DE69534421T2 - Cytoplasmatische Inhibition des Genexpression - Google Patents
Cytoplasmatische Inhibition des Genexpression Download PDFInfo
- Publication number
- DE69534421T2 DE69534421T2 DE69534421T DE69534421T DE69534421T2 DE 69534421 T2 DE69534421 T2 DE 69534421T2 DE 69534421 T DE69534421 T DE 69534421T DE 69534421 T DE69534421 T DE 69534421T DE 69534421 T2 DE69534421 T2 DE 69534421T2
- Authority
- DE
- Germany
- Prior art keywords
- rna
- plant
- vector
- cell
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000014509 gene expression Effects 0.000 title claims abstract description 55
- 230000005764 inhibitory process Effects 0.000 title description 9
- 230000001086 cytosolic effect Effects 0.000 title description 4
- 210000004027 cell Anatomy 0.000 claims abstract description 76
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 59
- 239000013598 vector Substances 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 33
- 241000700605 Viruses Species 0.000 claims abstract description 30
- 230000002068 genetic effect Effects 0.000 claims abstract description 26
- 210000000805 cytoplasm Anatomy 0.000 claims abstract description 13
- 230000002829 reductive effect Effects 0.000 claims abstract description 12
- 230000003612 virological effect Effects 0.000 claims abstract description 11
- 241000196324 Embryophyta Species 0.000 claims description 97
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 91
- 108020005544 Antisense RNA Proteins 0.000 claims description 34
- 239000003184 complementary RNA Substances 0.000 claims description 32
- 101710173432 Phytoene synthase Proteins 0.000 claims description 31
- 108010001545 phytoene dehydrogenase Proteins 0.000 claims description 27
- 108091027544 Subgenomic mRNA Proteins 0.000 claims description 20
- 238000013518 transcription Methods 0.000 claims description 14
- 230000035897 transcription Effects 0.000 claims description 14
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 7
- 150000007523 nucleic acids Chemical group 0.000 claims description 6
- 238000001890 transfection Methods 0.000 claims description 5
- 241000208125 Nicotiana Species 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims 2
- 108010003533 Viral Envelope Proteins Proteins 0.000 claims 1
- 230000010076 replication Effects 0.000 abstract description 5
- YVLPJIGOMTXXLP-UHFFFAOYSA-N 15-cis-phytoene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CC=CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C YVLPJIGOMTXXLP-UHFFFAOYSA-N 0.000 description 44
- 230000002401 inhibitory effect Effects 0.000 description 37
- 108091033319 polynucleotide Proteins 0.000 description 30
- 102000040430 polynucleotide Human genes 0.000 description 30
- 239000002157 polynucleotide Substances 0.000 description 30
- 239000002299 complementary DNA Substances 0.000 description 23
- YVLPJIGOMTXXLP-UUKUAVTLSA-N 15,15'-cis-Phytoene Natural products C(=C\C=C/C=C(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C)(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C YVLPJIGOMTXXLP-UUKUAVTLSA-N 0.000 description 22
- YVLPJIGOMTXXLP-BAHRDPFUSA-N 15Z-phytoene Natural products CC(=CCCC(=CCCC(=CCCC(=CC=C/C=C(C)/CCC=C(/C)CCC=C(/C)CCC=C(C)C)C)C)C)C YVLPJIGOMTXXLP-BAHRDPFUSA-N 0.000 description 22
- 235000011765 phytoene Nutrition 0.000 description 22
- 102000004190 Enzymes Human genes 0.000 description 21
- 108090000790 Enzymes Proteins 0.000 description 21
- 240000003768 Solanum lycopersicum Species 0.000 description 21
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 20
- 241000207746 Nicotiana benthamiana Species 0.000 description 20
- 238000003752 polymerase chain reaction Methods 0.000 description 17
- 108020004999 messenger RNA Proteins 0.000 description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 235000021466 carotenoid Nutrition 0.000 description 11
- 150000001747 carotenoids Chemical class 0.000 description 11
- 239000012634 fragment Substances 0.000 description 10
- 241001493065 dsRNA viruses Species 0.000 description 8
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 7
- 101710132601 Capsid protein Proteins 0.000 description 7
- 101710094648 Coat protein Proteins 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 7
- 101710125418 Major capsid protein Proteins 0.000 description 7
- 101710141454 Nucleoprotein Proteins 0.000 description 7
- 108700001094 Plant Genes Proteins 0.000 description 7
- 101710083689 Probable capsid protein Proteins 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 230000000692 anti-sense effect Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 241000723873 Tobacco mosaic virus Species 0.000 description 6
- 238000004061 bleaching Methods 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 235000013399 edible fruits Nutrition 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 238000004627 transmission electron microscopy Methods 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 5
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 5
- 108020004511 Recombinant DNA Proteins 0.000 description 5
- 230000002363 herbicidal effect Effects 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 4
