EP0046960B1 - Matériau d'enregistrement électrophotographique - Google Patents
Matériau d'enregistrement électrophotographique Download PDFInfo
- Publication number
- EP0046960B1 EP0046960B1 EP81106555A EP81106555A EP0046960B1 EP 0046960 B1 EP0046960 B1 EP 0046960B1 EP 81106555 A EP81106555 A EP 81106555A EP 81106555 A EP81106555 A EP 81106555A EP 0046960 B1 EP0046960 B1 EP 0046960B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- recording material
- charge
- photoconductor
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 title claims description 31
- 239000010410 layer Substances 0.000 claims description 96
- 150000001875 compounds Chemical class 0.000 claims description 21
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 20
- 239000011230 binding agent Substances 0.000 claims description 14
- 239000000975 dye Substances 0.000 claims description 10
- 230000032258 transport Effects 0.000 claims description 9
- 239000011368 organic material Substances 0.000 claims description 7
- 239000002800 charge carrier Substances 0.000 claims description 5
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims description 4
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 4
- 229920001220 nitrocellulos Polymers 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 4
- 150000001491 aromatic compounds Chemical class 0.000 claims description 3
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 3
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 3
- 239000000020 Nitrocellulose Substances 0.000 claims description 2
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000004663 dialkyl amino group Chemical group 0.000 claims description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 claims description 2
- 239000011229 interlayer Substances 0.000 claims 1
- 238000005299 abrasion Methods 0.000 description 14
- 206010034972 Photosensitivity reaction Diseases 0.000 description 9
- 230000036211 photosensitivity Effects 0.000 description 9
- -1 Perylene-3,4,9,10-tetracarboxylic anhydride Chemical class 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 2
- 229920001756 Polyvinyl chloride acetate Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- 229920002678 cellulose Chemical class 0.000 description 2
- 239000001913 cellulose Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Chemical class 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920002223 polystyrene Chemical class 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- JOUDBUYBGJYFFP-FOCLMDBBSA-N thioindigo Chemical compound S\1C2=CC=CC=C2C(=O)C/1=C1/C(=O)C2=CC=CC=C2S1 JOUDBUYBGJYFFP-FOCLMDBBSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 150000001651 triphenylamine derivatives Chemical class 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/147—Cover layers
- G03G5/14704—Cover layers comprising inorganic material
Definitions
- the invention relates to an electrophotographic recording material composed of an electrically conductive layer support, optionally an insulating intermediate layer, a photoconductive layer system of organic materials composed of a layer optionally containing a binder with a charge-generating compound and a layer with charge-transporting compound and a protective transparent cover layer.
- Recording materials with a photoconductive layer of at least one layer with a charge-generating compound and charge-transporting compound are known.
- highly sensitive, organic photoconductor layers (DE-B-2 314 051) are used on conductive carrier films or tapes due to their high elasticity.
- very highly sensitive photoconductor systems according to, for example, DE-A-2 734 288 can be used as endless belts because of their great flexibility, which can be guided over deflecting rollers with a relatively small diameter.
- GB-A-918 234 discloses an electrophotographic recording material made of an electrically conductive base with a layer of photoconductive, insulating material, such as selenium or similar photoconductive material, which is coated with a thin transparent layer of an inorganic material, such as sulfide, silicon dioxide, titanium dioxide , Silicate and alkaline earth fluoride.
- the cover layer has a thickness that should begin with significant protection of the photoconductor layer up to a maximum of 2.5 ⁇ m (0.1 mil). A range from approximately 1.25 to 25.4 ⁇ m is specified as the photoconductor layer thickness.
- a completely different system is presented as suitable from DE-B-1 109 031 corresponding to this patent specification.
- the photoconductor layer has a thickness in the range from 0.0008 to 0.04 cm and the inorganic cover layer has a thickness from 0.0004 to 0.004 cm. It was therefore not at all clear to the reworking specialist which thickness ranges he should now use, let alone that he should go from this system of inorganic photoconductor / inorganic cover layer to an organic material, as is the case according to the invention.
- a xerographic storage area which has an anti-reflection and protective coating made of silicon oxide.
- the disclosure is clearly based on selenium coatings as a photoconductor layer.
- the thickness of the vapor deposition layer is only given insofar as it is determined optically and the evaporation is ended when the reflectivity passes its first minimum.
- An electrophotographic recording material of the type described in the introduction does not emerge from this teaching.
- the object of the invention was to provide the photoconductor systems which are made of organic materials and which are highly light-sensitive in the photoconductor double-layer arrangement, with a cover layer made of materials which are transparent to visible light and which protect them from mechanical or possibly other adverse influences and which do not significantly impair the function of the photoconductor layer and generally the useful life of such Increase systems.
