[go: up one dir, main page]

EP0330100B2 - Dispositif de mesure optique - Google Patents

Dispositif de mesure optique Download PDF

Info

Publication number
EP0330100B2
EP0330100B2 EP89102842A EP89102842A EP0330100B2 EP 0330100 B2 EP0330100 B2 EP 0330100B2 EP 89102842 A EP89102842 A EP 89102842A EP 89102842 A EP89102842 A EP 89102842A EP 0330100 B2 EP0330100 B2 EP 0330100B2
Authority
EP
European Patent Office
Prior art keywords
extreme value
measuring device
opto
optical measuring
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89102842A
Other languages
German (de)
English (en)
Other versions
EP0330100B1 (fr
EP0330100A2 (fr
EP0330100A3 (en
Inventor
Ullrich Dipl.-Ing. Thiedig
Holger Dipl.-Ing. Wente
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6347936&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0330100(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to AT89102842T priority Critical patent/ATE92615T1/de
Publication of EP0330100A2 publication Critical patent/EP0330100A2/fr
Publication of EP0330100A3 publication Critical patent/EP0330100A3/de
Publication of EP0330100B1 publication Critical patent/EP0330100B1/fr
Application granted granted Critical
Publication of EP0330100B2 publication Critical patent/EP0330100B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/024Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of diode-array scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves

Definitions

  • the invention relates to an optical measuring device for determining the position of point-shaped objects clearly separated from the respective background, consisting of an opto-electrical converter scanning an image section, the output signals of which are selectively fed to an evaluation device.
  • the position of objects in particular for analyzing the changes in the position of the objects, that is to say the movement sequence, it is known to mark the corresponding object in a dot-shaped manner and thus to stand out clearly from the background.
  • This marking which clearly distinguishes the object from the respective background, can be omitted if the object itself emits a point-like pattern, or can be made by a light source attached to the object or by illuminating it with suitable light, possibly laser light.
  • the image section comprising the object is scanned with an opto-electrical converter, preferably a video camera, which generates output signals in accordance with the respective current degrees of brightness or the color intensities and usually produces the usual BAS, F-BAS and / or RGB signals from this. At least one of these signals is evaluated in a computer to determine where the object that stands out from the background is located. Possibly. Color signals from the color camera are used for evaluation if the object stands out from the background or from other objects due to a certain color.
  • the usual evaluation of the image content takes place after pixel-by-pixel analog-digital conversion in a computer.
  • the computer checks all measured values and determines the signal value belonging to the object.
  • the computing time required for this is generally greater than the frame rate if the camera is operated in accordance with the standard. Large memories must be used to store the read signal values. It is not possible to observe long-term processes such as building vibrations.
  • DE 34 23 135 A1 discloses a measuring method in which an object is illuminated with a narrow strip of light.
  • the camera which is positioned according to the triangulation principle, detects jumps in distance when the row is offset in the column direction.
  • the known method provides for all signal values of a column to be output in parallel and digitized.
  • it is then determined to which row value the light strip shown is to be assigned.
  • digitization can only differentiate whether the signal value is above or below a threshold value.
  • a similar measurement method is known from DE-A-34 28 983, in which the output signal of a semiconductor camera is likewise fed to a threshold value circuit in which the analog values are compared with a threshold value. Depending on whether the brightness value determined is above or below the threshold value, a digital signal "1" or "0" is generated. The binary matrix formed in this way is then reduced and further processed according to predetermined criteria, which may result from knowledge of the depicted object.
  • the invention is based on the object of designing an optical measuring device of the type mentioned at the outset in such a way that real-time evaluation, possibly also at sampling frequencies above the standard, is possible by simple data selection.
  • an optical measuring device of the type mentioned at the outset by an extreme-value detection circuit connected to the output of the opto-electrical converter and having a comparison device which is designed such that in real time either every read signal value of the opto-electrical converter when read out immediately is compared with a stored previous extreme value, or the extreme value is determined from a number of signal values read out at the same time and, if necessary, is compared with a stored previous extreme value, and can be stored as an extreme value according to the comparison made, and by means of a memory for which is controlled by the extreme value detection circuit position data belonging to the determined extreme value.
  • the signal values read from the opto-electrical converter are fed to an extreme value detection circuit which compares one or more new signal values with previous signal values and records the higher value.
  • the associated position coordinates of the extreme value determined for a field or image are transferred to the memory.
  • the memory therefore only contains the necessary information about the time (the scanned image or field) and about the location of the extreme value in question.
  • the detected extreme value can be a maximum but also a minimum value.
  • the amount of data to be evaluated by the computer is immediately reduced to the maximum, so that a selection logic circuit is no longer required to determine and store the position of the extreme value.
  • a color type detector can determine the color type associated with the colors used, for example by forming the quotient of the individual RGB signal components, and thus control the extreme value determination. This can be done in that the color type detector quasi works as a filter upstream of the extreme value detector or prevents the storage of a detected extreme value that does not belong to the color type used.
  • Another possibility of distinguishing different objects from one another is to set the several objects in a pulse-like manner sequentially clearly from the background, for example with a radiation source, such as a laser, and synchronize them with the scanning frequency of the opto-electrical converter, and to receive the signals received in the evaluation circuit assign sequentially to the different objects.
  • a radiation source such as a laser
  • Such an evaluation in the manner of a multiplex operation requires a high sampling frequency, which can be implemented on the basis of the real-time evaluation according to the invention, for example with the aid of fast video cameras.
  • the sequential marking object has the advantage that the output signals can be selected for all objects according to the same criterion (for example threshold value or peak value).
  • an image section can be scanned from different angles, so that a spatial determination of the trajectory of an object is possible.
  • the optical remote measuring device can be used in the microscopic as well as in the macroscopic range by using appropriate optics. It is also possible to check objects that are difficult to access, such as bridges, tracks, overhead lines, etc., as long as there is visual contact with the object. For example, it can be illuminated laterally with a laser, so that the migration of the laser spot on the object is a measure of the movement of the object.
  • the remote measuring device allows displacement, speed and acceleration measurements, in particular vibration measurements of objects.
  • the areas of application are diverse.
  • Typical applications are the recording of bridge vibrations, the detection of the deflection of track systems under load, the vibration of buildings under the influence of the wind, the vibration of overhead lines, a movement analysis in the field of occupational medicine, training support for sports, jaw function diagnostics in dentistry, recording and Regulation of robot movements and the prediction of movements in real time, etc.
  • the sampling rate can be adapted to the requirements and is practically only limited by the speed of the camera electronics, but not by the evaluation device. Long-term measurements are possible without exceeding the display density.
  • the pixel signals output in parallel can simultaneously reach inputs of a corresponding number of operational amplifiers, the output lines of which are each connected to an input of a decoder for determining the operational amplifier to which the extreme value has been applied, and connected to the other inputs of the operational amplifiers via a diode.
