[go: up one dir, main page]

EP0472100A2 - Lampe à décharge à haute pression - Google Patents

Lampe à décharge à haute pression Download PDF

Info

Publication number
EP0472100A2
EP0472100A2 EP19910113606 EP91113606A EP0472100A2 EP 0472100 A2 EP0472100 A2 EP 0472100A2 EP 19910113606 EP19910113606 EP 19910113606 EP 91113606 A EP91113606 A EP 91113606A EP 0472100 A2 EP0472100 A2 EP 0472100A2
Authority
EP
European Patent Office
Prior art keywords
discharge lamp
pressure discharge
lamp according
niobium
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19910113606
Other languages
German (de)
English (en)
Other versions
EP0472100A3 (en
Inventor
Helmut Weske
Stefan Dr. Jüngst
Peter Wahrendorff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0472100A2 publication Critical patent/EP0472100A2/fr
Publication of EP0472100A3 publication Critical patent/EP0472100A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors

Definitions

  • the invention is based on a high-pressure discharge lamp according to the preamble of claim 1.
  • Typical power levels are 100 - 250 W.
  • a structure is known from the high-pressure sodium lamps in which the ceramic discharge vessel consists of Al2O3, to which small additions of other oxides may be added. At the ends is a niobium tube, the thermal expansion coefficient of which is well adapted to the Al2O3 ceramic, fitted into a ceramic stopper and sealed by a glass solder.
  • the main problem with the transfer of this technology to lamps with metal halide filling is the highly corrosive effect of the metal halides on the niobium tubes and the glass solder.
  • special glass solders as described, for example, in EP-A 60 582 and EP-A 230 080 are described, the life of such lamps has so far been limited to short burning times.
  • the invention allows to use well-known ceramic materials (esp. Al2O3, possibly with additives of other oxides) and to use a known implementation technique.
  • An approximately cylindrical ceramic stopper has a central opening through which a tube or a solid niobium wire pin is passed.
  • halide-resistant material in particular tungsten, molybdenum, Al2O3 or platinum.
  • the layer thickness is advantageously 2-5 ⁇ m. With a smaller layer thickness, it is not reliably ensured that the lead-through area is completely and evenly covered. A thicker layer tends to flake and internal tensions when subjected to changes in temperature. With molybdenum and platinum, the layer thickness is not quite as critical, since these materials have a thermal expansion coefficient closer to niobium than tungsten.
  • the layer is applied to the niobium feed line by sputtering. The thickness of the layer should be as uniform as possible ( ⁇ 0.5 ⁇ m) so that the sealing bond cannot be affected by micropores and cracks in the coating.
  • the layer can completely cover the niobium feed line, in particular including the welding point to the tungsten electrode shaft.
  • tungsten should be used as the coating material because it has a very high melting point and a very low vapor pressure, so that it evaporates less than other materials at the high temperatures at the electrode.
  • the coated niobium surface When melting, the coated niobium surface is dissolved less by the glass solder than the pure, uncoated surface. This can be seen on the one hand by comparing the wetting angle of the glass solder on the niobium feed line. With an uncoated niobium lead, the wetting angle of a glass solder drop is less than 30 °. With a coated niobium feed line, it is approximately 60 °.
  • the color of the melt in a coated niobium feed line is lighter and more similar to ceramic.
  • a niobium tube for such a composite system because of its elasticity.
  • a solid or hollow niobium pin can be removed from the attack of the halides even more effectively. This happens because the pin is flush with the inside edge of the plug. Even better results can be achieved if the pin is inserted deeply into the through opening of the plug.
  • the insertion depth is preferably approximately 3 mm.
  • the pin advantageously has a diameter of 1-1.5 mm. With this arrangement, it is particularly favorable to also cover the section of the electrode shaft running within the opening with tungsten or the like. to coat. Overall, this arrangement not only shortens the lead-through area, but also minimizes the contact surface on the niobium stick, so that this more than outweighs the disadvantage of lower elasticity compared to a niobium tube.
  • a metal halide discharge lamp with an output of 150 W is shown schematically in FIG. It consists of a cylindrical (or also elliptical) outer bulb 1 made of tempered glass, which is closed at one end with a cap 2, while a screw base 3 is attached at the other end. In the area of the dome 2, a nipple 4 is formed to hold a frame 5. The latter has two power supply lines 6, which are melted from one another in an insulated manner by means of a plate melting 7 into the base-side end of the outer bulb 1.
  • the frame 5 holds an axially arranged in the outer bulb 1 cylindrical (or bulged) discharge vessel 8 made of Al2O3 ceramic, in each of which a power supply 6 via a conductor 9 with a niobium bushing (supply line) 10, each in a stopper 11 on End of the discharge vessel is fitted, is connected.
  • a power supply 6 via a conductor 9 with a niobium bushing (supply line) 10, each in a stopper 11 on End of the discharge vessel is fitted, is connected.
  • One of the conductors, 9a is formed by the end of one feed wire 6a, while the other conductor is a leaf spring part 9b, which is welded to a section of the other power supply 6b designed as a rod.
  • This arrangement takes into account the thermal expansion during lamp operation.
  • the section formed as a solid metal rod extends to the top 2 and is bent there into a partial circle which encompasses the nipple 4.
