EP0040402B1 - Matériau d'enregistrement électrophotographique - Google Patents
Matériau d'enregistrement électrophotographique Download PDFInfo
- Publication number
- EP0040402B1 EP0040402B1 EP81103696A EP81103696A EP0040402B1 EP 0040402 B1 EP0040402 B1 EP 0040402B1 EP 81103696 A EP81103696 A EP 81103696A EP 81103696 A EP81103696 A EP 81103696A EP 0040402 B1 EP0040402 B1 EP 0040402B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- dye
- charge
- photosensitivity
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 title claims description 18
- 239000010410 layer Substances 0.000 claims description 118
- 239000011230 binding agent Substances 0.000 claims description 24
- 239000013078 crystal Substances 0.000 claims description 12
- 230000004048 modification Effects 0.000 claims description 11
- 238000012986 modification Methods 0.000 claims description 11
- 239000002800 charge carrier Substances 0.000 claims description 7
- 238000002441 X-ray diffraction Methods 0.000 claims description 6
- FVDOBFPYBSDRKH-UHFFFAOYSA-N perylene-3,4,9,10-tetracarboxylic acid Chemical class C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(O)=O)C2=C1C3=CC=C2C(=O)O FVDOBFPYBSDRKH-UHFFFAOYSA-N 0.000 claims description 6
- 238000010586 diagram Methods 0.000 claims description 5
- 229910002483 Cu Ka Inorganic materials 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 239000011229 interlayer Substances 0.000 claims 1
- 239000000975 dye Substances 0.000 description 57
- 206010034972 Photosensitivity reaction Diseases 0.000 description 27
- 230000036211 photosensitivity Effects 0.000 description 27
- 238000007740 vapor deposition Methods 0.000 description 19
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- 230000032258 transport Effects 0.000 description 11
- 238000000576 coating method Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 9
- -1 photoconductor Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 230000003595 spectral effect Effects 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- 229920001220 nitrocellulos Polymers 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229920006267 polyester film Polymers 0.000 description 6
- 239000000020 Nitrocellulose Substances 0.000 description 5
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000007859 condensation product Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- HYGLETVERPVXOS-UHFFFAOYSA-N 1-bromopyrene Chemical compound C1=C2C(Br)=CC=C(C=C3)C2=C2C3=CC=CC2=C1 HYGLETVERPVXOS-UHFFFAOYSA-N 0.000 description 2
- FAXDZWQIWUSWJH-UHFFFAOYSA-N 3-methoxypropan-1-amine Chemical compound COCCCN FAXDZWQIWUSWJH-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 229920002678 cellulose Chemical class 0.000 description 2
- 239000001913 cellulose Chemical class 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 239000001044 red dye Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- KHPJKPVVERCMIG-UHFFFAOYSA-N 3-bromopyrene-1-carbaldehyde Chemical compound C1=C2C(Br)=CC(C=O)=C(C=C3)C2=C2C3=CC=CC2=C1 KHPJKPVVERCMIG-UHFFFAOYSA-N 0.000 description 1
- WGSLNPDYHHVXBD-UHFFFAOYSA-N 9,10-bis(3-methoxypropylcarbamoyl)perylene-3,4-dicarboxylic acid Chemical compound C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(=O)NCCCOC)C2=C1C3=CC=C2C(=O)NCCCOC WGSLNPDYHHVXBD-UHFFFAOYSA-N 0.000 description 1
- PONZBUKBFVIXOD-UHFFFAOYSA-N 9,10-dicarbamoylperylene-3,4-dicarboxylic acid Chemical compound C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(O)=N)C2=C1C3=CC=C2C(=N)O PONZBUKBFVIXOD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- SAJRNNYCYGRETC-UHFFFAOYSA-N C(=C)C=1OC=CN1.C(=C)C=1OC(=C(N1)C1=C(C=CC=C1)Cl)C1=CC=C(C=C1)N(CC)CC Chemical compound C(=C)C=1OC=CN1.C(=C)C=1OC(=C(N1)C1=C(C=CC=C1)Cl)C1=CC=C(C=C1)N(CC)CC SAJRNNYCYGRETC-UHFFFAOYSA-N 0.000 description 1
- FNGICJGSIMWZQI-UHFFFAOYSA-N C1(=CC=CC=C1)C=1OC=CN1.C1(=CC=CC=C1)C=1OC(=C(N1)C1=C(C=CC=C1)Cl)C1=CC=C(C=C1)N(CC)CC Chemical compound C1(=CC=CC=C1)C=1OC=CN1.C1(=CC=CC=C1)C=1OC(=C(N1)C1=C(C=CC=C1)Cl)C1=CC=C(C=C1)N(CC)CC FNGICJGSIMWZQI-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920001756 Polyvinyl chloride acetate Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001046 green dye Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- PJQYNUFEEZFYIS-UHFFFAOYSA-N perylene maroon Chemical compound C=12C3=CC=C(C(N(C)C4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)N(C)C(=O)C4=CC=C3C1=C42 PJQYNUFEEZFYIS-UHFFFAOYSA-N 0.000 description 1