  • the operational amplifiers thus loaded with the pixel signals automatically determine the extreme value of the pixel signals output in parallel, which is present at one of the operational amplifiers.
  • This operational amplifier has an output signal which is different from the output signals of all other operational amplifiers, so that the position of the extreme value can be recognized immediately by the decoder.
  • a self-clocking camera can be used for the desired extreme value determination if the size of the extreme value determined is monitored. If this size is clearly recognizable, there is no longer any need for the camera to expose it further, so that the camera can change the image. The change of image can thus be controlled by reaching a predetermined voltage value through the determined extreme value.
  • FIG. 1 shows a schematic perspective illustration of the movement of an object in a plane perpendicular to the direction of observation (double arrow A) and in a direction lying in the direction of observation (double arrow B).
  • the object is illuminated with the aid of a radiation source 1 formed by a laser, which generates a pixel P on the object.
  • the object lies within an image section F of an opto-electrical converter formed by a video camera 2.
  • Movement in the direction of the opto-electrical converter 2 which is symbolized in FIG. 1 by a movement of the image section F 'shown in dashed lines, and movement in the direction of the double arrow A shifts the image point P to the image point P'.
  • This movement of the image point P is recognized by the opto-electrical converter 2 and, based on the knowledge of the relative position of the radiation source 1 and the opto-electrical converter 2 to one another, allows the actual movement of the object to be calculated.
  • FIG. 2 shows an arrangement that enables real-time evaluation.
  • the signal values are read in the pixel clock from the semiconductor video camera 2, which is formed by a CCD sensor.
  • a row and column counter 3 is advanced with the pixel clock.
  • the signal values read in each case are converted into digital values in an analog / digital converter (ADC) 4.
  • ADC analog / digital converter
  • the respective first output value of the ADC 4 after an image change cycle is stored in an extreme value memory 6 as an extreme value.
  • the digital output values of the ADC 4 following in the pixel cycle are compared in each case with the extreme value stored in the extreme value memory 6 in a comparator 5.
  • the comparator 5 sends a trigger signal to the extreme value memory 6 for storing the current output signal of the ADC 4 as a new extreme value.
  • the comparator 5 sends a trigger signal to a row and column memory 7, at which the current output signal of the row and column counter 3 is present.
  • the row and column information is therefore simultaneously stored in the row and column memory 7. If the image has been completely read out, that is to say a new image change clock signal is generated, the position value stored in the row and column memory 7 is fed to a memory (not shown) by the determined extreme value or is sent directly to a computer.
  • the evaluation device shown in FIG. 3 has two modifications compared to the device in FIG. 2: a part of the pixel signals is read out in parallel (namely all pixel signals on one line) and the extreme value determination (one line) takes place with the analog signals, i.e. without prior analog / Digital implementation, instead.
  • the extreme value determination of the columns takes place serially, as in FIG. 2.
  • FIG. 3 shows the CCD sensor of the video camera 2 in the form of pixels 21 and associated charge stores 22, the charge stores 22 belonging to a column each forming a register 23 through which the charge values are shifted in the pixel cycle.
  • the charge values are in the form of a line 24 at the output of register 23.
  • Video cameras 2 are known, from which the parallel data of a line 24 are read out as a data block (in the direction of arrow a).
  • the data pending in parallel at the output 23 arrive at the non-inverting input of an operational amplifier 25 assigned to the register 23, whose output is directly connected to an input E of a decoder 26 assigned to it.
  • the outputs of all operational amplifiers are connected to each other via a diode 27 and fed back to all inverting inputs of the operational amplifiers 25. Since the feedback path is connected to ground via a resistor 28, the operational amplifiers 25 are all permeable to the pixel signals at the output of the registers 23 immediately after the frame change cycle. The maximum signal is fed back to the inverting inputs of the operational amplifier 25, so that the analog peak value is present in this feedback path and can be fed to a digital, serial extreme value detector 30.
  • the decoder 26 therefore receives a positive signal E at only one of its inputs, which is directly assigned to a column value.
  • the serial extreme value detector 30 receives an output signal from a line counter and compares the peak values determined per line in order to determine the peak value of the entire image. The number of rows and number of columns belonging to the determined peak value is output by the comparator 30 for further processing.
  • the comparator 30 it is also possible to have all the pixel values of the Output video camera 2 in parallel. In this case, the comparator 30 is omitted, but the number of operational amplifiers required increases significantly.
  • FIG. 3 a shows an arrangement in which both all column values and all row values are output in parallel and are fed to parallel extreme value detectors 8, 8 ′, which have the structure of the parallel extreme value detector 8 described with reference to FIG. 3.
  • the digital information about the column coordinate and the row coordinate are present at the output of the connected decoders 26, 26 '.
  • the extreme value detectors 8,8 'allow the size of the extreme value to be monitored. If this reaches a predetermined value, the camera 2 no longer needs to be exposed, so that an image change in the camera 2 can be triggered after the predetermined voltage value for the extreme value has been reached. In this way, a maximum clock frequency can be achieved with a given signal-to-noise ratio.
  • the connections of the pixels 21 to the take-off lines are established with the aid of diodes 29.
  • FIG. 4 shows the use of a measuring device according to the invention for checking and possibly regulating the movement of a robot arm 31, two cameras 2, 2 ′ being arranged at an angle to one another in order to record the spatial movement of the robot arm 31.
  • a radiating light source 32 which is tracked by the cameras 2, 2 'as a point-like object.
  • the shape of the movement path of the light source 32 can be recorded and stored on the robot arm 31 in a “learning phase”. In operation, impermissible deviations from the target path can be detected and displayed or corrected.
  • the two cameras 2, 2 'monitor two object points 32, 32' which are attached to a rod 33 connected to a jaw.
  • FIG. 6 shows an embodiment in which the radiation source 1 formed by a laser is movable and scans a stationary object 34.
  • the entire surface profile can be obtained by completely scanning the object surface with the laser beam.
  • the requirements for guiding the laser are very low, since only a complete scanning of the object surface has to be guaranteed.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Claims (7)

