DE69709883T2 - Chirale ferrocene - Google Patents
Chirale ferroceneInfo
- Publication number
- DE69709883T2 DE69709883T2 DE69709883T DE69709883T DE69709883T2 DE 69709883 T2 DE69709883 T2 DE 69709883T2 DE 69709883 T DE69709883 T DE 69709883T DE 69709883 T DE69709883 T DE 69709883T DE 69709883 T2 DE69709883 T2 DE 69709883T2
- Authority
- DE
- Germany
- Prior art keywords
- alkyl
- phenyl
- substituted
- alkoxy
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 title description 2
- 239000003446 ligand Substances 0.000 claims abstract description 19
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 14
- 150000003624 transition metals Chemical class 0.000 claims abstract description 14
- 150000001875 compounds Chemical class 0.000 claims description 72
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 71
- -1 C5-C12-cycloalkyl Chemical group 0.000 claims description 41
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 34
- 239000000203 mixture Substances 0.000 claims description 29
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 28
- 125000000217 alkyl group Chemical group 0.000 claims description 28
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 19
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims description 18
- 229910052736 halogen Inorganic materials 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 15
- 150000002367 halogens Chemical class 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 125000001424 substituent group Chemical group 0.000 claims description 13
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 10
- 125000006702 (C1-C18) alkyl group Chemical group 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 9
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 9
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 7
- 239000010948 rhodium Substances 0.000 claims description 7
- 150000001450 anions Chemical class 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 125000003545 alkoxy group Chemical group 0.000 claims description 5
- 238000006555 catalytic reaction Methods 0.000 claims description 5
- 125000005842 heteroatom Chemical group 0.000 claims description 5
- 229910052741 iridium Inorganic materials 0.000 claims description 5
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 5
- 229910052703 rhodium Inorganic materials 0.000 claims description 5
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 125000000732 arylene group Chemical group 0.000 claims description 4
- 229910052794 bromium Inorganic materials 0.000 claims description 4
- 229910052801 chlorine Inorganic materials 0.000 claims description 4
- 101100311330 Schizosaccharomyces pombe (strain 972 / ATCC 24843) uap56 gene Proteins 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 229910052740 iodine Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 101150018444 sub2 gene Proteins 0.000 claims description 3
- 238000009903 catalytic hydrogenation reaction Methods 0.000 claims description 2
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims 1
- 125000003709 fluoroalkyl group Chemical group 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 11
- 239000003054 catalyst Substances 0.000 abstract description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 42
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 42
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 36
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 238000005984 hydrogenation reaction Methods 0.000 description 15
- 239000012071 phase Substances 0.000 description 15
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 14
- 238000004587 chromatography analysis Methods 0.000 description 14
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 11
- 150000003254 radicals Chemical class 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000000741 silica gel Substances 0.000 description 10
- 229910002027 silica gel Inorganic materials 0.000 description 10
- 229910052938 sodium sulfate Inorganic materials 0.000 description 10
- 235000011152 sodium sulphate Nutrition 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000012074 organic phase Substances 0.000 description 9
- 239000012043 crude product Substances 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 239000000376 reactant Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 238000005160 1H NMR spectroscopy Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 5
- VURFVHCLMJOLKN-UHFFFAOYSA-N diphosphane Chemical compound PP VURFVHCLMJOLKN-UHFFFAOYSA-N 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 239000012280 lithium aluminium hydride Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- WDYVUKGVKRZQNM-UHFFFAOYSA-N 6-phosphonohexylphosphonic acid Chemical compound OP(O)(=O)CCCCCCP(O)(O)=O WDYVUKGVKRZQNM-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 239000007832 Na2SO4 Substances 0.000 description 3
- 235000019502 Orange oil Nutrition 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- USJRLGNYCQWLPF-UHFFFAOYSA-N chlorophosphane Chemical compound ClP USJRLGNYCQWLPF-UHFFFAOYSA-N 0.000 description 3
- 238000011097 chromatography purification Methods 0.000 description 3
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 230000002140 halogenating effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000010502 orange oil Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000004912 1,5-cyclooctadiene Substances 0.000 description 2
- HRTOQFBQOFIFEE-UHFFFAOYSA-N 2-dehydropantolactone Chemical compound CC1(C)COC(=O)C1=O HRTOQFBQOFIFEE-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 125000006519 CCH3 Chemical group 0.000 description 2
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910010084 LiAlH4 Inorganic materials 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- XGRJZXREYAXTGV-UHFFFAOYSA-N chlorodiphenylphosphine Chemical compound C=1C=CC=CC=1P(Cl)C1=CC=CC=C1 XGRJZXREYAXTGV-UHFFFAOYSA-N 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- GVPWHKZIJBODOX-UHFFFAOYSA-N dibenzyl disulfide Chemical compound C=1C=CC=CC=1CSSCC1=CC=CC=C1 GVPWHKZIJBODOX-UHFFFAOYSA-N 0.000 description 2
- KVBKAPANDHPRDG-UHFFFAOYSA-N dibromotetrafluoroethane Chemical compound FC(F)(Br)C(F)(F)Br KVBKAPANDHPRDG-UHFFFAOYSA-N 0.000 description 2
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000006459 hydrosilylation reaction Methods 0.000 description 2
- USKHBABPFFAKJD-UHFFFAOYSA-N methyl 2-acetamido-3-phenylprop-2-enoate Chemical compound COC(=O)C(NC(C)=O)=CC1=CC=CC=C1 USKHBABPFFAKJD-UHFFFAOYSA-N 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 description 1
- XTGYEAXBNRVNQU-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluoro-3-iodopropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)I XTGYEAXBNRVNQU-UHFFFAOYSA-N 0.000 description 1
- NZXVPCQHQVWOFD-UHFFFAOYSA-N 1,1,2,2-tetrafluoro-1,2-diiodoethane Chemical compound FC(F)(I)C(F)(F)I NZXVPCQHQVWOFD-UHFFFAOYSA-N 0.000 description 1
- WJUKOGPNGRUXMG-UHFFFAOYSA-N 1,2-dibromo-1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)(Br)C(Cl)(Cl)Br WJUKOGPNGRUXMG-UHFFFAOYSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- VYXHVRARDIDEHS-UHFFFAOYSA-N 1,5-cyclooctadiene Chemical compound C1CC=CCCC=C1 VYXHVRARDIDEHS-UHFFFAOYSA-N 0.000 description 1
- WPWHSFAFEBZWBB-UHFFFAOYSA-N 1-butyl radical Chemical compound [CH2]CCC WPWHSFAFEBZWBB-UHFFFAOYSA-N 0.000 description 1
- KLFWZEFFWWOMIF-UHFFFAOYSA-N 2,3-dibromo-2,3-dimethylbutane Chemical compound CC(C)(Br)C(C)(C)Br KLFWZEFFWWOMIF-UHFFFAOYSA-N 0.000 description 1
- 238000004679 31P NMR spectroscopy Methods 0.000 description 1
- YDZYREHHCRHTRZ-UHFFFAOYSA-N 4-methylbenzenesulfonyl iodide Chemical compound CC1=CC=C(S(I)(=O)=O)C=C1 YDZYREHHCRHTRZ-UHFFFAOYSA-N 0.000 description 1
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- HNUALPPJLMYHDK-UHFFFAOYSA-N C[CH]C Chemical compound C[CH]C HNUALPPJLMYHDK-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229910000528 Na alloy Inorganic materials 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 101100212791 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) YBL068W-A gene Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- OCBFFGCSTGGPSQ-UHFFFAOYSA-N [CH2]CC Chemical compound [CH2]CC OCBFFGCSTGGPSQ-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- AKJFBIZAEPTXIL-UHFFFAOYSA-N chloro(dicyclohexyl)phosphane Chemical compound C1CCCCC1P(Cl)C1CCCCC1 AKJFBIZAEPTXIL-UHFFFAOYSA-N 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- UNMQCGHIBZALKM-YCBDHFTFSA-N cyclopenta-1,3-diene;(1r)-1-cyclopenta-2,4-dien-1-yl-n,n-dimethylethanamine;iron(2+) Chemical compound [Fe+2].C=1C=C[CH-]C=1.CN(C)[C@H](C)C1=CC=C[CH-]1 UNMQCGHIBZALKM-YCBDHFTFSA-N 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 description 1
- 238000007037 hydroformylation reaction Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- UXPOJVLZTPGWFX-UHFFFAOYSA-N pentafluoroethyl iodide Chemical compound FC(F)(F)C(F)(F)I UXPOJVLZTPGWFX-UHFFFAOYSA-N 0.000 description 1
- 125000005003 perfluorobutyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005004 perfluoroethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000005008 perfluoropentyl group Chemical group FC(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- 125000005009 perfluoropropyl group Chemical group FC(C(C(F)(F)F)(F)F)(F)* 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- KSAVQLQVUXSOCR-UHFFFAOYSA-N sodium;2-[dodecanoyl(methyl)amino]acetic acid Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC(O)=O KSAVQLQVUXSOCR-UHFFFAOYSA-N 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000006337 tetrafluoro ethyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 238000009901 transfer hydrogenation reaction Methods 0.000 description 1
- 229940066528 trichloroacetate Drugs 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- VPAYJEUHKVESSD-UHFFFAOYSA-N trifluoroiodomethane Chemical compound FC(F)(F)I VPAYJEUHKVESSD-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F17/00—Metallocenes
- C07F17/02—Metallocenes of metals of Groups 8, 9 or 10 of the Periodic Table
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1805—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2282—Unsaturated compounds used as ligands
- B01J31/2295—Cyclic compounds, e.g. cyclopentadienyls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/24—Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
- B01J31/2404—Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
- B01J31/2409—Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B53/00—Asymmetric syntheses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/26—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D307/30—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/32—Oxygen atoms
- C07D307/33—Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/60—Reduction reactions, e.g. hydrogenation
- B01J2231/64—Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
- B01J2231/641—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
- B01J2231/643—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/60—Reduction reactions, e.g. hydrogenation
- B01J2231/64—Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
- B01J2231/641—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
- B01J2231/645—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/10—Complexes comprising metals of Group I (IA or IB) as the central metal
- B01J2531/18—Gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/821—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/822—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/824—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/827—Iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/847—Nickel
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Soft Magnetic Materials (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
- Die Erfindung betrifft chirale Ferrocene, die in der in 1- und 1'- Stellung durch zwei verschiedene Reste und ferner in der 2-Stellung substituiert sind und der allgemeinen Formel (1) entsprechen. Ferner betrifft die Erfindung Verfahren zur Herstellung dieser Verbindungen und ihre Verwendung als Liganden bei der Katalyse.
- Metallkomplexe mit chiralen Ferrocenyl-Liganden sind als Katalysatoren für eine Anzahl von Reaktionen (z. B. enantioselektive Hydrierung, Hydrosilylierung und Bildung von C-C-Bindungen) bekannt. Die Aufgabe der chiralen Liganden besteht darin, einerseits die elektronischen Verhältnisse am Metall so einzustellen, dass ein katalytischer Zyklus möglich wird, und andererseits darin, die chirale Information auf das Substrat zu übertragen. Bis heute gibt es kein Modell, das eine Vorhersage darüber erlaubt, welcher chirale Ligand am besten (vor allem im Bezug auf Enantioselektivität) für die katalytische Umsetzung eines Substrats geeignet ist. Es ist deshalb ein Vorteil, wenn die elektronischen und sterischen Eigenschaften eines Liganden in einem weiten Bereich sowohl grob als auch fein abgestimmt werden können.
- Die meisten bisher beschriebenen Diphosphin-Liganden enthalten jedoch zwei gleiche Phosphine. Dies gilt auch für die von T. Hayashi et al. beschriebenen chiralen Ferrocenyl-Liganden, die bereits in einer Vielzahl von katalytischen Reaktionen erfolgreich eingesetzt wurden. Diese Liganden entsprechen beispielsweise der folgenden Formel:
- und werden in T. Hayashi, Ferrocenes (Hrsg.: A. Togni and T. Hayashi), VCH Publishers, New York (1995), S. 105-142, beschrieben.
- Beispiele für chirale Ferrocenyl-Liganden mit mindestens einem Schwefelrest sind:
- C. K. Lai, A. A. Naiini und C. H. Brubaker, Inorg. Chim. Acta, Bd. 164 (1989.). S. 205-210;
- C. H. Wang und C. H. Brubaker, J. Mol. Catal., Bd. 75 (1992), S. 221-233.
- Y. Nishibayashi, K. Segawa, J. D. Singh, S. Fukuzawa, K. Ohe und S. Uemura, Organometallics, Bd. 15 (1996), S. 370-379.