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 210000003763 chloroplast Anatomy 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 239000005546 dideoxynucleotide Substances 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 239000004009 herbicide Substances 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000002458 infectious effect Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- 230000009261 transgenic effect Effects 0.000 description 4
- BIWLELKAFXRPDE-UHFFFAOYSA-N zeta-Carotene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)CCC=C(C)CCC=C(C)C BIWLELKAFXRPDE-UHFFFAOYSA-N 0.000 description 4
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 3
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 3
- 241000723848 Tobamovirus Species 0.000 description 3
- 241000723613 Tomato mosaic virus Species 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000008238 biochemical pathway Effects 0.000 description 3
- 230000002089 crippling effect Effects 0.000 description 3
- 230000003828 downregulation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 208000006278 hypochromic anemia Diseases 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- NVGOPFQZYCNLDU-UHFFFAOYSA-N norflurazon Chemical compound O=C1C(Cl)=C(NC)C=NN1C1=CC=CC(C(F)(F)F)=C1 NVGOPFQZYCNLDU-UHFFFAOYSA-N 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- OINNEUNVOZHBOX-QIRCYJPOSA-K 2-trans,6-trans,10-trans-geranylgeranyl diphosphate(3-) Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O OINNEUNVOZHBOX-QIRCYJPOSA-K 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- OINNEUNVOZHBOX-XBQSVVNOSA-N Geranylgeranyl diphosphate Natural products [P@](=O)(OP(=O)(O)O)(OC/C=C(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C)O OINNEUNVOZHBOX-XBQSVVNOSA-N 0.000 description 2
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 2
- YTZIWAULTIDEEY-UHFFFAOYSA-N Isomeres zeta-Carotin Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CC=CC=C(C)C=CC=C(C)C=CC=C(C)CCC=C(C)C YTZIWAULTIDEEY-UHFFFAOYSA-N 0.000 description 2
- 108020005089 Plant RNA Proteins 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 125000003275 alpha amino acid group Chemical group 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- 229930002875 chlorophyll Natural products 0.000 description 2
- 235000019804 chlorophyll Nutrition 0.000 description 2
- 239000001752 chlorophylls and chlorophyllins Substances 0.000 description 2
- OVSVTCFNLSGAMM-KGBODLQUSA-N cis-phytofluene Natural products CC(=CCCC(=CCCC(=CCCC(=CC=C/C=C(C)/C=C/C=C(C)/CCC=C(/C)CCC=C(C)C)C)C)C)C OVSVTCFNLSGAMM-KGBODLQUSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- BIWLELKAFXRPDE-PCYOLSTGSA-N di-cis-zeta-carotene Natural products CC(C)=CCCC(C)=CCCC(C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(\C)CCC=C(C)CCC=C(C)C BIWLELKAFXRPDE-PCYOLSTGSA-N 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000036963 noncompetitive effect Effects 0.000 description 2
- 238000012946 outsourcing Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 235000002949 phytic acid Nutrition 0.000 description 2
- OVSVTCFNLSGAMM-UZFNGAIXSA-N phytofluene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CC=C\C=C(/C)\C=C\C=C(C)CCC=C(C)CCC=C(C)C OVSVTCFNLSGAMM-UZFNGAIXSA-N 0.000 description 2
- 235000002677 phytofluene Nutrition 0.000 description 2
- ZYSFBWMZMDHGOJ-SGKBLAECSA-N phytofluene Natural products CC(=CCCC(=CCCC(=CCCC(=CC=C/C=C(C)/CCC=C(/C)C=CC=C(/C)CCC=C(C)C)C)C)C)C ZYSFBWMZMDHGOJ-SGKBLAECSA-N 0.000 description 2
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000005070 ripening Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- ZIUDAKDLOLDEGU-UHFFFAOYSA-N trans-Phytofluen Natural products CC(C)=CCCC(C)CCCC(C)CC=CC(C)=CC=CC=C(C)C=CCC(C)CCCC(C)CCC=C(C)C ZIUDAKDLOLDEGU-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- BIWLELKAFXRPDE-XXKNMTJFSA-N zeta-Carotene Natural products C(=C\C=C\C=C(/C=C/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)\C)(\C=C\C=C(/CC/C=C(\CC/C=C(\C)/C)/C)\C)/C BIWLELKAFXRPDE-XXKNMTJFSA-N 0.000 description 2
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 241001672662 Odontoglossum Species 0.000 description 1
- 241000723826 Odontoglossum ringspot virus Species 0.000 description 1
- 241001483078 Phyto Species 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 108010021119 Trichosanthin Proteins 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 150000001746 carotenes Chemical class 0.000 description 1
- 235000005473 carotenes Nutrition 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 230000003711 photoprotective effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000012340 reverse transcriptase PCR Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70571—Receptors; Cell surface antigens; Cell surface determinants for neuromediators, e.g. serotonin receptor, dopamine receptor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8203—Virus mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8249—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving ethylene biosynthesis, senescence or fruit development, e.g. modified tomato ripening, cut flower shelf-life
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/825—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8287—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
- C12N15/8289—Male sterility
