EP0694746B1 - Process for the production of a gas under pressure in variable quantities - Google Patents
Process for the production of a gas under pressure in variable quantities Download PDFInfo
- Publication number
- EP0694746B1 EP0694746B1 EP95401774A EP95401774A EP0694746B1 EP 0694746 B1 EP0694746 B1 EP 0694746B1 EP 95401774 A EP95401774 A EP 95401774A EP 95401774 A EP95401774 A EP 95401774A EP 0694746 B1 EP0694746 B1 EP 0694746B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- pressure
- liquid
- heat
- exchange line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000007788 liquid Substances 0.000 claims description 58
- 238000009834 vaporization Methods 0.000 claims description 30
- 230000008016 vaporization Effects 0.000 claims description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 238000004821 distillation Methods 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 17
- 238000009434 installation Methods 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000000047 product Substances 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 239000012263 liquid product Substances 0.000 claims description 2
- 239000003638 chemical reducing agent Substances 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 239000001301 oxygen Substances 0.000 description 22
- 229910052760 oxygen Inorganic materials 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 20
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 10
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000009833 condensation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000005494 condensation Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04236—Integration of different exchangers in a single core, so-called integrated cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04472—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
- F25J3/04496—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
- F25J3/04503—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
- F25J3/04509—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/912—External refrigeration system
- Y10S62/913—Liquified gas
Definitions
- the pressures indicated are absolute pressures.
- condensation and “vaporization” is meant either condensation or vaporization proper, or pseudo-condensation or a pseudo-vaporization, depending on whether the pressures are sub-critical or super-critics.
- Processes of this type are sometimes called “pump and air-oxygen rocker processes or air-nitrogen ".
- the invention applies particularly to processes called “staggered bearings", the examples of which are described in the applications French patent FR-A-2,674,011; FR-A-2.688.052 and FR-A-2.692.664 and FR-A-2.721.383.
- These processes, in which the liquefaction of air takes place at a temperature below the vaporization temperature of oxygen under its vaporization pressure have advantages interesting both from the point of view of specific energy consumption, that is, the energy required to produce a given quantity gaseous oxygen under pressure.
- the invention aims to provide means for meet a variable demand for oxygen under pressure so particularly simple and without appreciable degradation of performance, nor thermally, that is to say the equilibrium of the exchange line nor on that of air distillation.
- FR-A-1,158,639 describes a process for producing oxygen under pressure in which liquid oxygen stored at low pressure is pumped then vaporized in a heat exchanger against an air flow, one of which variable quantity is condensed. The condensed air is stored and sent to the low pressure column at constant flow. Air for the column medium pressure cools in another heat exchanger against cold gases from the appliance.
- J-A-02293575 discloses a process for producing oxygen under pressure in which liquid oxygen stored at low pressure is pumped then vaporized in a heat exchanger against an air flow therein condenses. A constant flow of condensed air is sent to the column medium pressure. The rest of the air intended for this is cooled in a other heat exchanger.
- the invention relates to a method according to the claim 1.
- the invention also relates to a production installation a pressurized gas with variable flow rate according to claim 11.
- the air distillation installation shown in FIG. 1 essentially comprises: an air compressor 1, an apparatus 2 for purifying the compressed air into water and CO 2 by adsorption, this apparatus comprising two bottles of adsorption 2A, 2B, one of which operates in adsorption while the other is in the process of regeneration, a blower turbine assembly 3 comprising an expansion turbine 4 and a blower or blower 5 whose shafts are coupled, the blower being optionally equipped a refrigerant (not shown), a heat exchanger 6 constituting the heat exchange line of the installation, a double distillation column 7 comprising a medium pressure column 8 surmounted by a low pressure column 9, with a vaporizer -condenser 10 putting the overhead vapor (nitrogen) from the column 8 in heat exchange relation with the tank liquid (oxygen) from the column 9, and a liquid oxygen tank 11, the bottom of which e st connected to a liquid oxygen pump 12 and a liquid air tank 13.
- This installation is mainly intended to supply, via a pipe 15, gaseous oxygen under a predetermined high pressure, which can be between approximately 13 ⁇ 10 5 Pa and a few megaPascals.
- All of the air to be distilled is compressed by compressor 1 to a pressure higher than the average pressure of column 8 but lower than high pressure. Then the air, precooled in the vicinity of the room temperature in 19 and cooled to a temperature between + 5 ° C and + 25 ° C in 20, is purified in one, 2A for example, bottles adsorption, and fully pressurized at high pressure by the booster 5, which is driven by the turbine 4.
- the air is then introduced at the hot end of the exchanger 6 and cooled completely up to an intermediate temperature. At this temperature, a fraction of the air continues to cool and is liquefied in passages 21 of the exchanger, then left the exchange line and sent to the reservoir 13 via a line 22.
- Liquid air drawn from this reservoir 13 via a line 24 is sub-cooled in the cold part of the exchange line 6, then is expanded to the low pressure in an expansion valve 25 with adjustable opening and introduced at an intermediate level in column 9.
- part liquid air can be expanded at medium pressure and introduced into column 8.
- Low pressure nitrogen is heated in passages 32 of the exchanger 6 and then evacuated via a line 33, while the waste gas W, after heating in passages 34 of the exchanger, is used to regenerate a bottle of adsorption, the bottle 2B in the example considered, before being evacuated via a pipe 35.
- a pipe 36 has also been shown in FIG. 1 evacuation of liquid oxygen from the installation stitched on the pump discharge 12.