- an electrophotographic recording material mentioned in claim 1 which is characterized in that the cover layer consists of 1 to 10- 3 Pa at (10- 5 to 10- 8 bar) applied silicon monoxide, magnesium fluoride or calcium fluoride and 0, 5 to 10 microns thick.
- the multi-layer arrangement can be used more profitably not only on flexible conductive substrates, but also on drums.
- the electrophotographic recording material according to the invention is shown schematically by FIGS. 1 to 3.
- the photoconductive layer is in the form of a double-layer arrangement which consists of a layer 2 containing charge carrier-producing compounds, as is expressed in FIGS. 1 and 2, and a layer containing charge-transporting compounds under the respective position 3.
- the conductive layer support is indicated with 1 in each case.
- An insulating intermediate layer is indicated at position 4, position 5 shows a layer of charge-generating compound in dispersion.
- Position 7 indicates the protective cover layer according to the invention.
- aluminum foil optionally transparent, aluminum-vapor-coated or laminated polyester foil
- any other layer support made sufficiently conductive can be used.
- the insulating intermediate layer can be produced by a thermally, anodically or chemically produced aluminum oxide intermediate layer. It can also consist of organic materials. For example, different natural or synthetic resin binders are used that adhere well to a metal or aluminum surface and dissolve little when the other layers are subsequently applied, such as polyamide resins, polyvinylphosphonic acid, polyurethanes, polyester resins or specifically alkali-soluble binders, such as Example styrene-maleic anhydride copolymers.
- the thickness of such organic intermediate layers can be up to 5 gm, that of the aluminum oxide layer is mostly in the range of 0.01-1 ⁇ m.
- Dyes according to DE-A-2 246 255, 2 253 639 and 2 356 370 can also be used, for example.
- the application of a homogeneous, densely packed layer 2 is preferably obtained by vacuum deposition.
- An advantageous layer thickness range of layer 2 is between 0.005 and 3 ⁇ m, since the adhesive strength and homogeneity of the vapor-deposited compound are particularly favorable here.
- homogeneous, well-covering dye layers with thicknesses of the order of 0.1 ⁇ 3 ⁇ m can also be obtained by grinding the dye with a binder, in particular with highly viscous cellulose nitrates and / or crosslinking binder systems, for example polyisocyanate-crosslinkable acrylic resins. Lacquers based on polyisocyanates and hydroxyl-containing polyester or ether and by subsequently applying these dye dispersions 5 to the substrate can be produced, as can be seen from FIG. 3.
- Organic materials which have an extensive z-electron system are particularly suitable as the material for the charge transport in layer 3. These include, in particular, monomeric aromatic or heterocyclic compounds which have at least one dialkylamino group or two alkoxy groups.
- Oxdiazole derivatives which are mentioned in German Patent 1,058,836, have proven particularly useful. These include in particular 2,5-bis- (p-diethylaminophenyl) -oxdiazole-1,3,4.
- Suitable monomeric electron donor compounds are, for example, triphenylamine derivatives, more highly condensed aromatic compounds such as pyrene, benzo-condensed heterocycles, and also pyrazoline or imidazole derivatives (DE-B-1 060 714, 1 106 599), which also include triazole, thiadiazole and especially oxazole derivatives, for example 2-phenyl-4- (2-chlorophenyl) -5- (4-diethylamino) oxazole, as are disclosed in German patents 1,060,260, 1,299,296, 120,875.
- the charge transport layer 3 has practically no photosensitivity in the visible range (420-750 nm). It preferably consists of a mixture of an electron donor compound with a resin binder if negative charging is to be carried out.
- Layer 3 is preferably transparent. However, it is also possible that it does not need to be transparent, for example in the case of a transparent, conductive layer support. It has a high electrical resistance ( ⁇ 10 12 ⁇ ) and prevents the discharge of electrostatic charge in the dark. When exposed, it transports the charges generated in the organic dye layer.
- the added binder influences both the mechanical behavior such as abrasion, flexibility, film formation etc. and to a certain extent the electrophotographic behavior such as photosensitivity, residual charge and cyclical behavior.
- Film-forming compounds such as polyester resins, polyvinyl chloride / polyvinyl acetate copolymers, styrene / maleic anhydride copolymers, polycarbonates, silicone resins, polyurethanes, epoxy resins, acrylates, polyvinyl acetals, polystyrenes, cellulose derivatives such as cellulose acetobutyrates etc. are used as binders.