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0055—Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
- C12N9/0057—Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
- C12N9/0059—Catechol oxidase (1.10.3.1), i.e. tyrosinase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
- C12N9/0083—Miscellaneous (1.14.99)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
- C12N9/1074—Cyclomaltodextrin glucanotransferase (2.4.1.19)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1085—Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
- C12N9/20—Triglyceride splitting, e.g. by means of lipase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/6456—Plasminogen activators
- C12N9/6459—Plasminogen activators t-plasminogen activator (3.4.21.68), i.e. tPA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
- C12N9/80—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
- C12N9/84—Penicillin amidase (3.5.1.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P41/00—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
- C12P41/003—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/18—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with another compound as one donor, and incorporation of one atom of oxygen (1.14.18)
- C12Y114/18001—Tyrosinase (1.14.18.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01031—Beta-glucuronidase (3.2.1.31)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21069—Protein C activated (3.4.21.69)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/22011—Polyomaviridae, e.g. polyoma, SV40, JC
- C12N2710/22041—Use of virus, viral particle or viral elements as a vector
- C12N2710/22043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/22011—Polyomaviridae, e.g. polyoma, SV40, JC
- C12N2710/22061—Methods of inactivation or attenuation
- C12N2710/22062—Methods of inactivation or attenuation by genetic engineering
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/12011—Geminiviridae
- C12N2750/12041—Use of virus, viral particle or viral elements as a vector
- C12N2750/12043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/00022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/00041—Use of virus, viral particle or viral elements as a vector
- C12N2770/00043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/00051—Methods of production or purification of viral material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/32011—Picornaviridae
- C12N2770/32611—Poliovirus
- C12N2770/32641—Use of virus, viral particle or viral elements as a vector
- C12N2770/32643—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/32011—Picornaviridae
- C12N2770/32611—Poliovirus
- C12N2770/32661—Methods of inactivation or attenuation
- C12N2770/32662—Methods of inactivation or attenuation by genetic engineering
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/32011—Picornaviridae
- C12N2770/32711—Rhinovirus
- C12N2770/32722—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/32011—Picornaviridae
- C12N2770/32711—Rhinovirus
- C12N2770/32741—Use of virus, viral particle or viral elements as a vector
- C12N2770/32743—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/32011—Picornaviridae
- C12N2770/32711—Rhinovirus
- C12N2770/32761—Methods of inactivation or attenuation
- C12N2770/32762—Methods of inactivation or attenuation by genetic engineering
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/36011—Togaviridae
- C12N2770/36111—Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
- C12N2770/36141—Use of virus, viral particle or viral elements as a vector
- C12N2770/36143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/36011—Togaviridae
- C12N2770/36111—Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
- C12N2770/36161—Methods of inactivation or attenuation
- C12N2770/36162—Methods of inactivation or attenuation by genetic engineering
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2799/00—Uses of viruses
- C12N2799/02—Uses of viruses as vector
- C12N2799/021—Uses of viruses as vector for the expression of a heterologous nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/50—Vectors comprising as targeting moiety peptide derived from defined protein
- C12N2810/60—Vectors comprising as targeting moiety peptide derived from defined protein from viruses
- C12N2810/609—Vectors comprising as targeting moiety peptide derived from defined protein from viruses positive strand RNA viruses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/43504—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates
- G01N2333/43526—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates from worms
- G01N2333/4353—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from invertebrates from worms from nematodes
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nutrition Science (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Neurology (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Botany (AREA)
- Mycology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Saccharide Compounds (AREA)
Description
- GEBIET DER ERFINDUNG
- Die vorliegende Erfindung betrifft das Gebiet der Genregulation durch mittels Antisense-RNA endogen erzeugte inhibitorische RNA-Moleküle, wie beispielsweise Antisense-RNA und Kosuppressor-RNA.