- the high air pressure, at the discharge of the blower, is between approximately 25 ⁇ 10 5 Pa and the condensation pressure of the air by vaporization of the oxygen under the high oxygen pressure.
- the refrigeration balance of the installation is balanced, with a temperature difference at the hot end of the heat exchange line of the order of 3 ° C. , by withdrawing from the installation at least one product, here oxygen, in liquid form, via line 36.
- the liquid air contained in the reservoir 13 being at the high pressure, its latent heat of liquefaction is low, so that the flow additional liquid air sent to column 9 is significantly more greater than the additional oxygen flow that is drawn from it. he the higher the pressure of the liquid air is.
- the quantity of cold gases produced by the double column and sent in the heat exchange line increases, thereby compensating for the reduction in the amount of cold sent to the latter due to the decrease in demand for gaseous oxygen and, consequently, in flow of oxygen vaporized in the passages 18, this drop being obtained in reducing the speed of the pump 12.
- valve 17 closes, and the pump speed 12.
- the liquid level drops in the reservoir11 and increases in reservoir 13.
- this air is taken at the outlet of the apparatus 2 via a line 38, cooled and liquefied in passages additional 21A from the exchange line, and sent as previously to container 13 via line 22.
- the liquefaction passages 21 of the air under high pressure are equipped, at the cold end of the exchange line, with a trigger 25A, and the sub-cooling passages of the withdrawn liquid air of the container 13 are equipped, at the same cold end, with the valve trigger 25.
- valves 25 and 25A which ensures the functioning of the air / oxygen switch, similar to which has been described above with regard to FIG. 1.
- the optimum pressure range from the point of view of the thermal equilibrium of the exchange line 6 and that of the distillation conditions, is between 30 ⁇ 10 5 Pa and approximately 35 ⁇ 10 5 Pa.
- the invention also applies to the case where the liquid withdrawn is nitrogen, argon, or another liquid.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
La présente invention est relative à un procédé de production d'un gaz sous pression à débit variable, du type dans lequel on distille de l'air dans une installation de distillation d'air comprenant un appareil de distillation comprenant une colonne moyenne pression et une colonne basse pression opérant à une basse pression et une ligne d'échange thermique pour refroidir l'air par échange de chaleur avec des produits provenant de l'appareil de distillation ; on soutire du liquide de cet appareil, on le stocke dans un récipient sous une pression voisine de la pression atmosphérique et égale à la basse pression, on amène le liquide stocké à une pression de vaporisation, on le vaporise et on le réchauffe sous cette pression dans la ligne d'échange thermique pour former le gaz sous pression, cette vaporisation et ce réchauffement s'accompagnant d'une liquéfaction d'air dans ses passages de liquéfaction d'air de la ligne d'échange thermique ; et dans lequel :
- lors d'une augmentation de la demande du gaz sous pression par rapport au débit nominal, on soutire l'excès demandé, sous forme liquide, du récipient de stockage du liquide soutiré, on l'amène à la pression de vaporisation, et on le vaporise sous cette pression dans la ligne d'échange thermique, et on stocke une quantité correspondante d'air liquéfié par ladite vaporisation dans un récipient de stockage d'air liquide, sous une pression de stockage au moins égale à la pression de fonctionnement de la colonne moyenne pression.
- during an increase in the demand for gas under pressure compared to the nominal flow rate, the required excess is withdrawn, in liquid form, from the container for storing the withdrawn liquid, it is brought to the vaporization pressure, and it is vaporizes under this pressure in the heat exchange line, and stores a corresponding amount of air liquefied by said vaporization in a liquid air storage container, under a storage pressure at least equal to the operating pressure of the medium pressure column.
Dans le présent mémoire, les pressions indiquées sont des pressions absolues. De plus, on entend par "condensation" et "vaporisation" soit une condensation ou une vaporisation proprement dite, soit une pseudo-condensation ou une pseudo-vaporisation, selon que les pressions sont sub-critiques ou super-critiques.In this specification, the pressures indicated are absolute pressures. In addition, by "condensation" and "vaporization" is meant either condensation or vaporization proper, or pseudo-condensation or a pseudo-vaporization, depending on whether the pressures are sub-critical or super-critics.
Les procédés de ce type (voir par exemple le brevet français FR-A-1.158.639) sont parfois appelés "procédés à pompe et à bascule air-oxygène ou air-azote". L'invention s'applique particulièrement aux procédés dits "à paliers décalés", dont les exemples sont décrits dans les demandes de brevet français FR-A-2.674.011 ; FR-A-2.688.052 et FR-A-2.692.664 et FR-A-2.721.383. Ces procédés, dans lesquels la liquéfaction de l'air s'effectue à une température inférieure à la température de vaporisation de l'oxygène sous sa pression de vaporisation, présentent des avantages intéressants tant du point de vue de la consommation en énergie spécifique, c'est-à-dire de l'énergie nécessaire pour produire une quantité donnée d'oxygène gazeux sous pression.Processes of this type (see for example the French patent FR-A-1.158.639) are sometimes called "pump and air-oxygen rocker processes or air-nitrogen ". The invention applies particularly to processes called "staggered bearings", the examples of which are described in the applications French patent FR-A-2,674,011; FR-A-2.688.052 and FR-A-2.692.664 and FR-A-2.721.383. These processes, in which the liquefaction of air takes place at a temperature below the vaporization temperature of oxygen under its vaporization pressure have advantages interesting both from the point of view of specific energy consumption, that is, the energy required to produce a given quantity gaseous oxygen under pressure.
