (en) | Process and installation for the production of gaseous oxygen under pressure | |
EP0689019B1 (en) | Process and apparatus for producing gaseous oxygen under pressure | |
EP0628778B2 (en) | Process and high pressure gas supply unit for an air constituent consuming installation | |
EP0547946B2 (en) | Process for the production of impure oxygen | |
EP0618415B1 (en) | Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air | |
FR2757282A1 (en) | METHOD AND INSTALLATION FOR PROVIDING A VARIABLE FLOW OF AN AIR GAS | |
EP0694746B1 (en) | Process for the production of a gas under pressure in variable quantities | |
EP0789208A1 (en) | Process and installation for the production of gaseous oxygen under high pressure | |
EP0611218B2 (en) | Process and installation for producing oxygen under pressure | |
EP0677713B1 (en) | Process and installation for the production of oxygen by distillation of air | |
EP0641983B1 (en) | Process and installation for the production of gaseous oxygen and/or nitrogen under pressure | |
EP0612967B1 (en) | Process for the production of oxygen and/or nitrogen under pressure | |
EP0595673B1 (en) | Process and installation for the production of nitrogen and oxygen | |
EP0641982B1 (en) | Process and installation for the production of at least a gas from air under pressure | |
FR2674011A1 (en) | Method and installation for producing gaseous oxygen under pressure | |
FR2685460A1 (en) | Method and installation for producing gaseous oxygen under pressure by distillation of air |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940216 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL SE |
|
17Q | First examination report despatched |
Effective date: 19960118 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 69414282 Country of ref document: DE Date of ref document: 19981210 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19981209 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2124856 Country of ref document: ES Kind code of ref document: T3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: LINDE AKTIENGESELLSCHAFT Effective date: 19990803 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: LINDE AKTIENGESELLSCHAFT |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR |
|
27A | Patent maintained in amended form |
Effective date: 20020807 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): BE DE ES FR GB IT NL SE |
|
NLR2 | Nl: decision of opposition | ||
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Date of ref document: 20021106 Kind code of ref document: T5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080212 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080122 Year of fee payment: 15 Ref country code: GB Payment date: 20080118 Year of fee payment: 15 Ref country code: DE Payment date: 20080118 Year of fee payment: 15 Ref country code: SE Payment date: 20080121 Year of fee payment: 15 Ref country code: NL Payment date: 20080118 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080114 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20080208 Year of fee payment: 15 |
|
BERE | Be: lapsed |
Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION Effective date: 20090228 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090211 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090212 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090302 |