  1. Dispositif de mesure optique pour déterminer la position d'objets de forme ponctuelle (32, 32') nettement détachés de leur fond respectif, qui se compose d'un transducteur opto-électrique (2, 2') balayant un champ d'image, transducteur dont les signaux de sortie sont transmis sélectivement à un dispositif d'analyse, caractérisé par un circuit de détection de valeur extrême (5, 6, 8, 26, 30; 8, 8') qui est raccordé à la sortie du transducteur opto-électrique (2, 2'), lequel comprend un dispositif comparateur (5, 6; 8) qui est agencé pour qu'en temps réel, ou bien chaque valeur de signal lue du transducteur opto-électrique (2, 2') est lors de la lecture aussitôt comparée avec une valeur extrême précédente enregistrée, ou bien la valeur extrême parmi plusieurs valeurs de signal lues simultanément est déterminée et le cas échéant comparée avec une valeur extrême précédente enregistrée, et peut être enregistrée comme valeur extrême selon la comparaison effectuée, et par une mémoire (7) pour les données de position associées à la valeur extrême déterminée, laquelle mémoire (7) est commandée par le circuit de détection de valeur extrême (5, 6, 8, 26, 30; 8, 8').
  2. Dispositif de mesure optique selon la revendication 1, caractérisé en ce qu'au moins deux transducteurs opto-électdques (2, 2') sont commandés de façon synchrone et balaient des portions d'image sous des angles différents.
  3. Dispositif de mesure optique selon la revendication 1 ou 2, caractérisé en ce qu'il est prévu un détecteur de chrominance , dont le signal de sortie commande la détermination d'une valeur extrême dans une chrominance prédéterminée.
  4. Dispositif de mesure optique selon l'une des revendications 1 à 3, caractérisé en ce que plusieurs objets (32, 32') sont distinctement détachés vis-à-vis du fond, de façon séquentielle et sur un mode impulsionnel, en synchronisme avec la fréquence de balayage du transducteur opto-électrique (2, 2'), et en ce que, dans le dispositif d'analyse, les signaux reçus sont associés séquentiellement aux différents objets (32, 32').
  5. Dispositif de mesure optique selon l'une des revendications 1 à 4, caractérisé en ce que pour détacher l'objet (32, 32') vis-à-vis du fond, l'objet est exposé à une source de rayonnement.
  6. Dispositif de mesure optique selon la revendication 5, caractérise en ce que la source de rayonnement (1) est un laser.
  7. Dispositif de mesure optique selon l'une des revendications 1 à 6, caractérisé par une émission parallèle de signaux de points d'image du transducteur opto-électrique (2, 2'), oui parviennent simultanément sur des entrées (+) d'un nombre correspondant d'amplificateurs opérationnels (25) dont les conducteurs de sortie sont reliés chacun à une entrée respective (E) d'un décodeur (26) pour la détermination de l'amplificateur opérationnel (25) excité par la valeur extrême et sont reliés conjointement aux autres entrées des amplificateurs opérationnels (25), chacun par l'intermédiaire d'une diode (27).
EP89102842A 1988-02-23 1989-02-18 Dispositif de mesure optique Expired - Lifetime EP0330100B2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89102842T ATE92615T1 (de) 1988-02-23 1989-02-18 Optische messeinrichtung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3805548A DE3805548A1 (de) 1988-02-23 1988-02-23 Optische fernmesseinrichtung
DE3805548 1988-02-23