L'invention a pour but de fournir des moyens permettant de satisfaire à une demande variable en oxygène sous pression de façon particulièrement simple et sans dégradation sensible des performances, ni sur le plan thermique, c'est-à-dire de l'équilibre de la ligne d'échange thermique, ni sur celui de la distillation de l'air.The invention aims to provide means for meet a variable demand for oxygen under pressure so particularly simple and without appreciable degradation of performance, nor thermally, that is to say the equilibrium of the exchange line nor on that of air distillation.
FR-A-1.158.639 décrit un procédé de production d'oxygène sous pression dans lequel de l'oxygène liquide stocké à basse pression est pompé puis vaporisé dans un échangeur de chaleur contre un débit d'air dont une quantité variable est condensée. L'air condensé est stocké et envoyé à la colonne basse pression en débit constant. L'air destiné à la colonne moyenne pression se refroidit dans un autre échangeur de chaleur contre les gaz froids de l'appareil.FR-A-1,158,639 describes a process for producing oxygen under pressure in which liquid oxygen stored at low pressure is pumped then vaporized in a heat exchanger against an air flow, one of which variable quantity is condensed. The condensed air is stored and sent to the low pressure column at constant flow. Air for the column medium pressure cools in another heat exchanger against cold gases from the appliance.
J-A-02293575 divulgue un procédé de production d'oxygène sous pression dans lequel de l'oxygène liquide stocké à basse pression est pompé puis vaporisé dans un échangeur de chaleur contre un débit d'air qui s'y condense. Un débit constant d'air condensé est envoyé à la colonne moyenne pression. Le reste de l'air destiné à celle-ci est refroidi dans un autre échangeur de chaleur.J-A-02293575 discloses a process for producing oxygen under pressure in which liquid oxygen stored at low pressure is pumped then vaporized in a heat exchanger against an air flow therein condenses. A constant flow of condensed air is sent to the column medium pressure. The rest of the air intended for this is cooled in a other heat exchanger.
A cet effet, l'invention a pour objet un procédé selon la
revendication 1.To this end, the invention relates to a method according to the
Ce procédé peut comporter une ou plusieurs des caractéristiques suivantes :
- le palier de stockage d'air liquide est à une pression voisine de la pression à laquelle s'effectue ladite liquéfaction d'air ;
- le récipient de stockage d'air liquide est à une pression comprise entre 30 x 105 Pa et 35 x 105 Pa environ ;
- la totalité du liquide vaporisé est soutirée du récipient de stockage de liquide ;
- on effectue ladite liquéfaction d'air à une température inférieure à la température de vaporisation du liquide sous ladite pression de vaporisation, et on évacue au moins un produit liquide de l'installation ; et
- on comprime l'air destiné au récipient de stockage d'air liquide à ladite pression de stockage et le reste de l'air à une haute pression supérieure à cette pression de stockage.
- the liquid air storage level is at a pressure close to the pressure at which said air liquefaction takes place;
- the liquid air storage container is at a pressure of between 30 × 10 5 Pa and approximately 35 × 10 5 Pa;
- all of the vaporized liquid is withdrawn from the liquid storage container;
- said air liquefaction is carried out at a temperature below the vaporization temperature of the liquid under said vaporization pressure, and at least one liquid product is removed from the installation; and
- the air intended for the liquid air storage container is compressed to said storage pressure and the rest of the air to a high pressure greater than this storage pressure.
L'invention a également pour objet une installation de production
d'un gaz sous pression à débit variable selon la revendication 11.The invention also relates to a production installation
a pressurized gas with variable flow rate according to
Suivant d'autres caractéristiques de l'installation :
- le récipient de stockage d'air liquide est relié auxdits passages de liquéfaction d'air par l'intermédiaire d'une vanne de détente ;
- les moyens de compression comprennent un compresseur d'air principal suivi d'une soufflante adaptée pour surpresser une fraction de l'air non destinée au récipient de stockage d'air liquide.
- the liquid air storage container is connected to said air liquefaction passages by means of an expansion valve;
- the compression means comprise a main air compressor followed by a blower adapted to overpress a fraction of the air not intended for the liquid air storage container.
Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés sur lesquels :
- la figure 1 représente schématiquement une installation de production d'oxygène gazeux sous pression à débit variable conforme à l'invention ; et
- la figure 2 est une vue analogue d'une variante.
- FIG. 1 schematically represents an installation for producing gaseous oxygen under pressure with variable flow rate according to the invention; and
- Figure 2 is a similar view of a variant.