- WSRHMJYUEZHUCM-UHFFFAOYSA-N perylene-1,2,3,4-tetracarboxylic acid Chemical compound C=12C3=CC=CC2=CC=CC=1C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C2=C1C3=CC=C2C(=O)O WSRHMJYUEZHUCM-UHFFFAOYSA-N 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002223 polystyrene Chemical class 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 150000001651 triphenylamine derivatives Chemical class 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/0622—Heterocyclic compounds
- G03G5/0644—Heterocyclic compounds containing two or more hetero rings
- G03G5/0646—Heterocyclic compounds containing two or more hetero rings in the same ring system
- G03G5/0657—Heterocyclic compounds containing two or more hetero rings in the same ring system containing seven relevant rings
Definitions
- the invention relates to an electrophotographic recording material composed of an electrically conductive layer support, optionally an insulating intermediate layer, and a photoconductive layer composed of at least one dye, photoconductor, binder and conventional ones which produce an N, N'-substituted 3,4,9,10-perylenetetracarboxylic acid bisimide Layer containing additives.
- the invention relates in particular to such a recording material, the photoconductive layer of which consists of a charge-generating and a charge-transporting double layer.
- Photoconductive layers of this arrangement are known, for example, from DE-A-2108 992 (US Pat. No. 3,904,407). There, a photoconductive layer is described which consists of a perylene tetracarboxylic acid bisimide dye layer and a charge-transporting layer arranged above it, mainly of polymeric photoconductors.
- the disadvantage of this arrangement is that such a system has insufficient adhesion to the layer support and very long drying times (2-24 hours) are necessary in the production, which does not guarantee technical suitability or production.
- photoconductor double layers are known which remedy the disadvantages described above by using highly conductive, monomeric organic photoconductors and which are highly adhesive and highly photosensitive with a number of binders Have photoconductor layers processed.
- these photoconductor layers also have certain shortcomings: For example, the vapor-deposited dye layers can only be covered with difficulty in the subsequent coating with a charge transporting layer.
- the evaporation rate for continuous dye vapor deposition of the support for the red perylene tetracarboxylic bisimide dyes is sufficient, but not optimal, due to the lower heat absorption, so that the dye layer may not form homogeneously and may occur due to dark areas of dye aggregates (spatter) with a diameter in of the order of about 1 mm is disturbed.
- Another major disadvantage is that for electrophotographic fields of application, for example when He / Ne laser light sources are used in the wavelength range from X - 630 nm, the otherwise good photosensitivity with perylene tetracarboximide derivatives is relatively low or does not exist.
- condensation product which can be prepared from perylene-3,4,9,10-tetracarboxylic anhydride and 3-methoxypropylamine, a dye is made available which surprisingly eliminates the deficiencies and disadvantages described, so that this dark dye as a charge-generating compound is extremely advantageous for photoconductive Purposes.
- the condensation product itself is known from DE-C-2451781 as a black dye for polyethylene, polyvinyl chloride, lacquers, inks and aqueous dye preparations. Its use for the production of electrically conductive systems and semiconductors is described in DE-A-2 636 421.
- the dye according to the invention has the advantage in continuous evaporation in a vacuum evaporation system that, compared to other perylene tetracarboxylic acid derivatives such as N, N'-dimethylperylene tetracarboximide, it is at a significantly lower temperature under otherwise comparable conditions such as vacuum, geometry, evaporation rate and Layer thickness can be applied.