- post-crosslinking binder systems such as DD coatings (eg Desmophen / Desmodur ®, Bayer AG), polyisocyanatvernetzbare acrylate resins, melamine resins, resins of unsaturated polyesters, etc. applied successfully.
- the mixing ratio of the charge transporting compound to the binder can vary. However, the requirement for maximum photosensitivity, i. H. the largest possible proportion of charge-transporting compound and after avoiding crystallization and increasing flexibility, d. H. as large a proportion of binders as possible, relatively certain limits.
- a mixing ratio of about 1: 1 parts by weight has generally been found to be preferred, but ratios between 4: 1 to 1: 2 are also suitable.
- the thickness of the layer 3 is preferably between about 3 and 20 gm.
- Leveling agents such as silicone oils, wetting agents, in particular nonionic substances, plasticizers of different compositions, such as, for example, based on chlorinated hydrocarbons or based on phthalic acid esters are added to the layer as customary additives. If necessary, sensitizers and / or acceptors can also be added to the charge transport layer, but only to the extent that the optical transparency of the charge transport layer is not significantly impaired.
- the protective cover layer formed on the organic photoconductor system has a uniform thickness of 0.5-10 ⁇ m, preferably 0.5-5 ⁇ m. This range of thicknesses is suitable because, on the one hand, this does not significantly influence the charge flow during the exposure and discharge process, and on the other hand, a significantly improved abrasion behavior is achieved.
- the selection of the inorganic vapor deposition materials depends primarily on their evaporation temperature and rate, their resistance to evaporation and the properties of the vapor-deposited protective layers, such as homogeneous film formation, flexibility, surface conductivity (also depending on the air humidity) and the spectral Translucency.
- Materials such as silicon monoxide or magnesium fluoride can improve the anti-reflective behavior of the photoconductor layer, which is reflected in better utilization of the incident light. They are therefore used with particular preference.
- these materials can be vapor-deposited in vacuum from electrically heated tungsten, molybdenum or tantalum boats at a substrate temperature of ⁇ 50 ° C. Electron beam evaporators may also be necessary for certain materials.
- cover layers according to the invention have the advantage that they prevent surface effects which arise during handling of the photoconductor, for example crystallization effects by hand contact.
- cover layers according to the invention are preferably used as layer supports on photoconductor drums.
- an electrophotographic recording material which, in the order given, consists of aluminum-coated 75 ⁇ m thick polyester film as an electrically conductive substrate, a dye layer of N, N'-dimethylperylimide (CI 71 129) as a charge-generating compound
- the evaporation takes place from tungsten boats, which are heated in a direct current passage.
- the material to be vapor-coated on one side for comparison purposes is clamped onto a rotating drum and varied from 5 to 15 minutes by means of different evaporation times in order to produce different SiO layer thicknesses.
- the residual charge (U R ) after 0.1 sec, determined from the above bright discharge curves, is a further measure of the discharge of a photoconductor layer.
- a recording material vaporized on one side with SiO at 2 g / m 2 according to Example 1 is exposed to the copying process in a copier (25 copies / min.)
- a magnetic brush device with a two-component toner mixture is used for development.
- To clean residual toner the material is guided past a rotating brush. It can be seen that surface filming, resulting from the toner / photoconductor surface interaction, limits the service life of the unprotected surface. After 2000 copies, clear surface filming is already visible, but not at all on the protected surface.
- the aperture margin (max. Opening) is used for the production of perfect copies of the unprotected material by filming the surface, while the material according to the invention can be copied further in the initial aperture position.
- magnesium fluoride is evaporated as a protective layer instead of silicon monoxide.
- the photosensitivity is not yet reduced:
- a layer of charge-generating compound N, N'-bis (3-methoxy-propyl) perylimide according to DE-B-2 451 781) and a charge transport layer thickness 8.6 g / m 2
- a top layer of silicon monoxide is evaporated to a thickness of about 3 g / m 2 , as indicated in Example 1.
- the abrasion of both layers is measured on a standard abrasion device (Taber Abraser Type 352) under the following conditions:
- the abrasion in g / m 2 is the quotient of the gravimetrically determined abrasion and the abrasion area.
- the abrasion of the unprotected material results in approx. 2.5 g / m 2
- the material provided with a covering layer has an abrasion of 0.9 g / m 2 .