L'installation de distillation d'air représentée à la figure 1 comprend
essentiellement : un compresseur d'air 1, un appareil 2 d'épuration de l'air
comprimé en eau et en CO2 par adsorption, cet appareil comprenant deux
bouteilles d'adsorption 2A, 2B dont l'une fonctionne en adsorption pendant
que l'autre est en cours de régénération, un ensemble turbine soufflante 3
comprenant une turbine de détente 4 et une soufflante ou surpresseur 5 dont
les arbres sont couplés, la soufflante étant éventuellement équipée d'un
réfrigérant (non représenté), un échangeur de chaleur 6 constituant la
ligne d'échange thermique de l'installation, une double colonne de
distillation 7 comprenant une colonne moyenne
pression 8 surmontée d'une colonne basse pression 9, avec un vaporiseur-condenseur
10 mettant la vapeur de tête (azote) de la colonne 8 en relation
d'échange thermique avec le liquide de cuve (oxygène) de la colonne 9, et
un réservoir d'oxygène liquide 11 dont le fond est relié à une pompe
d'oxygène liquide 12 et un réservoir d'air liquide 13.The air distillation installation shown in FIG. 1 essentially comprises: an
Cette installation est principalement destinée à fournir, via une
conduite 15, de l'oxygène gazeux sous une haute pression prédéterminée,
qui peut être comprise entre environ 13 x 105 Pa et quelques mégaPascal.This installation is mainly intended to supply, via a
Pour cela, de l'oxygène liquide, soutiré de la cuve de la colonne 9
via une conduite 16 équipée d'une vanne 17 de régulation du niveau de
liquide dans la cuve de la colonne 9, est stocké dans le réservoir 11. De
l'oxygène liquide soutiré de ce réservoir est amené à la haute pression de
vaporisation par la pompe 12 à l'état liquide, puis vaporisé et réchauffé sous
cette haute pression dans des passages 18 de la ligne d'échange 6.For this, liquid oxygen, withdrawn from the tank of
La chaleur nécessaire à cette vaporisation et à ce réchauffage, ainsi qu'au réchauffage et éventuellement à la vaporisation d'autres fluides soutirés de la double colonne, est fournie par l'air à distiller, dans les conditions suivantes :The heat necessary for this vaporization and this reheating, as well as heating and possibly vaporizing other fluids withdrawn from the double column, is supplied by the air to be distilled, in the following conditions:
La totalité de l'air à distiller est comprimée par le compresseur 1 à
une pression supérieure à la moyenne pression de la colonne 8 mais
inférieure à la haute pression. Puis l'air, prérefroidi au voisinage de la
température ambiante en 19 et refroidi à une température comprise entre
+5°C et +25°C en 20, est épuré dans l'une, 2A par exemple, des bouteilles
d'adsorption, et surpressé en totalité à la haute pression par le
surpresseur 5, lequel est entraíné par la turbine 4.All of the air to be distilled is compressed by
L'air est alors introduit au bout chaud de l'échangeur 6 et refroidi
en totalité jusqu'à une température intermédiaire. A cette température, une
fraction de l'air poursuit son refroidissement et est liquéfiée dans des
passages 21 de l'échangeur, puis est sortie de la ligne d'échange et
envoyée dans le réservoir 13 via une conduite 22.The air is then introduced at the hot end of the
De l'air liquide soutiré de ce réservoir 13 via une conduite 24 est
sous-refroidi dans la partie froide de la ligne d'échange 6, puis est détendu à
la basse pression dans une vanne de détente 25 à ouverture réglable et
introduit à un niveau intermédiaire dans la colonne 9. En variante, une partie
de l'air liquide peut être détendue à la moyenne pression et introduite dans
la colonne 8.Liquid air drawn from this
Le reste de l'air surpressé en 5 est détendu à la moyenne
pression dans la turbine 4 puis envoyé directement, via une conduite 26, à
la base de la colonne 8.The rest of the air boosted in 5 is relaxed to the average
pressure in the
On reconnaít par ailleurs sur la figure 1 les conduites habituelles
des installations à double colonne, celle représentée étant du type dit "à
minaret", c'est-à-dire avec production d'azote sous la basse pression : les
conduites 27 à 29 d'injection dans la colonne 9, à des niveaux croissants de
"liquide riche" (air enrichi en oxygène) détendu, de "liquide pauvre inférieur"
(azote impur) détendu et de "liquide pauvre supérieur" (azote pratiquement
pur) détendu, respectivement, ces trois fluides étant respectivement soutirés
à la base, en un point intermédiaire et au sommet de la colonne 8, et les
conduites 30 de soutirage d'azote gazeux partant du sommet de la
colonne 9 et 31 d'évacuation du gaz résiduaire (azote impur) partant du
niveau d'injection du liquide pauvre inférieur. L'azote basse pression est
réchauffé dans des passages 32 de l'échangeur 6 puis évacué via une
conduite 33, tandis que le gaz résiduaire W, après réchauffement dans des
passages 34 de l'échangeur, est utilisé pour régénérer une bouteille
d'adsorption, la bouteille 2B dans l'exemple considéré, avant d'être évacué
via une conduite 35.We also recognize in Figure 1 the usual pipes
double column installations, the one shown being of the so-called "to
minaret ", that is to say with nitrogen production under low pressure:
On a encore représenté sur la figure 1 une conduite 36
d'évacuation d'oxygène liquide de l'installation piquée sur la conduite de
refoulement de la pompe 12.A
La haute pression d'air, au refoulement de la soufflante, est
comprise entre 25 x 105 Pa environ et la pression de condensation de l'air
par vaporisation de l'oxygène sous la haute pression d'oxygène. Comme
expliqué dans d'autres demandes de brevet qui décrivent des procédés "à
pompe" et "à paliers décalés", c'est-à-dire dans lesquels, comme dans la
présente invention, l'air qui apporte la chaleur de vaporisation de l'oxygène
se condense au-dessous de la température de vaporisation de cet oxygène,
le bilan frigorifique de l'installation est équilibré, avec un écart de
température au bout chaud de la ligne d'échange thermique de l'ordre de
3°C, en soutirant de l'installation au moins un produit, ici de l'oxygène, sous