  • the two lead-throughs or feed lines 10 made of niobium each hold electrodes 12 on the discharge side, consisting of an electrode shaft 13 and a helix 14 pushed on at the discharge end.
  • the discharge vessel is filled with an inert ignition gas, e.g. Argon, from mercury and additives to metal halides.
  • the cylindrical outer bulb of the lamp is pinched and capped on two sides.
  • the axially arranged discharge vessel is bulged in the middle, while its two ends are tubular.
  • the two niobium bushings are connected to the bases at the two ends of the outer bulb via short current leads. A rack is not required.
  • the melting area at one end of the discharge vessel 8 is shown in detail in FIG.
  • the discharge vessel 8 has a wall thickness of 1.2 mm at both ends.
  • a niobium wire pin 16 with a length of 12 mm and a diameter of 1.2 mm is fitted into an axial opening 15 of the plug. It is inserted into the opening 15 so that a channel-like recess 17 of approximately 2 mm in length remains in the region of the opening 15 on the discharge side.
  • the wire pin is covered over its entire length with a tungsten layer 19 with a thickness of 2 ⁇ m.
  • the wire pin 16 is connected gas-tight to the plug 11 by a corrosion-resistant glass solder 20, for example a mixture of the oxides of aluminum, titanium and one or more rare earths.
  • the area of the electrode shaft 13 located in the recess 17 (about 2 mm in length) is also provided with the coating 19, so that in particular the area of the weld is additionally protected.
  • the lamp is filled through the second, still unsealed opening. Closing the first opening beforehand is not a problem.
  • the glass solder is applied to the outside of the bushing, is heated and runs into the capillary between the stopper and bushing when it melts.
  • the gas filling opposes the running in of the glass solder, with the result that the wire pin is not always completely covered by glass solder after solidification.
  • the second opening is only sealed after filling.
  • the number of early failures is directly correlated with the quality of this second melting in lamps without a coating. A significant improvement can be seen in lamps with coated wire pins, which are also used in a recessed manner. Because the execution area is shortened, its coverage is included Glass solder more complete. The proportion of early failures is reduced by 80%.
  • FIG. 3 shows a largely identical second exemplary embodiment, elements of the same construction having the same reference numbers.
  • the lead-through area 18, which is covered with glass solder 20, extends over the entire length of the opening 15.
  • the entire niobium wire pin / electrode shaft / coil system is covered with a 2 ⁇ m thick protective layer 19.
  • only tungsten is suitable as the coating material because the temperature load in the vicinity of the electrode tip is very high and the protective layer is prevented from evaporating by the extremely high melting temperature of the tungsten.
  • the first exemplary embodiment is equally suitable for the melting, while the second can preferably be used for the melting of the one which is sealed before the discharge vessel is filled.
  • a niobium tube 22 is realized by a niobium tube 22, as is the case is already known from high pressure sodium lamps.
  • the same elements again have the same reference numbers.
  • the niobium tube 22 is covered over its entire length by a molybdenum coating 23 with a thickness of 5 ⁇ m.
  • the tapered discharge-side end 24 protrudes into the discharge space and carries the uncoated electrode 12 on its end face.
  • This lamp is filled in a manner known per se either before or after the second bushing has melted, an opening in the tube 22 being formed for this purpose in the latter case. The problem of pressure equalization is then irrelevant.
  • the invention is not restricted to the exemplary embodiments shown.
  • the pipe end is so narrow that the electrical feed line (feedthrough) is fitted into the pipe end without a plug.
  • a different melting system can be used for each of the two ends of the discharge vessel, a combination of the exemplary embodiments described here or a combination of a melting system according to the invention with melting systems known per se being possible.
  • Exemplary embodiments without a plug are shown in FIGS. 5 and 6: Instead of a solid wire pin, a hollow pin with approximately the same dimensions can also be used (Fig. 5).
  • the hollow pin 16a is closed on the discharge side (16c). In this way, the advantages of a niobium tube (elasticity) and a wire pin (shortened lead-through area) can be advantageously combined.
  • the bore 16b of the hollow pin has a diameter ID which corresponds approximately to the wall thickness of the pin, that is to say half the difference between the outer diameter OD and the inner diameter ID.
  • the advantages of the elastic tube can be combined with those of the pin, which enables a shortened implementation area.
  • a discharge vessel is used which has inward-facing projections 11b at the ends, which are an integral part of the vessel.
  • FIG. 6 An embodiment similar to FIG. 2 is shown in FIG. 6.
  • the discharge vessel 8 ' is bulged in the middle (e.g. cylindrical or barrel-shaped) and has at the ends narrowed sections 11a which define the opening 15 and the passage area 18.
  • the scope of the protective coating is not tied to the type and depth of use of the niobium feedthrough, as shown in the exemplary embodiments. It is essential that the protective coating comprises at least the lead-through area 18.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
EP19910113606 1990-08-24 1991-08-13 High-pressure discharge lamp Withdrawn EP0472100A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE9012200U 1990-08-24
DE9012200U DE9012200U1 (de) 1990-08-24 1990-08-24 Hochdruckentladungslampe