- HINTERGRUND
- Eines der Hauptziele der Gentechnik ist die Steuerung der Expression von ausgewählten Genen in interessanten eukaryontischen Organismen. Während es relativ unkompliziert ist, neue Gene zur Expression in eukaryontische Zellen einzusetzen, ist das Targeting bzw. die Auswahl von endogenen Genen zur reduzierten Expression schwieriger zu erreichen. Die zielgerichtete Inaktivierung von Genen in höheren Organismen erfordert äußerst komplexe genetische Manipulationen und ist nicht auf eine große Auswahl von Organismen anwendbar. Ein Verfahren zur Reduzierung der Expression spezifischer Gene in eukaryontischen Organismen erfolgt durch die Verwendung von Antisense-RNA und durch Kosuppression.
- Antisense-RNA wird verwendet, um die Expression von vorher ausgewählten Genen sowohl in Pflanzen als auch Tieren zu reduzieren. Beschreibungen über die Verwendung von Antisense-RNA zur Reduzierung der Expression von ausgewählten Genen in Pflanzen können unter anderem im US-Patent 5,107,065, Smith u.a., Nature 334: 724–726 (1988), Van der Krol u.a., Nature 333: 866–869 (1988), Rothstein u.a., Proc. Natl. Aca. Sci. USA 84: 8439–8443 (1987), Bird u.a., Bio/Technology 9: 635–639 (1991), Bartley u.a., Biol. Chem. 267: 5036–5039 (1992) und Gray u.a., Plant Mol. Bio. 19: 69–87 (1992) gefunden werden.
- Ein anderes Verfahren zur Reduzierung der Expression von bestimmten Genen in eukaryontischen Organismen erfolgt durch die Verwendung von Kosuppressor-RNA. Kosuppressor-RNA hat im Gegensatz zu Antisense-RNA dieselbe Orientierung wie die vom Zielgen transkribierte RNA, d.h. die „Sense"-Orientierung.
- Es ist möglich, dass biochemische Wege in Pflanzen, die mit Hybridviren transfiziert sind, durch eine Überproduktion eines Enzyms, das an einem ratenbegrenzenden Schritt beteiligt ist, oder durch eine Hemmung der Synthese eines Enzyms über Antisense-RNA geändert werden könnten. Obwohl die Expression von zahlreichen Genen in transgenen Pflanzen durch Antisense-RNA unterdrückt wird, ist der eigentliche Mechanismus und Ort der Hemmung nicht bekannt. Im Kern kann Antisense-RNA direkt die Transkription stören oder mit dem heterogenen Kern Doppelstränge bilden (hnRNA). Es gibt Hinweise, dass die Hemmung von endogenen Genen in transgenen Pflanzen mit Sense-RNA auftreten kann (A. R. van der Krol u.a., Nature 333: 866–869 (1988) und C. Napoli u.a., Plant Cell 2: 279–289 (1990)). Es wird davon ausgegangen, dass der Mechanismus dieser Runterregulation oder „Kosuppression" durch die Erzeugung von Antisense-RNA durch Durchlese-Transkription von distalen Promotoren, die auf dem gegenüberliegenden Strang der chromosomalen DNA angeordnet sind, bewirkt wird (Greison u.a., Trends in Biotech., 9: 122–123 (1991)). Alternativ kann Antisense-RNA im Zytoplasma ein doppelsträngiges Molekül mit komplementärer mRNA bilden und die Translation von mRNA in ein Protein verhindern.
- Vektoren, die von doppelsträngigen, DNA enthaltenden Pflanzenviren stammen und virale Promotoren in funktioneller Kombination mit einer Nukleinsäuresequenz umfassen, die Antisense- oder Kosuppressor-RNA kodiert, werden verwendet, um die Expression von einzelnen Pflanzengenen zu hemmen (Bird u.a., WO-A-91 09128) oder eine koordinierte Hemmung von mehreren Genen vorzusehen (Barron u.a., WO-A-93 23551). Die Verwendung von Vektoren, die von Pflanzenviren stammen, die im Zytoplasma replizieren, die subgenomische Promotoren verwenden, ist nicht offenbart worden.