forme liquide, via la conduite 36. The high air pressure, at the discharge of the blower, is between approximately 25 × 10 5 Pa and the condensation pressure of the air by vaporization of the oxygen under the high oxygen pressure. As explained in other patent applications which describe "pump" and "offset bearing" processes, that is to say in which, as in the present invention, the air which provides the heat of vaporization of the oxygen condenses below the vaporization temperature of this oxygen, the refrigeration balance of the installation is balanced, with a temperature difference at the hot end of the heat exchange line of the order of 3 ° C. , by withdrawing from the installation at least one product, here oxygen, in liquid form, via
En fonctionnement nominal, le niveau de liquide dans le
réservoir 13 est constant, ainsi que celui du réservoir 11.In nominal operation, the liquid level in the
Lorsque la demande en oxygène gazeux sous pression, sur la
conduite de production 15, varie, on maintient constant le débit d'air
comprimé par le compresseur 1, ainsi que la pression de refoulement de ce
compresseur, et on procède de la manière suivante.When the demand for gaseous oxygen under pressure, on the
Lorsque la demande en oxygène diminue, on augmente
l'ouverture de la vanne 25 afin d'accroítre la quantité de liquide dans la
colonne 9. Pour maintenir le niveau de liquide en cuve de cette colonne, la
vanne 17 s'ouvre, de sorte qu'un débit accru d'oxygène liquide est envoyé
dans le réservoir 11.When the oxygen demand decreases, we increase
the opening of the
L'air liquide contenu dans le réservoir 13 étant à la haute
pression, sa chaleur latente de liquéfaction est faible, de sorte que le débit
supplémentaire d'air liquide envoyé dans la colonne 9 est sensiblement plus
grand que le débit supplémentaire d'oxygène que l'on soutire de celle-ci. Il
est d'autant plus grand que la pression de l'air liquide est plus élevée. Par
suite, la quantité de gaz froids produite par la double colonne et envoyée
dans la ligne d'échange thermique augmente, compensant d'autant la
réduction de la quantité de froid envoyée dans cette dernière du fait de la
baisse de la demande en oxygène gazeux et, par conséquent, du débit
d'oxygène vaporisé dans les passages 18, cette baisse étant obtenue en
réduisant la vitesse de la pompe 12.The liquid air contained in the
Par conséquent, le niveau de liquide monte dans le réservoir 11
et il baisse dans ce réservoir 13.Consequently, the liquid level rises in the
Il est à noter que l'ajout d'air liquide supplémentaire nécessite une
augmentation de la puissance de distillation dans la double colonne 7, ce
qui est obtenu grâce au fait que la diminution du débit d'oxygène liquide
vaporisé en 6 provoque une augmentation du débit gazeux introduit dans la
colonne 8.It should be noted that the addition of additional liquid air requires a
increase in the distillation power in the double column 7, this
which is achieved by the fact that the decrease in the flow of liquid oxygen
vaporized in 6 causes an increase in the gas flow introduced into the
Inversement, lors d'une augmentation de la demande en oxygène
gazeux, on réduit l'ouverture de la vanne 25, ce qui réduit le débit d'air
liquide envoyé dans la colonne 9, la vanne 17 se ferme, et on augmente la
vitesse de la pompe 12. Ainsi, le niveau de liquide baisse dans le
réservoir11 et augmente dans le réservoir 13. Conversely, during an increase in oxygen demand
gaseous, reducing the opening of the
Pour des raisons analogues à ce qui a été expliqué plus haut, ceci a pour conséquence une baisse de la quantité de gaz froids envoyée dans la ligne d'échange thermique, cette baisse compensant dans une large mesure l'augmentation de la quantité de froid introduite dans cette dernière du fait du débit supplémentaire d'oxygène liquide à vaporiser.For reasons similar to what has been explained above, this results in a decrease in the quantity of cold gases sent in the heat exchange line, this drop offsetting to a large extent measures the increase in the amount of cold introduced into the latter due to the additional flow of liquid oxygen to be vaporized.
On comprend qu'il est avantageux de stocker l'air liquide en 13 à
la pression la plus élevée possible, pour amplifier les phénomènes expliqués
ci-dessus. Toutefois, pour des raisons technologiques ou parce que la haute
pression d'air est super-critique, on peut, en variante, détendre l'air liquide
dans une vanne de détente 37 prévue dans la conduite 22, avant de
l'introduire dans le réservoir 13, jusqu'à une pression intermédiaire entre la
haute pression d'air et la moyenne pression de la colonne 8.We understand that it is advantageous to store the liquid air in 13 to
the highest possible pressure, to amplify the phenomena explained
above. However, for technological reasons or because the high
air pressure is super-critical, we can, alternatively, relax the liquid air
in an
Dans le cas où l'air liquide est stocké à une pression
intermédiaire, il est intéressant, du point de vue énergétique, de ne pas
comprimer à la haute pression l'air destiné au récipient de stockage 13.
Ainsi, dans la variante de la figure 2, cet air est prélevé à la sortie de
l'appareil 2 via une conduite 38, refroidi et liquéfié dans des passages
supplémentaires 21A de la ligne d'échange, et envoyé comme
précédemment au récipient 13 via la conduite 22.In the case where the liquid air is stored at a pressure
intermediate, it is interesting, from an energy point of view, not to
compress at high pressure the air intended for the
Les passages de liquéfaction 21 de l'air sous la haute pression
sont équipés, au bout froid de la ligne d'échange, d'une vanne de
détente 25A, et les passages de sous-refroidissement de l'air liquide soutiré
du récipient 13 sont équipés, au même bout froid, de la vanne de
détente 25.The
Dans cette variante, c'est la commande des vannes 25 et 25A qui
assure le fonctionnement de la bascule air/oxygène, analogue par ailleurs à
ce qui a été décrit plus haut en regard de la figure 1.In this variant, it is the control of
La gamme de pressions optimales, du point de vue de l'équilibre
thermique de la ligne d'échange 6 et de celui des conditions de distillation,
est comprise entre 30 x 105 Pa et 35 x 105 Pa environ.The optimum pressure range, from the point of view of the thermal equilibrium of the
L'invention s'applique également au cas où le liquide soutiré est de l'azote, de l'argon ou un autre liquide.The invention also applies to the case where the liquid withdrawn is nitrogen, argon, or another liquid.
