[go: up one dir, main page]

EP1447634B1 - Process and device for the production of at least one gaseous high pressure fluid such as Oxygen, Nitrogen or Argon by cryogenic separation of air - Google Patents

Process and device for the production of at least one gaseous high pressure fluid such as Oxygen, Nitrogen or Argon by cryogenic separation of air Download PDF

Info

Publication number
EP1447634B1
EP1447634B1 EP04300066.0A EP04300066A EP1447634B1 EP 1447634 B1 EP1447634 B1 EP 1447634B1 EP 04300066 A EP04300066 A EP 04300066A EP 1447634 B1 EP1447634 B1 EP 1447634B1
Authority
EP
European Patent Office
Prior art keywords
air
exchange line
high pressure
sent
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04300066.0A
Other languages
German (de)
French (fr)
Other versions
EP1447634A1 (en
Inventor
Lasad l'Air Liquide SA Jaouani
Bao l'Air Liquide SA Ha
Ovidiu Balog
Maurice l'Air Liquide SA Grenier
Xavier l'Air Liquide SA Pontone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1447634A1 publication Critical patent/EP1447634A1/en
Application granted granted Critical
Publication of EP1447634B1 publication Critical patent/EP1447634B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04236Integration of different exchangers in a single core, so-called integrated cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04818Start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/12Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the present invention relates to a method for producing in gaseous form and under high pressure at least one fluid selected from oxygen, argon and nitrogen in an air separation plant, in which In the air, said fluid is brought to the liquid state at high pressure, it is vaporized and heated under this high pressure in the heat exchange line of the installation in accordance with the preambles of claims 1 and 7.
  • a method is known EP-A-0 577 349 respectively US-A-5,337,571 .
  • "high pressure” means a pressure greater than about 10 bar for oxygen, argon and nitrogen
  • “blower” means a compressor having a single compression stage.
  • the pressures in question are absolute pressures.
  • EP-A-0504029 discloses a method in which all air is compressed at high pressure in a blower, a portion of the high pressure air is expanded in a Claude turbine (ie, a Claude turbine that opens into the medium pressure column) and the rest of the air exchanges heat with liquid oxygen being vaporized in the exchange line.
  • a Claude turbine ie, a Claude turbine that opens into the medium pressure column
  • EP-A-0644388 describes a method in which a portion of the air is compressed at medium pressure and sent to the medium pressure column of a double column while the rest of the air is supercharged at room temperature. Some of the pressurized air is then compressed in a cold booster.
  • the air exiting the heat exchange line is at the inlet of the fan at room temperature because there is very little cold gas that warms in the exchange line. Following compression, it is found at a temperature that can go up to 120 ° C, compared to the temperature of about -120 ° C when the device is in stable operation. This can damage the heat exchange line which is not designed to withstand such high temperatures.
  • US Patent 5337571 discloses an air separation process using a nitrogen compressor which compresses nitrogen taken at the hot end of the main exchanger.
  • An object of the invention is to allow a quick start of the device without risk of damage to the exchange line.
  • oxygen covers fluids containing at least 60 mol%. oxygen, preferably at least 80 mol%. of oxygen
  • argon covers fluids containing at least 90 mol%. argon, preferably at least 95 mol%. argon
  • nitrogen covers fluids containing at least 80 mol%. nitrogen, preferably at least 90 mol%. nitrogen.
  • the inlet of the turbine and the outlet of the booster are connected through cooling means.
  • the air sent to the booster can be constituted by at least a portion of the incoming air during cooling.
  • the air distillation plant shown in Figure 1 essentially comprises an air compressor 1, an air cleaning apparatus 2, a turbine-booster assembly 3, comprising an expansion turbine 4 and a booster 5 whose shafts are coupled, a heat exchanger 6 constituting the line thermal exchange of the installation and whose cold part serves as the subcooler; a double distillation column 7 comprising a medium pressure column 8 and a low pressure column 9, with a vaporizer-condenser 10 putting in heat exchange relationship the overhead gas of the medium pressure column and the bottom liquid of the low pressure column; a liquid oxygen tank 11 whose bottom is connected to a pump 12; and a liquid nitrogen tank 13 whose bottom is connected to a pump 14.
  • This installation is intended to supply, via a pipe 15, oxygen gas under a high pressure, which may be between 5 and 50 bar abs, preferably between 10 and 50 bar abs.
  • liquid oxygen withdrawn from the tank of the column 9, via a pipe 16, and stored in the tank 11, is brought to the high pressure by the pump 12 in the liquid state, then vaporized and heated under this high pressure in passages 17 of the exchanger 6.
  • All the air to be distilled is compressed by the compressor 1 at a pressure higher than the pressure of the medium pressure column 8 but lower than the high pressure. Then the air pre-cooled at 18 and cooled near the ambient temperature at 19 is purified in one of the adsorption bottles and supercharged entirely at the high pressure by the booster 5, which is driven by the turbine 4.
  • All the pressurized air is cooled by a water cooler 47 and in normal operation sent through the valve V2, which is open, at the hot end of the exchanger 6, the valve V1 remaining closed.
  • the air cools in the exchanger 6 and a part of the air at an intermediate temperature is expanded in the turbine 4 before being sent to the medium pressure column 8.
  • the rest of the air cools in the exchanger 6 to the cold end and is sent to the low pressure column and / or the medium pressure column.
  • the opening of the valve V1 is triggered, and at least a portion of the supercharged and cooled air passes directly. at the inlet of the turbine 4 without passing through the exchanger 6. This avoids damaging the turbine.
  • valve V1 closes again and all the air passes to the hot end of the exchanger.
  • the installation represented at Figure 2 is intended to produce gaseous oxygen under a high pressure, for example between 10 and 50 bar, particularly of the order of 40 bar. It essentially comprises a double distillation column 7 consisting of a medium pressure column 8, operating under about 6 bars, and a low pressure column 9, operating under a pressure slightly above 1 bar, a heat exchange line 6, which is integrated cold end subcooler, a liquid oxygen pump 12, a cold blower 5A and a turbine 4 whose wheel is mounted on the same shaft as that of the cold blower and an oil brake 49.
  • the pump 12 draws liquid oxygen at about 2 bars from the column vessel 9, carries it to a pressure higher than the desired production pressure, for example 40 bar, and introduces it into vaporization passages 17. Oxygen warming of the exchange line.
  • the air to be distilled, compressed, cooled and purified in a conventional manner reaches about 16.5 bars via a pipe and enters air cooling passages of the exchange line 6.
  • the air conveyed by the pipe 43 and not deflected by the pipe 41 continues cooling in the exchange line and leaves upstream of the subcooler. It is then expanded at the medium pressure in an expansion valve 27 and sent to the distillation columns, in particular in the vat of the column 8.
  • the blower 5A which provides the overpressure is driven by the turbine 4, so that no energy exterior is necessary.
  • the amount of cold produced by this turbine may be slightly greater than the heat of compression, and the surplus contributes to keeping the installation cold.
  • a balance or all of the frigories can be supplied by expansion of air or nitrogen at medium pressure in another turbine (not shown).
  • the or each cold blower can compress another gas than the air flowing in the heat exchange line, in particular cycle nitrogen previously heated to room temperature, compressed and during cooling.
  • the installation comprises a valve V1 on a pipe 45 connecting the outlet of the fan 5A and the pipe 41 bringing the air to the inlet of the turbine 4 and a valve V2 on the pipe 39 connecting the outlet of the fan 5A and the inlet of the exchanger of the pipe 39.
  • the air to be distilled reaches about 16.5 bar and enters the air cooling passages of the exchange line.
  • the air (or possibly a part of the air) is removed from the exchange line via a pipe 37 at a temperature that can reach 90 ° C and brought to the suction of the cold blower 5A. This boosts this air between 20 and 26 bar and a temperature up to 120 ° C, the valve V1 being open and the valve V2 closed, the compressed air is sent by the lines 45, 41 directly to the inlet of the turbine 4 without cooling in the exchange line 6. The expanded air is then sent to the tank of the medium pressure column 8.
  • the temperature measuring means detect whether the temperature inlet of the turbine 4 and / or the outlet of the air blower from the blower 5A passes below a predetermined threshold and if the temperature is sufficiently low, the valve V2 opens and the valve V1 closes so that the supercharged air 5A is sent to the pipe 39, then to the exchange line 6, before being divided in two and sent partly to the turbine 4 and partly to the tank of the medium-pressure column 8 This provision of the valves correspon d stable operation.
  • valve V1 and the opening of the valve V2 can be triggered a certain time after the main compressor is started up.
  • valves V1, V2 can also have the same operation as in the Figure 1 that is, if the inlet temperature of the turbine and / or outlet of the fan becomes too low, a hot air can be sent to the turbine by opening the valve V1 so that the air passes directly from the blower to the turbine through line 45.
  • the regulation of the tank level (LIC) of the medium pressure column 8 or the low pressure column 9 can be done by acting on the speed of the turbine 4 via a SIC (indicator and cruise control).
  • the rotation speed can also be set for the system to operate in excess of cooling capacity.
  • the excess of cold is eliminated by any liquid line (nitrogen, oxygen or argon) of the cold box, for example by opening the valve V3.
  • the liquid line must have an automatic valve whose opening and closing are connected to tank level thresholds of the low pressure column 9.
  • the Claude 4 turbine, and possibly the cold blower 5A may be coupled to an energy adsorption device other than an oil brake 49, such as an alternator or a generator .
  • the invention also applies to the case in which only a part of the air is overpressed as can be seen in FIGS. 6, 8, 10 and 11 of FIG. EP504029 and in EP-A-0644388 and FR-A-2688052 .
  • the liquid lifts 23, 24 and the productions 15, 29 of the low pressure column 9 are identical to those previously described.
  • Compressed air at medium pressure is purified and then cools in the exchange line 6 before being sent to the medium pressure column 8.
  • Medium pressure nitrogen is withdrawn at the top of the medium pressure column 8, heated in the heat exchange line 6 to the hot end and then compressed in a compressor 54. All or part of the compressed nitrogen is cooled by a cooler 47 and enters the exchange line.
  • a valve V2 is open on a pipe 39 which brings the pressurized nitrogen back into the exchange line to be cooled and the valve V1 on a pipe 45 is closed.
  • valve V1 When starting and / or during changes of operation and / or in order to regulate the inlet temperature of the turbine, the valve V1 opens and the valve V2 closes so that the compressed nitrogen in the booster 5B arrives at the inlet of the turbine 4B without being cooled in the exchange line. It is also possible to adjust the valves so that a portion of the pressurized nitrogen arrives at the inlet of the turbine after cooling in the exchange line while the rest of the pressurized nitrogen arrives at the inlet of the turbine. the turbine 4B without cooling.
  • the column system may comprise a single column, a double column or a triple column with or without an argon mixture column, a mixing column or any other type of air gas separation column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention est relative à un procédé de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygène, l'argon et l'azote dans une installation de séparation d'air, dans lequel on distille de l'air, on amène ledit fluide à l'état liquide à la haute pression, on le vaporise et on le réchauffe sous cette haute pression dans la ligne d'échange thermique de l'installation conformément aux préambules des revendications 1 et 7. Un tel procédé est connu de EP-A-0 577 349 respectivement US-A-5 337 571 . Dans le présent mémoire, on entend par « haute pression » une pression supérieure à environ 10 bars pour l'oxygène, l'argon et l'azote, et par « soufflante » un compresseur ayant un seul étage de compression. De plus, les pressions dont il est question sont des pressions absolues.The present invention relates to a method for producing in gaseous form and under high pressure at least one fluid selected from oxygen, argon and nitrogen in an air separation plant, in which In the air, said fluid is brought to the liquid state at high pressure, it is vaporized and heated under this high pressure in the heat exchange line of the installation in accordance with the preambles of claims 1 and 7. Such a method is known EP-A-0 577 349 respectively US-A-5,337,571 . As used herein, "high pressure" means a pressure greater than about 10 bar for oxygen, argon and nitrogen, and "blower" means a compressor having a single compression stage. In addition, the pressures in question are absolute pressures.