Publications (4)

Publication Number Publication Date
EP0330100A2 EP0330100A2 (fr) 1989-08-30
EP0330100A3 EP0330100A3 (en) 1990-11-22
EP0330100B1 EP0330100B1 (fr) 1993-08-04
EP0330100B2 true EP0330100B2 (fr) 1997-04-02

Family

ID=6347936

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89102842A Expired - Lifetime EP0330100B2 (fr) 1988-02-23 1989-02-18 Dispositif de mesure optique

Country Status (4)

Country Link
EP (1) EP0330100B2 (fr)
AT (1) ATE92615T1 (fr)
DE (2) DE3805548A1 (fr)
ES (1) ES2043908T3 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0425943A3 (en) * 1989-10-31 1991-08-28 Inoex Gmbh Procedure to determine the geometry of a transversal cut of an object coming out of a profiling machine, in particular a longitudinal extruder object
FR2656700B1 (fr) * 1989-12-28 1992-08-07 Aerospatiale Procede de restitution du mouvement d'un mobile par observation d'un symbole forme sur ce dernier et dispositifs pour la mise en óoeuvre du procede.
DE4027732A1 (de) * 1990-09-01 1992-03-05 Thiedig Ullrich Kamerachip fuer eine punktfoermige ereignisse erfassende und auswertende kamera
DE19528465C2 (de) * 1995-08-03 2000-07-06 Leica Geosystems Ag Verfahren und Vorrichtung zur schnellen Erfassung der Lage einer Zielmarke
US7151568B2 (en) 2000-03-15 2006-12-19 Omron Corporation Displacement sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396945A (en) * 1981-08-19 1983-08-02 Solid Photography Inc. Method of sensing the position and orientation of elements in space
US4527891A (en) * 1982-08-18 1985-07-09 Eastman Kodak Company Rangefinder device with serial readout linear image sensor and peak detector with threshold setting means
JPS59107332A (ja) * 1982-12-13 1984-06-21 Asahi Optical Co Ltd カメラの自動焦点装置
NL8302228A (nl) * 1983-06-22 1985-01-16 Optische Ind De Oude Delft Nv Meetstelsel voor het onder gebruikmaking van een op driehoeksmeting berustend principe, contactloos meten van een door een oppervlakcontour van een objectvlak gegeven afstand tot een referentieniveau.
IT1168640B (it) * 1983-08-31 1987-05-20 Sincon Spa Sistemi Informativi Procedimento ed apparecchiatura per la individuazione della posizione di oggetti nello spazio attraverso l'acquisizione di immagini con massima riduzione dei dati da gestire
FR2560472B1 (fr) * 1984-02-23 1987-08-21 Proge Dispositif de releve de profil rapide
DE3423135A1 (de) * 1984-06-22 1986-01-02 Dornier Gmbh, 7990 Friedrichshafen Verfahren zum auslesen einer entfernungsbildzeile
US4692864A (en) * 1985-05-23 1987-09-08 Elscint Ltd. Method of determining stenosis of blood vessels
DE3601536C1 (de) * 1986-01-20 1987-07-02 Messerschmitt Boelkow Blohm Anordnung zur Lagebestimmung eines Objektes
FR2605401B1 (fr) * 1986-10-20 1992-04-17 France Etat Armement Procede et dispositif optoelectronique de mesure en temps reel de mouvements d'une structure solide soumise a l'effet d'un fluide
NL8701847A (nl) * 1987-08-05 1989-03-01 Optische Ind De Oude Delft Nv Detectiestelsel voor een stralingsprofiellijn.