Claims (15)
- Method for producing a gas under pressure at variable flow rate, of the type in which air is distilled in an air distillation installation comprising a distillation apparatus (7) comprising an intermediate-pressure column (8) and a low-pressure column (9) operating at low pressure, and a heat-exchange line (6) for cooling air by heat exchange with products originating from the distillation apparatus; liquid is withdrawn from this apparatus, it is stored in a container (11) at a pressure close to atmospheric pressure and equal to the low pressure, the stored liquid is brought to a vaporization pressure, it is vaporized and it is heated at this pressure in the heat-exchange line in order to form the pressurized gas, this vaporization and this heating being accompanied by liquefaction of air in its air-liquefaction passages of the heat-exchange line; and in which:in the event of an increase in the demand for the pressurized gas compared to the nominal flow rate, the required excess is withdrawn in liquid form from the withdrawn-liquid storage container (11), it is brought (at 12) to the vaporization pressure and it is vaporized at this pressure (at 18) in the heat-exchange line (6), and a corresponding quantity of air liquified by the said vaporization is stored in a liquid-air storage container (13), at a storage pressure at least equal to the operating pressure of the intermediate-pressure column,
- Method according to Claim 1, characterized in that the liquid-air storage container (13) is at a pressure close to the pressure at which the said air liquefaction takes place.
- Method according to Claim 1 or 2, characterized in that the liquid-air storage container (13) is at a pressure between approximately 30 H 105 Pa and 35 H 105 Pa.
- Method according to any one of Claims 1 to 3 characterized in that all the vaporized liquid is withdrawn from the liquid-storage container (11).
- Method according to any one of Claims 1 to 4, characterized in that the said liquefaction of air is carried out at a temperature below the vaporization temperature of the liquid withdrawn at the said vaporization pressure, and at least one liquid product is removed from the installation.
- Method according to any one of Claims 1 to 5, characterized in that the air (38) intended for the liquid-air storage container (13) is compressed (at 1) to the said storage pressure and the rest of the air is compressed to a high pressure higher than this storage pressure.
- Method according to one of Claims 1 to 6, in which all the air intended for the distillation apparatus (7) is sent to the heat-exchange line (6) where it cools.
- Method according to one of Claims 1 to 7, in which the amount of liquid sent to the heat-exchange line is varied by varying the speed of a pump (12) which serves to bring the liquid to the vaporization pressure.
- Method according to one of Claims 1 to 8, in which a compressor (1) serves to compress the air intended for the apparatus and, when the demand for pressurized gas varies, the flow rate of air compressed by the compressor is kept constant.
- Method according to one of Claims 1 to 9, in which the corresponding additional amount of liquid air is sent to the low-pressure column.
- Plant for production of a gas under pressure at variable flow rate, of the type comprising an air distillation apparatus (7) comprising an intermediate-pressure column (8) and a low-pressure column (9), a heat-exchange line (6) for cooling the air by heat exchange with products originating from the distillation apparatus, means (16, 17) for withdrawing liquid from the apparatus; means (5) for bringing at least a fraction of the air to be distilled to a high pressure, and sending it into air-liquefaction packages (21; 21, 21A) of the heat-exchange line, a liquid-storage container (11) at a pressure close to atmospheric pressure, connected to the distillation apparatus (7) and provided with means (12) for withdrawing liquid at adjustable flow rate, bringing it to the vaporization pressure and sending it into vaporization passages (18) of the heat-exchange line, and a liquid-air storage container (13) connected upstream to the air-liquefaction passages (21; 21A) of the heat-exchange line and, downstream, via pressure-reduction means (25), to the distillation apparatus, characterized in that the liquid-air storage container (13) is at a markedly higher pressure than the highest operating pressure of the distillation apparatus (7), the expansion means are expansion means with adjustable flow rate and in that the plant includes means (30, 31) for sending nitrogen-rich gases from the low-pressure column (9) to the heat-exchange line.
- Plant according to Claim 11, characterized in that the container (11) for storing the liquid is interposed between the air-distillation apparatus (7) and means (12) for bringing all the liquid to be vaporized to the vaporization pressure.
- Plant according to either of Claims 11 and 12, characterized in that the liquid-air storage container (13) is connected to the said air-liquefaction passages (21; 21A) via a pressure-reducer valve (37).
- Plant according to any one of Claims 11 to 13, characterized in that the compression means (1, 5) comprises a main air compressor (1) followed by a blower (5) designed to supercharge a fraction of the air not intended for the liquid-air storage container (13).