- the dye according to the invention is initially reflected in a bright red color on the support.
- X-ray diffraction studies show that the dye in the vapor deposition layer is initially present in this metastable red crystal modification, as represented by the X-ray diffraction diagram according to FIG. 8b.
- the crystal form changes gradually or, in the case of a subsequent coating, immediately into the “dark crystal modification, as represented by the X-ray diffraction diagram according to FIG. 8a.
- the originally red dye vapor deposition layer can be very easily dispersed by converting its crystal structure or a dye vapor deposition layer that has already been converted into the dark crystal form.
- the spectral photosensitivity with the dye according to the invention is extended by approximately 80 nm towards the longer wavelength range, as can be seen from FIG. 7, curve K1.
- Position 1 indicates the electrically conductive layer support
- position 2 indicates the charge layer that generates the charge carrier
- position 3 indicates the layer that transports the charge
- Position 4 indicates the insulating intermediate layer
- position 5 shows layers which represent a charge carrier-producing dye layer in dispersion.
- position 6 a photoconductive single layer of photoconductor, dye and binder, etc. is recorded.
- an electrically conductive layer support is preferably aluminum foil, optionally transpa - pension, vapor-coated with aluminum or aluminum-laminated polyester film is used, however, any other sufficiently conductive-made support material can also be used.
- the photoconductor layer can also be arranged on a drum, on flexible endless belts, for example made of nickel or steel, etc., or on plates.
- the aim of introducing an insulating intermediate layer is to reduce the charge carrier injection from the metal into the photoconductor layer in the dark. On the other hand, it should not hinder the flow of charge during the exposure process.
- the intermediate layer acts as a barrier layer.
- the intermediate layer may also serve to improve the adhesion between the substrate surface and the dye layer or photoconductor layer.
- Synthetic resin binders are used, but preference is given to using materials which adhere well to a metal, in particular aluminum surface and which are poorly dissolved when subsequent layers are applied. These include polyamide resins, polyvinylphosphonic acid, polyurethanes, polyester resins or specifically alkali-soluble binders, such as styrene-maleic anhydride copolymers.
- the thickness of organic intermediate layers can be up to 5 ⁇ m, that of an aluminum oxide intermediate layer is generally in the range of 0.01-1 ⁇ m.
- the dye layer 2 or 5 made of or with N, N'-bis (3-methoxypropyl) perylenetetracarboximide has the function of a layer which generates charge carriers; the dye used determines to a particular degree the spectral photosensitivity of the multilayer photoconductive system through its absorption behavior, which is shown in FIG. 6, curve 1.
- the application of a homogeneous, densely packed dye layer is preferably obtained by evaporating the dye onto the support in vacuo.
- the dye can be evaporated without decomposition under the conditions of 1.33 x 10- 6- 10- 8 bar and a heating temperature of 180-240 ° C.
- the temperature of the substrate is below 50 ° C.
- An advantageous layer thickness range of the evaporated dye is between 0.005 and 3 (J.m.
- a thickness range between 0.05 and 1.5 (J.m. is particularly preferred, since adhesive strength and homogeneity of the evaporated dye are particularly favorable here.
- the dye molecules form a "red " , metastable modification in the continuous vapor deposition in a vapor deposition system with high evaporation rates, which gradually changes to a dark crystal modification at room temperature or when heated.
- the subsequent coating immediately changes color from red to cyan.
- the dye is repeatedly evaporated onto a rotating drum arrangement, corresponding to a lower evaporation rate, the more stable, blue-olive-green dye layer is formed immediately.
- the perylene tetracarboxylic acid derivative according to the invention can be prepared by condensing perylene-3,4,9,10-tetracarboxylic acid anhydride and 3-methoxypropylamine in water in an autoclave at 130-140 ° C. for 7 hours.
- the dye is obtained in very dark, brownish black crystals in high yield and is easily accessible and usable after cleaning by dispersing in a weakly alkaline medium and washing without alkali.
- N, N'-bis (3-methoxypropyl) perylenetetracarboximide can exist in a "red and" dark crystal form.