Publications (2)

Publication Number Publication Date
EP0472100A2 true EP0472100A2 (fr) 1992-02-26
EP0472100A3 EP0472100A3 (en) 1992-06-17

Family

ID=6856824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910113606 Withdrawn EP0472100A3 (en) 1990-08-24 1991-08-13 High-pressure discharge lamp

Country Status (3)

Country Link
EP (1) EP0472100A3 (fr)
JP (1) JPH0499662U (fr)
DE (1) DE9012200U1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0536609A1 (fr) * 1991-10-11 1993-04-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lampe à décharge à haute pression
EP0570772A1 (fr) * 1992-05-18 1993-11-24 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lampe à décharge à haute pression
EP0587238A1 (fr) * 1992-09-08 1994-03-16 Koninklijke Philips Electronics N.V. Lampe à décharge à haute pression
WO1994006727A1 (fr) * 1992-09-16 1994-03-31 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elements d'etancheite pour tubes a regime d'arc en alumine et procede pour leur fabrication
EP0652586A1 (fr) * 1993-11-10 1995-05-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lampe à décharge à halogénure de métal avec récipient de décharge en céramique et son procédé de fabrication
WO1995028732A1 (fr) * 1994-04-13 1995-10-26 Philips Electronics N.V. Lampe a halogene-metal a haute pression
EP0751549A1 (fr) * 1995-01-13 1997-01-02 Ngk Insulators, Ltd. Lampe a decharge haute pression et procede de production correspondant
US5592049A (en) * 1993-02-05 1997-01-07 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh High pressure discharge lamp including directly sintered feedthrough
US5698946A (en) * 1992-06-05 1997-12-16 U.S. Philips Corporation Electric lamp having a protective skin on end portions of the current conductors
WO2006007177A2 (fr) * 2004-06-30 2006-01-19 General Electric Company Systeme et procede de conception d'une lame de projecteur
WO2006077516A2 (fr) * 2005-01-19 2006-07-27 Koninklijke Philips Electronics N.V. Lampe a decharge haute pression
WO2010063517A2 (fr) * 2008-12-05 2010-06-10 Osram Gesellschaft mit beschränkter Haftung Lampe à décharge à arc court et son procédé de fabrication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103200A (en) * 1977-05-13 1978-07-25 Westinghouse Electric Corp. Arc tube end seal and method of forming
JPS6063871A (ja) * 1983-09-19 1985-04-12 Toshiba Corp メタルハライドランプ
JPS60130045A (ja) * 1983-12-16 1985-07-11 Toshiba Corp メタルハライドランプ発光管の製造方法
EP0271877A2 (fr) * 1986-12-15 1988-06-22 Gte Products Corporation Traversée pour lampes à sodium et à halogénures métalliques
EP0371315A2 (fr) * 1988-12-01 1990-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Enceinte à décharge pour lampe à décharge à haute pression et sa méthode de fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103200A (en) * 1977-05-13 1978-07-25 Westinghouse Electric Corp. Arc tube end seal and method of forming
JPS6063871A (ja) * 1983-09-19 1985-04-12 Toshiba Corp メタルハライドランプ
JPS60130045A (ja) * 1983-12-16 1985-07-11 Toshiba Corp メタルハライドランプ発光管の製造方法
EP0271877A2 (fr) * 1986-12-15 1988-06-22 Gte Products Corporation Traversée pour lampes à sodium et à halogénures métalliques
EP0371315A2 (fr) * 1988-12-01 1990-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Enceinte à décharge pour lampe à décharge à haute pression et sa méthode de fabrication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 9, no. 197 (E-335)(1920) 14 August 1985 & JP-A-60 063 871 (TOSHIBA K.K.) 12 April 1985 *