- Plant according to one of Claims 11 to 14, comprising means (1, 5) for sending all the air intended for the heat-exchange line (6).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9409481A FR2723184B1 (en) | 1994-07-29 | 1994-07-29 | PROCESS AND PLANT FOR THE PRODUCTION OF GAS OXYGEN UNDER PRESSURE WITH VARIABLE FLOW RATE |
FR9409481 | 1994-07-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0694746A1 EP0694746A1 (en) | 1996-01-31 |
EP0694746B1 true EP0694746B1 (en) | 2000-04-19 |
Family
ID=9465927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95401774A Expired - Lifetime EP0694746B1 (en) | 1994-07-29 | 1995-07-26 | Process for the production of a gas under pressure in variable quantities |
Country Status (10)
Country | Link |
---|---|
US (1) | US5526647A (en) |
EP (1) | EP0694746B1 (en) |
JP (1) | JPH08170875A (en) |
KR (1) | KR100394311B1 (en) |
CN (1) | CN1119607C (en) |
CA (1) | CA2154984A1 (en) |
DE (1) | DE69516339T2 (en) |
ES (1) | ES2145885T3 (en) |
FR (1) | FR2723184B1 (en) |
ZA (1) | ZA956332B (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2730172B1 (en) * | 1995-02-07 | 1997-03-21 | Air Liquide | METHOD AND APPARATUS FOR MONITORING THE OPERATION OF AN AIR SEPARATION INSTALLATION |
DE19526785C1 (en) * | 1995-07-21 | 1997-02-20 | Linde Ag | Method and device for the variable production of a gaseous printed product |
FR2751737B1 (en) * | 1996-07-25 | 1998-09-11 | Air Liquide | METHOD AND INSTALLATION FOR PRODUCING A VARIABLE FLOW AIR GAS |
DE19732887A1 (en) * | 1997-07-30 | 1999-02-04 | Linde Ag | Air separation process |
JP3457949B2 (en) | 1998-02-04 | 2003-10-20 | テキサコ デベロプメント コーポレーション | Oxygen generation method and apparatus for cryogenic air separation unit combined with centralized gasifier |
US6182471B1 (en) * | 1999-06-28 | 2001-02-06 | Praxair Technology, Inc. | Cryogenic rectification system for producing oxygen product at a non-constant rate |
US6233970B1 (en) | 1999-11-09 | 2001-05-22 | Air Products And Chemicals, Inc. | Process for delivery of oxygen at a variable rate |
US6357259B1 (en) * | 2000-09-29 | 2002-03-19 | The Boc Group, Inc. | Air separation method to produce gaseous product |
SE520267C3 (en) * | 2000-10-04 | 2003-08-13 | Volvo Teknisk Utveckling Ab | Heat Energy Recovery Device |
EP1318368A1 (en) * | 2001-12-10 | 2003-06-11 | The Boc Group, Inc. | Air separation method to produce gaseous product at a variable flow rate |
GB0219415D0 (en) * | 2002-08-20 | 2002-09-25 | Air Prod & Chem | Process and apparatus for cryogenic separation process |
FR2872262B1 (en) * | 2004-06-29 | 2010-11-26 | Air Liquide | METHOD AND INSTALLATION FOR PROVIDING SUPPORT OF A PRESSURIZED GAS |
US7272954B2 (en) * | 2004-07-14 | 2007-09-25 | L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude | Low temperature air separation process for producing pressurized gaseous product |
FR2910604B1 (en) * | 2006-12-22 | 2012-10-26 | Air Liquide | METHOD AND APPARATUS FOR SEPARATING A GAS MIXTURE BY CRYOGENIC DISTILLATION |
WO2012031399A1 (en) * | 2010-09-09 | 2012-03-15 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and apparatus for separation of air by cryogenic distillation |
JP6464399B2 (en) * | 2014-10-03 | 2019-02-06 | 神鋼エア・ウォーター・クライオプラント株式会社 | Air separation device |
CN105300031B (en) * | 2015-11-11 | 2017-07-11 | 巴彦淖尔市飞尚铜业有限公司 | A kind of startup method for quickly going out oxygen |
CN110411060B (en) * | 2019-07-24 | 2021-06-15 | 上海交通大学 | A liquid nitrogen decompression cryogenic cooling system |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1166565A (en) * | 1956-01-04 | 1958-11-13 | Union Carbide & Carbon Corp | Process and installation for separation by rectification of gas mixtures |
NL221053A (en) | 1956-09-25 | 1900-01-01 | ||
US3174293A (en) * | 1960-11-14 | 1965-03-23 | Linde Eismasch Ag | System for providing gas separation products at varying rates |
DE2557453C2 (en) * | 1975-12-19 | 1982-08-12 | Linde Ag, 6200 Wiesbaden | Process for the production of gaseous oxygen |
GB2125949B (en) * | 1982-08-24 | 1985-09-11 | Air Prod & Chem | Plant for producing gaseous oxygen |
EP0235295B1 (en) * | 1985-08-23 | 1989-06-14 | Daidousanso Co., Ltd. | Oxygen gas production unit |
AT383884B (en) * | 1985-10-24 | 1987-09-10 | Messer Griesheim Austria Ges M | Method for recovering energy of liquefaction expended in decomposing air after liquefaction |
GB8820582D0 (en) * | 1988-08-31 | 1988-09-28 | Boc Group Plc | Air separation |
DE3913880A1 (en) * | 1989-04-27 | 1990-10-31 | Linde Ag | METHOD AND DEVICE FOR DEEP TEMPERATURE DISPOSAL OF AIR |
JPH02293575A (en) * | 1989-05-08 | 1990-12-04 | Kobe Steel Ltd | Air separation device |
FR2652887B1 (en) * | 1989-10-09 | 1993-12-24 | Air Liquide | PROCESS AND PLANT FOR THE PRODUCTION OF VARIABLE FLOW GAS OXYGEN BY AIR DISTILLATION. |
FR2674011B1 (en) | 1991-03-11 | 1996-12-20 | Maurice Grenier | PROCESS AND PLANT FOR PRODUCING PRESSURE GAS OXYGEN. |
JP2909678B2 (en) * | 1991-03-11 | 1999-06-23 | レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method and apparatus for producing gaseous oxygen under pressure |
FR2685460B1 (en) * | 1991-12-20 | 1997-01-31 | Maurice Grenier | PROCESS AND PLANT FOR THE PRODUCTION OF GASEOUS OXYGEN UNDER PRESSURE BY AIR DISTILLATION |