- In Tetrahedron, Bd. 44 (Nr. 10), S. 2883-2886; . J. Org. Chem., Bd. 55 (1990), S. 1649-1664; J. Chem. Soc. (C), (1967), S. 1842-1847; . J. of Organom. Chem., Bd. 390 (1990), S. 73-90; J. of Organom. Chem., Bd. 333 (1987), S. 260-280; Organometallics, Bd. 13 (1994), S. 4481-4493; und Inorgan. Chimica Acta, Bd. 160 (1989), S. 241-244, sind verschiedene Dimethylaminoethylidinyl-ferrocene beschrieben, die in den Stellungen 1 und 1' mit identischen komplexierenden Gruppen, wie Phosphino-, Thio- und Selenogruppen, substituiert sind. In Can. J. Chem., Bd. 61 (1983), S. 147-153, wird ein Gemisch aus stellungsisomeren Dimethylaminoethylidinyl- ferrocenen, die in den Stellungen 1 und 1' mit verschiedenen Phosphinogruppen substituiert sind, beschrieben. Es wird aber kein Verfahren zur Herstellung der reinen Einzelverbindungen beschrieben.
- Im folgenden wird ein Herstellungsverfahren beschrieben, das, es erstmals ermöglicht, chirale Ferrocenyl-Liganden selektiv mit zwei verschiedenen Resten in der 1- und 1'-Stellung herzustellen. Vorzugsweise handelt es sich bei den zwei verschiedenen Resten um zwei verschiedene Phosphin- oder Schwefelreste oder um einen Schwefel- und einen Phosphinrest. Damit wird eine Einstellung der elektronischen und sterischen Eigenschaften der erfindungsgemäßen chiralen Ferrocenyle und deren Metallkomplexe in einem sehr weiten Bereich ermöglicht.
- Gegenstand der Erfindung sind Verbindungen der Formel (I)
- worin
- R&sub1; C&sub1;-C&sub8;-Alkyl, C&sub5;-C&sub1;&sub2;-Cycloalkyl, Phenyl oder 1- bis 3-fach mit C&sub1;- C&sub4;-Alkyl oder C&sub1;-C&sub4;-Alkoxy substituiertes Phenyl bedeutet;
- Ra -P(R&sub1;&sub0;R&sub1;&sub1;) oder -SR&sub1;&sub2; bedeutet;
- Rb -P(R'&sub1;&sub0;R'&sub1;&sub1;), -SR'&sub1;&sub2;, -CH=NR&sub1;&sub2;, -CH&sub2;-NH-R&sub1;&sub2; oder -CH&sub2;-O-P(R&sub1;&sub0;R&sub1;&sub1;) bedeutet;
- R&sub1;&sub0; und R&sub1;&sub1; jeweils unabhängig voneinander C&sub1;-C&sub1;&sub2;-Alkyl, mit C&sub1;-C&sub4;- Alkoxy, C&sub5;-C&sub1;&sub2;-Cycloalkyl oder Phenyl substituiertes C&sub1;-C&sub1;&sub2;-Alkyl, C&sub5;- C&sub1;&sub2;-Cycloalkyl, Phenyl, mit C&sub1;-C&sub4;-Alkyl oder C&sub1;-C&sub4;-Alkoxy substituiertes C&sub5;-C&sub1;&sub2;-Cycloalkyl oder 1- bis 3-fach mit C&sub1;-C&sub4;-Alkyl, C&sub1;-C&sub4;-Alkoxy, -SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M -CO&sub2;M, -PO&sub3;M, -NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin; oder C&sub1;-C&sub5;- Fluoralkyl substituiertes Phenyl bedeuten; oder
- R&sub1;&sub0; und R&sub1;&sub1; zusammen C&sub4;-C&sub8;-Alkylen, mit C&sub1;-C&sub4;-Alkyl oder Phenyl substituiertes C&sub4;-C&sub8;-Alkylen oder anelliertes C&sub4;-C&sub8;-Alkylen bedeuten;
- R'&sub1;&sub0; und R'&sub1;&sub1; jeweils unabhängig voneinander die gleichen Bedeutungen wie R&sub1;&sub0; und R&sub1;&sub1; haben, mit der Maßgabe, dass -P(R&sub1;&sub0;R&sub1;&sub1;) nicht gleich -P(R'&sub1;&sub0;R'&sub1;&sub1;) ist;
- R&sub1;&sub2; H, C&sub1;-C&sub1;&sub2;-Alkyl, mit C&sub1;-C&sub4;-Alkoxy, C&sub5;-C&sub1;&sub2;-Cycloalkyl oder Phenyl substituiertes C&sub1;-C&sub1;&sub2;-Alkyl, C&sub5;-C&sub1;&sub2;-Cycloalkyl, Phenyl, mit C&sub1;-C&sub4;-Alkyl oder C&sub1;-C&sub4;-Alkoxy substituiertes C&sub5;-C&sub1;&sub2;-Cycloalkyl oder 1- bis 3-fach mit C&sub1;-C&sub4;-Alkyl, C&sub1;-C&sub4;-Alkoxy, -SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M, -CO&sub2;M, -PO&sub3;M, -NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin; oder C&sub1;-C&sub5;-Fluoralkyl substituiertes Phenyl bedeutet;
- R'&sub1;&sub2; die gleichen Bedeutungen wie R&sub1;&sub2; hat, mit der Maßgabe, dass -SR&sub1;&sub2; nicht gleich -SR'&sub1;&sub2; ist;
- R&sub4;, R&sub5; und R&sub6; jeweils unabhängig voneinander C&sub1;-C&sub1;&sub2;-Alkyl oder Phenyl bedeuten;
- R&sub7; und R&sub8; jeweils unabhängig voneinander H, C&sub1;-C&sub1;&sub2;-Alkyl oder Phenyl bedeuten oder R&sub7; und R&sub8; zusammen Tetramethylen, Pentamethylen oder 3-Oxa- 1,5-pentylen bedeuten,
- R&sub9; H oder C&sub1;-C&sub4;-Alkyl bedeutet;
- M H oder ein Alkalimetall bedeutet;
- X&supmin; das Anion einer Säure bedeutet;
- Y -OR&sub1;&sub3;, -SR&sub1;&sub4; oder -NR&sub1;&sub5;R&sub1;&sub6; bedeutet;
- R&sub1;&sub3; H, C&sub1;-C&sub1;&sub8;-Alkyl, -C(O)-C&sub1;-C&sub8;-Alkyl, Phenyl oder 1- bis 3-fach mit C&sub1;-C&sub4;-Alkyl, C&sub1;-C&sub4;-Alkoxy, SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M, -CO&sub2;M, -PO&sub3;M, -NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin; oder C&sub1;-C&sub5;-Fluoralkyl substituiertes Phenyl bedeutet;
- R&sub1;&sub5; H, C&sub1;-C&sub1;&sub8;-Alkyl, Phenyl oder 1- bis 3-fach mit C&sub1;-C&sub4;-Alkyl, C&sub1;- C&sub4;-Alkoxy, -SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M, -CO&sub2;M, -PO&sub3;M, -NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin; oder C&sub1;-C&sub5;-Fluoralkyl substituiertes Phenyl bedeutet; und
- R&sub1;&sub5; und R&sub1;&sub6; jeweils unabhängig voneinander C&sub1;-C&sub1;&sub8;-Alkyl bedeuten, das durch ein oder mehrere Heteroatome, Arylene oder Carbocyclen substituiert und/oder unterbrochen sein kann; oder
- -NR&sub1;&sub5;R&sub1;&sub6; ein cyclisches Amin bedeutet;
- mit der Maßgabe, dass R&sub1; nicht -CH&sub3; bedeutet und Y nicht -N(CH&sub3;)&sub2; bedeutet, wenn Ra -P(C&sub6;H&sub5;)&sub2; bedeutet und Rb -P[C(CH&sub3;)&sub3;]&sub2; bedeutet oder wenn Ra -P[C(CH&sub3;)&sub3;]&sub2; bedeutet Rb -P(C&sub6;H&sub5;)&sub2; bedeutet.
- Bevorzugt sind Verbindungen der Formel (I), bei denen Ra -P(R&sub1;&sub0;R&sub1;&sub1;) bedeutet und Rb -P(R'&sub1;&sub0;R'&sub1;&sub1;) bedeutet, wobei mindestens einer der Substituenten R&sub1;&sub0;, R'&sub1;&sub0;, R&sub1;&sub1; oder R'&sub1;&sub1; eine von den anderen Substituenten unterschiedliche chemische Struktur aufweist. Insbesondere weisen R&sub1;&sub0; und R'&sub1;&sub0; sowie auch R&sub1;&sub1; und R'&sub1;&sub1; voneinander verschiedene chemische Strukturen auf.
- Beispiele für R&sub1; im Rahmen von Alkyl sind Methyl, Ethyl, n-Propyl und Isopropyl, n-Butyl, Isobutyl- und tert.-Butyl, Pentyl, Hexyl, Heptyl und Octyl. Bevorzugt ist lineares Alkyl. Es enthält vorzugsweise 1 bis 4 Kohlenstoffatome. Bevorzugt sind Methyl und Ethyl und insbesondere Methyl.
- R&sub1; enthält im Rahmen von Cycloalkyl vorzugsweise 5 bis 8 und insbesondere 5 oder 6 Ringkohlenstoffatome. Beispiele für Cycloalkyl sind Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclodecyl und Cyclododecyl. Bevorzugt sind Cyclopentyl und Cyclohexyl und insbesondere Cyclohexyl.
- R&sub1; enthält im Rahmen von substituiertem Phenyl vorzugsweise 1 oder 2 Substituenten. Bei Alkylsubstituenten kann es sich beispielsweise um Methyl, Ethyl, n-Propyl und Isopropyl, n-Butyl, Isobutyl und tert.-Butyl handeln. Bevorzugt sind Methyl und Ethyl. Bei Alkoxysubstituenten kann es sich beispielsweise um Methoxy, Ethoxy, n-Propoxy und Isopropoxy, n- Butoxy, Isobutoxy und tert.-Butoxy handeln. Bevorzugt sind Methoxy und Ethoxy. In einer Gruppe von Verbindungen der Formel I bedeutet R&sub1; vorzugsweise Phenyl oder 1- oder 2-fach mit C&sub1;-C&sub4;-Alkyl oder C&sub1;-C&sub4;-Alkoxy substituiertes Phenyl.
- R&sub1;&sub0;, R&sub1;&sub1; und R&sub1;&sub2; beziehungsweise R'&sub1;&sub0;, R'&sub1;&sub1; und R'&sub1;&sub2; können im Rahmen von Alkyl linear oder verzweigt sein. Sie enthalten vorzugsweise 1 bis 8 und insbesondere 1 bis 4 Kohlenstoffatome. Beispiele für dieses Alkyl sind Methyl, Ethyl, n-Propyl und Isopropyl, n-Butyl, Isobutyl und tert.-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl und Dodecyl. Bevorzugt sind Methyl, Ethyl, n-Propyl und Isopropyl, n-Butyl, Isobutyl und tert.-Butyl. Wenn R&sub1;&sub0; und R&sub1;&sub1;, beziehungsweise R'&sub1;&sub0; und R'&sub1;&sub1;, gleich sind, bedeuten sie im Rahmen von Alkyl insbesondere Isopropyl oder tert.-Butyl.
- R&sub1;&sub0;, R&sub1;&sub1; und R&sub1;&sub2; beziehungsweise R'&sub1;&sub0;, R'&sub1;&sub1; und R'&sub1;&sub2; können sich im Rahmen von substituiertem Alkyl vom vorerwähnten Alkyl ableiten, wobei insbesondere Alkyl mit 1 bis 3 Kohlenstoffatomen bevorzugt ist. Als Substituent ist Phenyl bevorzugt. Beispiele für dieses Alkyl sind Benzyl, 1- und 2-Ethylphenyl, n-Propylphenyl und Isopropylphenyl.
- R&sub1;&sub0;, R&sub1;&sub1; und R&sub1;&sub2; beziehungsweise R'&sub1;&sub0;, R'&sub1;&sub1; und R'&sub1;&sub2; im Rahmen von Cycloalkyl enthalten vorzugsweise 5 bis 8 und insbesondere 5 oder 6 Ringkohlenstoffatome. Beispiele für Cycloalkyl sind Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclodecyl und Cyclododecyl. Bevorzugt sind Cyclopentyl und Cyclohexyl und insbesondere Cyclohexyl.