Also Published As

Publication number Publication date
ES2043908T3 (es) 1994-01-01
EP0330100B1 (fr) 1993-08-04
ATE92615T1 (de) 1993-08-15
EP0330100A2 (fr) 1989-08-30
DE58905076D1 (de) 1993-09-09
DE3805548A1 (de) 1989-08-31
EP0330100A3 (en) 1990-11-22

Similar Documents

Publication Publication Date Title
EP0168557B1 (fr) Méthode numérique pour interpréter une image représentative de la topographie d'un objet
EP0228500B2 (fr) Méthode et dispositif pour la mesure sans contact du profil d'une roue des roues d'ensembles de roues de voie ferrée
DE10361018B4 (de) Verfahren zum Erkennen einer auf einem Substrat aufzubringenden Struktur mit mehreren Kameras sowie eine Vorrichtung hierfür
DE2814265A1 (de) Verfahren und vorrichtung zur automatischen korrektur der einstellung eines mikroskops
DE2307722A1 (de) Verfahren und geraet zur flaechenmessung ohne beruehrung
DE2850117A1 (de) Daten-eingabetablett-steuerung
DE2643809A1 (de) Verfahren zum einjustieren eines koerpers
DE3340924C2 (fr)
DE3836280C1 (fr)
EP0330100B2 (fr) Dispositif de mesure optique
DE1913768A1 (de) Einrichtung zur Feststellung einer Bewegung in einem Gebiet
DE3009907C2 (de) Speicheradressensignalgenerator für eine automatische Justiereinrichtung einer Fernsehkamera
DE4130382A1 (de) Hochaufloesender kamerasensor mit einer linearen pixelanordnung
DE3232179C1 (de) Einrichtung zum optischen Erkennen von Flaechenmustern an Objekten
DE2106035A1 (de) Vorr-chtung zum automatischen Verfolgen und Erkennen von Bildkontrasten
DE3321911C2 (de) Bildinformations-Ausgabegerät
DE3612256C2 (de) Verfahren und Einrichtung zur optoelektronischen Qualitätskontrolle
EP0072511B1 (fr) Dispositif de détermination de la position dans un plan de mesure du point d'intersection entre ce plan et la trajectoire d'un objet
DE4038220C2 (de) Verfahren und Anordnung zur Kompensation eines Bildsignals gegenüber Beleuchtungsänderungen
DE69033288T2 (de) Bildverarbeitungsverfahren und -vorrichtung
EP0546002B1 (fr) Puce pour une camera de detection et d'evaluation d'evenements ponctuels
DE3048444C2 (de) Abtastverfahren und Schaltungsanordnung einer Wärmebildkamera
DE2012446C3 (de) Einrichtung zum optoelektrischen Prüfen von mit Leiterbahnen versehenen Lagen von Ein- oder Mehrlagenleiterplatten
DE4212066C2 (de) Verfahren und Vorrichtung zur Lagebestimmung einer optischen Linie
DE2940262A1 (de) Verfahren zum optischen abtasten von objekten in zwei orthogonalen richtungen mittels einer elektronischen kamera

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

RHK1 Main classification (correction)

Ipc: G01B 11/02

17P Request for examination filed

Effective date: 19910206

17Q First examination report despatched

Effective date: 19920217

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 92615

Country of ref document: AT

Date of ref document: 19930815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930810

REF Corresponds to:

Ref document number: 58905076

Country of ref document: DE

Date of ref document: 19930909

ET Fr: translation filed
ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2043908

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: FIRMA CARL ZEISS

Effective date: 19940411

NLR1 Nl: opposition has been filed with the epo

Opponent name: FIRMA CARL ZEISS.

EAL Se: european patent in force in sweden

Ref document number: 89102842.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950208

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950209

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950210

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950222

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950224

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950227

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950228

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960218

Ref country code: AT

Effective date: 19960218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960219

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19960219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960228

Ref country code: BE

Effective date: 19960228

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

BERE Be: lapsed

Owner name: WENTE HOLGER

Effective date: 19960228

Owner name: THIEDIG ULLRICH

Effective date: 19960228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960901

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19970402

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990206

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050218