- the dark crystal form according to the invention is used for all further electrophotographic examinations.
- a uniform dye thickness can also be achieved by other coating techniques. This subheading includes the mechanism by rubbing the finely powdered dye material into the electrically conductive substrate, electrolytic or electrochemical processes or gun spray technology.
- homogeneous, well covering dye layers with thicknesses of the order of 0.1-3 1 1m can also be obtained by grinding the dye with a binder, in particular with highly viscous cellulose nitrates and / or crosslinking binder systems, for example polyisocyanate crosslinkable acrylic resins, reactive resins such as epoxides, or postcrosslinking systems which are composed of equivalent mixtures of hydroxyl-containing polyesters or polyethers and polyfunctional isocyanates, and are prepared by subsequent coating of these dye dispersions according to position 5 in FIGS. 4 and 5.
- the ratio of dye / binder can vary within wide limits, but preference is given to pigment primers with a pigment content of over 50% and correspondingly high optical density.
- Another possibility is to produce a photoconductor layer according to FIG. 1, in which the charge carrier generation centers are dispersed in the transport layer medium.
- This arrangement has the advantage of a simpler production method than that of a double layer.
- it is disadvantageous that the dye particles are only excited in the upper part of the photoconductor layer and therefore cannot be optimally effective.
- the inverse arrangement of the charge carrier-generating layer 5 in FIG. 5 on the charge-transporting layer 3, when using a p-transport connection, provides photoconductor double layers which have a high photosensitivity when charged positively.
- Organic materials which have an extensive ⁇ -electron system are particularly suitable as the charge transport material. These include both monomeric and polymeric aromatic or heterocyclic compounds.
- the monomers used are in particular those which have at least one dialkylamino group or two alkoxy groups.
- Heterocyclic compounds such as oxdiazole derivatives, which are mentioned in German Patent 1,058,836 (US Pat. No. 3,189,447), have proven particularly useful. These include in particular 2,5-bis- (p-diethylaminophenyl) -oxdiazole-1,3,4.
- Other suitable monomeric electron donor compounds are, for example, triphenylamine derivatives, more highly condensed aromatic compounds such as pyrene, benzo-condensed heterocycles, and also pyrazoline or imidazole derivatives (DE-PS 1 060 714, 1 106 599 corresponding to US Pat. No.
- This subheading also includes triazole, thiadiazole and especially oxazole derivatives, for example 2-phenyl-4- (2'-chlorophenyl) -5 (4'-diethylamino) oxazole, as described in German patents 1,060,260, 1,299,296, 1 120 875 (U.S. Patent 3, 112, 197, UK Patent 1,016,520, U.S. Patent 3,257, 203).
- Formaldehyde condensation products with various aromatics such as, for example, condensates of formaldehyde and 3-bromopyrene, have proven to be suitable as polymers (DE-OS 2137288 corresponding to US Pat. No. 3,842,038).
- polyvinyl carbazole provides useful photosensitivity as a transport polymer, for example in a double layer arrangement.
- the charge-transporting layer has practically no photosensitivity in the visible range (420-750 nm). It preferably consists of a mixture of an electron donor compound with a resin binder if negative charging is to be carried out. It is preferably transparent, but this does not appear to be necessary in the case of a transparent, conductive layer support.
- Layer 3 has a high electrical resistance of greater than 10 12 ⁇ and prevents the discharge of the electrostatic charge in the dark. When exposed, it transports the charges generated in the organic dye layer.
- the added binder influences both the mechanical behavior such as abrasion, flexibility, film formation etc. and to a certain extent the electrophotographic behavior such as photosensitivity, residual charge and cyclical behavior.
- Film-forming compounds such as polyester resins, polyvinyl chloride / polyvinyl acetate copolymers, styrene / maleic anhydride copolymers, polycarbonates, silicone resins, polyurethanes, epoxy resins, acrylates, polyvinyl acetals, polystyrenes, cellulose derivatives such as cellulose acetobutyrates etc. are used as binders.
- thermally post-crosslinking binder systems such as reactive resins, which are composed of an equivalent mixture of hydroxyl-containing polyesters or polyethers and polyfunctional isocyanates, polyisocyanate-crosslinkable acrylate resins, melamine resins, unsaturated polyester resins etc. are successfully used.