- Das Cycloalkyl kann substituiert sein, z. B. mit 1 bis 3 Alkyl- oder Alkoxy-Substituenten. Beispiele für solche Substituenten entsprechen den vorstehenden Angaben. Bevorzugt sind Methyl und Ethyl sowie Methoxy und Ethoxy. Beispiele für substituiertes Cycloalkyl sind Methyl- und Methoxycyclopentyl und -cyclohexyl.
- R&sub1;&sub0;, R&sub1;&sub1; und R&sub1;&sub2; beziehungsweise R'&sub1;&sub0;, R'&sub1;&sub1; und R'&sub1;&sub2; im Rahmen von substituiertem Phenyl enthalten vorzugsweise 1 oder 2 Substituenten. Sofern das Phenyl 2 oder 3 Substituenten enthält, können diese gleich oder verschieden sein.
- Beispiele für die Substituenten Alkyl und Alkoxy sind vorstehend aufgeführt. Bevorzugte Alkyl- und Alkoxysubstituenten für Phenyl sind Methyl, Ethyl sowie Methoxy und Ethoxy.
- Wenn der Phenyl-Substituent Halogen bedeutet, so handelt es sich vorzugsweise um -F, -Cl oder -Br.
- Wenn der Phenylsubstituent C&sub1;-C&sub5;-Fluoralkyl bedeutet, handelt es sich um ganz oder teilweise fluoriertes C&sub1;-C&sub5;-Alkyl. Beispiele hierfür sind die Stellungsisomeren von Mono- bis Decafluorpentyl, Mono- bis Octafluorbutyl, Mono- bis Hexafluorpropyl, Mono- bis Tetrafluorethyl sowie Mono- und Difluormethyl. Unter den teilweise fluoriererten Alkylresten sind solche der Formeln -CF&sub2;H und -CF&sub2;(C&sub1;-C&sub4;-Alkyl) besonders bevorzugt. Ganz besonders bevorzugt ist ein perfluoriertes Alkyl. Beispiele hierfür sind Perfluorpentyl, Perfluorbutyl, Perfluorpropyl, Perfluorethyl und insbesondere Trifluormethyl. Die mit Fluor substituierten Alkylgruppen sind vorzugsweise in den 3-, 4- und 5- Stellungen gebunden.
- Wenn R&sub1;&sub0; und R&sub1;&sub1; zusammen C&sub4;-C&sub8;-Alkylen, mit C&sub1;-C&sub4;-Alkyl oder Phenyl substituiertes C&sub4;-C&sub8;-Alkylen oder anelliertes C&sub4;-C&sub8;-Alkylen bedeuten, so handelt es sich vorzugsweise um einen Rest der Formeln IV, IVa, IVb oder IVc
- Bei R&sub4;, R&sub5; und R&sub6; kann es sich um lineares oder verzweigtes Alkyl handeln, das vorzugsweise 1 bis 8 und insbesondere 1 bis 4 Kohlenstoffatome enthält. Beispiele für Alkyl sind vorstehend aufgeführt. Als Alkyl werden Methyl, Ethyl, n-Propyl, n-Butyl und tert.-Butyl bevorzugt. Besonders bevorzugt steht der Substituent -SiR&sub4;R&sub5;R&sub6; für Trimethylsilyl.
- Unter den sauren Phenyl-Substituenten -SO&sub3;M, -CO&sub2;M und -PO&sub3;M sind die Gruppen -SO&sub3;M und -CO&sub2;M bevorzugt. M steht vorzugsweise für H, Li, Na oder K.
- R&sub7; und R&sub8; enthalten als Alkyl vorzugsweise 1 bis 6 und insbesondere 1 bis 4 Kohlenstoffatome. Das Alkyl ist vorzugsweise linear. Bevorzugte Beispiele hierfür sind Methyl, Ethyl, n-Propyl und n-Butyl. R&sub9; bedeutet im Rahmen von Alkyl vorzugsweise Methyl.
- X&supmin; steht als Anion einer Säure vorzugsweise für Cl, Br, das Anion einer Carbonsäure, z. B. Formiat, Acetat, Trichloracetat oder Trifluoracetat, BF&sub4;&supmin;, PF&sub6;&supmin; oder SO&sub4;²&supmin;.
- Bevorzugte Beispiele für R&sub1;&sub0;, R&sub1;&sub1; und R&sub1;&sub2; beziehungsweise R'&sub1;&sub0;, R'&sub1;&sub1; und R'&sub1;&sub2; im Rahmen von substituiertem Phenyl sind 2-Methyl-, 3-Methyl-, 4-Methyl-, 2- oder 4-Ethyl-, 2- oder 4-Isopropyl-, 2- oder 4-tert.- Butyl-, 2-Methoxy-, 3-Methoxy-, 4-Methoxy-, 2- oder 4-Ethoxy-, 4- Trimethylsilyl-, 2- oder 4-Fluor-, 2,4-Difluor-, 2- oder 4-Chlor-, 2,4- Dichlor-, 2,4-Dimethyl-, 3,5-Dimethyl-, 2-Methoxy-4-methyl-, 3,5- Dimethyl-4-methoxy-, 3,5-Dimethyl-4-(dimethylamino)-, 2- oder 4-Amino-, 2- oder 4-Methylamino-, 2- oder 4-(Dimethylamino)-, 2- oder 4-SO&sub3;H-, 2- oder 4-SO&sub3;Na-, 2- oder 4-[&spplus;NH&sub3;Cl], 3,4,5-Trimethyl-, 2,4,6-Trimethyl-, 4- Trifluormethyl- und 3,5-Di-(trifluormethyl)-phen-1-yl.
- Besonders bevorzugte Bedeutungen von R&sub1;&sub0;, R&sub1;&sub1; und R&sub1;&sub2; beziehungsweise R'&sub1;&sub0;, R'&sub1;&sub1; und R'&sub1;&sub2; sind Cyclohexyl, n-Butyl, sec.-Butyl, tert.-Butyl, Phenyl, 2- oder 4-Methylphen-1-yl, 2- oder 4-Methoxyphen-1- yl, 2- oder 4-(Dimethylamino)-phen-1-yl, 3,5-Dimethyl-4-(dimethylamino)- phen-1-yl und 3,5-Dimethyl-4-methoxyphen-1-yl, wobei Cyclohexyl, Phenyl, 4-Methylphen-1-yl und n- und tert.-Butyl besonders bevorzugt sind.
- R&sub1;&sub3; und R&sub1;&sub4; können die vorstehend beispielhaft genannten Bedeutungen für Alkyl und substituiertes Phenyl haben. Vorzugsweise bedeuten R&sub1;&sub3; und R&sub1;&sub4; H, C&sub1;-C&sub4;-Alkyl oder Phenyl.
- R&sub1;&sub5; und R&sub1;&sub6; können lineares oder verzweigtes C&sub1;-C&sub1;&sub8;-Alkyl analog den vorstehend beispielhaft genannten Definitionen bedeuten.
- R&sub1;&sub5; und R&sub1;&sub6; können im Rahmen von substituiertem Alkyl durch Halogen, -OH, C&sub1;-C&sub8;-Alkoxy, Aryloxy (wie Phenyloxy oder substituiertes Phenyloxy), -SH, C&sub1;-C&sub8;-Alkylthio, Arylthio (wie Thiophenyl), -NH&sub2;, primäres oder sekundäres C&sub1;-C&sub8;-Amin oder Aryl (wie Phenyl oder Naphthyl) substituiertes C&sub1;-C&sub1;&sub8;-Alkyl bedeuten.
- R&sub1;&sub5; und R&sub1;&sub6; können im Rahmen von durch ein oder mehrere Heteroatome, Arylene oder Carbocyclen unterbrochenem Alkyl z. B. folgende Gruppierungen bedeuten: -(CH&sub2;CH&sub2;O)-, -(CH&sub2;CH&sub2;CH&sub2;O)-, -(CH&sub2;CH&sub2;S)-, -(CH&sub2;CH&sub2;CH&sub2;S)-, -(CH&sub2;CH&sub2;NH)-, -(CH&sub2;NHCH&sub2;)-, -(CH&sub2;N(C&sub1;-C&sub8;-Alkyl)CH&sub2;)-, -(CH&sub2;(C&sub6;H&sub4;))- oder -(CH&sub2;(C&sub6;H&sub1;&sub0;))- bedeuten.
- R&sub1;&sub5; und R&sub1;&sub6; können im Rahmen von cyclischem Amin unsubstituierte oder substituierte cyclische Amine mit einer Ringgröße von 4 bis 10 und vorzugsweise 5 oder 6 Atomen bedeuten. Substituenten sind beispielsweise C&sub1;-C&sub8;-Alkyl oder C&sub1;-C&sub8;-Alkylamin. Neben der Aminfunktion kann der Ring weitere Heteroatome, wie -O-, -S-, -NH- oder -N-Alkyl-, enthalten.
- Vorzugsweise bedeutet Y die Gruppe -OR&sub1;&sub3; oder -NR&sub1;&sub5;R&sub1;&sub6;. Insbesondere hat -NR&sub1;&sub5;R&sub1;&sub6; die Bedeutungen: -N(CH&sub3;)&sub2;, -N(C&sub2;H&sub5;)&sub2;, -N(n-C&sub3;H&sub7;)&sub2;, -N(iso- C&sub3;H&sub7;)&sub2;, -N(n-C&sub4;H&sub9;)&sub2;, Pyrrolidyl, Piperidyl, -N(CH&sub3;)CH&sub2;C&sub3;F&sub7;, -N(CH&sub3;)C&sub2;H&sub4;OH, -N(CH&sub3;)C&sub2;H&sub4;OCH&sub3;, -N(CH&sub3;)CH(CH&sub2;OH)&sub2;, -N(CH&sub3;)CH(CH&sub2;OH)&sub2;, -N(CH&sub3;)C&sub2;H&sub4;N(CH&sub3;)&sub2;, -N(CH&sub3;)C&sub2;H&sub4;N(CH&sub3;)H, -N(CH&sub3;)C&sub2;H&sub4;N(C&sub2;H&sub5;)&sub2;, -N(C&sub2;H&sub4;OH)&sub2;, -N(CH&sub3;)C&sub2;H&sub4;N(C&sub5;H&sub1;&sub0;), -N(CH&sub3;)C&sub2;H&sub4;N(C&sub2;H&sub4;OC&sub2;H&sub4;) oder -N(CH&sub3;)C&sub2;H&sub4;N(C&sub2;H&sub4;OC&sub2;H&sub4;OC&sub2;H&sub4;N(CH&sub3;)C&sub2;H&sub4;OC&sub2;H&sub4;OC&sub2;H&sub4;).
- Besonders bevorzugt sind die Verbindungen der Formeln
- worin die Substituenten die vorstehenden Bedeutungen und bevorzugten Bedeutungen haben.
- Die erfindungsgemäßen Verbindungen der Formel (I) können gemäß dem folgenden Verfahren erhalten werden.
- Ausgangsmaterial ist eine Verbindung der Formel (II)
- worin
- R&sub1; C&sub1;-C&sub8;-Alkyl, C&sub5;-C&sub1;&sub2;-Cycloalkyl, Phenyl oder mit 1 bis 3 C&sub1;-C&sub4;- Alkyl- oder C&sub1;-C&sub4;-Alkoxyresten substituiertes Phenyl bedeutet; und
- R&sub2; und R&sub3; jeweils unabhängig voneinander Wasserstoff oder C&sub1;-C&sub1;&sub2;- Alkyl bedeuten:
- Diese Verbindung wird in einem inerten organischen Lösungsmittel zuerst mit einem Äquivalent Alkyllithium und anschießend in Gegenwart eines Amin-Komplexbildners für Li mit einem zweiten Äquivalent Alkyllithium umgesetzt und sodann mit einem Halogenierungsmittel zu Verbindungen der Formel (III)
- worin Hal F, Cl, Br oder I bedeutet, umgesetzt.
- R&sub2; und R&sub3; im Rahmen von Alkyl können linear oder verzweigt sein. Beispiele für C&sub1;- bis C&sub8;-Alkyl sind vorstehend genannt. Zusätzlich kommen noch die verschiedenen Isomeren von Nonyl, Decyl, Undecyl und Dodecyl in Frage. R&sub2; und R&sub3; können auch miteinander verbunden sein und eine cyclische Alkylgruppe bilden. Beispiele hierfür sind Pyrrolidin oder Piperidin.
- Vorzugsweise bedeuten R&sub2; und R&sub3; jeweils unabhängig voneinander Methyl oder Ethyl. Insbesondere bedeuten beide gleichzeitig Methyl.
- Ein Beispiel für einen Amin-Komplexbildner für Li ist N,N,N,N- Tetramethylethylendiamin.