- Abrasion is therefore reduced by a factor of 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3032775 | 1980-08-30 | ||
DE19803032775 DE3032775A1 (de) | 1980-08-30 | 1980-08-30 | Elektrophotographisches aufzeichnungsmaterial |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0046960A2 EP0046960A2 (fr) | 1982-03-10 |
EP0046960A3 EP0046960A3 (en) | 1982-08-04 |
EP0046960B1 true EP0046960B1 (fr) | 1985-10-02 |
Family
ID=6110783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81106555A Expired EP0046960B1 (fr) | 1980-08-30 | 1981-08-24 | Matériau d'enregistrement électrophotographique |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0046960B1 (fr) |
JP (1) | JPS5789765A (fr) |
AU (1) | AU545993B2 (fr) |
DE (2) | DE3032775A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4489148A (en) * | 1983-04-25 | 1984-12-18 | Xerox Corporation | Overcoated photoresponsive device |
JPS62100766A (ja) * | 1985-10-29 | 1987-05-11 | Toyo Ink Mfg Co Ltd | 電子写真感光体 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2886434A (en) * | 1955-06-06 | 1959-05-12 | Horizons Inc | Protected photoconductive element and method of making same |
US3867143A (en) * | 1969-01-17 | 1975-02-18 | Canon Kk | Electrophotographic photosensitive material |
GB1339179A (en) * | 1971-05-06 | 1973-11-28 | Standard Telephones Cables Ltd | Xerographic recording surfaces |
JPS49122337A (fr) * | 1973-03-23 | 1974-11-22 | ||
JPS5315141A (en) * | 1976-07-27 | 1978-02-10 | Fuji Xerox Co Ltd | Photosensitive member for electrophotography |
-
1980
- 1980-08-30 DE DE19803032775 patent/DE3032775A1/de not_active Withdrawn
-
1981
- 1981-08-18 AU AU74264/81A patent/AU545993B2/en not_active Ceased
- 1981-08-24 DE DE8181106555T patent/DE3172533D1/de not_active Expired
- 1981-08-24 EP EP81106555A patent/EP0046960B1/fr not_active Expired
- 1981-08-28 JP JP56134388A patent/JPS5789765A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
EP0046960A3 (en) | 1982-08-04 |
AU7426481A (en) | 1982-03-11 |
DE3032775A1 (de) | 1982-05-06 |
DE3172533D1 (en) | 1985-11-07 |
AU545993B2 (en) | 1985-08-08 |
JPS5789765A (en) | 1982-06-04 |
EP0046960A2 (fr) | 1982-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0046959B1 (fr) | Matériau d'enregistrement électrophotographique | |
DE3046240C2 (fr) | ||
DE2737516C3 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
DE1622364C3 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
JPH0349426B2 (fr) | ||
DE69610663T2 (de) | Verfahren zur Herstellung eines mehrschichtigen elektrophotograpischen Bildaufzeichnungselementes | |
DE2009346A1 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
DE69931220T2 (de) | Elektrophotographisches photoempfindliches Element und Verfahren zu dessen Herstellung | |
DE69018020T2 (de) | Mit besonderer Aussenschicht versehenes photoleitendes Aufzeichnungsmaterial. | |
DE3121563A1 (de) | Elektrophtographisches aufzeichnungsmaterial und verfahren zu seiner herstellung | |
DE19752444A1 (de) | Polycarbonatharz und elektrofotografischer Fotoleiter, der dieses verwendet | |
DE2651535C2 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
DE2355389B2 (de) | Elektrophotographisches Aufzeichnungsmaterial | |
EP0040402B1 (fr) | Matériau d'enregistrement électrophotographique | |
EP0046960B1 (fr) | Matériau d'enregistrement électrophotographique | |
DE69414183T2 (de) | Elektrophotographisches, lichtempfindliches Element und elektrophotographischer Apparat unter Verwendung desselben | |
DE69710700T2 (de) | Flüssige Beschichtungszusammensetzung für elektrophotographische lichtempfindliche Elemente, und diese Zusammensetzung benutzendes Verfahren zur Herstellung elektrophotographischer lichtempfindlicher Elemente | |
DE69836794T2 (de) | Elektrophotographischer Photorezeptor, Herstellungsverfahren und Bildherstellungsverfahren | |
DE1943386B2 (de) | Elektrophotographisches aufzeichnungsmaterial | |
EP0113437B1 (fr) | Matériau d'enregistrement électrophotographique | |
JPS6334464B2 (fr) | ||
DE3439850C2 (fr) | ||
DE3033505A1 (de) | Abbildungselement | |
DE2832859C2 (fr) | ||
DE19754605A1 (de) | Elektrofotografischer Fotoleiter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19830120 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB LI NL |
|
REF | Corresponds to: |
Ref document number: 3172533 Country of ref document: DE Date of ref document: 19851107 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19870831 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19880831 Ref country code: CH Effective date: 19880831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19890301 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19890428 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19981015 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990618 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000824 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000824 |