- the mixing ratio of the charge transporting compound to the binder can vary. However, the requirement for maximum photosensitivity, ie the largest possible proportion of charge-transporting compound and the avoidance of crystallization and increase in flexibility, ie the largest possible proportion of binders, set relatively certain limits.
- a mixing ratio of about 1: 1 parts by weight has generally been found to be preferred, but ratios between 4: 1 to 1: 2 are also suitable.
- polymeric charge transport compounds such as bromopyrene resin, polyvinyl carbazole, binder proportions of around or below 30% are suitable.
- layer thicknesses between approximately 3 and 20 ⁇ m are generally used. A thickness range of 4-12 ⁇ m has proven to be particularly advantageous. However, if the mechanical requirements and the electrophotographic parameters (charging and development station) of a copying machine permit, the specified limits can be extended upwards or downwards in individual cases.
- Leveling agents such as silicone oils, wetting agents, in particular nonionic substances, plasticizers of different compositions, such as, for example, those based on chlorinated hydrocarbons or those based on phthalic acid esters are considered to be customary additives. If necessary, conventional sensitizers and / or acceptors can also be added to the charge-transporting layer, but only to the extent that their optical transparency is not significantly impaired.
- the dye N, N'-bis (3-methoxypropyl) perylene-3,4,9,10-tetracarboxylic acid diimide hereinafter referred to as perylimide
- perylimide The dye N, N'-bis (3-methoxypropyl) perylene-3,4,9,10-tetracarboxylic acid diimide, hereinafter referred to as perylimide, is placed on an aluminum-vapor-coated polyester film in a vacuum vapor deposition system at 1.33 ⁇ 10- 7- 10- 8 bar evaporated within 2 minutes at 180-220 ° C; for comparison, N, N'-dimethyl-perylene-3,4,9,10-tetracarboxylic acid dimide can only be evaporated at temperatures around 280 ° C. under the same conditions.
- the homogeneously evaporated dye layers have layer weights in the range of 100-300 mg / m z. The layer support is completely covered.
- the residual charge (U R ) after 0.1 sec., Determined from the above bright discharge curves, is a further measure of the discharge of a photoconductor layer.
- the spectral Photosensitivity with filter upstream determined according to the above method: with negative charging (800-850 V), the half-life (T 1/2 ) in msec. determined for the respective wavelength range.
- the spectral photosensitivity is obtained by plotting the reciprocal values of the product of half-life, T 1/2 in seconds, and light intensity I in ⁇ W / cm 2 against the wavelength X in nm.
- the reciprocal of T 1/2 ⁇ I (1 / E 1/2 ) means the light energy related to the unit area, which must be irradiated in order to discharge the layer to half the initial voltage U o .
- Fig. 7 the spectral photosensitivities of double layers with perylimide (curve K1) and N, N'-dimethylperylene-3,4,9,10-tetracarboxylic acid limit (curve K2) are recorded.
- the strong red colored layer has a layer weight of approx. 200 mg / m 2 .
- the dye vapor deposition layer is then continuously coated with a solution of 65 parts by weight of oxdiazole and 35 parts by weight of cellulose nitrate of standard type 4 E (DIN 53 179) in THF and dried, and the color changes immediately from red to dark green.
- the layer weight is about 8 g / m 2 .
- perylimide 6 g are dispersed in a solution of 35 parts by weight of oxdiazole, 19 parts by weight of cellulose nitrate as in Example 4 and 270 parts by weight of THF and intensively ground in a ball mill at 3000 revolutions / min for 2 hours.
- the finely dispersed dye dispersion solution is then layered on a 100 ⁇ m aluminum foil in a thickness of 8-9 g / m 2 (after drying).
- a mixture of 84 parts by weight of perylimide dye and 14 parts by weight of a polyisocyanate crosslinkable acrylic resin, about 10% strength, in butyl acetate is ground intensively in a ball mill for 2 hours. Before the coating, 2 parts by weight of polyfunctional aliphatic isocyanate are stirred into the finely dispersed coating batch, diluted to about 5% and layered on aluminum foil (100 ⁇ m) in a thickness of 360 mg / m 2 .