- Unter Alkyllithium ist im Rahmen der vorliegenden Erfindung Vorzugsweise tert.-Butyl-, sec.-Butyl- oder n-Butyllithium zu verstehen.
- Halogenierungsmittel sind aus dem allgemeinen Stand der Technik für viele Reaktionen bekannt. Beispielsweise sind auch einige in Gmelin, Handbuch der Anorganischen Chemie, Eisen-organische Verbindungen Teil A Ferrocen 7, Achte Auflage, Springer Verlag 1980, S. 128-136, erwähnt.
- Vorzugsweise wird das Halogenierungsmittel ausgewählt aus der Gruppe: Cl&sub2;, Hexachlorethan, 1,2-Dichlortetrafluorethan, Toluol-4- sulfonylchlorid, Br&sub2;, 1,2-Dibromtetrachlorethan, 1,2- Dibromtetrafluorethan, Toluol-4-sulfonylbromid, 2,3-Dimethyl-2,3- dibrombutan, I&sub2;, 1,2-Diiodtetrafluorethan, Perfluorpropyliodid, Perfluorethyliodid, Toluol-4-sulfonyliodid oder Perfluormethyliodid.
- Die Verbindungen der Formel (III) werden in einer ersten Stufe in einem inerten organischen Lösungsmittel mit Alkyllithium versetzt und zur Reaktion gebracht. Anschließend wird in einer zweiten Stufe eine organische Lösung einer Verbindung der Formel CIP(R&sub1;&sub0;R&sub1;&sub1;) (Va) oder der Formel R&sub1;&sub2;SSR&sub1;&sub2; (Vb) zugegeben, wodurch man Verbindungen der Formeln
- erhält, worin R&sub1;&sub0;, R&sub1;&sub1; und R&sub1;&sub2; die vorstehend angegebenen Bedeutungen und bevorzugten Bedeutungen haben.
- Die Substitution des Halogenatoms erfolgt überwiegend am Cyclopentadienylring, der den zweiten Substituenten (Alkylamin) trägt.
- Das Verfahren wird vorzugsweise so durchgeführt, dass man Alkyllithium bei einer Temperatur von -90 bis +30ºC zugibt.
- In der zweiten Stufe gibt man die Verbindungen der Formel (Va) oder (Vb) vorzugsweise bei einer Temperatur von -90 bis +30ºC zu.
- Die Verbindungen der Formel (VIb) sind neu und bilden einen weiteren Aspekt der vorliegenden Erfindung.
- Die Verbindungen der Formel (Ia) sind erhältlich, indem man Verbindungen der Formel (VIa) analog dem vorstehenden Verfahren zur Herstellung von Verbindungen der Formel (VIa) in einem inerten organischen Lösungsmittel mit Alkyllithium versetzt, das Gemisch zur Reaktion bringt und anschließend in einer zweiten Stufe eine organische Lösung einer Verbindung der Formel CIP(R'&sub1;&sub0;R'&sub1;&sub1;) (Vd) zugibt, wobei R'&sub1;&sub0; und R'&sub1;&sub1; die vorstehend angegebenen Bedeutungen und bevorzugten Bedeutungen haben, und gegebenenfalls den Rest -NR&sub2;R&sub3; in den Rest -Y umwandelt.
- Die Verbindungen der Formel (Ib) sind erhältlich, indem man Verbindungen der Formel (VIa) analog dem vorstehenden Verfahren zur Herstellung von Verbindungen der Formel (VIb) in einem inerten organischen Lösungsmittel mit Alkyllithium versetzt, das Gemisch zur Reaktion bringt und anschließend mit, einer organischen Lösung einer Verbindung der Formel R'&sub1;&sub2;SSR'&sub1;&sub2; (Vc) umsetzt, wobei R'&sub1;&sub2; die vorstehend angegebenen Bedeutungen und bevorzugten Bedeutungen hat, und gegebenenfalls den Rest -NR&sub2;R&sub3; in den Rest -Y umwandelt.
- Verbindungen mit SR&sub1;&sub2; bzw. SR'&sub1;&sub2;, wobei R&sub1;&sub2; bzw. R'&sub1;&sub2; Wasserstoff ist, lassen sich analog zu Ferrocenes, Herausgeber A. Togni und T. Hayashi, VCH-Verlag (1995), S. 231-233, herstellen.
- Die Verbindungen der Formeln (Ic) und (Id) sind erhältlich, indem man Verbindungen der Formel (VIb) analog dem vorstehenden Verfahren zur Herstellung von Verbindungen der Formeln (VIa) bzw. (VIb) in einem inerten organischen Lösungsmittel mit Alkyllithium versetzt, das Gemisch zur Reaktion bringt und anschließend mit einer organischen Lösung einer Verbindung der Formel CIP(R'&sub1;&sub0;R'&sub1;&sub1;) (Vd) oder der Formel R'&sub1;&sub2;SSR'&sub1;&sub2; (Vc) umsetzt, wobei R&sub1;&sub0;, R&sub1;&sub1; und R'&sub1;&sub2; die vorstehend angegebenen Bedeutungen und bevorzugten Bedeutungen haben, und gegebenenfalls den Rest -NR&sub2;R&sub3; in den Rest -Y umwandelt.
- Die Herstellung der Verbindungen der Formel (I) und insbesondere der Formeln (Ia), (Ib), (Ic) und (Id) bildet einen weiteren Aspekt der vorliegenden Erfindung.
- Die Verbindungen der Formeln (I), (VIa) oder (VIb) können als Razemate, reine Enantiomere oder Gemische von Enantiomeren erhalten werden. Wird die Synthese ausgehend von enantiomerenreinen Verbindungen der Formel (II) durchgeführt, so entsteht insbesondere nur eines der beiden möglichen Diastereoisomeren der Verbindungen der Formel (III) und in der Folge auch von Verbindungen der Formeln (VIa), (VIb) und (I).
- Geht man von Razematen oder optisch aktiven Gemischen aus, so können diese mittels bekannter Methoden in die Stereoisomeren aufgetrennt werden, wobei im allgemeinen chromatographische Methoden oder Kristallisationsverfahren bevorzugt werden.
- Die Isolierung und Reinigung der Verbindungen erfolgt nach an sich bekannten Methoden, z. B. durch Destillation, Extraktion, Kristallisation und/oder chromatographische Methoden.
- Die Verbindungen der Formel (I), worin Rb entweder -CH=NR&sub1;&sub2; oder -CH&sub2;-NH-R&sub1;&sub2; bedeutet, sind herstellbar, indem man ausgehend von einer Verbindung der Formel (VIa) oder (VIb) den Halogenrest in einen Rest -CHO überführt und anschließend mit einem primären Amin reagieren lässt. Durch weitere Umsetzung mit einem Reduktionsmittel, wie LiAlH&sub4;, lässt sich der Rest -CH=NR&sub1;&sub2; in den Rest -CH&sub2;-NH-R&sub1;&sub2; überführen. Die allgemeinen Reaktionsbedingungen sind dem Fachmann bekannt und können ausgehend von den folgenden Beispielen verallgemeinert werden.
- Die Verbindungen der Formel (I), worin Rb -CH&sub2;-O-P(R&sub1;&sub0;R&sub1;&sub1;) bedeutet, sind herstellbar, indem man ausgehend von einer Verbindung der Formel (VIa) oder (VIb) den Halogenrest in einen Rest -CHO überführt und anschließend mit einem Reduktionsmittel, wie LiAlH&sub4;, zum Alkohol reduziert, den man mit einem Chlorphosphin der Formel CIP(R&sub1;&sub0;R&sub1;&sub1;) umsetzt. Die allgemeinen Reaktionsbedingungen sind dem Fachmann bekannt und können ausgehend von den folgenden Beispielen verallgemeinert werden.
- Zur Darstellung weiterer Verbindungen der Formeln (I) und insbesondere der Formeln (Ia), (Ib), (Ic) und (Id) kann die NR&sub2;R&sub3;-Gruppe gemäß dem nachfolgenden Schema in die verschiedenen Gruppen der Bedeutung von Y umgewandelt werden.
- Weitere alternative oder sich hieran anschließende Verfahrensschritte sind dem Fachmann bekannt.
- Ein weiterer Aspekt der vorliegenden Erfindung sind Übergangsmetallkomplexe mit Ferrocenylliganden der Formel (I) und insbesondere der Formeln (Ia), (Ib), (Ic) oder (Id). Bevorzugt sind d-8- Übergangsmetalle, wie Rh, Ir, Ru, Pd, Ni und Au, wobei Rh, Pd, Ni und Ir besonders bevorzugt sind.
- Die erfindungsgemäßen Übergangsmetallkomplexe sind als Katalysatoren verwendbar, beispielsweise bei Hydrierungen, Transferhydrierungen und Hydrosilylierungen von Doppelbindungen (C-C, C-0 oder C-N), allylischen Substitutionen, Hydroformylierungen oder "Cross-Coupling-Reaktionen". Die einzelnen, vorzugsweise enantioselektiven, katalytischen Reaktionen sind aus der Literatur beispielsweise auch mit Diphosphinliganden bekannt. Die erfindungsgemäßen Katalysatoren erlauben es aufgrund der beiden verschiedenen Ferrocenylreste, die Katalysatoreigenschaften in bisher unbekannter Art und Weise zu variieren. Die hierdurch möglichen, weit abgestuften elektronischen und sterischen Verhältnisse am Übergangsmetall erlauben eine Steigerung der Stereoselektivität, der Aktivität und/oder der Produktivität. Ein weiterer Aspekt der vorliegenden Erfindung ist daher die Verwendung von Übergangsmetallkomplexen, die eine Verbindung der Formel (I) und insbesondere der Formeln (Ia), (Ib), (Ic) oder (Id) enthalten, zur enantioselektiven Katalyse (insbesondere Rhodium- und Iridiumkomplexe) bei der katalytischen Hydrierung von C/C- und C/Heteroatom-Doppelbindungen.
- Die Verfahren zur Herstellung der Übergangsmetallkomplexe erfolgen analog den in der Literatur beschriebenen Verfahren und sind dem Fachmann geläufig. Häufig werden die Übergangsmetallkomplexe "in situ", d. h. im jeweiligen Reaktionsmedium, hergestellt. Hierbei erfolgt beispielsweise eine Ligandensubstitution am Übergangsmetall durch die erfindungsgemäßen Ferrocenyle.
- Die Bedeutungen und bevorzugten Bedeutungen für die einzelnen Substituenten der Verbindungen der Formel (I) und insbesondere der Formeln (Ia), (Ib), (Ic) und (Id) gelten analog auch für die Übergangsmetallkatalysatoren, ihre Herstellung und Verwendung.
- Die folgenden Beispiele erläutern die Erfindung.
- Alle Operationen werden unter Inertgasatmosphäre (Argon) durchgeführt. Ether und THF werden frisch über Na/Benzophenon destilliert. Hexan und Pentan werden über Pb/Na-Legierung getrocknet. Falls nichts anderes erwähnt ist, wird für die chromatographische Reinigung Kieselgel Merck 60 als feste Phase verwendet.
- TMEDA: N,N,N,N-Tetramethylethylendiamin
- n-BuLi oder BuLi: n-Butyllithium (1,6 molare Lösung in Hexan)
- COD: 1,5-Cyclooctadien
- Cyh: Cyclohexyl
- o-Tol: o-Tolyl
- Tol: Toluol
- NBD: Norbornadien
- Hex: Hexan
- Ph: Phenyl
- Me: Methyl
- Cyp: Cyclopentyl
- Cp: Cyclopentadienyl
- t-Bu: tert.-Butyl
- Ac: Acetyl Beispiel A2 Herstellung der Verbindung der Formel 2 (R)-N,N-Dimethyl-1-[(S)-1',2-bis-(brom)-ferrocenyl]-ethylamin
- Zu einer Lösung von 7,71 g (30 mmol) (R)-N,N-Dimethyl-1- ferrocenylethylamin in 50 ml Diethylether werden bei Raumtemperatur unter Rühren 20,6 ml (33 mmol) einer 1,6 M nBuLi-Lösung zugetropft. Nach 1,5 Stunden wird eine weitere Lösung, bestehend aus 22,5 ml (36 mmol) einer 1,6 M BuLi-Lösung in Hexan und 4,95 ml (33 mmol) TMEDA, zugetropft. Das Reaktionsgemisch wird über Nacht gerührt. Sodann wird das dunkelbraune, trübe Reaktionsgemisch mit einem Trockeneis/Isopropanol-Bad auf -72 bis -78ºC gekühlt und tropfenweise unter Rühren mit 7,9 ml (66 mmol) 1,2- Dibromtetrafluorethan so langsam versetzt, dass die Temperatur des Gemisches -74ºC nicht übersteigt. Das Gemisch wird sodann 1 Stunde unter Kühlung und anschließend weitere 2 Stunden ohne Kühlung gerührt. Die erhaltene orangefarbene Suspension wird mit 50 ml Eiswasser versetzt und mehrmals mit 25 ml Essigsäureethylester ausgeschüttelt. Die organischen Phasen werden gesammelt, mit Wasser gewaschen, mit Na&sub2;SO&sub4; getrocknet und am Rotationsverdampfer eingeengt. Das braune Rohprodukt wird chromatographisch gereinigt (Kieselgel: Merck 60; Laufmittel: Aceton). Es werden 7,5 g der Verbindung 2 erhalten (Ausbeute 60%, braunes Öl).