PATENT ABSTRACTS OF JAPAN vol. 9, no. 288 (E-358)(2011) 15 November 1985 & JP-A-60 130 045 (TOSHIBA K.K.) 11 July 1985 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352952A (en) * 1991-10-11 1994-10-04 Patent-Treuhand-Gesellschaft F. Elektrische Gluehlampen Mbh High-pressure discharge lamp with ceramic discharge vessel
EP0536609A1 (fr) * 1991-10-11 1993-04-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lampe à décharge à haute pression
EP0570772A1 (fr) * 1992-05-18 1993-11-24 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lampe à décharge à haute pression
US5424608A (en) * 1992-05-18 1995-06-13 Patent-Treuhand-Gesellschaft F. Elektrische Gluehlampen Mbh High-pressure discharge lamp with ceramic discharge vessel
US5698946A (en) * 1992-06-05 1997-12-16 U.S. Philips Corporation Electric lamp having a protective skin on end portions of the current conductors
EP0587238A1 (fr) * 1992-09-08 1994-03-16 Koninklijke Philips Electronics N.V. Lampe à décharge à haute pression
WO1994006727A1 (fr) * 1992-09-16 1994-03-31 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elements d'etancheite pour tubes a regime d'arc en alumine et procede pour leur fabrication
US5592049A (en) * 1993-02-05 1997-01-07 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh High pressure discharge lamp including directly sintered feedthrough
US5810635A (en) * 1993-02-05 1998-09-22 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh High-pressure discharge lamp, method of its manufacture, and sealing material used with the method and the resulting lamp
US5637960A (en) * 1993-02-05 1997-06-10 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Ceramic discharge vessel for a high-pressure discharge lamp, having a filling bore sealed with a plug, and method of its manufacture
EP0652586A1 (fr) * 1993-11-10 1995-05-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lampe à décharge à halogénure de métal avec récipient de décharge en céramique et son procédé de fabrication
US5532552A (en) * 1993-11-10 1996-07-02 Patent-Treuhand-Gesellschaft F. Elektrische Gluehlampen Mbh Metal-halide discharge lamp with ceramic discharge vessel, and method of its manufacture
WO1995028732A1 (fr) * 1994-04-13 1995-10-26 Philips Electronics N.V. Lampe a halogene-metal a haute pression
EP0751549A1 (fr) * 1995-01-13 1997-01-02 Ngk Insulators, Ltd. Lampe a decharge haute pression et procede de production correspondant
US6139386A (en) * 1995-01-13 2000-10-31 Ngk Insulators, Ltd. High pressure discharge lamp with an improved sealing system and method of producing the same
EP0751549B1 (fr) * 1995-01-13 2003-08-06 Ngk Insulators, Ltd. Lampe a decharge haute pression et procede de production correspondant
WO2006007177A2 (fr) * 2004-06-30 2006-01-19 General Electric Company Systeme et procede de conception d'une lame de projecteur
WO2006007177A3 (fr) * 2004-06-30 2006-07-13 Gen Electric Systeme et procede de conception d'une lame de projecteur
WO2006077516A2 (fr) * 2005-01-19 2006-07-27 Koninklijke Philips Electronics N.V. Lampe a decharge haute pression
WO2006077516A3 (fr) * 2005-01-19 2007-10-11 Koninkl Philips Electronics Nv Lampe a decharge haute pression
US7952284B2 (en) 2005-01-19 2011-05-31 Koninklijke Philips Electronics N.V. High-pressure discharge lamp
WO2010063517A2 (fr) * 2008-12-05 2010-06-10 Osram Gesellschaft mit beschränkter Haftung Lampe à décharge à arc court et son procédé de fabrication
WO2010063517A3 (fr) * 2008-12-05 2010-09-16 Osram Gesellschaft mit beschränkter Haftung Lampe à décharge à arc court et son procédé de fabrication

Also Published As

Publication number Publication date
EP0472100A3 (en) 1992-06-17
JPH0499662U (fr) 1992-08-28
DE9012200U1 (de) 1991-12-19

Similar Documents

Publication Publication Date Title
EP0570772B1 (fr) Lampe à décharge à haute pression
EP0887839B1 (fr) Lampe à halogénure métallique avec enveloppe céramique
EP0602530B1 (fr) Procédé pour fabriquer un joint étanche au vide pour un récipient céramique et une lampe à décharge
EP0887840B1 (fr) Lampe à halogénure métallique avec enveloppe céramique
EP0652586B1 (fr) Lampe à décharge à halogénure de métal avec récipient de décharge en céramique et son procédé de fabrication
EP0536609A1 (fr) Lampe à décharge à haute pression
DE69402848T2 (de) Keramisches entladungsgefäss und verfahren zu dessen herstellung
EP0602529B1 (fr) Lampe de décharge à haute pression ayant un récipient céramique de décharge
EP0528427B1 (fr) Lampe à décharge à haute pression
EP0887841B1 (fr) Lampe à halogénure métallique avec enveloppe céramique
EP0472100A2 (fr) Lampe à décharge à haute pression
DE2641867A1 (de) Elektrische entladungslampe
DE60130204T2 (de) Hochdruckentladungslampe
EP2020018B1 (fr) Lampe à décharge à haute pression
EP0573880B1 (fr) Lampe à décharge haute pression
EP0479089B1 (fr) Lampe à décharge à haute pression et procédé de fabrication
DE10026802A1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
EP1351278B1 (fr) Lampe à halogénure métallique avec enveloppe céramique
EP1372184A2 (fr) Système d'électrodes pour une lampe aux halogénures métalliques et lampe équipée d'un tel système
DE202004013922U1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
DE19529465A1 (de) Hochdruckentladungslampe
WO2007065822A2 (fr) Lampe a decharge haute pression comprenant une enceinte de decharge ceramique
EP2153457A2 (fr) Lampe à décharge haute pression
DE3111278A1 (de) Hochdruck-natriumlampe mit aluminiumoxyd-entladungsroehre und verfahren zu ihrer herstellung
DE10226762A1 (de) Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JUENGST, STEFAN, DR.

Inventor name: WESKE, HELMUT

Inventor name: WAHRENDORFF, PETER

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19921217