Dans le cas où l'on produirait de l'oxygène, ces procédés, dits « à pompe », présentent l'avantage de supprimer le compresseur d'oxygène, qui est une machine coûteuse, posant de sérieux problèmes de fiabilité et ayant des coûts de maintenance élevés.In the case where oxygen is produced, these methods, known as "pump" processes, have the advantage of eliminating the oxygen compressor, which is an expensive machine, posing serious problems of reliability and having costs. high maintenance.

EP-A-0504029 décrit un procédé dans lequel tout l'air est comprimé à une pression élevée dans une soufflante, une partie de l'air à pression élevée est détendue dans une turbine Claude (à savoir, une turbine Claude qui débouche dans la colonne moyenne pression) et le reste de l'air échange de la chaleur avec de l'oxygène liquide en cours de vaporisation dans la ligne d'échange. EP-A-0504029 discloses a method in which all air is compressed at high pressure in a blower, a portion of the high pressure air is expanded in a Claude turbine (ie, a Claude turbine that opens into the medium pressure column) and the rest of the air exchanges heat with liquid oxygen being vaporized in the exchange line.

Dans ce genre d'appareil, il est souhaitable d'avoir un moyen d'éviter que l'entrée de la turbine devienne trop froide, par exemple en cas de changement de marche.In this type of apparatus, it is desirable to have a means of preventing the inlet of the turbine from becoming too cold, for example in the event of a change of step.

FR-A-2688052 décrit un procédé dans lequel :

  • à une température intermédiaire voisine de la température de vaporisation dudit fluide, ou de sa température de pseudo-vaporisation si la haute pression est supercritique, on sort de la ligne d'échange thermique de l'air en cours de refroidissement dans cette dernière ;
  • on comprime cet air dans une soufflante ;
  • on le réintroduit dans la ligne d'échange thermique et on effectue au moins une détente d'un gaz de cycle dans une turbine.
FR-A-2688052 describes a method in which:
  • at an intermediate temperature close to the vaporization temperature of said fluid, or its pseudo-vaporization temperature if the high pressure is supercritical, it leaves the heat exchange line of the air being cooled in the latter;
  • this air is compressed in a blower;
  • it is reintroduced into the heat exchange line and at least one expansion of a cycle gas is carried out in a turbine.

EP-A-0644388 décrit un procédé dans lequel une partie de l'air est comprimée à la moyenne pression et envoyée dans la colonne moyenne pression d'une double colonne alors que le reste de l'air est surpressé à température ambiante. Une partie de l'air surpressé est comprimée ensuite dans un surpresseur froid. EP-A-0644388 describes a method in which a portion of the air is compressed at medium pressure and sent to the medium pressure column of a double column while the rest of the air is supercharged at room temperature. Some of the pressurized air is then compressed in a cold booster.

Pendant le démarrage des appareils selon EP-A-0644388 et FR-A-2688052 , l'air sorti de la ligne d'échange thermique se trouve à l'entrée de la soufflante à la température ambiante du fait qu'il y a très peu de gaz froids qui se réchauffent dans la ligne d'échange. Suite à la compression, il se retrouve à une température qui peut aller jusqu'à 120°C, comparé à la température d'environ -120°C quand l'appareil est en fonctionnement stable. Ceci peut endommager la ligne d'échange qui n'est pas conçue pour supporter des températures aussi élevées.During the start of the devices according to EP-A-0644388 and FR-A-2688052 , the air exiting the heat exchange line is at the inlet of the fan at room temperature because there is very little cold gas that warms in the exchange line. Following compression, it is found at a temperature that can go up to 120 ° C, compared to the temperature of about -120 ° C when the device is in stable operation. This can damage the heat exchange line which is not designed to withstand such high temperatures.

US-A-5337571 décrit un procédé de séparation d'air utilisant un compresseur d'azote qui comprime de l'azote pris au bout chaud de l'échangeur principal. US Patent 5337571 discloses an air separation process using a nitrogen compressor which compresses nitrogen taken at the hot end of the main exchanger.

Un but de l'invention est de permettre un démarrage rapide de l'appareil sans risque de dommage à la ligne d'échange.An object of the invention is to allow a quick start of the device without risk of damage to the exchange line.

Selon un objet de l'invention, il est prévu un procédé selon la revendication 1.According to one object of the invention, there is provided a method according to claim 1.

Le mot « oxygène » couvre les fluides contenant au moins 60 % mol. d'oxygène, de préférence au moins 80 % mol. d'oxygène, le mot « argon » couvre les fluides contenant au moins 90 % mol. d'argon, de préférence au moins 95 % mol. d'argon, et le mot « azote » couvre les fluides contenant au moins 80 % mol. d'azote, de préférence au moins 90 % mol. d'azote.The word "oxygen" covers fluids containing at least 60 mol%. oxygen, preferably at least 80 mol%. of oxygen, the word "argon" covers fluids containing at least 90 mol%. argon, preferably at least 95 mol%. argon, and the word "nitrogen" covers fluids containing at least 80 mol%. nitrogen, preferably at least 90 mol%. nitrogen.

Suivant d'autres caractéristiques facultatives :

  • à une température intermédiaire de la ligne d'échange, on sort de la ligne d'échange thermique l'au moins une partie de l'air en cours de refroidissement dans cette dernière ;
  • on amène ledit fluide à l'état liquide à la haute pression entre 5 et 50 bars, de préférence entre 10 et 50 bars ;
  • on surpresse l'air à la température intermédiaire dans une soufflante froide jusqu'à la pression élevée ;
  • on réintroduit l'air surpressé dans la ligne d'échange thermique ;
  • on envoie une première partie de l'air surpressé à une colonne du système de colonnes et on envoie une deuxième partie de l'air surpressé à une turbine de détente, l'air détendu étant ensuite envoyé à une colonne du système de colonnes ;
  • pendant le début de la mise en fonctionnement de l'installation et/ou quand la température à l'entrée de la turbine tombe en dessous d'un seuil prédéterminé et/ou pendant un changement de marche, au moins une partie de l'air sorti de la ligne d'échange et surpressée dans la soufflante froide est envoyée en amont de la turbine de détente sans passer par la ligne d'échange ;
  • on sort tout l'air entrant en cours de refroidissement, on le surpresse dans la soufflante froide et on le réintroduit dans la ligne d'échange ;
  • pendant le début de la mise en fonctionnement de l'installation, tout l'air sorti de la ligne d'échange et surpressé dans la soufflante froide est envoyé en amont de la turbine de détente sans passer par la ligne d'échange ;
  • quand la température de l'air surpressé dans la soufflante froide est réduite à une température prédéterminée ou après un temps prédéterminé, on n'envoie plus d'air surpressé en amont de la turbine de détente sans passer par la ligne d'échange ;
  • la température d'entrée de la soufflante froide est inférieure à la température d'entrée de la turbine de détente ;
  • au moins une partie de l'air est comprimée jusqu'à la pression élevée, l'air à la pression élevée est envoyé au bout chaud de la ligne d'échange, une partie de l'air est sortie de la ligne d'échange à une température intermédiaire et détendue dans la turbine et le reste de l'air poursuit son refroidissement dans la ligne d'échange et dans lequel, pendant le début de la mise en fonctionnement de l'installation et/ou si la température à l'entrée de la turbine tombe en dessous d'un seuil prédéterminé et/ou en cas de changement de marche, de l'air est envoyé directement du surpresseur à l'entrée de la turbine sans avoir été refroidi dans la ligne d'échange ;
  • tout l'air est comprimé dans le compresseur et le surpresseur jusqu'à la pression élevée ;
  • seule une partie de l'air est surpressée dans le surpresseur jusqu'à la pression élevée.
According to other optional features:
  • at an intermediate temperature of the exchange line, the at least part of the air being cooled is withdrawn from the heat exchange line therein;
  • said fluid is brought to the liquid state at high pressure between 5 and 50 bar, preferably between 10 and 50 bar;
  • the air is overheated at the intermediate temperature in a cold blower to the high pressure;
  • the supercharged air is reintroduced into the heat exchange line;
  • a first portion of the pressurized air is sent to a column of the column system and a second portion of the pressurized air is sent to an expansion turbine, the expanded air being then sent to a column of the column system;
  • during the start of the operation of the installation and / or when the temperature at the inlet of the turbine falls below a predetermined threshold and / or during a change of step, at least part of the air out of the exchange line and supercharged in the cold blower is sent upstream of the expansion turbine without going through the exchange line;
  • all the incoming air is taken out during cooling, it is overheated in the cold blower and reintroduced into the exchange line;
  • during the start of the operation of the installation, all the air out of the exchange line and supercharged in the cold blower is sent upstream of the expansion turbine without going through the exchange line;
  • when the temperature of the supercharged air in the cold blower is reduced to a predetermined temperature or after a predetermined time, no more pressurized air is sent upstream of the expansion turbine without passing through the exchange line;
  • the inlet temperature of the cold blower is lower than the inlet temperature of the expansion turbine;
  • at least a part of the air is compressed to the high pressure, the air at high pressure is sent to the hot end of the exchange line, part of the air is removed from the exchange line at an intermediate temperature and relaxed in the turbine and the rest of the air continues cooling in the exchange line and in which, during the start of operation of the installation and / or if the temperature to the inlet of the turbine falls below a predetermined threshold and / or in the event of a change of step, air is sent directly from the booster to the inlet of the turbine without having been cooled in the exchange line ;
  • all the air is compressed in the compressor and the booster to the high pressure;
  • only a portion of the air is supercharged in the booster to the high pressure.

Selon un autre objet de l'invention, il est prévu un procédé selon la revendication 7, dans lequel, en fonctionnement stable, on comprime de l'air dans un compresseur, on épure l'air comprimé et on l'envoie dans une ligne d'échange thermique de l'installation où il se refroidit, on sépare l'air comprimé, épuré et refroidi dans un système de colonnes de l'installationAccording to another object of the invention, there is provided a method according to claim 7, wherein, in stable operation, air is compressed in a compressor, compressed air is purified and sent in a line heat exchange of the installation where it cools, compressed air is separated, purified and cooled in a system of columns of the installation

Dans le cas où l'on utiliserait un surpresseur chaud, de préférence l'entrée de la turbine et la sortie du surpresseur sont reliées à travers des moyens de refroidissement.In the case where a hot booster is used, preferably the inlet of the turbine and the outlet of the booster are connected through cooling means.

L'air envoyé au surpresseur peut être constitué par au moins une partie de l'air entrant en cours de refroidissement.The air sent to the booster can be constituted by at least a portion of the incoming air during cooling.

Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels les Figures 1, 2 et 3 représentent schématiquement des installations de production d'oxygène gazeux sous pression adaptées à fonctionner selon des procédés conformes à l'invention.Examples of implementation of the invention will now be described with reference to the accompanying drawings, in which the Figures 1 , 2 and 3 schematically represent pressurized oxygen gas production facilities adapted to operate according to methods in accordance with the invention.

L'installation de distillation d'air représentée à la Figure 1 comprend essentiellement un compresseur d'air 1, un appareil d'épuration d'air 2, un ensemble turbine-surpresseur 3, comprenant une turbine de détente 4 et un surpresseur 5 dont les arbres sont couplés, un échangeur de chaleur 6 constituant la ligne d'échange thermique de l'installation et dont la partie froide sert le rôle de sousrefroidisseur ; une double colonne de distillation 7 comprenant une colonne moyenne pression 8 et une colonne basse pression 9, avec un vaporiseur-condenseur 10 mettant en relation d'échange de chaleur le gaz de tête de la colonne moyenne pression et le liquide de cuve de la colonne basse pression ; un réservoir d'oxygène liquide 11 dont le fond est relié à une pompe 12 ; et un réservoir d'azote liquide 13 dont le fond est relié à une pompe 14.The air distillation plant shown in Figure 1 essentially comprises an air compressor 1, an air cleaning apparatus 2, a turbine-booster assembly 3, comprising an expansion turbine 4 and a booster 5 whose shafts are coupled, a heat exchanger 6 constituting the line thermal exchange of the installation and whose cold part serves as the subcooler; a double distillation column 7 comprising a medium pressure column 8 and a low pressure column 9, with a vaporizer-condenser 10 putting in heat exchange relationship the overhead gas of the medium pressure column and the bottom liquid of the low pressure column; a liquid oxygen tank 11 whose bottom is connected to a pump 12; and a liquid nitrogen tank 13 whose bottom is connected to a pump 14.

Cette installation est destinée à fournir, via une conduite 15, de l'oxygène gazeux sous une haute pression, qui peut être entre 5 et 50 bars abs, de préférence entre 10 et 50 bars abs.This installation is intended to supply, via a pipe 15, oxygen gas under a high pressure, which may be between 5 and 50 bar abs, preferably between 10 and 50 bar abs.

Pour cela, de l'oxygène liquide soutiré de la cuve de la colonne 9, via une conduite 16, et stocké dans le réservoir 11, est amené à la haute pression par la pompe 12 à l'état liquide, puis vaporisé et réchauffé sous cette haute pression dans des passages 17 de l'échangeur 6.For this, liquid oxygen withdrawn from the tank of the column 9, via a pipe 16, and stored in the tank 11, is brought to the high pressure by the pump 12 in the liquid state, then vaporized and heated under this high pressure in passages 17 of the exchanger 6.

La totalité de l'air à distiller est comprimé par le compresseur 1 à une pression supérieure à la pression de la colonne moyenne pression 8 mais inférieure à la pression élevée. Puis l'air prérefroidi en 18 et refroidi au voisinage de la température ambiante en 19 est épuré dans l'une des bouteilles d'adsorption et surpressé en totalité à la pression élevée par le surpresseur 5, lequel est entraîné par la turbine 4.All the air to be distilled is compressed by the compressor 1 at a pressure higher than the pressure of the medium pressure column 8 but lower than the high pressure. Then the air pre-cooled at 18 and cooled near the ambient temperature at 19 is purified in one of the adsorption bottles and supercharged entirely at the high pressure by the booster 5, which is driven by the turbine 4.

Tout l'air surpressé est refroidi par un refroidisseur à eau 47 et en fonctionnement normal envoyé à travers la vanne V2, qui est ouverte, au bout chaud de l'échangeur 6, la vanne V1 restant fermée. L'air se refroidit dans l'échangeur 6 et une partie de l'air à une température intermédiaire est détendue dans la turbine 4 avant d'être envoyée à la colonne moyenne pression 8. Le reste de l'air se refroidit dans l'échangeur 6 jusqu'au bout froid et est envoyé à la colonne basse pression et/ou à la colonne moyenne pression.All the pressurized air is cooled by a water cooler 47 and in normal operation sent through the valve V2, which is open, at the hot end of the exchanger 6, the valve V1 remaining closed. The air cools in the exchanger 6 and a part of the air at an intermediate temperature is expanded in the turbine 4 before being sent to the medium pressure column 8. The rest of the air cools in the exchanger 6 to the cold end and is sent to the low pressure column and / or the medium pressure column.

Si la température d'entrée ou de sortie de la turbine 4 devient trop basse suite au démarrage ou à un changement de marche, l'ouverture de la vanne V1 est déclenchée, et au moins une partie de l'air surpressé et refroidi passe directement à l'entrée de la turbine 4 sans passer par l'échangeur 6. Ceci évite d'endommager la turbine.If the inlet or outlet temperature of the turbine 4 becomes too low following start-up or a change of step, the opening of the valve V1 is triggered, and at least a portion of the supercharged and cooled air passes directly. at the inlet of the turbine 4 without passing through the exchanger 6. This avoids damaging the turbine.

Une fois la température de la turbine rétablie, la vanne V1 se ferme de nouveau et tout l'air passe au bout chaud de l'échangeur.Once the temperature of the turbine is restored, the valve V1 closes again and all the air passes to the hot end of the exchanger.

L'installation représentée à la Figure 2 est destinée à produire de l'oxygène gazeux sous une pression élevée, par exemple entre 10 et 50 bars, particulièrement de l'ordre de 40 bars Elle comprend essentiellement une double colonne de distillation 7 constituée d'une colonne moyenne pression 8, fonctionnant sous environ 6 bars, et d'une colonne basse pression 9, fonctionnant sous une pression légèrement supérieure à 1 bar, une ligne d'échange thermique 6, auquel est intégré un sous-refroidisseur au bout froid, une pompe à oxygène liquide 12, une soufflante froide 5A et une turbine 4 dont la roue est montée sur le même arbre que celle de la soufflante froide et d'un frein d'huile 49.The installation represented at Figure 2 is intended to produce gaseous oxygen under a high pressure, for example between 10 and 50 bar, particularly of the order of 40 bar. It essentially comprises a double distillation column 7 consisting of a medium pressure column 8, operating under about 6 bars, and a low pressure column 9, operating under a pressure slightly above 1 bar, a heat exchange line 6, which is integrated cold end subcooler, a liquid oxygen pump 12, a cold blower 5A and a turbine 4 whose wheel is mounted on the same shaft as that of the cold blower and an oil brake 49.

On reconnaît sur le dessin les conduites classiques de la double colonne, à savoir : une conduite 23 de « liquide riche » (air enrichi en oxygène) recueilli en cuve de la colonne 8 qui remonte en un point intermédiaire de la colonne 9, après sous-refroidissement en 6 et détente à la basse pression dans une vanne de détente ; une conduite 24 de « liquide pauvre » (azote à peu près pur) soutiré en tête de la colonne 8 qui remonte en tête de la colonne 9, après sous-refroidissement en 6 et détente à la basse pression dans une vanne de détente, et une conduite 26 de production d'azote impur, constituant le gaz résiduaire de l'installation, cette conduite traversant le sous-refroidisseur en 6 puis se raccordant à des passages 28 de réchauffement d'azote de la ligne d'échange 6. L'azote impur ainsi réchauffé jusqu'à la température ambiante est évacué de l'installation via une conduite 29.It is recognized in the drawing the conventional conduits of the double column, namely: a conduit 23 of "rich liquid" (oxygen-enriched air) collected in the vat of the column 8 which rises to an intermediate point of the column 9, after sub cooling in 6 and expansion at low pressure in an expansion valve; a line 24 of "poor liquid" (substantially pure nitrogen) withdrawn at the top of the column 8 which goes back to the top of the column 9, after subcooling at 6 and expansion at low pressure in an expansion valve, and a pipe 26 for producing impure nitrogen, constituting the waste gas of the installation, this pipe passing through the subcooler at 6 and then connecting to passages 28 for heating the nitrogen of the exchange line 6. impure nitrogen thus heated to room temperature is discharged from the installation via a pipe 29.

La pompe 12 aspire l'oxygène liquide sous environ 2 bars provenant de la cuve de la colonne 9, le porte à une pression supérieure à la pression de production désirée, par exemple 40 bars, et l'introduit dans des passages 17 de vaporisation-réchauffement d'oxygène de la ligne d'échange.The pump 12 draws liquid oxygen at about 2 bars from the column vessel 9, carries it to a pressure higher than the desired production pressure, for example 40 bar, and introduces it into vaporization passages 17. Oxygen warming of the exchange line.

L'air à distiller, comprimé, refroidi et épuré de manière classique, arrive à environ 16,5 bars via une conduite et pénètre dans des passages 30 de refroidissement d'air de la ligne d'échange 6.The air to be distilled, compressed, cooled and purified in a conventional manner, reaches about 16.5 bars via a pipe and enters air cooling passages of the exchange line 6.

En fonctionnement stable, à une température intermédiaire T1, inférieure à la température ambiante et proche de la température TV de vaporisation de l'oxygène (ou de pseudo-vaporisation si la pression de production de l'oxygène est super-critique), une partie de cet air est sortie de la ligne d'échange via une conduite 37 et amenée à l'aspiration de la soufflante froide 5A. Celle-ci porte cet air à 26 bars et, via une conduite 39, l'air ainsi surpressé est renvoyé dans la ligne d'échange 6, à une température T2 supérieure à T1, et poursuit son refroidissement dans des passages d'air surpressé de cette dernière. Une partie de l'air véhiculé par les passages est de nouveau sortie de la ligne d'échange à une deuxième température intermédiaire T3 supérieure à T1 via la conduite 41, et détendue à la moyenne pression (6 bars) dans la turbine 4. L'air qui s'échappe de cette turbine sous forme diphasique peut être envoyé dans un séparateur de phase ou est directement envoyé en cuve de colonne 8.In stable operation, at an intermediate temperature T1, below ambient temperature and close to the TV vaporization temperature of oxygen (or pseudo-vaporization if the oxygen production pressure is super-critical), a part this air is output from the exchange line via a pipe 37 and fed to the suction of the cold blower 5A. It carries this air at 26 bars and, via a pipe 39, the air thus overpressed is returned to the exchange line 6, at a temperature T2 greater than T1, and continues cooling in air passages supercharged of the latter. Part of the air conveyed by the passages is again exiting the exchange line at a second intermediate temperature T3 greater than T1 via the pipe 41, and relaxed at the medium pressure (6 bar) in the turbine 4. air that escapes from this turbine in two-phase form can be sent into a phase separator or is sent directly to the column vessel 8.

L'air véhiculé par la conduite 43 et non dévié par la conduite 41 poursuit son refroidissement dans de la ligne d'échange et en sort en amont du sousrefroidisseur. Il est ensuite détendu à la moyenne pression dans une vanne de détente 27 et envoyé aux colonnes de distillation, en particulier en cuve de la colonne 8. La soufflante 5A qui assure la surpression est entraînée par la turbine 4, de sorte qu'aucune énergie extérieure n'est nécessaire. La quantité de froid produite par cette turbine peut être légèrement supérieure à la chaleur de compression, et l'excédent contribue au maintien en froid de l'installation. Un solde ou la totalité des frigories peut être fourni par détente d'air ou d'azote à la moyenne pression dans une autre turbine (non-illustrée).The air conveyed by the pipe 43 and not deflected by the pipe 41 continues cooling in the exchange line and leaves upstream of the subcooler. It is then expanded at the medium pressure in an expansion valve 27 and sent to the distillation columns, in particular in the vat of the column 8. The blower 5A which provides the overpressure is driven by the turbine 4, so that no energy exterior is necessary. The amount of cold produced by this turbine may be slightly greater than the heat of compression, and the surplus contributes to keeping the installation cold. A balance or all of the frigories can be supplied by expansion of air or nitrogen at medium pressure in another turbine (not shown).

En variante encore, la ou chaque soufflante froide peut comprimer un autre gaz que l'air circulant dans la ligne d'échange thermique, notamment de l'azote de cycle préalablement réchauffé jusqu'à la température ambiante, comprimé et en cours de refroidissement.In another variant, the or each cold blower can compress another gas than the air flowing in the heat exchange line, in particular cycle nitrogen previously heated to room temperature, compressed and during cooling.

Ici l'installation produit de l'oxygène liquide dans le stockage 11.Here the plant produces liquid oxygen in the storage 11.

L'installation comprend une vanne V1 sur une conduite 45 reliant la sortie de la soufflante 5A et la conduite 41 amenant l'air vers l'entrée de la turbine 4 et une vanne V2 sur la conduite 39 reliant la sortie de la soufflante 5A et l'entrée de l'échangeur de la conduite 39.The installation comprises a valve V1 on a pipe 45 connecting the outlet of the fan 5A and the pipe 41 bringing the air to the inlet of the turbine 4 and a valve V2 on the pipe 39 connecting the outlet of the fan 5A and the inlet of the exchanger of the pipe 39.

En début de mise en fonctionnement de l'installation, l'air à distiller arrive à environ 16,5 bars et pénètre dans des passages 30 de refroidissement d'air de la ligne d'échange.At the start of operation of the installation, the air to be distilled reaches about 16.5 bar and enters the air cooling passages of the exchange line.

L'air (ou éventuellement une partie de l'air) est sorti de la ligne d'échange via une conduite 37 à une température qui peut atteindre 90°C et amenée à l'aspiration de la soufflante froide 5A. Celle-ci surpresse cet air entre 20 et 26 bars et une température pouvant aller jusqu'à 120°C, la vanne V1 étant ouverte et la vanne V2 fermée, l'air comprimé est envoyé par les conduites 45, 41 directement à l'entrée de la turbine 4 sans se refroidir dans la ligne d'échange 6. L'air détendu est ensuite envoyé en cuve de la colonne moyenne pression 8. Alternativement ou additionnellement, en début de fonctionnement des moyens de mesure de température détectent si la température d'entrée de la turbine 4 et/ou de la sortie de la soufflante de l'air provenant de la soufflante 5A passe en dessous d'un seuil prédéterminé et si la température est suffisamment basse, la vanne V2 s'ouvre et la vanne V1 se ferme de sorte que l'air surpressé en 5A est envoyé à la conduite 39, ensuite à de la ligne d'échange 6, avant d'être divisé en deux et envoyé en partie à la turbine 4 et en partie à la cuve de la colonne moyenne pression 8 Cette disposition des vannes correspond au fonctionnement stable.The air (or possibly a part of the air) is removed from the exchange line via a pipe 37 at a temperature that can reach 90 ° C and brought to the suction of the cold blower 5A. This boosts this air between 20 and 26 bar and a temperature up to 120 ° C, the valve V1 being open and the valve V2 closed, the compressed air is sent by the lines 45, 41 directly to the inlet of the turbine 4 without cooling in the exchange line 6. The expanded air is then sent to the tank of the medium pressure column 8. Alternatively or additionally, at the beginning of operation the temperature measuring means detect whether the temperature inlet of the turbine 4 and / or the outlet of the air blower from the blower 5A passes below a predetermined threshold and if the temperature is sufficiently low, the valve V2 opens and the valve V1 closes so that the supercharged air 5A is sent to the pipe 39, then to the exchange line 6, before being divided in two and sent partly to the turbine 4 and partly to the tank of the medium-pressure column 8 This provision of the valves correspon d stable operation.

Alternativement, la fermeture de la vanne V1 et l'ouverture de la vanne V2 peuvent être déclenchées un certain temps après la mise en fonctionnement du compresseur principal.Alternatively, the closure of the valve V1 and the opening of the valve V2 can be triggered a certain time after the main compressor is started up.

Les vannes V1, V2 peuvent également avoir le même fonctionnement que dans la Figure 1, c'est-à-dire que si la température d'entrée de la turbine et/ou de sortie de la soufflante devient trop basse, un envoi d'air chaud vers la turbine peut être initié en ouvrant la vanne V1 pour que l'air passe directement de la soufflante vers la turbine à travers la conduite 45.The valves V1, V2 can also have the same operation as in the Figure 1 that is, if the inlet temperature of the turbine and / or outlet of the fan becomes too low, a hot air can be sent to the turbine by opening the valve V1 so that the air passes directly from the blower to the turbine through line 45.

La régulation du niveau de cuve (LIC) de la colonne moyenne pression 8 ou la colonne basse pression 9 peut être faite en agissant sur la vitesse de la turbine 4 via un SIC (indicateur et régulateur de vitesse). La vitesse de rotation peut également être fixée pour que l'installation fonctionne en excédent de puissance frigorifique. L'excédent de froid est éliminé par n'importe quelle ligne liquide (azote, oxygène ou argon) de la boîte froide, par exemple en ouvrant la vanne V3. La ligne liquide doit avoir une vanne automatique dont l'ouverture et la fermeture sont liées à des seuils de niveau de cuve de la colonne basse pression 9.The regulation of the tank level (LIC) of the medium pressure column 8 or the low pressure column 9 can be done by acting on the speed of the turbine 4 via a SIC (indicator and cruise control). The rotation speed can also be set for the system to operate in excess of cooling capacity. The excess of cold is eliminated by any liquid line (nitrogen, oxygen or argon) of the cold box, for example by opening the valve V3. The liquid line must have an automatic valve whose opening and closing are connected to tank level thresholds of the low pressure column 9.

De la manière décrite en US-A-5475980 , la turbine Claude 4, et éventuellement la soufflante froide 5A, peu(ven)t être couplée(s) à un dispositif d'adsorption d'énergie autre qu'un frein d'huile 49, tel qu'un alternateur ou un générateur.As described in US Patent 5475980 the Claude 4 turbine, and possibly the cold blower 5A, may be coupled to an energy adsorption device other than an oil brake 49, such as an alternator or a generator .

Les exemples des Figures 1 et 2 décrivent la vaporisation d'oxygène dans la ligne d'échange mais l'invention s'applique également au cas dans lesquels de l'azote liquide ou de l'argon liquide se vaporisent dans la ligne d'échange à la place de ou avec l'oxygène liquide.Examples of Figures 1 and 2 describe the vaporization of oxygen in the exchange line but the invention is also applicable to the case in which liquid nitrogen or liquid argon vaporize in the exchange line instead of or with the liquid oxygen.

L'invention s'applique également au cas dans lequel seule une partie de l'air est surpressé comme on le voit dans les Figures 6, 8, 10 et 11 de EP504029 et dans EP-A-0644388 et FR-A-2688052 .The invention also applies to the case in which only a part of the air is overpressed as can be seen in FIGS. 6, 8, 10 and 11 of FIG. EP504029 and in EP-A-0644388 and FR-A-2688052 .

Dans la Figure 3, un cycle d'azote moyenne pression fournit les frigories requises pour la séparation.In the Figure 3 a medium pressure nitrogen cycle provides the required frigories for separation.

Les remontées de liquide 23, 24 et les productions 15, 29 de la colonne basse pression 9 sont identiques à celles précédemment décrites.The liquid lifts 23, 24 and the productions 15, 29 of the low pressure column 9 are identical to those previously described.

De l'air comprimé à la moyenne pression est épuré et ensuite se refroidit dans la ligne d'échange 6 avant d'être envoyé à la colonne moyenne pression 8.Compressed air at medium pressure is purified and then cools in the exchange line 6 before being sent to the medium pressure column 8.

De l'azote moyenne pression est soutiré en tête de la colonne moyenne pression 8, réchauffé dans la ligne d'échange 6 jusqu'au bout chaud et ensuite comprimé dans un compresseur 54. Tout ou une partie de l'azote comprimé est refroidi par un refroidisseur 47 et rentre dans la ligne d'échange.Medium pressure nitrogen is withdrawn at the top of the medium pressure column 8, heated in the heat exchange line 6 to the hot end and then compressed in a compressor 54. All or part of the compressed nitrogen is cooled by a cooler 47 and enters the exchange line.

L'azote renvoyé à la ligne d'échange sort de celle-ci à une température intermédiaire pour être surpressé dans un surpresseur 5B couplé au même arbre qu'une turbine 4B. En fonctionnement normal, une vanne V2 est ouverte sur une conduite 39 qui ramène l'azote surpressé dans la ligne d'échange pour y être refroidi et la vanne V1 sur une conduite 45 est fermée.Nitrogen returned to the exchange line exits from it at an intermediate temperature to be supercharged in a booster 5B coupled to the same shaft as a turbine 4B. In normal operation, a valve V2 is open on a pipe 39 which brings the pressurized nitrogen back into the exchange line to be cooled and the valve V1 on a pipe 45 is closed.

Au moment du démarrage et/ou pendant des changements de marche et/ou afin de réguler la température d'entrée de la turbine, la vanne V1 s'ouvre et la vanne V2 se ferme de sorte que l'azote comprimé dans le surpresseur 5B arrive à l'entrée de la turbine 4B sans avoir été refroidi dans la ligne d'échange. Il est également possible de régler les vannes de sorte qu'une partie de l'azote surpressé arrive à l'entrée de la turbine après refroidissement dans la ligne d'échange alors que le reste de l'azote surpressé arrive à l'entrée de la turbine 4B sans refroidissement.When starting and / or during changes of operation and / or in order to regulate the inlet temperature of the turbine, the valve V1 opens and the valve V2 closes so that the compressed nitrogen in the booster 5B arrives at the inlet of the turbine 4B without being cooled in the exchange line. It is also possible to adjust the valves so that a portion of the pressurized nitrogen arrives at the inlet of the turbine after cooling in the exchange line while the rest of the pressurized nitrogen arrives at the inlet of the turbine. the turbine 4B without cooling.

Le système de colonnes peut comprendre une simple colonne, une double colonne ou une triple colonne avec ou sans une colonne de mixture d'argon, une colonne de mélange ou tout autre type de colonne de séparation d'un gaz de l'air.The column system may comprise a single column, a double column or a triple column with or without an argon mixture column, a mixing column or any other type of air gas separation column.

Claims (7)

  1. Method for producing in gaseous form and under high pressure at least one fluid chosen from oxygen, argon and nitrogen in an air separation device, wherein all of the air intended for distillation is compressed in a compressor (1), the compressed air is purified, at least one first portion of the air is further pressurised to a high pressure, the compressed and purified air is sent into a heat exchange line (6) of the device wherein it is cooled, the compressed, purified and cooled air is separated in a system of columns (8, 9) of the device comprising at least one distillation column, a fluid (16) in liquid state is withdrawn from a column of the system of columns, said fluid in liquid state is brought to the high pressure, it is vaporised by heat exchange with air and the vaporised liquid is heated under this high pressure in the heat exchange line of the installation, at least one portion of the further pressurised air is expanded in a expansion turbine (4, 4B) from the high pressure to a second pressure, with the expanded air (22) then being sent to a column of the system of columns, in normal operation the further pressurised air being cooled down to the inlet temperature of the turbine in the exchange line upstream of the expansion turbine,
    characterised in that, during the starting of the operation of the air separation device and/or during a change in operation, and possibly in order to adjust the inlet temperature of the turbine, all of the further pressurised air at the high pressure is sent upstream from the expansion turbine without passing through the exchange line.
  2. Method according to claim 1 wherein:
    - at an intermediate temperature of the exchange line (6), is taken from the heat exchange line the at least one portion of the air being cooled in the latter;
    - the air at the intermediate temperature is further pressurised in a cold blower (5A) until the high pressure;
    - the further pressurised air is reintroduced into the heat exchange line;
    - a first portion (43) of the further pressurised air is sent to a column (8, 9) of the system of columns and a second portion (41) of the further pressurised air is sent to the expansion turbine (4), with the expanded air then being sent to a column of the system of columns;
    - during the starting of the operation of the installation and/or during a change in operation and possibly when the temperature at the inlet of the turbine falls below a predetermined threshold, all of the air that has exited from the exchange line and further pressurised in the cold blower is sent upstream of the expansion turbine without passing through the exchange line.
  3. Method according to claim 2, characterised in that all of the air entering in the process of cooling is removed, it is further pressurised in the cold blower (5A) and it is reintroduced into the exchange line (6).
  4. Method according to claim 2 or 3, wherein when the temperature of the further pressurised air in the cold blower (5A) is reduced to a predetermined temperature or after a predetermined period of time, further pressurised air is no longer sent upstream from the expansion turbine (4) without passing through the exchange line.
  5. Method according to one of claims 2 to 4 wherein the inlet temperature of the cold blower (5A) is less than the inlet temperature of the expansion turbine (4).
  6. Method according to claim 1 wherein all of the air is compressed in the compressor (1) and the overcompressor (5) until the high pressure or only a portion of the air is further pressurised in the overcompressor (5) to the high pressure, the air at high pressure is sent to the hot end of the exchange line (6), a portion of the air is removed from the exchange line at an intermediate temperature and expanded in the turbine (4) and the rest of the air continues its cooling in the exchange line (6).
  7. Method for producing in gaseous form and under high pressure at least one fluid chosen from oxygen, argon and nitrogen in an air separation installation, wherein, in stable operation, the air is compressed in a compressor (1), the compressed air is purified and it is sent into a heat exchange line (6) of the installation where it is cooled, the compressed, purified and cooled air is separated in a system of columns (8, 9) of the installation comprising at least one distillation column, a fluid (16) is withdrawn at the liquid state from a column of the system of columns, said fluid in the liquid state is brought to high pressure, it is vaporised by heat exchange with air and the vaporised air is heated under this high pressure in the heat exchange line (6) of the installation characterised in that
    - at an intermediate temperature of the exchange line, a flow of compressed nitrogen in the process of cooling in the latter is removed from the heat exchange line;
    - the nitrogen is further pressurised at the intermediate temperature ion a cold blower (5B) until the first pressure;
    - the further pressurised nitrogen is reintroduced into the heat exchange line;
    - all or a portion of the further pressurised nitrogen is sent to an expansion turbine (4B), with the expanded nitrogen then being sent to a column of the system of columns,
    and in that, during the starting of the operation of the installation and/or during a change in operation and possibly when the temperature at the inlet of the turbine falls below a predetermined threshold, all of the nitrogen exiting the exchange line and further pressurised in the cold blower (5B) is sent upstream of the expansion turbine (4B) without passing through the exchange line.
EP04300066.0A 2003-02-13 2004-02-05 Process and device for the production of at least one gaseous high pressure fluid such as Oxygen, Nitrogen or Argon by cryogenic separation of air Expired - Lifetime EP1447634B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0301722 2003-02-13
FR0301722A FR2851330B1 (en) 2003-02-13 2003-02-13 PROCESS AND PLANT FOR THE PRODUCTION OF A GASEOUS AND HIGH PRESSURE PRODUCTION OF AT LEAST ONE FLUID SELECTED AMONG OXYGEN, ARGON AND NITROGEN BY CRYOGENIC DISTILLATION OF AIR

Publications (2)

Publication Number Publication Date
EP1447634A1 EP1447634A1 (en) 2004-08-18
EP1447634B1 true EP1447634B1 (en) 2018-07-25

Family

ID=32669364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04300066.0A Expired - Lifetime EP1447634B1 (en) 2003-02-13 2004-02-05 Process and device for the production of at least one gaseous high pressure fluid such as Oxygen, Nitrogen or Argon by cryogenic separation of air

Country Status (5)

Country Link
US (2) US7076971B2 (en)
EP (1) EP1447634B1 (en)
CN (1) CN100394132C (en)
ES (1) ES2685794T3 (en)
FR (1) FR2851330B1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2854682B1 (en) 2003-05-05 2005-06-17 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2865024B3 (en) * 2004-01-12 2006-05-05 Air Liquide METHOD AND INSTALLATION OF AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2906605B1 (en) * 2006-10-02 2009-03-06 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
FR2913760B1 (en) * 2007-03-13 2013-08-16 Air Liquide METHOD AND APPARATUS FOR PRODUCING GAS-LIKE AIR AND HIGH-FLEXIBILITY LIQUID AIR GASES BY CRYOGENIC DISTILLATION
FR2913759B1 (en) * 2007-03-13 2013-08-16 Air Liquide METHOD AND APPARATUS FOR GENERATING GAS AIR FROM THE AIR IN A GAS FORM AND LIQUID WITH HIGH FLEXIBILITY BY CRYOGENIC DISTILLATION
FR2915271A1 (en) * 2007-04-23 2008-10-24 Air Liquide Air separating method, involves operating extracted nitrogen gas from high pressure column at pressure higher than pressure of systems operating at low pressure, and compressing gas till pressure is higher than high pressure of systems
BRPI0721931A2 (en) * 2007-08-10 2014-03-18 Air Liquide PROCESS FOR CRYGEN DISTILLATION AIR SEPARATION
WO2009021351A1 (en) * 2007-08-10 2009-02-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
FR2920866A1 (en) * 2007-09-12 2009-03-13 Air Liquide MAIN EXCHANGE LINE AND CRYOGENIC DISTILLATION AIR SEPARATION APPARATUS INCORPORATING SUCH EXCHANGE LINE
FR2930331B1 (en) * 2008-04-22 2013-09-13 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
EP2369281A1 (en) * 2010-03-09 2011-09-28 Linde Aktiengesellschaft Method and device for cryogenic decomposition of air
FR2959802B1 (en) * 2010-05-10 2013-01-04 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
US10895417B2 (en) * 2016-03-25 2021-01-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the production of air gases by the cryogenic separation of air with improved front end purification and air compression
PL3410050T3 (en) 2017-06-02 2019-10-31 Linde Ag Method for producing one or more air products and air separation system
FR3069915B1 (en) * 2017-08-03 2020-11-20 Air Liquide APPARATUS AND METHOD FOR SEPARATION OF AIR BY CRYOGENIC DISTILLATION
FR3069913B1 (en) * 2017-08-03 2020-06-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude APPARATUS AND METHOD FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
FR3069914B1 (en) * 2017-08-03 2020-06-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude APPARATUS AND METHOD FOR SEPARATING AIR BY CRYOGENIC DISTILLATION
EP3438584B1 (en) 2017-08-03 2020-03-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for air separation by cryogenic distilling
WO2020124427A1 (en) * 2018-12-19 2020-06-25 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for starting up a cryogenic air separation unit and associated air separation unit
US11137205B2 (en) 2018-12-21 2021-10-05 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for eliminating heat bumps following regeneration of adsorbers in an air separation unit
FR3090831B1 (en) * 2018-12-21 2022-06-03 L´Air Liquide Sa Pour L’Etude Et L’Exploitation Des Procedes Georges Claude Cryogenic distillation air separation apparatus and method
US11029086B2 (en) 2018-12-21 2021-06-08 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for reducing process disturbances during pressurization of an adsorber in an air separation unit
CN109737691B (en) * 2019-01-31 2020-05-19 东北大学 An air separation system for iron and steel enterprises
CN110787587A (en) 2019-11-08 2020-02-14 乔治洛德方法研究和开发液化空气有限公司 Air separation purification pressure equalizing system and control method
TWI849486B (en) * 2022-08-26 2024-07-21 中國鋼鐵股份有限公司 A method for shortening the production time of liquid argon