- the pigment precoat which is insoluble for the subsequent coating of the transport layer is dip-coated according to Example 4 with a solution of 65 parts by weight of oxdiazole and 35 parts by weight of cellulose nitrate in a thickness of 7-8 ⁇ m.
- the following table shows the good photosensitivity which is achieved by coating 50 parts by weight of oxdiazole with 50 parts by weight of different binders in a thickness of approximately 8 ⁇ m (solvent THF) on a perylimide vapor deposition layer (200 mg / m 2 thickness).
- the values in the table show that the mechanical properties (flexibility, abrasion resistance, etc.) of a photoconductor layer are largely determined by the type and amount of the binder.
- highly adhesive and highly sensitive photoconductor layers are achieved with a large number of binders, the selection of which can therefore be made easily after the mechanical stress when used as an electrophotographic recording material.
- a solution of 60 parts by weight of oxdiazole and 40 parts by weight of cellulose nitrate according to Example 4 in THF are layered in a thickness of about 9 ⁇ m (after drying) on an aluminum-vapor-coated polyester film 75 ⁇ m thick.
- a finely dispersed perylimide dispersion with cellulose nitrate in a weight ratio of 1: 1 and a thickness of approximately 1 ⁇ m is applied to this layer by knife application.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Claims (1)
- Matériau d'enregistrement électrophotographique composé d'un support de couche électriquement conducteur, le cas échéant d'une couche intermédiaire isolante et d'une couche photoconductrice constituée d'au moins une couche contenant un bisimide de l'acide pérylènetétracarboxylique N,N'- substitué comme colorant produisant des porteurs de charge, des photoconducteurs, des liants et des additifs usuels, caractérisé en ce qu'on utilise comme colorant la variété cristalline foncée du N,N'-bis-(3-méthoxypropyl)-pérylènetétracarboximide, dont la présence est identifiée par l'interférence à 20 θ = 6,2° dans le diagramme de diffraction des rayons X (radiation Ka du cuivre).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3019326 | 1980-05-21 | ||
DE3019326A DE3019326C2 (de) | 1980-05-21 | 1980-05-21 | Elektrophotographisches Aufzeichnungsmaterial |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0040402A2 EP0040402A2 (fr) | 1981-11-25 |
EP0040402A3 EP0040402A3 (en) | 1981-12-02 |
EP0040402B1 true EP0040402B1 (fr) | 1984-12-19 |
Family
ID=6102922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81103696A Expired EP0040402B1 (fr) | 1980-05-21 | 1981-05-14 | Matériau d'enregistrement électrophotographique |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0040402B1 (fr) |
JP (1) | JPS5723943A (fr) |
AU (1) | AU541409B2 (fr) |
DE (2) | DE3019326C2 (fr) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3110954A1 (de) * | 1981-03-20 | 1982-09-30 | Basf Ag, 6700 Ludwigshafen | Elektrophotographisches aufzeichnungsmaterial |
JPS58152247A (ja) * | 1982-03-05 | 1983-09-09 | Mita Ind Co Ltd | 電子写真用有機感光体 |
JPS5924852A (ja) * | 1982-08-03 | 1984-02-08 | Mita Ind Co Ltd | 電子写真用感光体 |
DE3246036C2 (de) * | 1982-12-09 | 1984-11-29 | Hoechst Ag, 6230 Frankfurt | Elektrophotographisches Aufzeichnungsmaterial |
DE3417951A1 (de) * | 1984-05-15 | 1985-11-21 | Hoechst Ag, 6230 Frankfurt | Elektrophotographisches aufzeichnungsmaterial |
US4618560A (en) * | 1984-11-23 | 1986-10-21 | Eastman Kodak Company | Multi-active photoconductive insulating elements exhibiting very high electrophotographic speed and panchromatic sensitivity and method for their manufacture |
US4578334A (en) * | 1984-11-23 | 1986-03-25 | Eastman Kodak Company | Multi-active photoconductive insulating elements and method for their manufacture |
US4717636A (en) * | 1985-04-23 | 1988-01-05 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member containing polyvinylarylal |