- Analytik:
- ¹H-NMR (CDCl&sub3;): δ 1,53 (d, 3H, J = 7, C-CH&sub3;), 2,13 (s, 6H, N(CH&sub3;)&sub2;), 3,78 (q, 1H, J = 7, CH-Me), 4,03-4,5 (m, 7H, C&sub5;H&sub3;FeC&sub5;H&sub4;).
- Mikroanalyse berechnet für C&sub1;&sub4;H&sub1;&sub7;NBr&sub2;Fe: C 40,52; H 4,13 N 3,38; Br 38,51; Fe 13,46.
- Gefunden: C 40,80; H 4,10; N 3,30, Br 38,18.
- Das Verfahren wird am Beispiel der Verbindung (4) beschrieben. Alle anderen Verbindungen werden analog hergestellt. Abweichende Bedingungen und die Ergebnisse sind in Tabelle I zusammengefasst. Beispiel A4 Herstellung der Verbindung der Formel 4 (R)-N,N-Dimethyl-1-[1'-(brom),(S)-2-(diphenylphosphin)-ferrocenyl]- ethylamin
- Zu einer Lösung von 7,98 g (19,2 mmol) der Verbindung (2) in 96 ml Diethylether (5 ml pro mmol Edukt) werden unter Rühren bei -30ºC 12,2 ml einer 1,6 M BuLi-Lösung in Hexan zugetropft (1 mmol BuLi pro mmol Edukt). Sodann wird das Gemisch auf -78 bis -70ºC gekühlt und langsam mit 4,23 ml Cl-PPh&sub2; (1,2 mmol Chlorphosphin pro mmol Edukt) versetzt. Anschließend lässt man das Gemisch auf Raumtemperatur erwärmen und rührt es weitere 2 Stunden. Die erhaltene gelbe Suspension wird dann mit Wasser versetzt und mehrmals mit Hexan ausgeschüttelt. Die organischen Phasen werden gesammelt, mit Wasser gewaschen, mit Na&sub2;SO&sub4; getrocknet und einrotiert. Das gelbbraune Rohprodukt wird chromatographisch gereinigt (zuerst Grobreinigung mit Kieselgel: Merck 60; Laufmittel: Essigsäureethylester, dann Chromatographie über Alox; Laufmittel Toluol/Hexan 1 : 10). Es werden 5,27 g Produkt erhalten (Ausbeute 53%, orangebraun, fast fest).
- Die Selektivität und die Ausbeute der Reaktion können noch erhöht werden, wenn ein apolares Lösungsmittel verwendet wird. In Pentan anstelle von Diethylether wird eine Ausbeute von über 60% erhalten.
- Analytik:
- ¹H-NMR (CDCl&sub3;): δ 1,25 (d, 3H, J = 7, C-CH&sub3;), 1,75 (s, 6H, N(CH&sub3;)&sub2;), 4,15 (m, 1H, J = 7, CH-Me), 3,7-4,4 (m, 7H, C&sub5;H&sub3;FeC&sub5;H&sub4;), 7,1-7,65 (m, 10H, P(C&sub6;H&sub5;)&sub2;)
- ³¹P-NMR (CDCl&sub3;): δ -24,6
- Die optische Reinheit kann durch Bildung eines Komplexes von (4) mit Di-u-chlor-[(R)-dimethyl-(α-methylbenzyl)-aminato-C&sub2;-N]-dipalladium(11). (J. Chem. Soc., Dalton Trans., (1979), S. 2019) mittels ¹H-NMR überprüft werden: Es wird keine Spur des anderen Enantiomeren beobachtet. Tabelle 1
- Als Lösungsmittel wird Diethylether verwendet, außer bei Verbindung 4, wo Hexan verwendet wird.
- Das Verfahren wird am Beispiel der Verbindung (100) beschrieben. Alle anderen Verbindungen werden analog hergestellt. Abweichende Bedingungen und die Ergebnisse sind tabellarisch zusammengefasst (siehe Tabelle 2): Beispiel 1: Herstellung von (R)-N,N-Dimethyl-1-[1'- (dicyclohexylphosphin)-(S)-2-(diphenylphosphin)-ferrocenyl]-ethylamin
- Zu einer Lösung von 1,5 g (2,88 mmol) (4) in 20 ml Diethylether (7 ml pro mmol Edukt) werden unter Rühren bei -30ºC 2,16 ml einer 1,6 m BuLi-Lösung in Hexan zugetropft (1,2 mmol BuLi pro mmol Edukt). Sodann wird das Gemisch auf -78 bis -70ºC gekühlt und langsam mit 0,84 g Chlordicyclohexylphosphin (1,25 mmol Chlorphosphin pro mmol Edukt) versetzt. Anschließend, lässt man das Gemisch auf Raumtemperatur erwärmen und rührt es weitere 2 Stunden. Die erhaltene gelbe Suspension wird dann mit Wasser versetzt und mehrmals mit Essigsäureethylester ausgeschüttelt. Die organischen Phasen werden gesammelt, mit Wasser gewaschen, mit Na&sub2;SO&sub4; getrocknet und einrotiert. Das gelbbraune Rohprodukt wird chromatographisch gereinigt (Kieselgel: Merck 60; Laufmittel: Essigsäureethylester/Hexan 1/3). Es werden 1,33 g Produkt erhalten. (Ausbeute 72,5%, orangefarbenes Pulver).
- ³¹P-NMR (CDCl&sub3;): δ -8,1 (PCyh&sub2;), -23,4 (PPh&sub2;). Tabelle 2 Synthese der Diphosphin-Verbindungen
- Als feste Phase wird Kieselgel Merck 60 verwendet, außer bei Verbindung 105, wo Alox verwendet wird. Beispiel 12
- Zu einer Lösung von 3 g (7,23 mmol) der Verbindung (2) in 42 ml Pentan werden bei etwa -40ºC im Zeitraum von 30 Minuten 4,97 ml (7,95 mmol) BuLi zugetropft. Das Gemisch wird weitere 30 Minuten bei dieser Temperatur gerührt. Anschließend wird es auf -78ºC gekühlt und mit 2,05 g (9,4 mmol) Phenyldisulfid versetzt. Nach Entfernen der Kühlung wird das Gemisch über Nacht gerührt. Das Reaktionsgemisch wird sodann mit gesättigter Natriumhydrogencarbonatlösung versetzt und 3-mal mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden mit gesättigter NaCl-Lösung gewaschen, über Natriumsulfat getrocknet, einrotiert und chromatographisch gereinigt (zuerst Kieselgel: Merck 60; Laufmittel: Aceton, dann Alox III; Laufmittel: Hexan/0,5% Triethylamin). Es werden 1,41 g Produkt (100) erhalten (Ausbeute 44%, gelbes Pulver). Beispiel 13
- Zu einer Lösung von 600 mg (1,35 mmol) der Verbindung (10) in 5 ml Diethylether werden bei etwa -40ºC 0,93 ml (1,49 mmol) BuLi zugetropft. Das Gemisch wird weitere 30 Minuten bei dieser Temperatur gerührt. Anschließend wird es auf -78ºC gekühlt und mit 0,33 ml (1,76 mmol) Chlordiphenylphosphin versetzt. Nach Entfernen der Kühlung wird das Gemisch über Nacht gerührt. Das Reaktionsgemisch wird sodann mit Wasser versetzt und 3-mal mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden mit gesättigter NaCl-Lösung gewaschen, über Natriumsulfat getrocknet, einrotiert und chromatographisch gereinigt. (Kieselgel: Merck 60; Laufmittel: Aceton). Es werden 0,72 g Produkt erhalten (Ausbeute 97%, orangefarbenes Öl). Beispiel 14
- Die Verbindung (113) wird auf die gleiche Weise wie (111) ausgehend von 600 mg (10) hergestellt. Es werden 0,63 g Produkt erhalten (Ausbeute 83%, orangefarbenes Öl). Beispiel 15
- Zu einer Lösung von 626 mg (1,2 mmol) der Verbindung (4) in 10 ml Diethylether werden bei -40ºC im Zeitraum von 30 Minuten 0,83 ml (1,3 mmol) BuLi zugetropft. Das Gemisch wird weitere 30 Minuten bei dieser Temperatur gerührt. Anschließend wird es auf -78ºC gekühlt und mit 341 mg (1,56 mmol) Phenyldisulfid versetzt. Nach Entfernen der Kühlung wird das Gemisch über Nacht gerührt. Das Reaktionsgemisch wird sodann mit gesättigter Natriumhydrogencarbonatlösung versetzt und 3-mal mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden mit gesättigter NaCl-Lösung gewaschen, über Natriumsulfat getrocknet, einrotiert und chromatographisch gereinigt (Kieselgel: Merck 60; Laufmittel: Hexan/Essigsäureethylester 2 : 1 mit 1% Triethylamin). Es werden 568 mg Produkt erhalten (Ausbeute 86%, rotes Öl). Beispiel 16
- (17) wird analog zu (11) ausgehend von 0,48 mmol (4) und 0,64 mmol Dibenzyldisulfid hergestellt (Reaktionsdauer 12 Stunden). Das Rohprodukt, wird mit Wasser/Essigsäureethylester extrahiert und chromatographisch gereinigt (Laufmittel: Essigsäureethylester). Ausbeute: 70% (orangefarbenes, fast festes Öl).
- (18) wird analog zu (17) hergestellt. Nach chromatographischer Reinigung (Laufmittel: Hexan/Essigsäureethylester 1 : 1) wird das Produkt in einer Ausbeute von 86% erhalten (orangefarbenes, fast festes Öl). Charakteristische NbdR-Signale der schwefelhaltigen Verbindungen: Beispiel 17
- Zu einer Lösung von 2,88 mmol (4) in Diethylether (10 ml pro mmol (4)) werden bei etwa -40ºC 1,3 Äquivalente einer 1,6 M Lösung von n- Buthyllithium in Hexan zugetropft. Das Gemisch wird weitere 30 Minuten bei dieser Temperatur gerührt. Die Umsetzung mit 2,8 mmol N,N- Dimethylformamid erfolgt bei -78ºC. Anschließend wird das Reaktionsgemisch 4 Stunden bei 25ºC gerührt, einrotiert und mit Toluol/Wasser extrahiert. Die organische Phase wird mit Natrumsulfat getrocknet und einrotiert. Das Rohprodukt wird chromatographisch gereinigt (Kieselgel Merck 60, Laufmittel: Hexan/Essigsäureethylester 1 : 1), Ausbeute 84% (rotes, zähes 61).
- Ein Gemisch von 0,46 mmol (11) in Diethylether (10 ml pro mmol Edukt) und 1,9 mmol Lithiumaluminiumhydrid wird 2 Stunden bei Raumtemperatur gerührt. Dann wird es zuerst mit 0,2 ml Wasser und nach Abklingen der Wasserstoffentwicklung mit Diethylether und Natriumsulfat versetzt. Sodann wird das Gemisch filtriert, die Lösung einrotiert und das Rohprodukt chromatographisch gereinigt (Laufmittel: Ethanol). Ausbeute 80% (rotes zähes Öl). Beispiel 16
- Ein Gemisch von 0,53 mmol (11), 0,56 mmol Anilin und 0,5 g Molekularsieben wird in 3 ml Toluol etwa 20 Stunden bei Raumtemperatur gerührt. Das Gemisch wird anschließend filtriert, die Molekularsiebe mit etwas Methylenchlorid gewaschen und die Lösung einrotiert. Es wird in quantitativer Ausbeute ein zähes rotes Öl erhalten.
- 0,24 mmol (13) werden wie für (12) beschrieben mit 1 mmol Lithiumaluminiumhydrid reduziert. Nach chromatographischer Reinigung (Laufmittel: EtOH) wird das Produkt in einer Ausbeute von 90% erhalten (gelb, fest).
- (15) wird analog (13) mit S-2-Phenylethylamin und (16) analog (15) hergestellt. Ausbeute (16): 89% (gelb, fest). Beispiel 19
- Zu 0,22 mmol (12) und 0,34 mmol Triethylamin in 3 ml Toluol werden bei 50ºC 0,27 mmol Chlordiphenylphosphin zugetropft. Nach 2-stündigem Rühren lässt man das Gemisch abkühlen. Das erhaltene trübe orangefarbene Gemisch wird chromatographisch (Laufmittel: Essigsäureethylester/Triethylamin 100 : 1) gereinigt. Das Produkt wird in einer Ausbeute von 52% erhalten (gelb-orangefarben, fast fest). Charakteristische NMR-Signale der Verbindungen (11) bis (16) und (19) Beispiel 20
- Eine Lösung von 206 mg (0.32 mmol) (100) in 8 ml Essigsäureanhydrid wird 24 Stunden bei Raumtemperatur gerührt. Anschließend wird die orangefarbene Lösung mit wässriger NaCl-Lösung und Toluol ausgeschüttelt. Die organische Phase wird mit NaCl-Lösung gewaschen, über Natriumsulfat getrocknet und einrotiert. Es werden 210 mg Rohprodukt erhalten (orangefarbenes fast festes Öl), das ohne Reinigung weiter umgesetzt wird.
- ¹H-NMR (CDCl&sub3;), einige charakteristische Signale: δ 1,15 (s, C(O)CH&sub3;), 6,19 (m, 1H, CH(CH&sub3;)OAc.
- Zu einem Gemisch von 200 mg des Rohprodukts (200a) in 10 ml Ether werden unter Rühren bei 0ºC 0,5 ml einer 1,6 m BuLi-Lösung in Hexan zugetropft. Das Gemisch wird weitere 2,5 Stunden bei 0ºC gerührt. Sodann wird das Gemisch bei 0ºC mit 20 ml Wasser versetzt und mit Ether extrahiert. Die organische Phase wird mit Natriumsulfat getrocknet, einrotiert und chromatographisch gereinigt (Kieselgel: Merck 60; Laufmittel: Essigsäureethylester/Hexan 1/2). Es werden 55 mg Produkt erhalten (Ausbeute 27% bezogen auf (100), zähes orangefarbenes Öl).
- Analytik:
- ¹H-NMR (CDCl&sub3;), einige charakteristische Signale: δ 1,48 (d, 3H, C- CH&sub3;), 3,7-4,5 (m, 7H, C&sub5;M&sub3;FeC&sub5;H&sub4;), 4,95 (m, 1H, CH-CH&sub3;), 7,2-7,6 (m, 10H, p(C&sub6;H&sub5;)&sub2;
- ³¹P-NMR (CDCl&sub3;): δ -7,1, -22,9 Anwendungsbeispiele: Hydrierung von Acetamidozimtsäure-Methylester:
- Allgemeines: Alle Manipulationen werden unter Inertgas durchgeführt. Die Hydrierungen werden in einem 25 ml-Glaskolben, der mit einem Magnetrührer (1500 Upm), einem Inertgasanschluss und einem Gummiseptum ausgerüstet ist, durchgeführt. Die Reagenzien und der Wasserstoff werden mit Spritzen und Nadeln zugeführt. Alle Hydrierungen werden unter Wasserstoff-Normaldruck durchgeführt. Vorgehensweise: 0,018 mmol Ligand und 0,015 mmol [Rh(Dien)&sub2;]X werden im Hydriergefäß, das mit einem Magnetrührer ausgerüstet ist, in 3 ml MeOH gelöst und 10 Minuten gerührt. Zu diesem Katalysator-Vorläufer wird dann eine Lösung von 1,5 mmol Acetamidozimtsäure-methylester in 7 ml MeOH zugegeben. Das Inertgas im Hydriergefäß wird vor der Hydrierung jeweils in 4 Zyklen (Vakuum, Wasserstoff-Normaldruck) durch Wasserstoff verdrängt. Die Hydrierung wird durch Einschalten des Rührers gestartet. Der Umsatz wird jeweils durch den Wasserstoffverbrauch oder durch Gaschromatographie (Säule OV 101) und die optische Ausbeute durch Gaschromatographie (Säule: Chiracil-val) bestimmt. Die Ergebnisse sind in der nachfolgenden Tabelle zusammengefasst: Tabelle 4
- *Zusatz von 10 ul MeSO&sub3;H vor der Hydrierung Hydrierung von Ketopantolacton:
- Allgemeines: Alle Manipulationen werden unter Inertgas durchgeführt. Die Hydrierungen werden in einem 50 ml-Stahlautoklaven, der mit einem Magnetrührer (1500 Upm) ausgerüstet ist, durchgeführt. Die Reagenzien und der Wasserstoff werden mit Spritzen und Nadeln zugeführt. Alle Hydrierungen werden bei 50 bar Wasserstoff-Druck durchgeführt.
- Vorgehensweise: 0,0096 mmol Ligand und 0,008 mmol Rh(I)-Komplex werden in einem Gefäß, das mit einem Magnetrührer ausgerüstet ist, mit 3 ml Lösungsmittel gelöst und 10 Minuten gerührt. Diese Lösung wird unter Argon-Gegenstrom in den Autoklaven gegeben. Zu diesem Katalysator- Vorläufer wird dann eine Lösung von 4 mmol Ketopantolacton in 5 ml Lösungmittel zugegeben. Das Inertgas im Autoklaven wird vor der Hydrierung jeweils in 4 Zyklen (Vakuum, Wasserstoff-Normaldruck) durch Wasserstoff verdrängt. Die Hydrierung wird durch Einschalten des Rührers gestartet und nach 20 Stunden beendet. Der Umsatz und die optische Ausbeute werden durch Gaschromatographie (Säulen: OV 101, Lipodex-E) bestimmt. Die Ergebnisse sind in der nachfolgenden Tabelle 5 zusammengefasst. Tabelle 5
- Y ist NMe&sub2; in den Bsp.-Nr. 41-47 und Y ist OH in Bsp.-Nr. 48.
Claims (15)
1. Verbindung der Formel
worin
R&sub1; C&sub1;-C&sub8;-Alkyl, C&sub5;-C&sub1;&sub2;-Cycloalkyl, Phenyl oder 1- bis 3-fach mit C&sub1;-
C&sub4;-Alkyl oder C&sub1;-C&sub4;-Alkoxy substituiertes Phenyl bedeutet;
Ra -P(R&sub1;&sub0;R&sub1;&sub1;) oder -SR&sub1;&sub2; bedeutet;
Rb -P(R'&sub1;&sub0;R'&sub1;&sub1;), -SR'&sub1;&sub2;, -CH=NR&sub1;&sub2;, -CH&sub2;-NH-R&sub1;&sub2; oder -CH&sub2;-O-P(R&sub1;&sub0;R&sub1;&sub1;)
bedeutet;
R&sub1;&sub0; und R&sub1;&sub1; jeweils unabhängig voneinander C&sub1;-C&sub1;&sub2;-Alkyl, mit C&sub1;-C&sub4;-
Alkoxy, C&sub5;-C&sub1;&sub2;-Cycloalkyl oder Phenyl substituiertes C&sub1;-C&sub1;&sub2;-Alkyl, C&sub5;-
C&sub1;&sub2;-Cycloalkyl, Phenyl, mit C&sub1;-C&sub4;-Alkyl oder C&sub1;-C&sub4;-Alkoxy substituiertes
C&sub5;-C&sub1;&sub2;-Cycloalkyl oder 1- bis 3-fach mit C&sub1;-C&sub4;-Alkyl, C&sub1;-C&sub4;-Alkoxy,
-SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M -CO&sub2;M, -PO&sub3;M, -NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin; oder C&sub1;-C&sub5;-
Fluoralkyl substituiertes Phenyl bedeuten; oder
R&sub1;&sub0; und R&sub1;&sub1; zusammen C&sub4;-C&sub8;-Alkylen, mit C&sub1;-C&sub4;-Alkyl oder Phenyl
substituiertes C&sub4;-C&sub8;-Alkylen oder anelliertes C&sub4;-C&sub8;-Alkylen bedeuten;
R'&sub1;&sub0; und R'&sub1;&sub1; jeweils unabhängig voneinander die gleichen
Bedeutungen wie R&sub1;&sub0; und R&sub1;&sub1; haben, mit der Maßgabe, dass -P(R&sub1;&sub0;R&sub1;&sub1;) nicht
gleich -P(R'&sub1;&sub0;R'&sub1;&sub1;) ist;
R&sub1;&sub2; H, C&sub1;-C&sub1;&sub2;-Alkyl, mit C&sub1;-C&sub4;-Alkoxy, C&sub5;-C&sub1;&sub2;-Cycloalkyl oder Phenyl.
substituiertes C&sub1;-C&sub1;&sub2;-Alkyl, C&sub5;-C&sub1;&sub2;-Cycloalkyl, Phenyl, mit C&sub1;-C&sub4;-Alkyl
oder C&sub1;-C&sub4;-Alkoxy substituiertes C&sub5;-C&sub1;&sub2;-Cycloalkyl oder 1- bis 3-fach mit
C&sub1;-C&sub4;-Alkyl, C&sub1;-C&sub4;-Alkoxy, -SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M, -CO&sub2;M, -PO&sub3;M,
-NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin; oder C&sub1;-C&sub5;-Fluoralkyl substituiertes Phenyl
bedeutet;
R'&sub1;&sub2; die gleichen Bedeutungen wie R&sub1;&sub2; hat, mit der Maßgabe, dass
-SR&sub1;&sub2; nicht gleich -SR'&sub1;&sub2; ist;
R&sub4;, R&sub5; und R&sub6; unabhängig voneinander C&sub1;-C&sub1;&sub2;-Alkyl oder Phenyl
bedeuten;
R&sub7; und R&sub8; unabhängig voneinander H, C&sub1;-C&sub1;&sub2;-Alkyl oder Phenyl
bedeuten oder R&sub7; und R&sub8; zusammen Tetramethylen, Pentamethylen oder 3-Oxa-
1,5-pentylen bedeuten,
R&sub9; H oder C&sub1;-C&sub4;-Alkyl bedeutet;
M H oder ein Alkalimetall bedeutet;
X&supmin; das Anion einer Säure bedeutet;
Y -OR&sub1;&sub3;, -SR&sub1;&sub4; oder -NR&sub1;&sub5;R&sub1;&sub6; bedeutet;
R&sub1;&sub3; H, C&sub1;-C&sub1;&sub8;-Alkyl, -C(O)-C&sub1;-C&sub8;-Alkyl, Phenyl oder 1- bis 3-fach
mit C&sub1;-C&sub4;-Alkyl, C&sub1;-C&sub4;-Alkoxy, -SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M, -CO&sub2;M, -PO&sub3;M,
-NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin; oder C&sub1;-C&sub5;-Fluoralkyl substituiertes Phenyl
bedeutet;
R&sub1;&sub4; H, C&sub1;-C&sub1;&sub8;-Alkyl, Phenyl oder 1- bis 3-fach mit C&sub1;-C&sub4;-Alkyl, C&sub1;-
C&sub4;-Alkoxy, -SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M, -CO&sub2;M, -PO&sub3;M, -NR&sub7;R&sub8;; -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin;
oder C&sub1;-C&sub5;-Fluoralkyl substituiertes Phenyl bedeutet; und
R&sub1;&sub5; und R&sub1;&sub6; jeweils unabhängig voneinander C&sub1;-C&sub1;&sub8;-Alkyl bedeuten,
das durch ein oder mehrere Heteroatome, Arylene oder Carbocyclen
substituiert und/oder unterbrochen sein kann; oder
- NR&sub1;&sub5;R&sub1;&sub6; ein cyclisches Amin bedeutet;
mit der Maßgabe, dass R&sub1; nicht -CH&sub3; bedeutet und Y nicht -N(CH&sub3;)&sub2;
bedeutet, wenn Ra -P(C&sub6;H&sub5;)&sub2; bedeutet und Rb -P[C(CH&sub3;)&sub3;]&sub2; bedeutet oder
wenn Ra -P[C(CH&sub3;)&sub3;]&sub2; bedeutet und Rb -P[C(CH&sub3;)&sub3;]&sub2; bedeutet.
2. Verbindung der Formel (I) nach Anspruch 1, die einer der
Formeln (Ia), (Ib), (Ic) oder (Id)
entspricht, worin R&sub1;, Y, R&sub1;&sub0;, R'&sub1;&sub0;, R&sub1;&sub1;, R'&sub1;&sub1;, R&sub1;&sub2; und R'&sub1;&sub2; die in
Anspruch 1 definierten Bedeutungen haben.
3. Verbindung der Formel (I) nach Anspruch 1, wobei R&sub1;&sub0; und R&sub1;&sub1;
jeweils unabhängig voneinander C&sub1;-C&sub1;&sub2;-Alkyl, mit C&sub1;-C&sub4;-Alkoxy, C&sub5;-C&sub1;&sub2;-
Cycloalkyl oder Phenyl substituiertes C&sub1;-C&sub1;&sub2;-Alkyl, C&sub5;-C&sub1;&sub2;-Cycloalkyl,
Phenyl, mit C&sub1;-C&sub4;-Alkyl oder C&sub1;-C&sub4;-Alkoxy substituiertes C&sub5;-C&sub1;&sub2;-
Cycloalkyl oder 1- bis 3-fach mit C&sub1;-C&sub4;-Alkyl, C&sub1;-C&sub4;-Alkoxy, -SiR&sub4;R&sub5;R&sub6;,
Halogen, -SO&sub3;M, -CO&sub2;M, -PO&sub3;M, -NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin; oder C&sub1;-C&sub5;-Fluoralkyl
substituiertes Phenyl bedeuten; oder die Gruppe -P(R&sub1;&sub0;R&sub1;&sub1;) einen Rest der
Formeln IV, IVa, IVb oder IVc
bedeutet, worin R&sub4; bis R&sub9;, M und X die in Anspruch 1 definierten
Bedeutungen haben.
4. Verbindung der Formel (I) nach Anspruch 1, wobei R&sub1;&sub0;, R'&sub1;&sub0;,
R&sub1;&sub1;, R'&sub1;&sub1;, R&sub1;&sub2; und R'&sub1;&sub2; jeweils unabhängig voneinander Cycloalkyl mit 5
bis 8 Kohlenstoffatomen bedeuten.
5. Verbindung der Formel (I) nach Anspruch 1, wobei R&sub1;&sub0;, R'&sub1;&sub0;,
R&sub1;&sub1;, R'&sub1;&sub1;, R&sub1;&sub2; und R'&sub1;&sub2; jeweils unabhängig voneinander unsubstituiertes
oder mit 1 oder 2 Substituenten substituiertes Phenyl bedeuten.
6. Verbindung der Formel (I) nach Anspruch 1, wobei R&sub1;&sub0;, R'&sub1;&sub0;,
R&sub1;&sub1;, R'&sub1;&sub1;, R&sub1;&sub2; und R'&sub1;&sub2; jeweils unabhängig voneinander 2-Methyl-, 3-
Methyl-, 4-Methyl-, 2- oder 4-Ethyl-, 2- oder 4-Isopropyl-, 2- oder 4-
tert.-Butyl-, 2-Methoxy-, 3-Methoxy-, 4-Methoxy-, 2- oder 4-Ethoxy-, 4-
Trimethylsilyl-, 2- oder 4-Fluor-, 2,4-Difluor-, 2- oder 4-Chlor-, 2,4-
Dichlor-, 2,4-Dimethyl-, 3,5-Dimethyl-, 2-Methoxy-4-methyl-, 3,5-,
Dimethyl-4-methoxy-, 3,5-Dimethyl-4-(dimethylamino)-, 2- oder 4-Amino-,
2- oder 4-Methylamino-, 2- oder 4-(Dimethylamino)-, 2- oder 4-SO&sub3;H-, 2-
oder 4 -SO&sub3;Na-, 2- oder 4-[&spplus;NH&sub3;Cl&supmin;]-, 3,4,5-Trimethyl-, 2,4,6-Trimethyl-,
4-Trifluormethyl- oder 3,5-Di-(trifluormethyl)-phen-1-yl bedeuten.
7. Verbindung der Formel (I) nach Anspruch 1, wobei R&sub1;&sub0;, R'&sub1;&sub0;,
R&sub1;&sub1;, R'&sub1;&sub1; R&sub1;&sub2; und R'&sub1;&sub2; jeweils unabhängig voneinander Cyclohexyl, n-
Butyl, Isobutyl, tert.-Butyl, Phenyl, 2- oder 4-Methylphen-1-yl, 2- oder
4-Methoxyphen-1-yl, 2- oder 4-(Dimethylamino)-phen-1-yl, 3,5-Dimethyl-4-
(dimethylamino)-phen-1-yl oder 3,5-Dimethyl-4-methoxyphen-1-yl bedeuten.
8. Verbindung der Formel (I) nach Anspruch 1, wobei Y die
Bedeutung -OR&sub1;&sub3; oder -NR&sub1;&sub5;R&sub1;&sub6; hat und R&sub1;&sub3;, R&sub1;&sub5; und R&sub1;&sub6; die in Anspruch 1
angegebenen Bedeutungen aufweisen.
9. Verbindung der Formel (I) nach Anspruch 1, wobei Y die
Bedeutung -OR&sub1;&sub3; oder -NR&sub1;&sub5;R&sub1;&sub6; hat, wobei R&sub1;&sub3; H, C&sub1;-C&sub4;-Alkyl oder Phenyl
und R&sub1;&sub5; und R&sub1;&sub6; jeweils unabhängig voneinander C&sub1;-C&sub1;&sub8;-Alkyl bedeuten.
10. Verbindung der Formel (VIb)
worin R&sub1; C&sub1;-C&sub8;-Alkyl, C&sub5;-C&sub1;&sub2;-Cycloalkyl, Phenyl oder mit 1 bis 3 C&sub1;-
C&sub4;-Alkyl oder C&sub1;-C&sub4;-Alkoxy substituiertes Phenyl bedeutet;
R&sub2; und R&sub3; jeweils unabhängig voneinander Wasserstoff oder C&sub1;-C&sub1;&sub2;-
Alkyl bedeuten;
R&sub1;&sub2; H, C&sub1;-C&sub1;&sub2;-Alkyl, mit C&sub1;-C&sub4;-Alkoxy, C&sub5;-C&sub1;&sub2;-Cycloalkyl oder Phenyl
substituiertes C&sub1;-C&sub1;&sub2;-Alkyl, C&sub5;-C&sub1;&sub2;-Cycloalkyl, Phenyl, mit C&sub1;-C&sub4;-Alkyl
oder C&sub1;-C&sub4;-Alkoxy substituiertes C&sub5;-C&sub1;&sub2;-Cycloalkyl oder 1- bis 3-fach mit
C&sub1;-C&sub4;-Alkyl, C&sub1;-C&sub4;-Alkoxy, -SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M, CO&sub2;M, -PO&sub3;M,
-NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin; oder c&sub1;-C&sub5;-Fluoralkyl substituiertes Phenyl
bedeutet;
R&sub4;, R&sub5; und R&sub6; jeweils unabhängig voneinander C&sub1;-C&sub1;&sub2;-Alkyl oder
Phenyl bedeuten;
R&sub7; und R&sub8; jeweils unabhängig voneinander H, C&sub1;-C&sub1;&sub2;-Alkyl oder Phenyl
bedeuten oder
R&sub7; und R&sub8; zusammen Tetramethylen, Pentamethylen oder 3-Oxa-1,5-
pentylen bedeuten;
R&sub9; H oder C&sub1;-C&sub4;-Alkyl bedeutet;
M H oder ein Alkalimetall bedeutet;
X&supmin; das Anion einer Säure bedeutet;
Hal F, Cl, Br oder I ist.
11. Verfahren zur Herstellung von Verbindungen der Formeln (Ia)
(Ib), (Ic) oder (Id) nach Anspruch 2, wobei man
(a) eine Verbindung der Formeln
worin R&sub1; C&sub1;-C&sub8;-Alkyl, C&sub5;-C&sub1;&sub2;-Cycloalkyl, Phenyl oder 1- bis 3-fach
mit C&sub1;-C&sub4;-Alkyl oder C&sub1;-C&sub4;-Alkoxy substituiertes Phenyl bedeutet;
R&sub2; und R&sub3; jeweils unabhängig voneinander Wasserstoff oder C&sub1;-C&sub1;&sub2;-
Alkyl bedeuten;
Hal F, Cl, Br oder I bedeutet.
R&sub1;&sub0; und R&sub1;&sub1; jeweils unabhängig voneinander C&sub1;-C&sub1;&sub2;-Alkyl, mit C&sub1;-C&sub4;-
Alkoxy, C&sub5;-C&sub1;&sub2;-Cycloalkyl oder Phenyl substituiertes C&sub1;-C&sub1;&sub2;-Alkyl, C&sub5;-
C&sub1;&sub2;-Cycloalkyl, Phenyl, mit C&sub1;-C&sub4;-Alkyl oder C&sub1;-C&sub4;-Alkoxy substituiertes
C&sub5;-C&sub1;&sub2;-Cycloalkyl oder 1- bis 3-fach mit C&sub1;-C&sub4;-Alkyl, C&sub1;-C&sub4;-Alkoxy,
-SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M, -CO&sub2;M, -PO&sub3;M, -NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin; oder C&sub1;-
C&sub5;-Fluoralkyl substituiertes Phenyl bedeuten; oder
R&sub1;&sub0; und R&sub1;&sub1; zusammen C&sub4;-C&sub8;-Alkylen, mit C&sub1;-C&sub4;-Alkyl oder Phenyl
substituiertes C&sub4;-C&sub8;-Alkylen oder anelliertes C&sub4;-C&sub8;-Alkylen bedeuten;
R&sub1;&sub2; H, C&sub1;-C&sub1;&sub2;-Alkyl, mit C&sub1;-C&sub4;-Alkoxy, C&sub5;-C&sub1;&sub2;-Cycloalkyl oder Phenyl
substituiertes C&sub1;-C&sub1;&sub2;-Alkyl, C&sub5;-C&sub1;&sub2;-Cycloalkyl, Phenyl, mit C&sub1;-C&sub4;-Alkyl
oder C&sub1;-C&sub4;-Alkoxy substituiertes C&sub5;-C&sub1;&sub2;-Cycloalkyl oder 1- bis 3-fach mit
C&sub1;-C&sub4;-Alkyl, C&sub1;-C&sub4;-Alkoxy, -SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M, -CO&sub2;M, -PO&sub3;M,
-NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin; oder C&sub1;-C&sub5;-Fluoralkyl substituiertes Phenyl
bedeutet;
R&sub4;, R&sub5; und R&sub6; jeweils unabhängig voneinander C&sub1;-C&sub1;&sub2;-Alkyl oder
Phenyl bedeuten;
R&sub7; und R&sub8; jeweils unabhängig voneinander H, C&sub1;-C&sub1;&sub2;-Alkyl oder Phenyl
bedeuten oder
R&sub7; und R&sub8; zusammen Tetramethylen, Pentamethylen oder 3-Oxa-1,5-
pentylen bedeuten,
R&sub9; H oder C&sub1;-C&sub4;-Alkyl bedeutet;
M H oder ein Alkalimetall bedeutet;
X&supmin; das Anion einer Säure bedeutet;
in einem inerten organischen Lösungsmittel mit Alkyllithium
versetzt, das Gemisch zur Reaktion bringt und
(b) entweder die Verbindung der Formel (VIa) oder die Verbindung der
Formel (VIb) mit einer Verbindung der Formel R'&sub1;&sub2;SSR'&sub1;&sub2; (Vc) oder
CIP(R'&sub1;&sub0;R'&sub1;&sub1;) (Vd) umsetzt, wobei R'&sub1;&sub0; und R'&sub1;&sub1; jeweils unabhängig
voneinander die gleichen Bedeutungen wie R&sub1;&sub0; und R&sub1;&sub1; haben, mit der
Maßgabe, dass -P(R&sub1;&sub0;R&sub1;&sub1;) nicht gleich -P(R'&sub1;&sub0;R'&sub1;&sub1;) ist und R'&sub1;&sub2; die
gleiche Bedeutung wie R&sub1;&sub2; hat, mit der Maßgabe, dass R&sub1;&sub2; nicht gleich
R'&sub1;&sub2; ist; und gegebenenfalls den Rest -NR&sub2;R&sub3; in den Rest -Y umwandelt,
wobei Y -OR&sub1;&sub3;, -SR&sub1;&sub4; oder -NR&sub1;&sub5;R&sub1;&sub6; bedeutet;
R&sub1;&sub3; H, C&sub1;-C&sub1;&sub8;-Alkyl, -C(O)-C&sub1;&submin;&sub8;-Alkyl, Phenyl oder 1- bis 3-fach mit
C&sub1;-C&sub4;-Alkyl, C&sub1;-C&sub4;-Alkoxy, -SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M, -CO&sub2;M, -PO&sub3;M-,
-NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin; oder C&sub1;-C&sub5;-Fluoralkyl substituiertes Phenyl
bedeutet;
R&sub1;&sub4; H, C&sub1;-C&sub1;&sub8;-Alkyl, Phenyl oder 1- bis 3-fach mit C&sub1;-C&sub4;-Alkyl, C&sub1;-
C&sub4;-Alkoxy, -SiR&sub4;R&sub5;R&sub6;, Halogen, -SO&sub3;M, -CO&sub2;M, -PO&sub3;M, -NR&sub7;R&sub8;, -[&spplus;NR&sub7;R&sub8;R&sub9;]X&supmin;
oder C&sub1;-C&sub5;-Fluoralkyl substituiertes Phenyl bedeutet; und
R&sub1;&sub5; und R&sub1;&sub6; jeweils unabhängig voneinander C&sub1;-C&sub1;&sub8;-Alkyl
bedeuten/das durch ein oder mehrere Heteroatome, Arylene oder Carbocyclen
substituiert und/oder unterbrochen sein kann; oder
-N&sub1;&sub5;R&sub1;&sub6; ein cyclisches Amin bedeutet.
12. Übergangsmetallkomplex, enthaltend als Ligand eine Verbindung
der Formel (I) nach Anspruch 1.
13. Übergangsmetallkomplex nach Anspruch 12, wobei das
Übergangsmetall aus der Gruppe Rh, Ir, Ru, Pd, Ni und Au ausgewählt ist.
14. Verwendung einer Verbindung der Formel (I) nach Anspruch 1 als
Ligand für Übergangsmetalle bei der enantioselektiven Katalyse.
15. Verwendung nach Anspruch 14 als Ligand für Rhodium oder Iridium
in der katalytischen Hydrierung von Kohlenstoff/Kohlenstoff- oder
Kohlenstoff/Heteroatom-Doppelbindungen.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH244196 | 1996-10-07 | ||
CH244096 | 1996-10-07 | ||
PCT/EP1997/005480 WO1998015565A1 (en) | 1996-10-07 | 1997-10-06 | Chiral ferrocenyls |
Publications (2)
Publication Number | Publication Date |
---|---|
DE69709883D1 DE69709883D1 (de) | 2002-02-28 |
DE69709883T2 true DE69709883T2 (de) | 2002-08-29 |
Family
ID=25690448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE69709883T Expired - Lifetime DE69709883T2 (de) | 1996-10-07 | 1997-10-06 | Chirale ferrocene |
Country Status (13)
Country | Link |
---|---|
US (1) | US6133464A (de) |
EP (1) | EP0929560B1 (de) |
JP (1) | JP4043051B2 (de) |
AT (1) | ATE211479T1 (de) |
AU (1) | AU4944197A (de) |
BR (1) | BR9712273A (de) |
CA (1) | CA2263715C (de) |
CZ (1) | CZ292412B6 (de) |
DE (1) | DE69709883T2 (de) |
ES (1) | ES2170942T3 (de) |
HU (1) | HU222691B1 (de) |
IL (1) | IL129329A (de) |
WO (1) | WO1998015565A1 (de) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1006199A1 (de) | 1998-12-03 | 2000-06-07 | Kreatech Biotechnology B.V. | Verfahren zur Herstellung von Verknüpfungen an ausgewählten Positionen von Nukleinsäuresträngen und deren Verwendung |
US6562989B2 (en) * | 2000-08-07 | 2003-05-13 | Yale University | Catalyst for aromatic C—O, C—N, and C—C bond formation |
US20040030199A1 (en) * | 2002-01-29 | 2004-02-12 | Maughon Robert R. | Process for reducing alpha-haloketones to secondary alpha-haloalcohols |
US6620954B1 (en) * | 2002-03-25 | 2003-09-16 | Eastman Chemical Company | Phosphinometallocenylamides as novel ligands for asymmetric catalysis |
GB0400720D0 (en) * | 2004-01-14 | 2004-02-18 | Stylacats Ltd | Novel ferrocene-based phosphorus chiral phosphines |
GB0400719D0 (en) * | 2004-01-14 | 2004-02-18 | Stylacats Ltd | Ligands for use in homogeneous catalysis |
GB0400717D0 (en) * | 2004-01-14 | 2004-02-18 | Stylacats Ltd | Ferrocene derivatives |
DE102010001364B4 (de) * | 2010-01-29 | 2014-10-16 | Technische Universität Chemnitz | Neue P,O-Ferrocene, deren Herstellung und Verwendung in katalytischen Reaktionen |
KR20150127632A (ko) | 2013-03-11 | 2015-11-17 | 럿거스, 더 스테이트 유니버시티 오브 뉴저지 | 비대칭 전환을 위한 금속유기촉매반응 |
CN103772441B (zh) * | 2013-12-26 | 2016-08-17 | 浙江中山化工集团股份有限公司 | 一种(s)-1-二茂铁基乙基二甲胺转化为(r)-1-二茂铁基乙基二甲胺的合成方法 |
US9308527B2 (en) * | 2014-03-17 | 2016-04-12 | Eastman Chemical Company | Phosphorous compounds useful as ligands and compositions and methods regarding them |
CN104761518B (zh) * | 2014-12-01 | 2017-05-24 | 青岛科技大学 | 一种离子液体条件下不对称氢化合成d‑泛内酯的方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0496699B1 (de) * | 1991-01-25 | 1995-04-26 | Ciba-Geigy Ag | Silangruppen enthaltende Diphosphine, immobilisierte Diphosphine und deren Verwendung als Hydrierkatalysatoren |
EP0496700B1 (de) * | 1991-01-25 | 1996-03-06 | Ciba-Geigy Ag | Silangruppen enthaltende Diphosphine, immobilisierte Diophoshine und deren Verwendung als Hydrierkatalysatoren |
DE59309554D1 (de) * | 1992-04-02 | 1999-06-10 | Novartis Ag | Ferrocenyldiphosphine als Liganden für homogene Katalysatoren |
DE59410267D1 (de) * | 1993-02-26 | 2003-05-15 | Syngenta Participations Ag | Ferrocenyldiphosphine als Liganden für homogene Katalysatoren |
DE59408655D1 (de) * | 1993-10-01 | 1999-09-30 | Novartis Ag | Mit Fluoralkyl substituierte Ferrocenyldiphosphine als Liganden für homogene Katalysatoren |
EP0729969B1 (de) * | 1995-02-24 | 2000-08-16 | Novartis AG | Silylierte Ferrocenyldiphosphine, an anorganische oder polymere organische Träger gebundene silylierte Ferrocenyldiphosphine sowie Metallkomplexe davon, ihre Herstellung und Verwendung |
US5925778A (en) * | 1995-04-11 | 1999-07-20 | Novartis Ag | Dihalogenated ferrocenes and processes for the preparation thereof |
HRP960295A2 (en) * | 1995-07-06 | 1997-08-31 | Ciba Geigy Ag | Process for the hydrogenation of imines in the presence of immobilized iridium-diphosphine catalysts |
-
1997
- 1997-10-06 US US09/254,527 patent/US6133464A/en not_active Expired - Fee Related
- 1997-10-06 ES ES97912121T patent/ES2170942T3/es not_active Expired - Lifetime
- 1997-10-06 CZ CZ19991178A patent/CZ292412B6/cs not_active IP Right Cessation
- 1997-10-06 DE DE69709883T patent/DE69709883T2/de not_active Expired - Lifetime
- 1997-10-06 WO PCT/EP1997/005480 patent/WO1998015565A1/en active IP Right Grant
- 1997-10-06 HU HU9904186A patent/HU222691B1/hu not_active IP Right Cessation
- 1997-10-06 IL IL12932997A patent/IL129329A/xx not_active IP Right Cessation
- 1997-10-06 AT AT97912121T patent/ATE211479T1/de not_active IP Right Cessation
- 1997-10-06 BR BR9712273-4A patent/BR9712273A/pt not_active Application Discontinuation
- 1997-10-06 CA CA002263715A patent/CA2263715C/en not_active Expired - Fee Related
- 1997-10-06 JP JP51716698A patent/JP4043051B2/ja not_active Expired - Fee Related
- 1997-10-06 AU AU49441/97A patent/AU4944197A/en not_active Abandoned
- 1997-10-06 EP EP97912121A patent/EP0929560B1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE69709883D1 (de) | 2002-02-28 |
CA2263715C (en) | 2007-05-01 |
JP4043051B2 (ja) | 2008-02-06 |
EP0929560B1 (de) | 2002-01-02 |
HUP9904186A3 (en) | 2001-11-28 |
HUP9904186A2 (hu) | 2000-04-28 |
ES2170942T3 (es) | 2002-08-16 |
CA2263715A1 (en) | 1998-04-16 |
WO1998015565A1 (en) | 1998-04-16 |
CZ292412B6 (cs) | 2003-09-17 |
EP0929560A1 (de) | 1999-07-21 |
IL129329A (en) | 2003-05-29 |
JP2001501638A (ja) | 2001-02-06 |
IL129329A0 (en) | 2000-02-17 |
US6133464A (en) | 2000-10-17 |
ATE211479T1 (de) | 2002-01-15 |
BR9712273A (pt) | 1999-08-31 |
AU4944197A (en) | 1998-05-05 |
CZ117899A3 (cs) | 1999-07-14 |
HU222691B1 (hu) | 2003-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60306795T2 (de) | Ruthenium-komplexe als (pre)katalysatoren für metathesereaktionen | |
EP2459579B1 (de) | Imidazolgruppenhaltige phosphinoboran-verbindungen und verfahren zur herstellung von imidazolgruppenhaltige phosphorverbindungen | |
DE69603466T2 (de) | Dihalogenierte ferrocene und verfahren zu deren herstellung | |
EP0582692B1 (de) | Diphosphinliganden | |
DE69114986T2 (de) | Eine Phosphino-Binapthyl-Verbindung und Übergangsmetall-Komplexe davon. | |
EP0564406A1 (de) | Ferrocenyldiphosphine als Liganden für homogene Katalysatoren | |
DE69709883T2 (de) | Chirale ferrocene | |
EP0643065A1 (de) | Neue Bisphosphine für asymmetrische Hydrierkatalysatoren | |
DE69014724T2 (de) | Verbindung des 2,2-bis(Diphenylphosphino)-1,1-binaphtyl und katalytische Komplexe davon. | |
EP0579797B1 (de) | Diphosphinliganden | |
EP1885733A1 (de) | Ferrocenylliganden, herstellung und verwendung | |
EP1300410B1 (de) | Neue Übergangsmetall-Komplexe mit Diamino-Carbenliganden und deren Einsatz in Übergangsmetallkatalysierten Reaktionen | |
DE602004008478T2 (de) | Biphosphinrutheniumkomplexe mit chiralen diaminliganden als katalysatoren | |
DE69111358T2 (de) | Optisch aktiver Iridiumphosphinkomplex und dessen Verwendung zur katalytischen Herstellung von optisch aktiven Alkoholen. | |
DE602004002114T2 (de) | Substituierte ferrocenyldiphosphinligande für homogene hydrogenieringskatalysatoren | |
DE69623428T2 (de) | Verfahren zur Herstellung von optisch aktiven Benzhydrolverbindungen | |
EP0553778B1 (de) | Asymmetrische Hydrierung | |
DE69610131T2 (de) | Optisch aktive asymmetrische Diphosphine und Verfahren zur Herstellung optisch aktiver Substanzen in ihrer Anwesenheit | |
EP0570764A2 (de) | Asymmetrische Hydrierung | |
EP2099801B1 (de) | Imidazoý1,5-b¨pyridazin-amido-liganden und deren komplexverbindungen | |
DE3889441T2 (de) | Katalytisches Verfahren zur Herstellung von optisch aktivem Threonin. | |
DE60307724T2 (de) | Neue Diphosphinverbindung, Zwischenprodukte für deren Herstellung, Übergangsmetallkomplex enthaltend die Verbindung als Ligand und Katalysator für asymmetrische Hydrierungen, welcher den Komplex enthält | |
EP1611114A2 (de) | Amin-substituierte diphenyldiphosphine und deren verwendung in metallkomplexen für asymmetrische synthesen | |
EP1636243B1 (de) | Chirale liganden zur anwendung in asymmetrischen synthesen | |
EP2361919A1 (de) | Imidazo[1,5-b]pyridazin-Amino-Phosphor-Liganden und deren Komplexverbindungen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8328 | Change in the person/name/address of the agent |
Representative=s name: PFENNING MEINIG & PARTNER GBR, 80339 MUENCHEN |
|
8328 | Change in the person/name/address of the agent |
Representative=s name: MAIWALD PATENTANWALTSGESELLSCHAFT MBH, 80335 MUENC |