JPH0611254A (en) * | 1991-11-07 | 1994-01-21 | Tokyo Reinetsu Sangyo Kk | Liquefaction/separation method for air and device thereof utilizing lng cold heat |
CN1071444C (en) * | 1992-02-21 | 2001-09-19 | 普拉塞尔技术有限公司 | Cryogenic air separation system for producing gaseous oxygen |
FR2688052B1 (en) | 1992-03-02 | 1994-05-20 | Maurice Grenier | PROCESS AND PLANT FOR THE PRODUCTION OF OXYGEN AND / OR GAS NITROGEN UNDER PRESSURE BY AIR DISTILLATION. |
FR2692664A1 (en) | 1992-06-23 | 1993-12-24 | Lair Liquide | Process and installation for producing gaseous oxygen under pressure. |
FR2699992B1 (en) * | 1992-12-30 | 1995-02-10 | Air Liquide | Process and installation for producing gaseous oxygen under pressure. |
-
1994
- 1994-07-29 FR FR9409481A patent/FR2723184B1/en not_active Expired - Fee Related
-
1995
- 1995-04-19 US US08/424,633 patent/US5526647A/en not_active Expired - Lifetime
- 1995-07-26 ES ES95401774T patent/ES2145885T3/en not_active Expired - Lifetime
- 1995-07-26 DE DE69516339T patent/DE69516339T2/en not_active Expired - Fee Related
- 1995-07-26 EP EP95401774A patent/EP0694746B1/en not_active Expired - Lifetime
- 1995-07-28 KR KR1019950022829A patent/KR100394311B1/en not_active IP Right Cessation
- 1995-07-28 CA CA002154984A patent/CA2154984A1/en not_active Abandoned
- 1995-07-28 CN CN95115263A patent/CN1119607C/en not_active Expired - Fee Related
- 1995-07-28 ZA ZA956332A patent/ZA956332B/en unknown
- 1995-07-28 JP JP7193915A patent/JPH08170875A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN1119607C (en) | 2003-08-27 |
CA2154984A1 (en) | 1996-01-30 |
DE69516339D1 (en) | 2000-05-25 |
KR960003774A (en) | 1996-02-23 |
FR2723184A1 (en) | 1996-02-02 |
CN1154463A (en) | 1997-07-16 |
FR2723184B1 (en) | 1996-09-06 |
EP0694746A1 (en) | 1996-01-31 |
JPH08170875A (en) | 1996-07-02 |
ES2145885T3 (en) | 2000-07-16 |
KR100394311B1 (en) | 2003-10-22 |
US5526647A (en) | 1996-06-18 |
ZA956332B (en) | 1996-03-11 |
DE69516339T2 (en) | 2000-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0694746B1 (en) | Process for the production of a gas under pressure in variable quantities | |
EP0689019B1 (en) | Process and apparatus for producing gaseous oxygen under pressure | |
EP0504029B1 (en) | Process for the production of gaseous pressurised oxygen | |
EP0576314B1 (en) | Process and installation for the production of gaseous oxygen under pressure | |
EP0628778B2 (en) | Process and high pressure gas supply unit for an air constituent consuming installation | |
EP0848220B1 (en) | Method and plant for supplying an air gas at variable quantities | |
EP1447634B1 (en) | Process and device for the production of at least one gaseous high pressure fluid such as Oxygen, Nitrogen or Argon by cryogenic separation of air | |
EP0605262B1 (en) | Process and apparatus for the production of gaseous oxygen under pressure | |
EP0713069A1 (en) | Process and plant for air separation | |
EP0618415B1 (en) | Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air | |
WO2004099691A1 (en) | Method and system for the production of pressurized air gas by cryogenic distillation of air | |
EP0489617B1 (en) | Process and plant for destilling air for obtaining gaseous oxygen in variable quantities | |
EP0914584B1 (en) | Method and plant for producing an air gas with a variable flow rate | |
EP0641983B1 (en) | Process and installation for the production of gaseous oxygen and/or nitrogen under pressure | |
EP0677713B1 (en) | Process and installation for the production of oxygen by distillation of air | |
EP0612967B1 (en) | Process for the production of oxygen and/or nitrogen under pressure | |
EP0611218B2 (en) | Process and installation for producing oxygen under pressure | |
FR2929697A1 (en) | PROCESS FOR PRODUCING VARIABLE GASEOUS NITROGEN AND VARIABLE GAS OXYGEN BY AIR DISTILLATION | |
FR2674011A1 (en) | Method and installation for producing gaseous oxygen under pressure | |
FR2685460A1 (en) | Method and installation for producing gaseous oxygen under pressure by distillation of air |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19960731 |
|
17Q | First examination report despatched |
Effective date: 19980212 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69516339 Country of ref document: DE Date of ref document: 20000525 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000522 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2145885 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020619 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20020705 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20020724 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030731 |
|
BERE | Be: lapsed |
Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION Effective date: 20030731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040201 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030728 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080620 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080623 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080613 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080620 Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090726 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090726 |