US5686213A (en) * | 1996-07-31 | 1997-11-11 | Xerox Corporation | Tunable imaging members and process for making |
US5876887A (en) * | 1997-02-26 | 1999-03-02 | Xerox Corporation | Charge generation layers comprising pigment mixtures |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3904407A (en) * | 1970-12-01 | 1975-09-09 | Xerox Corp | Xerographic plate containing photoinjecting perylene pigments |
BE763388A (fr) * | 1971-02-24 | 1971-08-24 | Xerox Corp | Nouvelle plaque xerographique contenant des pigments de perylene photo-injecteurs, |
DE2237539C3 (de) * | 1972-07-31 | 1981-05-21 | Hoechst Ag, 6000 Frankfurt | Elektrophotographisches Aufzeichnungsmaterial |
DE2451781C2 (de) * | 1974-10-31 | 1976-08-19 | Basf Ag, 6700 Ludwigshafen | Perylen-SASMO-tetracarbonsäurebisimidfarbstoff |
DE2636421A1 (de) * | 1976-08-13 | 1978-02-16 | Basf Ag | Elektrisch leitfaehige perylenderivate |
CH624494A5 (fr) * | 1977-02-07 | 1981-07-31 | Ciba Geigy Ag |
-
1980
- 1980-05-21 DE DE3019326A patent/DE3019326C2/de not_active Expired
-
1981
- 1981-05-14 DE DE8181103696T patent/DE3167804D1/de not_active Expired
- 1981-05-14 EP EP81103696A patent/EP0040402B1/fr not_active Expired
- 1981-05-15 AU AU70631/81A patent/AU541409B2/en not_active Ceased
- 1981-05-20 JP JP7504881A patent/JPS5723943A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
EP0040402A2 (fr) | 1981-11-25 |
DE3167804D1 (en) | 1985-01-31 |
JPS5723943A (en) | 1982-02-08 |
AU541409B2 (en) | 1985-01-10 |
DE3019326C2 (de) | 1983-03-03 |
AU7063181A (en) | 1981-11-26 |
DE3019326A1 (de) | 1981-12-03 |
JPH0115865B2 (fr) | 1989-03-20 |
EP0040402A3 (en) | 1981-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0210521B1 (fr) | Matériau d'enregistrement électrophotographique | |
DE2353639C2 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
EP0046959B2 (fr) | Matériau d'enregistrement électrophotographique | |
DE3046240C2 (fr) | ||
EP0061089B1 (fr) | Matériau d'enregistrement électrophotographique | |
DE19638447B4 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
EP0040402B1 (fr) | Matériau d'enregistrement électrophotographique | |
DE3790394C2 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
DE2336094C2 (de) | Elektrophotographisches Aufzeichungsmaterial | |
EP0000582B1 (fr) | Matériau d'enregistrement électrophotographique | |
EP0113437B1 (fr) | Matériau d'enregistrement électrophotographique | |
DE3439850C2 (fr) | ||
DE2237679A1 (de) | Elektrophotographisches aufzeichnungsmaterial | |
DE4028519C2 (de) | Elektrofotografisches Aufzeichnungsmaterial | |
DE2734289C2 (de) | Photoleiterband | |
EP0220604B1 (fr) | Matériau d'enregistrement électrophotographique | |
EP0218981B1 (fr) | Matériau d'enregistrement électrophotographique | |
EP0046960B1 (fr) | Matériau d'enregistrement électrophotographique | |
DE2744171C2 (de) | Elektrofotografisches Aufzeichungsmaterial | |
EP0231835B1 (fr) | Matériau d'enregistrement électrophotographique | |
DE2822764A1 (de) | Elektrophotographisches aufzeichnungsmaterial | |
DE2747144C3 (de) | Elektrofotografisches Aufzeichnungsmaterial | |
DE2239923B2 (de) | Elektrophotographisches Aufzeichnungsmaterial |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB NL |
|
AK | Designated contracting states |
Designated state(s): DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19820526 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 3167804 Country of ref document: DE Date of ref document: 19850131 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19920531 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19931201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980327 Year of fee payment: 18 Ref country code: FR Payment date: 19980327 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19980718 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990514 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19990514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |