[go: up one dir, main page]

EP0368111A2 - Sorptionskühlsystem - Google Patents

Sorptionskühlsystem Download PDF

Info

Publication number
EP0368111A2
EP0368111A2 EP19890120078 EP89120078A EP0368111A2 EP 0368111 A2 EP0368111 A2 EP 0368111A2 EP 19890120078 EP19890120078 EP 19890120078 EP 89120078 A EP89120078 A EP 89120078A EP 0368111 A2 EP0368111 A2 EP 0368111A2
Authority
EP
European Patent Office
Prior art keywords
container
cooling
sorption
cooling system
working medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19890120078
Other languages
English (en)
French (fr)
Other versions
EP0368111B1 (de
EP0368111A3 (de
Inventor
Peter Dr. Maier-Laxhuber
Fritz Kaubek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeo Tech Zeolith Technologie GmbH
Original Assignee
Zeo Tech Zeolith Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeo Tech Zeolith Technologie GmbH filed Critical Zeo Tech Zeolith Technologie GmbH
Priority to AT89120078T priority Critical patent/ATE102334T1/de
Publication of EP0368111A2 publication Critical patent/EP0368111A2/de
Publication of EP0368111A3 publication Critical patent/EP0368111A3/de
Application granted granted Critical
Publication of EP0368111B1 publication Critical patent/EP0368111B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators

Definitions

  • the invention relates to a sorption cooling system comprising a cooling container and an adsorption container.
  • compressor cooling units essentially consist of a, mostly hermetically sealed, compressor, a forced-cooled condenser, a collecting container for the liquid refrigerant, a temperature-controlled expansion valve and an evaporator.
  • the cold generated in the evaporator must be temporarily stored in a cold buffer, since the evaporator capacity is significantly lower than the cooling capacity required during a dispensing process.
  • the compression device has a longer running time than the sum of the individual tapping operations.
  • Today's cold buffers either have a water tank with a capacity of up to 20 l or a large aluminum block.
  • the biggest disadvantage of the aluminum block is that the storage capacity is relatively small, so that when more than 0.5 l of liquid are drawn, the cooling effect is already exhausted.
  • the water storage device has the disadvantage that after filling the water, the device must be in operation for a long time in order to cool the water filling itself.
  • the water tank must be provided with an additional agitator, which the water around the evaporator and cooling coils for better heat exchange pumped around. This mechanical agitator is extremely susceptible to failure and therefore often leads to the failure of the entire cooling device.
  • Such compression refrigerators are used to cool beverages, e.g. B. beer, lemonades etc. used in marquees or at parties. Your use in the private individual z. B. for cooling a borrowed beer barrel is only possible to a limited extent, since the high complexity of the device requires a lot of technical expertise from the user and the refrigerator cannot be used profitably for the beverage publisher due to the high acquisition or maintenance costs.
  • Sorption apparatus is understood to mean devices in which a liquid or solid sorbent sorbs a second, higher-boiling agent, the working fluid sorbs with heat release. Before the working medium is sorbed by sorbent, it evaporates in a cooling container while absorbing heat. The evaporation temperatures range from -40 ° to + 40 ° C, depending on the type of working fluid or the area in which the sorbent is used. Sorption devices with solid adsorbents, so-called adsorption devices work periodically, i. H. A sorption phase is always followed by a desorption phase in which the working fluid is separated from the adsorbent. The working medium cannot be sorbed during the desorption phase and therefore cannot evaporate. There is therefore no cold in the cooling container.
  • a periodically operating adsorption cooling apparatus in which an ice bank is built up during the adsorption phase by partial evaporation of the working medium water.
  • the apparatus exists thereby from an adsorption container which is filled with the sorbent zeolite, a cooling container which contains the working medium water and from which a vapor channel between the adsorption container and the cooling container can be shut off by means of a shut-off device.
  • Cold for example for cooling a cooling bag, can be dissipated via the container surfaces of the cooling container, while heat can be called up via the container walls of the adsorption container.
  • the working medium is desorbed from the sorbent by supplying desorption heat to the adsorption container and reliquefied in the cooling container with heat being released.
  • the shut-off device is closed and the adsorption container is cooled. In this state, the adsorption apparatus can be stored for any length of time.
  • the object of the present invention is to show a sorption cooling system which is characterized by a simple and inexpensive design and with the aid of which larger amounts of liquid can be cooled to temperatures between + 4 ° and + 10 ° C from any initial temperature with little control effort.
  • the sorption cooling system consists of a transportable cooling unit and a stationary charging station that can be separated therefrom. With a single charging station, a multitude is more portable Cooling units can be regenerated. In order to keep the cooling units easily transportable, they only consist of the technically absolutely necessary parts, namely an adsorption container filled with an adsorbent, a cooling container that contains the liquid working fluid and a heat exchanger embedded therein, a working fluid vapor channel that connects the adsorption container with the cooling container connects and a shut-off device that makes the steam channel shut off.
  • the working fluid When loaded, the working fluid is separated from the adsorbent as a liquid in the cooling container.
  • the shut-off device is closed, adsorption and working media are at ambient temperature.
  • the cooling unit can be delivered to the customer, e.g. B. can be borrowed together with a beer keg.
  • the customer connects the beverage lines to the heat exchanger and opens the shut-off device.
  • the working fluid can now evaporate in the cooling container, flow via the working fluid vapor channel to the adsorbent and can be adsorbed by the latter with the release of heat.
  • the heat of adsorption is dissipated via the walls of the adsorption container, for example to the ambient air.
  • the adsorption container can also advantageously be coupled to a water container, the water content of which can absorb the heat of adsorption.
  • the evaporation of the working fluid creates cold in the cooling container, which cools the medium flowing through the heat exchanger, for example a beverage.
  • the outlet temperature of the beverage can be regulated by temperature-controlled opening and closing of the shut-off device.
  • Zeolite is a crystalline mineral that consists of a regular framework structure made of silicon and aluminum oxides. This scaffold structure contains small cavities in which water molecules can be adsorbed with the release of heat. Within the framework structure, the water molecules are exposed to strong field forces, which liquefy the molecules in the lattice and bind them in a liquid-like phase. The strength of the binding forces acting on the water molecules depends on the amount of water already contained in the structure and the temperature of the zeolite. For practical use, up to 25 grams of water can be adsorbed per 100 grams of zeolite. Zeolites are solid substances without annoying thermal expansion during the adsorption or desorption reaction. The framework structure is freely accessible from all sides for the water vapor molecules. The cooling unit can therefore be used in any position.
  • the cooling capacity of the cooling unit is determined by the amount of zeolite filled in and the adsorbent temperature reached at the end of the tap time. This amount can therefore be designed so that one cooling unit is sufficient to cool a complete beverage container (beer keg, lemonade container, etc.).
  • the adsorption container After returning the discharged cooling unit, it is placed with the adsorption container in an opening in the heating cabinet of the charging station and desorbed. During this charging process, the adsorbent is heated and the working fluid is evaporated. The vaporous working fluid is re-liquefied in a suitable heat exchanger and returned to the cooling tank. The temperature of the heating cabinet is between 250 ° and 350 ° C at the end of the charging phase. As soon as the adsorbent is heated up and the working fluid is desorbed, the shut-off device is closed and the entire cooling unit is separated from the charging station. The adsorption container can now cool down but cannot draw off any water vapor from the cooling container. The cooling unit can be stored at room temperature until the next use.
  • the charging station Since the charging station remains with the respective rental company, it represents only a one-time purchase. All expensive and heavy components, such as electrical heating, temperature control, insulation of the heating cabinet and additional components such as evacuation unit, cooling fan, etc. can be mounted on the charging station.
  • the portable cooling unit is therefore light and inexpensive. It therefore does not need its own energy connection for the customer.
  • the cooling capacity is immediately available. In addition, it is characterized by a high cooling reserve, so that longer tap operation is possible. After removing the cooling capacity, the cooling unit is worthless to the customer without a separate charging station. He therefore willingly returns them to the lender against reimbursement of his pledge.
  • the further heat exchanger of the cooling unit via which the heat of condensation of the working fluid vapor is removed during charging in the charging station, can advantageously be a container wall of the cooling container.
  • the charging station can advantageously be equipped with a cooling fan that blows ambient air onto the container wall of the cooling container intended for condensation.
  • this heat exchanger is surrounded by the liquid working fluid according to the invention, it must protrude from the liquid working fluid for this purpose. This is achieved, for example, by rotating the cooling container when it is introduced into the heating cabinet to such an extent that the heat exchanger at least partially protrudes from the amount of liquid working fluid. Tap water can flow through the heat exchanger for cooling.
  • the shut-off device is required to have a high level of vacuum tightness, particularly when using the pair of zeolite / water substances. Furthermore, the shut-off device be designed so that it opens automatically and allows the working fluid vapor to flow into the cooling container as soon as the vapor pressure in the adsorption container is higher than the vapor pressure in the cooling container. In this way it is ensured that during the desorption phase, if the shut-off device is accidentally closed, no excess pressure can arise in the adsorption container.
  • the cooling unit can be equipped with an overpressure safety device.
  • a droplet separator can be arranged in the cooling container, which retains droplets of working fluid that arise during the evaporation process.
  • the adsorption container is advantageously designed so that desorption heat can be supplied via its container walls in the heating cabinet or the adsorption heat can be removed during the adsorption phase.
  • Flat containers which are connected to one another via the working medium steam duct, are particularly suitable for this purpose.
  • the amount of adsorbent expediently contains steam channels through which the inflowing working medium is evenly distributed.
  • the transportable cooling unit shown in perspective in FIG. 1 consists of six flat adsorption containers 1, which are connected to one another and to the cooling container 3 via a working medium steam channel 2.
  • the working medium steam channel 2 can be shut off via a shut-off device 4.
  • In the lower part of the cooling container 3 is the inlet and outlet 5.6 to the heat exchanger, not shown.
  • Cooling fins 7 are arranged on the outer wall of the cooling container 3 and increase the surface area in order to improve the dissipation of the heat of condensation into the ambient air.
  • the stationary charging station is also shown in a perspective view.
  • a heating cabinet 8 is provided with an opening 9 in which the adsorption containers 1 of the cooling unit can be accommodated.
  • a recess 10 is provided at a corresponding point in the heating cabinet, which allows the lid 11 of the heating cabinet to be closed after the adsorption container 1 has been inserted.
  • the cooling container 3 is located via two cooling fans 12, 13, which press ambient air onto the cooling fins 7 of the cooling container.
  • the cooling container 3 is shown in section.
  • a heat exchanger 14 with inlet or outlet 5, 6, embedded in a quantity of water 15.
  • a droplet separator 17 is arranged above the ice layer 16.
  • a broiled opens into the upper part of the cooling container Chen illustrated working medium steam channel 2.
  • the shut-off device 4 consists of a metallic bellows 18 and a flat seal 19 which rests on the mouth of the working medium steam channel 2 in the closed state.
  • cooling fins 7 are attached to enlarge the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Sorptionskühlsystem aus einer transportablen Kühleinheit mit einem Adsorptionsbehälter 1, der ein Adsorptionsmittel enthält, mit einem Kühlbehälter 3, der ein flüssiges Arbeitsmittel 15 und einen Wärmetauscher 14 enthält, mit einem Arbeitsmitteldampfkanal 2, der den Adsorptionsbehälter 1 und den Kühlbehälter 3 miteinander verbindet und mit einer Absperreinrichtung 4, welche den Arbeitsmitteldampfkanal 2 absperrbar macht, sowie aus einer von der Kühleinheit separierbaren, stationären Ladestation mit einem temperaturgeregelten Wärmeschrank, der eine Öffnung 9 zur Aufnahme des Adsorptionsmittelbehälters (1) enthält.

Description

  • Die Erfindung betrifft ein Sorptionskühlsystem aus einem Kühlbehälter und einem Adsorptionsbehälter.
  • Auf dem Gebiet der transportablen Getränkekühlung sind bisher nur Kühlgeräte nach dem Kompressionsprinzip im Einsatz. Diese Kompressorkühlgeräte bestehen im wesent­lichen aus einem, meist hermetisch gedichteten Kom­pressor, einem zwangsgekühlten Verflüssiger, einem Sam­melbehälter für das flüssige Kältemittel, einem tempera­turgeregelten Expansionsventil und einem Verdampfer. Die im Verdampfer erzeugte Kälte muß, da die Verdampferlei­stung wesentlich kleiner ist als die während eines Zapf­vorgangs notwendige Kälteleistung in einem Kältepuffer zwischengespeichert verden. Dadurch erreicht das Kompres­sionsgerät eine längere Laufzeit als dies der Summe der einzelnen Zapfvorgänge entspricht. Heute übliche Kälte­puffer haben entweder einen Wasserbehälter mit bis zu 20 l Inhalt oder einen großen Aluminiumblock. Dieser hat gegenüber dem Wasserbehälter den Vorteil, daß vor Inbe­triebnahme des Gerätes kein Wasser eingefüllt werden muß und deshalb das Gerät bereits nach wenigen Minuten be­triebsbereit ist. Der größte Nachteil des Aluminium­blockes besteht jedoch darin, daß die Speicherkapazität relativ klein ist, so daß beim Zapfen von mehr als 0,5 l Flüssigkeit bereits die Kühlwirkung erschöpft ist. Der Wasserspeicher hat wiederum den Nachteil, daß nach Ein­füllen des Wassers das Gerät längere Zeit in Betrieb sein muß, um die Wasserfüllung selbst abzukühlen. Darüber hin­aus muß der Wasserbehälter mit einem zusätzlichen Rühr­werk versehen sein, welches das Wasser um die Ver-­dampfer- und Kühlschlangen zum besseren Wärmeaustausch umpumpt. Dieses mechanische Rührwerk ist äußerst störan­fällig und führt deshalb oft zum Ausfall des ganzen Kühl­gerätes.
  • Derartige Kompressionskühlgeräte werden zum Kühlen von Getränken, z. B. Bier, Limonaden etc. in Festzelten oder bei Party's eingesetzt. Ihre Verwendung beim Privatmann z. B. zur Kühlung eines geliehenen Bierfasses ist bisher nur beschränkt möglich, da durch die hohe Komplexität des Gerätes beim Anwender viel technischer Sachverstand vor­ausgesetzt wird und sich für den Getränkeverleger das Kühlgerät aufgrund zu hoher Anschaffungs- bzw. Wartungs­kosten nicht rentabel einsetzen läßt.
  • Unter Sorptionsapparaten versteht man Geräte, in denen ein flüssiges bzw. festes Sorptionsmittel ein zweites, höher siedenderes Mittel, das Arbeitsmittel unter Wärme­freisetzung sorbiert. Bevor das Arbeitsmittel von Sorp­tionsmittel sorbiert wird, verdampft es unter Wärmeauf­nahme in einem Kühlbehälter. Die Verdampfungstemperaturen liegen dabei, je nach Art des Arbeitsmittels bzw. Ein­satzgebiet des Sorptionsmittels, im Bereich zwischen -40° und +40°C. Sorptionsapparate mit festen Adsorptionsmit­teln, sog. Adsorptionsapparate arbeiten periodisch, d. h. einer Sorptionsphase folgt immer eine Desorptionphase, in der das Arbeitsmittel wieder vom Adsorptionsmittel ge­trennt wird. Während der Desorptionsphase kann das Ar­beitsmittel nicht sorbiert werden und deshalb auch nicht verdampfen. Im Kühlbehälter entsteht somit auch keine Kälte.
  • Aus der DE-OS 34 25 419 ist ein periodisch arbeitender Adsorptionskühlapparat bekannt, bei welchem während der Adsorptionsphase durch Teilverdampfung des Arbeitsmittels Wasser eine Eisbank aufgebaut wird. Der Apparat besteht dabei aus einem Adsorptionsbehälter, der mit dem Sorp­tionsmittel Zeolith gefüllt ist, einem Kühlbehälter, der das Arbeitsmittel Wasser enthält und aus einer Absperr­einrichtung mit Hilfe derer ein Dampfkanal zwischen dem Adsorptionsbehälter und dem Kühlbehälter absperrbar ist. Über die Behälterflächen des Kühlbehälters kann Kälte, beispielsweise zum Kühlen einer Kühltasche abgeführt werden, während über die Behälterwände des Adsorptions­behälters Wärme abrufbar ist. Während der Desorptions­phase wird durch Zufuhr von Desorptionswärme in den Ad­sorptionsbehälter das Arbeitsmittel aus dem Sorptions­mittel desorbiert und im Kühlbehälter unter Wärmeabgabe rückverflüssigt. Nach Abschluß dieses Desorptionsvor­ganges wird die Absperreinrichtung geschlossen und der Adsorptionsbehälter gekühlt. In diesem Zustand ist der Adsorptionsapparat beliebig lange lagerfähig.
  • Aufgabe der vorliegenden Erfindung ist es, ein Sorptions­kühlsystem aufzuzeigen, das sich durch eine einfache und kostengünstige Bauart auszeichnet und mit dessen Hilfe auch größere Flüssigkeitsmengen auf Temperaturen zwischen +4° und +10°C von einer beliebigen Anfangstemperatur unter geringem Regelaufwand gekühlt werden können.
  • Gelöst wird diese Aufgabe bei einem Sorptionssystem obengenannter Art nach den Merkmalen des Patentan­spruchs 1.
  • Die Unteransprüche zeigen weitere vorteilhafte Ausgestaltungsformen des Sorptionskühlsystemes auf.
  • Das erfindungsgemäße Sorptionskühlsystem besteht aus einer transportablen Kühleinheit und einer davon sepa­rierbaren, stationären Ladestation. Mit einer einzigen Ladestation ist daher eine Vielzahl transportabler Kühleinheiten regenerierbar. Um die Kühleinheiten leicht transportabel zu halten, bestehen sie lediglich aus den technisch unbedingt notwendigen Teilen, nämlich einem Adsorptionsbehälter, gefüllt mit einem Adsorptionsmittel, einem Kühlbehälter, der das flüssige Arbeitsmittel und einen darin eingebetteten Wärmetauscher enthält, einem Arbeitsmitteldampfkanal, der den Adsorptionsbehälter mit dem Kühlbehälter verbindet und einer Absperreinrichtung, welche den Dampfkanal absperrbar macht.
  • Im geladenen Zustand ist das Arbeitsmittel vom Adsorp­tionsmittel getrennt als Flüssigkeit im Kühlbehälter. Die Absperreinrichtung ist geschlossen, Adsorptions- und Ar­beitsmittel befinden sich auf Umgebungstemperatur. In diesem geladenen Zustand kann die Kühleinheit an den Kunden, z. B. zusammen mit einem Bierfaß entliehen wer­den. Der Kunde schließt die Getränkeleitungen an den Wärmetauscher an und öffnet die Absperreinrichtung. Das Arbeitsmittel kann nunmehr im Kühlbehälter verdampfen, über den Arbeitsmitteldampfkanal zum Adsorptionsmittel strömen und von diesem unter Wärmefreisetzung adsorbiert werden. Die Adsorptionswärme wird dabei über die Wände des Adsorptionsbehälters, beispielsweise an die Umge­bungsluft abgeführt. Der Adsorptionsbehälter kann aber auch vorteilhaft mit einem Wasserbehälter gekoppelt sein, dessen Wasserinhalt die Adsorptionswärme aufnehmen kann. Durch die Verdampfung des Arbeitsmittels entsteht im Kühlbehälter Kälte, die das durch den Wärmetauscher fließende Medium, beispielsweise ein Getränk kühlt. Durch temperaturgeregeltes Öffnen und Schließen der Ab­sperreinrichtung kann die Austrittstemperatur des Ge­tränkes geregelt werden.
  • Besonders vorteilhaft ist die Verwendung des Adsorptions­stoffpaares Zeolith/Wasser. Zeolith ist ein kristallines Mineral, das aus einer regelmäßigen Gerüststruktur aus Silizium- und Aluminiumoxiden besteht. Diese Gerüst­struktur enthält kleine Hohlräume, in welchen Wassermole­küle unter Wärmefreisetzung adsorbiert werden können. Innerhalb der Gerüststruktur sind die Wassermoleküle starken Feldkräften ausgesetzt, welche die Moleküle im Gitter verflüssigen und in einer flüssigkeitsähnlichen Phase binden. Die Stärke der auf die Wassermoleküle ein­wirkenden Bindungskräfte ist abhängig von der bereits in der Gerüststruktur enthaltenen Wassermenge und der Tempe­ratur des Zeolithen. Für den praktischen Gebrauch können pro 100 Gramm Zeolith bis zu 25 Gramm Wasser adsorbiert werden. Zeolithe sind feste Stoffe ohne störende Wärme­ausdehung bei der Adsorptions- bzw. Desorptionsreaktion. Die Gerüststruktur ist von allen Seiten für die Wasser­dampfmolekühle frei zugänglich. Die Kühleinheit ist des­halb in jeder Lage einsatzfähig.
  • Die Verwendung von Wasser als Arbeitsmittel gestattet es, den erforderlichen Regelungsaufwand auf ein Minimum zu reduzieren. Beim Verdampfen von Wasser unter Vakuum kühlt sich die Wasseroberfläche auf 0°C ab und gefriert durch fortgesetzte Verdampfung zu Eis. Diese Eisschicht wächst, falls erwünscht, innerhalb kurzer Zeit durch den Kühlbe­hälter bis der entstehende Druckabfall durch die Eis­schicht das Wachstum stoppt. Diese Eisschicht kann vor­teilhaft zur Regelung der Getränkeaustrittstemperatur benutzt werden. Bei geringer Zapfleistung wächst die Eis­schicht, bei sehr großer Zapfleistung schmilzt sie ab. Die Temperatur der darunterliegenden Wassermenge hat +4°, da Wasser bei dieser Temperatur die größte Dichte hat. Da der Kühlbehälter so ausgelegt ist, daß der Wärmetauscher immer unterhalb der Eisschicht liegt, hat das gezapfte Getränk eine Austrittstemperatur von +4° bis +9°C, unab­hängig von der Eintrittstemperatur. Damit kann durch Nutzung dieses Anomalieeffektes von Wasser, bei dem er­findungsgemäßen Sorptionskühlsystem, die notwendige Regelungseinheit für die Absperreinrichtung entfallen.
  • Die Kühlkapazität der Kühleinheit ist durch die einge­füllte Zeolithmenge sowie der am Ende der Zapfzeit erreichten Adsorptionsmitteltemperatur festgelegt. Diese Menge kann deshalb so ausgelegt werden, daß eine Kühlein­heit zur Kühlung eines kompletten Getränkegebindes (Bier­faß, Limonadencontainer usw.) ausreicht.
  • Nach Rückgabe der entladenen Kühleinheit wird diese mit dem Adsorptionsbehälter in eine Öffnung des Wärmeschran­kes der Ladestation eingebracht und desorbiert. Bei die­sem Ladevorgang wird das Adsorptionsmittel erwärmt und das Arbeitsmittel ausgedampft. Das dampfförmige Arbeits­mittel wird in einem dafür geeigneten Wärmetauscher rück­verflüssigt und in den Kühlbehälter zurückgeführt. Die Temperatur des Wärmeschrankes liegt am Ende der Ladephase zwischen 250° und 350°C. Sobald das Adsorptionsmittel aufgeheizt und das Arbeitsmittel desorbiert ist, wird die Absperreinrichtung geschlossen und die gesamte Kühlein­heit von der Ladestation getrennt. Der Adsorptionsbe­hälter kann nun abkühlen aber keinen Wasserdampf aus dem Kühlbehälter absaugen. Bis zur nächsten Verwendung kann die Kühleinheit bei Raumtemperatur gelagert werden.
  • Da die Ladestation beim jeweiligen Verleiher bleibt, stellt sie nur eine einmalige Anschaffung dar. Alle teuren und schweren Komponenten, wie etwa elektrische Heizung, Temperaturregelung, Isolation des Wärmeschrankes und Zusatzkomponenten wie Evakuiereinheit, Kühllüfter usw. können an der Ladestation montiert werden. Die transportable Kühleinheit wird deshalb leicht und preis­wert. Sie braucht damit beim Kunden keinen eigenen Energieanschluß. Die Kühlleistung steht sofort zur Ver­fügung. Zudem zeichnet sie sich durch eine hohe Kühlre­serve aus, so daß auch ein längerdauernder Zapfbetrieb möglich ist. Nach Entnahme der Kühlleistung ist die Kühleinheit für den Kunden ohne separate Ladestation wertlos. Er gibt sie deshalb gegen Rückerstattung seines hinterlegten Pfandes bereitwillig an den Verleiher zurück.
  • Der weitere Wärmetauscher der Kühleinheit, über welchen die Kondensationswärme des Arbeitsmitteldampfes beim Laden in der Ladestation abgeführt wird, kann vorteilhaf­terweise eine Behälterwand des Kühlbehälters sein. Die Ladestation kann dabei vorteilhafterweise mit einem Kühlventilator ausgerüstet sein, der Umgebungsluft auf die zur Kondensation bestimmten Behälterwand des Kühlbe­hälters bläst.
  • Es ist aber auch möglich, auf diesen weiteren Wärmetau­scher ganz zu verzichten und dafür den Wärmetauscher zu benutzen. Da dieser Wärmetauscher erfindungsgemäß vom flüssigen Arbeitsmittel umgeben ist, muß er zu diesem Zweck aus dem flüssigen Arbeitsmittel hervorragen. Man erreicht dies beispielsweise, indem der Kühlbehälter beim Einführen in den Wärmeschrank soweit gedreht wird, daß der Wärmetauscher zumindest teilweise aus der flüssigen Arbeitsmittelmenge ragt. Zur Kühlung kann Leitungswasser den Wärmetauscher durchströmen.
  • Von der Absperreinrichtung wird insbesondere beim Einsatz des Stoffpaares Zeolith/Wasser eine hohe Vakuumdichtig­keit gefordert. Weiterhin sollte die Absperreinrichtung so ausgeführt sein, daß sie automatisch öffnet und den Arbeitsmitteldampf in den Kühlbehälter abströmen läßt, sobald der Dampfdruck im Adsorptionsbehälter höher ist als der Dampfdruck im Kühlbehälter. Auf diese Weise wird sichergestellt, daß während der Desorptionsphase, falls die Absperreinrichtung aus Versehen geschlossen ist, im Adsorptionsbehälter kein Überdruck entstehen kann. Darüber hinaus kann die Kühleinheit zusätzlich mit einer Überdrucksicherung versehen werden.
  • Bei der Verwendung von Arbeitsmitteln mit Siedepunkten über Umgebungstemperatur, ist es von Vorteil, eine Ab­saugvorrichtung vorzusehen, über welche mit Hilfe einer Vakuumanlage eingedrungene Luft bzw. Fremdgase abgesaugt werden können. Vorteilhafterweise kann diese Evakuier­einrichtung mit der Überdrucksicherung kombiniert sein.
  • Im Kühlbehälter kann ein Tropfenabscheider angeordnet sein, der beim Verdampfungsvorgang entstehende Arbeits­mitteltropfen zurückhält.
  • Der Adsorptionsbehälter wird vorteilhafterweise so gestaltet, daß über seine Behälterwände im Wärmeschrank Desorptionswärme zugeführt bzw. während der Adsorp­tionsphase die Adsorptionswärme abgeführt werden kann. Besonders günstig eignen sich hierfür flache Behälter, die über den Arbeitsmitteldampfkanal miteinander in Verbindung stehen. Die Adsorptionsmittelmenge enthält zweckmäßigerweise Dampfkanäle, über welche das einströ­mende Arbeitsmittel gleichmäßig verteilt wird.
  • In der Zeichnung ist ein Ausführungsbeispiel eines erfindungsgemäßen Sorptionskühlsystems dargestellt.
  • Es zeigt:
    • Fig. 1 eine transportable Kühleinheit,
    • Fig. 2 eine stationäre Ladestation und
    • Fig. 3 einen Kühlbehälter in geschnittener Darstellung.
  • Die perspektivisch in Fig. 1 dargestellte, transportable Kühleinheit besteht aus sechs flachen Adsorptionsbehäl­tern 1, welche über einen Arbeitsmitteldampfkanal 2 untereinander und mit dem Kühlbehälter 3 verbunden sind. Der Arbeitsmitteldampfkanal 2 ist über eine Absperrein­richtung 4 absperrbar. Im unteren Teil des Kühlbehälters 3 befindet sich der Zu- und Ablauf 5,6 zum nicht darge­stellten Wärmetauscher. Auf der Außenwand des Kühlbehäl­ters 3 sind Kühlrippen 7 angeordnet, welche die Ober­fläche vergrößeren, um die Abgabe der Kondensationswärme an die Umgebungsluft zu verbessern.
  • In Fig. 2 ist die stationäre Ladestation ebenfalls in perspektivischer Ansicht dargestellt. Ein Wärmeschrank 8 ist mit einer Öffnung 9 versehen, in welcher die Adsorp­tionsbehälter 1 der Kühleinheit Platz finden. Für den Arbeitsmitteldampfkanal 2 ist an entsprechender Stelle im Wärmeschrank eine Ausnehmung 10 vorgesehen, welche es erlaubt, den Deckel 11 des Wärmeschrankes nach Ein­schieben der Adsorptionsbehälter 1 zu schließen. In diesem Zustand befindet sich der Kühlbehälter 3 über zwei Kühlventilatoren 12, 13, welche Umgebungsluft auf die Kühlrippen 7 des Kühlbehälters pressen.
  • In Fig. 3 ist der Kühlbehälter 3 im Schnitt dargestellt. Im unteren Teil ist ein Wärmetauscher 14 mit Zu- bzw. Ablauf 5,6, eingebettet in eine Wassermenge 15. Oberhalb der Wassermenge 15 befindet sich eine Eisschicht 16. Über der Eisschicht 16 ist ein Tropfenabscheider 17 angeord­net. Im oberen Teil des Kühlbehälters mündet ein gebro­ chen dargestellter Arbeitsmitteldampfkanal 2. Die Absperreinrichtung 4 besteht aus einem metallischen Fal­tenbalg 18 und einer Flachdichtung 19, welche im ge­schlossenen Zustand auf die Mündung des Arbeitsmittel­dampfkanals 2 aufliegt. An der Außenseite des Kühlbehäl­ters 3 sind Kühlrippen 7 zur Vergrößerung der Oberfläche angebracht.

Claims (10)

1. Sorptionskühlsystem aus einer transportablen Kühl­einheit mit
einem Adsorptionsbehälter (1), der ein Adsorptions­mittel enthält,
einem Kühlbehälter (3), der ein flüssiges Arbeits­mittel (15) und einen Wärmetauscher (14), der von flüssigem Arbeitsmittel (15) umgeben ist, enthält, einen Arbeitsmitteldampfkanal (2), der den Adsorp­tionsbehälter (1) und den Kühlbehälter (3) mitein­ander verbindet und eine Absperreinrichtung (4), welche den Arbeitsmitteldampfkanal (2) absperrbar macht,
sowie aus einer von der Kühleinheit separierbaren, stationären Ladestation mit einem temperaturgeregel­ten Wärmeschrank, der eine Öffnung (9) zur Aufnahme des Adsorptionsmittelbehälters (1) enthält.
2. Sorptionskühlsystem nach Anspruch 1,
dadurch gekennzeichnet, daß
die Kühleinheit einen weiteren Wärmetauscher enthält, über den beim Laden in der Ladestation die Verflüs­sigungswärme des Arbeitsmittels (15) abgeführt wird.
3. Sorptionskühlsystem nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß
der Kühlbehälter (3) einen Tropfenabscheider (17) enthält, der beim Verdampfungsvorgang aus dem flüs­sigen Arbeitsmittel (15) mitgerissene Tropfen ab­trennt.
4. Sorptionskühlsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß
das flüssige Arbeitsmittel im Kühlbehälter zumindest teilweise erstarrt ist.
5. Sorptionskühlsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß
der Wärmetauscher (14) im Kühlbehälter (3) so ange­ordnet ist,
daß er durch Drehen der Kühleinheit zumindest teil­weise aus der flüssigen Arbeitsmittelmenge (15) herausragt und dadurch die Verflüssigungswärme des Arbeitsmittels abführen kann.
6. Sorptionskühlsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß
die Absperreinrichtung (4) so ausgeführt ist, daß sie selbsttätig öffnet, wenn der Arbeitsmitteldampfdruck im Adsorptionsbehälter (1) höher ist als im Kühlbe­hälter (3).
7. Sorptionskühlsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß
die Kühleinheit eine Evakuiereinrichtung oder ein Überdruckventil enthält.
8. Sorptionskühlsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß
die Ladestation mit einer Vorrichtung ausgerüstet ist, über welche die Verflüssigungswärme des Arbeits­mittels (15) abgeführt werden kann.
9. Sorptionskühlsystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Wände des Adsorptionsbehälters (1) als Wärme­tauscher zur Wärmezu- bzw. Wärmeabfuhr ausgebildet sind.
10. Sorptionskühlsystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß
das Arbeitsmittel Wasser und das Adsorptionsmittel ein Zeolith ist.
EP89120078A 1988-11-08 1989-10-30 Sorptionskühlsystem Expired - Lifetime EP0368111B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89120078T ATE102334T1 (de) 1988-11-08 1989-10-30 Sorptionskuehlsystem.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3837872 1988-11-08
DE3837872A DE3837872A1 (de) 1988-11-08 1988-11-08 Sorptionskuehlsystem

Publications (3)

Publication Number Publication Date
EP0368111A2 true EP0368111A2 (de) 1990-05-16
EP0368111A3 EP0368111A3 (de) 1991-11-27
EP0368111B1 EP0368111B1 (de) 1994-03-02

Family

ID=6366729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89120078A Expired - Lifetime EP0368111B1 (de) 1988-11-08 1989-10-30 Sorptionskühlsystem

Country Status (4)

Country Link
US (1) US5038581A (de)
EP (1) EP0368111B1 (de)
AT (1) ATE102334T1 (de)
DE (2) DE3837872A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368111A3 (de) * 1988-11-08 1991-11-27 ZEO-TECH Zeolith Technologie GmbH Sorptionskühlsystem
EP0527466A1 (de) * 1991-08-14 1993-02-17 ZEO-TECH Zeolith Technologie GmbH Sorptionsverfahren zum Kühlen und/oder Heizen
EP1054222A2 (de) 1999-05-19 2000-11-22 ZEO-TECH Zeolith Technologie GmbH Vorrichtung und Verfahren zum Kühlen einer Flüssigkeit in einem Behälter
EP1143210A1 (de) 2000-04-03 2001-10-10 ZEO-TECH Zeolith Technologie GmbH Sorptionskühler
EP1162415A1 (de) 2000-06-09 2001-12-12 ZEO-TECH Zeo-Tech GmbH Sorptionsvorrichtung zum Heizen und Kühlen von Gasströmen
EP1443288A2 (de) 2003-01-28 2004-08-04 ZEO-TECH Zeolith Technologie GmbH Kühl-Container mit Adsorptions-Kühlapparat
EP1519125A2 (de) 2003-09-25 2005-03-30 ZEO-TECH Zeolith Technologie GmbH Verfahren und Vorrichtungen zum schnellen Erstarren wasserhaltiger Substanzen
EP1746365A2 (de) 2005-07-22 2007-01-24 ZEO-TECH Zeolith Technologie GmbH Sorptions-Kühlelement mit gasdichter Folie
EP1967799A2 (de) 2007-03-05 2008-09-10 ZEO-TECH Zeolith Technologie GmbH Sorptions-Kühlelement mit Regelorgan und zusätzlicher Wärmequelle
DE102007010981A1 (de) 2007-03-05 2008-09-11 Zeo-Tech Zeolith-Technologie Gmbh Sorptions-Kühlelement mit Regelorgan
DE102007028559A1 (de) 2007-06-19 2008-12-24 Zeo-Tech Zeolith-Technologie Gmbh Flexible Sorptions-Kühlelemente zum einmaligen Gebrauch
EP2006616A2 (de) 2007-06-19 2008-12-24 ZEO-TECH Zeolith Technologie GmbH Flexible Sorptions-Kühlelemente
DE102008020605A1 (de) 2008-04-24 2009-10-29 Schwörer Haus KG Heiz- und Kühlanordnung
DE102010047371A1 (de) 2010-10-05 2012-04-05 Zeo-Tech Zeolith-Technologie Gmbh Sorptions-Kühlelemente
DE102015002421A1 (de) 2015-02-26 2016-09-01 Zeo-Tech Zeolith-Technologie Gmbh Vakuum-Gerät mit Sorptionsmittel-Patrone
DE10238510B4 (de) * 2001-08-22 2019-12-05 Vaillant Gmbh Wärmepumpen-Modul für eine Adsorptionswärmepumpe

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628205A (en) * 1989-03-08 1997-05-13 Rocky Research Refrigerators/freezers incorporating solid-vapor sorption reactors capable of high reaction rates
US5664427A (en) * 1989-03-08 1997-09-09 Rocky Research Rapid sorption cooling or freezing appliance
US5598721A (en) * 1989-03-08 1997-02-04 Rocky Research Heating and air conditioning systems incorporating solid-vapor sorption reactors capable of high reaction rates
US5186020A (en) * 1991-01-23 1993-02-16 Rocky Research Portable cooler
DE4029084A1 (de) * 1990-09-13 1992-03-19 Draegerwerk Ag Kuehlvorrichtung zur atemgaskuehlung in einem atemschutzgeraet
EP0781393B1 (de) * 1994-09-12 1999-12-15 Electrolux Leisure Appliances Ag Sorptions-kühlaggregat
GB9513606D0 (en) * 1995-07-04 1995-09-06 Boc Group Plc Apparatus for chilling fluids
WO1997016685A1 (en) * 1995-11-01 1997-05-09 Bauer John J Jr Balanced adsorbent refrigerator
CN1261950A (zh) * 1997-05-08 2000-08-02 大卫·A·佐纳斯 带分离器的吸附式制冷机
US6102107A (en) * 1998-12-11 2000-08-15 Uop Llc Apparatus for use in sorption cooling processes
US6688132B2 (en) 2001-06-06 2004-02-10 Nanopore, Inc. Cooling device and temperature-controlled shipping container using same
US6584797B1 (en) 2001-06-06 2003-07-01 Nanopore, Inc. Temperature-controlled shipping container and method for using same
US6591630B2 (en) 2001-08-17 2003-07-15 Nanopore, Inc. Cooling device
US6601404B1 (en) 2001-08-17 2003-08-05 Nanopore, Inc. Cooling device
DE10250510A1 (de) * 2002-10-29 2004-05-19 Zeo-Tech Zeolith-Technologie Gmbh Adsorptions-Kühlapparat mit Pufferspeicher
FR2851329B1 (fr) * 2003-02-17 2006-02-03 Airbus Procede de maintien au froid d'aliments a bord d'aeronefs et moyen de mise en oeuvre
EP1774230A2 (de) * 2004-06-08 2007-04-18 Nanopore, Inc. Sorptionskühlsysteme, ihre verwendung in kraftfahrzeugkühlanwendungen und diese betreffende verfahren
DE102005034297A1 (de) * 2005-02-25 2006-08-31 Zeo-Tech Zeolith-Technologie Gmbh Sorptions-Kühlelement mit gasdichter Folie
GB2449523A (en) * 2007-05-22 2008-11-26 4Energy Ltd Absorption refrigerator system comprising a condenser pipe surrounded by a tapered fluid filled enclosure
DE102011081052B4 (de) 2011-08-16 2017-07-27 BSH Hausgeräte GmbH Kühleinrichtung und Getränkespender
USD840446S1 (en) * 2016-08-04 2019-02-12 Viking Cold Solutions, Inc. Material holding bottle
IL277080B2 (en) 2018-03-02 2023-11-01 Michael Mark Anthony Humidification and dehumidification process and apparatus for chilling beverages and other food products and process of manufacture
US20210310711A1 (en) 2019-05-31 2021-10-07 Gobi Technologies Inc. Temperature-controlled sorption system
US11732935B2 (en) 2019-05-31 2023-08-22 Gobi Technologies Inc. Thermal regulation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US992560A (en) * 1910-01-22 1911-05-16 Ralph V Heuser Refrigerating device.
GB228136A (en) * 1924-01-23 1926-04-06 Silica Gel Corp An improved method of and apparatus for refrigeration
US2990693A (en) * 1957-09-04 1961-07-04 Cie Ind Des Procedes Raoul Pic Refrigerator system
DE3425419A1 (de) * 1984-07-10 1986-01-23 Fritz Dipl.-Ing. Kaubek Adiabatische heiz- und kuehlverfahren und tragbare vorrichtungen nach dem adsorptionsprinzip
EP0203558A2 (de) * 1985-05-28 1986-12-03 ZEO-TECH Zeolith Technologie GmbH Vorrichtung und Verfahren zur Erwärmung von Wasser durch einen periodischen Adsorptionsprozess
DE3521484A1 (de) * 1985-06-14 1986-12-18 Fritz Dipl.-Ing. Kaubek Adsorptionskuehler
GB2178515A (en) * 1985-07-30 1987-02-11 Jeumont Schneider A thermal machine of adsorption-desorption type

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1512623A (en) * 1921-09-17 1924-10-21 Charles E Maxwell Refrigerating apparatus
DE410423C (de) * 1923-09-19 1925-02-26 Escher Wyss Maschf Ag Verdampfer bei Absorptionsmaschinen fuer Kleinkaeltebedarf
GB312422A (en) * 1928-12-12 1929-05-30 Naamlooze Vennootschap The Kod Improvements in absorption refrigerating apparatus
US1808056A (en) * 1929-05-09 1931-06-02 Robert J Mitchell Refrigerating system
US2027571A (en) * 1931-10-20 1936-01-14 Siemens Ag Method for the transformation of heat
US2053683A (en) * 1931-10-31 1936-09-08 Schlumbohm Peter Cooling system
DE636013C (de) * 1935-04-07 1936-09-29 Eberhard Sprenger Dipl Ing Trockene periodische Absorptionskaeltemaschine
US2323902A (en) * 1937-07-16 1943-07-13 Kleen Nils Erland Af Absorption or adsorption refrigerating apparatus
US3018638A (en) * 1959-11-13 1962-01-30 Eric H Winkler Portable refrigeration apparatus
US3257817A (en) * 1964-07-28 1966-06-28 Carrier Corp Refrigeration apparatus and method
DE2715075A1 (de) * 1977-04-04 1978-10-12 Helfried Crede Verfahren und vorrichtung zur energiegewinnung aus umgebenden waermequellen
DE2720561A1 (de) * 1977-05-07 1978-11-09 Tchernev Dimiter I Sorptionssystem fuer die nutzbarmachung schwacher (solarer) waermequellen
SE7706357L (sv) * 1977-05-31 1978-12-01 Brunberg Ernst Ake Sett vid kylning av ett utrymme samt anordning for genomforande av settet
US4250720A (en) * 1979-03-12 1981-02-17 Israel Siegel Disposable non-cyclic sorption temperature-changers
DE3207656A1 (de) * 1982-02-15 1983-08-25 Hieronimi, Ulrich, 8000 München Sorptionsapparate und verfahren fuer ihren betrieb
FR2530791A1 (fr) * 1982-07-22 1984-01-27 Jeumont Schneider Dispositif refrigerateur a energie solaire
DE3342985A1 (de) * 1983-11-28 1985-06-13 Fritz Dipl.-Ing. Kaubek Kontinuierlichwirkende sorptionsapparate und verfahren zu deren betrieb
DE3347700C2 (de) * 1983-12-31 1994-07-07 Zeolith Tech Zeolithformling mit hoher Wärmeleitung und Verfahren zur Herstellung
DE3413349C2 (de) * 1984-04-09 1986-09-25 Fritz Dipl.-Ing. Kaubek Verfahren und Vorrichtung zum Heizen mit einer periodischen Adsorptionsspeicher-Wärmepumpe
US4759191A (en) * 1987-07-07 1988-07-26 Liquid Co2 Engineering, Inc. Miniaturized cooling device and method of use
DE3837872A1 (de) * 1988-11-08 1990-05-10 Zeolith Tech Sorptionskuehlsystem

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US992560A (en) * 1910-01-22 1911-05-16 Ralph V Heuser Refrigerating device.
GB228136A (en) * 1924-01-23 1926-04-06 Silica Gel Corp An improved method of and apparatus for refrigeration
US2990693A (en) * 1957-09-04 1961-07-04 Cie Ind Des Procedes Raoul Pic Refrigerator system
DE3425419A1 (de) * 1984-07-10 1986-01-23 Fritz Dipl.-Ing. Kaubek Adiabatische heiz- und kuehlverfahren und tragbare vorrichtungen nach dem adsorptionsprinzip
EP0203558A2 (de) * 1985-05-28 1986-12-03 ZEO-TECH Zeolith Technologie GmbH Vorrichtung und Verfahren zur Erwärmung von Wasser durch einen periodischen Adsorptionsprozess
DE3521484A1 (de) * 1985-06-14 1986-12-18 Fritz Dipl.-Ing. Kaubek Adsorptionskuehler
GB2178515A (en) * 1985-07-30 1987-02-11 Jeumont Schneider A thermal machine of adsorption-desorption type

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368111A3 (de) * 1988-11-08 1991-11-27 ZEO-TECH Zeolith Technologie GmbH Sorptionskühlsystem
EP0527466A1 (de) * 1991-08-14 1993-02-17 ZEO-TECH Zeolith Technologie GmbH Sorptionsverfahren zum Kühlen und/oder Heizen
EP1054222A2 (de) 1999-05-19 2000-11-22 ZEO-TECH Zeolith Technologie GmbH Vorrichtung und Verfahren zum Kühlen einer Flüssigkeit in einem Behälter
EP1143210A1 (de) 2000-04-03 2001-10-10 ZEO-TECH Zeolith Technologie GmbH Sorptionskühler
EP1162415A1 (de) 2000-06-09 2001-12-12 ZEO-TECH Zeo-Tech GmbH Sorptionsvorrichtung zum Heizen und Kühlen von Gasströmen
DE10238510B4 (de) * 2001-08-22 2019-12-05 Vaillant Gmbh Wärmepumpen-Modul für eine Adsorptionswärmepumpe
EP1443288A2 (de) 2003-01-28 2004-08-04 ZEO-TECH Zeolith Technologie GmbH Kühl-Container mit Adsorptions-Kühlapparat
EP1519125A2 (de) 2003-09-25 2005-03-30 ZEO-TECH Zeolith Technologie GmbH Verfahren und Vorrichtungen zum schnellen Erstarren wasserhaltiger Substanzen
EP1746365A2 (de) 2005-07-22 2007-01-24 ZEO-TECH Zeolith Technologie GmbH Sorptions-Kühlelement mit gasdichter Folie
DE102007057748A1 (de) 2007-03-05 2009-06-10 Zeo-Tech Zeolith-Technologie Gmbh Sorptions-Kühlelement mit Regelorgan und zusätzlicher Wärmequelle
EP1967799A2 (de) 2007-03-05 2008-09-10 ZEO-TECH Zeolith Technologie GmbH Sorptions-Kühlelement mit Regelorgan und zusätzlicher Wärmequelle
DE102007010981A1 (de) 2007-03-05 2008-09-11 Zeo-Tech Zeolith-Technologie Gmbh Sorptions-Kühlelement mit Regelorgan
DE102007028559A1 (de) 2007-06-19 2008-12-24 Zeo-Tech Zeolith-Technologie Gmbh Flexible Sorptions-Kühlelemente zum einmaligen Gebrauch
DE102007050134A1 (de) 2007-06-19 2009-04-23 Zeo-Tech Zeolith-Technologie Gmbh Flexible Sorptions-Kühlelemente
EP2006616A2 (de) 2007-06-19 2008-12-24 ZEO-TECH Zeolith Technologie GmbH Flexible Sorptions-Kühlelemente
DE102008020605A1 (de) 2008-04-24 2009-10-29 Schwörer Haus KG Heiz- und Kühlanordnung
DE102008020605B4 (de) * 2008-04-24 2021-02-18 Schwörer Haus KG Heiz- und Kühlanordnung
DE102010047371A1 (de) 2010-10-05 2012-04-05 Zeo-Tech Zeolith-Technologie Gmbh Sorptions-Kühlelemente
EP2439467A2 (de) 2010-10-05 2012-04-11 ZEO-TECH Zeolith Technologie GmbH Sorptions-Kühlelemente
DE102015002421A1 (de) 2015-02-26 2016-09-01 Zeo-Tech Zeolith-Technologie Gmbh Vakuum-Gerät mit Sorptionsmittel-Patrone

Also Published As

Publication number Publication date
EP0368111B1 (de) 1994-03-02
DE3837872A1 (de) 1990-05-10
EP0368111A3 (de) 1991-11-27
DE58907091D1 (de) 1994-04-07
US5038581A (en) 1991-08-13
ATE102334T1 (de) 1994-03-15

Similar Documents

Publication Publication Date Title
EP0368111B1 (de) Sorptionskühlsystem
EP1143210B1 (de) Sorptionskühler
EP1054222B1 (de) Vorrichtung und Verfahren zum Kühlen einer Flüssigkeit in einem Behälter
EP0655592B1 (de) Anordnung zur Kühlung von Lebensmitteln, insbesondere in einem Flugzeug
EP0543214B1 (de) Kühlvorrichtung und Kühlverfahren zur Kühlung eines Mediums innerhalb eines Gefässes
DE602004008461T2 (de) Verfahren zum kühlen eines produkts, besonders zur verflüssigung eines gases und vorrichtung für die durchführung dieses verfahrens
DE4006287C2 (de) Verfahren zum Betreiben einer Adsorptionskühlanlage
DE3408192C2 (de) Verfahren zum Hochtransformieren der Temperatur von Wärme sowie Wärmetransformator
DE4019669A1 (de) Adsorptionsthermischer speicherapparat und adsorptionsthermisches speichersystem denselben enthaltend
EP1416233B1 (de) Adsorptions-Kühlapparat mit Pufferspeicher
EP1162415A1 (de) Sorptionsvorrichtung zum Heizen und Kühlen von Gasströmen
EP2643645B1 (de) Adsorptionskältemaschine mit einem Vakuumbehälter zur Entfernung von Fremdgasen
EP1443288A2 (de) Kühl-Container mit Adsorptions-Kühlapparat
DE3837880A1 (de) Kuehlbehaelter fuer einen sorptionsapparat
EP0317709B1 (de) Verfahren und Vorrichtung zur Entsorgung eines Kältemittelsystems
DE3604909C2 (de) Verfahren zur Kälteerzeugung mit Hilfe von zwei periodisch arbeitenden Sorptions-Kälteerzeugern
DE19908666A1 (de) Sorptionswärmepumpe/-Kältemaschine mit Erwärmung des bisherigen Adsorbers auf Desorptionstemperatur durch Adsorption
DE3431452A1 (de) Als waermepumpe genutztes kuehl- oder gefriergeraet
DE102004001805B3 (de) Evakuierbarer Isolierbehälter für eine zu kühlende Anwendung
DE3212609A1 (de) Einrichtung mit sorptionsspeicher und kompressionswaermepumpe
DE102011108258B4 (de) Verfahren zur Realisierung einer hitzebetriebenen Kältemaschine mit interner Wärmerückgewinnung zur Steigerung des Wirkungsgrades und der Möglichkeit der Weiternutzung der entstehenden Abwärme
DE102009050050A1 (de) Sorptionswärmetauscher und Verfahren hierfür
DE19922364B4 (de) Vorrichtung und Verfahren zur Kryolagerung biologischer Stoffe
DE621362C (de) Verfahren zum Betriebe von kontinuierlich arbeitenden Absorptionskaelteapparaten
EP0412161A1 (de) Verfahren zur Kühlung eines Objekts mittels einer kryogenen Adsorptionskältemaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

16A New documents despatched to applicant after publication of the search report
17P Request for examination filed

Effective date: 19920429

17Q First examination report despatched

Effective date: 19920702

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZEO-TECH ZEOLITH TECHNOLOGIE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940302

Ref country code: NL

Effective date: 19940302

REF Corresponds to:

Ref document number: 102334

Country of ref document: AT

Date of ref document: 19940315

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940225

REF Corresponds to:

Ref document number: 58907091

Country of ref document: DE

Date of ref document: 19940407

ET Fr: translation filed
ITF It: translation for a ep patent filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 89120078.4

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960207

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19961031

BERE Be: lapsed

Owner name: ZEO-TECH ZEOLITH TECHNOLOGIE G.M.B.H.

Effective date: 19961031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000802

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010117

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080822

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20081002

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20081014

Year of fee payment: 20

EUG Se: european patent has lapsed