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563046A (en) * 1968-01-05 1971-02-16 Hydrocarbon Research Inc Air separatiin process
JPS5419165B2 (en) * 1973-03-01 1979-07-13
IT1019710B (en) * 1974-07-12 1977-11-30 Nuovo Pignone Spa PROCESS AND EQUIPMENT FOR THE PRODUCTION OF HIGH PERCENTAGES OF OS SIGEN AND / OR NITROGEN IN THE LIQUID STATE
JPS5420986A (en) * 1977-07-18 1979-02-16 Kobe Steel Ltd Method of equipment for separating air
US4833171A (en) 1981-01-27 1989-05-23 Sweeney Maxwell P Synthesis gas system
US4507134A (en) * 1983-06-02 1985-03-26 Kabushiki Kaisha Kobe Seiko Sho Air fractionation method
US4617036A (en) * 1985-10-29 1986-10-14 Air Products And Chemicals, Inc. Tonnage nitrogen air separation with side reboiler condenser
JPS62102074A (en) * 1985-10-30 1987-05-12 株式会社日立製作所 Gas separation method and device
US4834785A (en) * 1988-06-20 1989-05-30 Air Products And Chemicals, Inc. Cryogenic nitrogen generator with nitrogen expander
GB8824216D0 (en) 1988-10-15 1988-11-23 Boc Group Plc Air separation
JP2909678B2 (en) 1991-03-11 1999-06-23 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method and apparatus for producing gaseous oxygen under pressure
FR2681415B1 (en) * 1991-09-18 1999-01-29 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION OF GAS OXYGEN UNDER HIGH PRESSURE BY AIR DISTILLATION.
FR2688052B1 (en) * 1992-03-02 1994-05-20 Maurice Grenier PROCESS AND PLANT FOR THE PRODUCTION OF OXYGEN AND / OR GAS NITROGEN UNDER PRESSURE BY AIR DISTILLATION.
GB9213776D0 (en) * 1992-06-29 1992-08-12 Boc Group Plc Air separation
US5379598A (en) 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
US5475980A (en) * 1993-12-30 1995-12-19 L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude Process and installation for production of high pressure gaseous fluid
US5635541A (en) 1995-06-12 1997-06-03 Air Products And Chemicals, Inc. Elevated pressure air separation unit for remote gas process
GB9515907D0 (en) * 1995-08-03 1995-10-04 Boc Group Plc Air separation
GB9605171D0 (en) * 1996-03-12 1996-05-15 Boc Group Plc Air separation
US5678425A (en) * 1996-06-07 1997-10-21 Air Products And Chemicals, Inc. Method and apparatus for producing liquid products from air in various proportions
KR100221881B1 (en) * 1997-08-26 1999-09-15 전주범 A noise control method for a refrigerator
US5934105A (en) * 1998-03-04 1999-08-10 Praxair Technology, Inc. Cryogenic air separation system for dual pressure feed
US5979183A (en) 1998-05-22 1999-11-09 Air Products And Chemicals, Inc. High availability gas turbine drive for an air separation unit
EP1067345B1 (en) * 1999-07-05 2004-06-16 Linde Aktiengesellschaft Process and device for cryogenic air separation
US6282901B1 (en) 2000-07-19 2001-09-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integrated air separation process
DE60024634T2 (en) 2000-10-30 2006-08-03 L'Air Liquide, S.A. a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Method and apparatus for cryogenic air separation integrated with associated method
US6568209B1 (en) * 2002-09-06 2003-05-27 Praxair Technology, Inc. Cryogenic air separation system with dual section main heat exchanger
US7143606B2 (en) 2002-11-01 2006-12-05 L'air Liquide-Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etide Et L'exploitation Des Procedes Georges Claude Combined air separation natural gas liquefaction plant
US6925818B1 (en) * 2003-07-07 2005-08-09 Cryogenic Group, Inc. Air cycle pre-cooling system for air separation unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20040221612A1 (en) 2004-11-11
US7370494B2 (en) 2008-05-13
US20060254312A1 (en) 2006-11-16
EP1447634A1 (en) 2004-08-18
CN1521121A (en) 2004-08-18
FR2851330A1 (en) 2004-08-20
CN100394132C (en) 2008-06-11
US7076971B2 (en) 2006-07-18
ES2685794T3 (en) 2018-10-11
FR2851330B1 (en) 2006-01-06

Similar Documents

Publication Publication Date Title
EP1447634B1 (en) Process and device for the production of at least one gaseous high pressure fluid such as Oxygen, Nitrogen or Argon by cryogenic separation of air
EP0689019B1 (en) Process and apparatus for producing gaseous oxygen under pressure
EP0628778B1 (en) Process and high pressure gas supply unit for an air constituent consuming installation
EP0848220B1 (en) Method and plant for supplying an air gas at variable quantities
EP0422974B1 (en) Process and installation for the production of gaseous oxygen in variable quantities by the distillation of air
EP0789208B1 (en) Process and installation for the production of gaseous oxygen under high pressure
FR2461906A1 (en) CRYOGENIC AIR SEPARATION METHOD AND INSTALLATION WITH OXYGEN PRODUCTION AT HIGH PRESSURE
EP0694746B1 (en) Process for the production of a gas under pressure in variable quantities
EP3631327B1 (en) Method and apparatus for air separation by cryogenic distillation
FR2716816A1 (en) Process for restarting an auxiliary argon / oxygen separation column by distillation, and corresponding installation
FR2728663A1 (en) PROCESS FOR SEPARATING A GASEOUS MIXTURE BY CRYOGENIC DISTILLATION
EP0914584B1 (en) Method and plant for producing an air gas with a variable flow rate
FR2710370A1 (en) Method and assembly for compressing a gas.
FR2688052A1 (en) Method and installation for producing pressurised gaseous oxygen and/or nitrogen by distillation of air
WO2005073651A1 (en) Cryogenic distillation method and installation for air separation
FR2929697A1 (en) PROCESS FOR PRODUCING VARIABLE GASEOUS NITROGEN AND VARIABLE GAS OXYGEN BY AIR DISTILLATION
FR2915271A1 (en) Air separating method, involves operating extracted nitrogen gas from high pressure column at pressure higher than pressure of systems operating at low pressure, and compressing gas till pressure is higher than high pressure of systems
EP1409937B1 (en) Method for water vapour production and air distillation
FR2864213A1 (en) Producing oxygen, argon or nitrogen as high-pressure gas by distilling air comprises using electricity generated by turbine to drive cold blower
WO2005047790A2 (en) Method and installation for enriching a gas stream with one of the components thereof
FR2777641A1 (en) Air distillation process to produce argon
FR2811712A1 (en) AIR DISTILLATION AND ELECTRICITY GENERATION PLANT AND CORRESPONDING METHOD
FR2787562A1 (en) Air distillation process to produce argon
FR2853406A1 (en) Procedure for separating air by cryogenic distillation uses two-column separator and pressure reducing valve opening at set pressure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BALOG, OVIDIU

Inventor name: JAOUANI, LASADL'AIR LIQUIDE SA

Inventor name: HA, BAOL'AIR LIQUIDE SA

Inventor name: GRENIER, MAURICEL'AIR LIQUIDE SA

Inventor name: PONTONE, XAVIERL'AIR LIQUIDE SA

17P Request for examination filed

Effective date: 20050218

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1022214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004052961

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2685794

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20181011

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181026

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: RECTIFICATIONS

RIC2 Information provided on ipc code assigned after grant

Ipc: F25J 3/04 20060101AFI20040514BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004052961

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20190304

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190205

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200327

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1022214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190206

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1022214

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180725

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220217

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220203

Year of fee payment: 19

Ref country code: IT

Payment date: 20220218

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004052961

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230205

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901