- Tobamoviren, deren Genome aus einem Plus-Sense-RNA-Strang von ungefähr 6,4 kb bestehen, replizieren nur im Zytoplasma und können als episomale RNA- Vektoren verwendet werden, um die pflanzenbiochemischen Wege zu ändern. Hybrid-Tabakmosaik(TMV)/Odontoglossum-Ringspot-Viren (ORSV) sind bisher verwendet worden, um heterologe Enzyme in transfizierten Pflanzen zu exprimieren (Donson u.a., Proc. Natl. Aca. Sci. USA 88: 7204 (1991) und Kumagai u.a., Proc. Natl. Aca. Sci USA 90: 427–430 (1993), Minus-Sense-RNA-Strang, (Miller u.a.). Infektiöse RNA-Transkripte von viralen cDNA-Klonen kodieren für Proteine, die an der RNA-Replikation, Bewegung und Enkapsidation beteiligt sind (10). Subgenomische RNA für die Boten-RNA-Synthese wird durch interne Promotoren gesteuert, die auf dem Minus-Sense-RNA-Strang angeordnet sind (N. benthamiana-Pflanzen wurden mit In-vitro-Transkripten, wie zuvor beschrieben, beimpft (W. O. Dawson u.a., Proc. Natl. Acad. Sci. USA 83, 1832 (1986)]). Insertionen von fremden Genen in eine bestimmte Stelle unter der Kontrolle eines zusätzlichen subgenomischen RNA-Promotors haben zur systemischen und stabilen Expression von Neomycinphosphotransferase und α-Trichosanthin geführt (Donson u.a., Proc. Natl. Aca. Sci. USA 88: 7204 (1991) und Kumagai u.a., Proc. Natl. Aca. Sci. USA 90: 427–430 (1993)).
- Einer der vielen biochemischen Wege, die als Ziel für eine genetische Manipulation dienen könnten, ist die Biosynthese von Karotinoiden. Der erste engagierte Schritt bei der Karotinoid-Biosynthese in höheren Pflanzen ist die Kondensation von zwei Geranylgeranylpyrophosphatmolekülen zu Phytoen, einem farblosen C40-Kohlenwasserstoff, durch Enzymphytoensynthase. In der reifenden Frucht von Lycopersicon esculentum ist Phytoensynthase ein monomeres, im Chloroplast angeordnetes Protein mit einer relativen Molekülmasse von ungefähr 42 kDa. Dieses Enzym wird anfänglich als 47 kDA Präprotein synthetisiert und durch Entfernen eines Transitpeptids während des Imports zum Chloroplast verarbeitet (Bartley u.a., J. Biol. Chem. 267: 5036–5039 (1992)). Transgene Tomatenpflanzen, die antisense zur Phytoensynthase mRNA enthalten, erzeugen gelbe Früchte und blasse Blüten. Obwohl die fruchtspezifischen Karotine um 97% reduziert sind, bleiben die Karotinoidniveaus in den Blätter der transgenen Pflanzen unbeeinflusst (Bird u.a., Bio/Technology 9: 635–639 (1991)). Es ist nahe gelegt worden, dass ein zusätzlicher Satz biosynthetischer Gene in Pflanzen auftritt, die die Expression von blattspezifischen Karotinoiden regulieren.
- Der anschließende Schritt im biosynthetischen Weg ist die Modifikation des farblosen Phytoens zu Phytofluen und ζ-Karotin durch Pytoendesaturase. Unter den höheren Pflanzen ist die Isolation eines Gens, das dieses Enzym kodiert, für Tomaten beschrieben worden, Pecker u.a., Proc. Natl. Acad. Sci. USA, 89, 4962 (1992) und Arabidopsis thaliana (Scolnick und Bartley, Plant Physiol. 103: 147 (1993)). Phytoendesaturase wird durch Norflurazon, einem bleichenden Herbizid, in einer reversiblen, nicht kompetitiven Weise gehemmt (Sandman u.a., Target Sites of Herbicide Actions, G. Sandman, P. Boger Es (RC press, Boca Rotan (1989)). Die Anwendung dieser Verbindung bewirkt ein dramatisches Absenken der Blattkarotinoide und Chlorophylle und ein anschließendes Sammeln von Phytoen. Die Verringerung der lichtschützenden Karotinoide, die von Phytoen stammen, kann eine schnelle Zerstörung des Chlorophylls durch Photooxidation bewirken.
- Der Bedarf an neuen Verfahren zur Verringerung der Expression von bestimmten Genen in Eukaryonten ist klar belegt. Die hier beschriebene Erfindung stellt neue Verfahren zur Verringerung der Expression von ausgewählten Genen, genetische Konstrukte zur Durchführung der Verfahren und durch diese genetischen Konstrukte transformierte Zellen und höhere, die transformierten Zellen umfassende Organismen zur Verfügung.
- ZUSAMMENFASSUNG DER ERFINDUNG
- Ein Aspekt der Erfindung ist es, neue genetische Konstrukte zur Expression von inhibitorischer RNA im Zytoplasma von Pflanzenzellen zur Verfügung zu stellen. Die genetischen Konstrukte der Erfindung sind in der Lage, im Zytoplasma einer Pflanzenzelle zu replizieren, und umfassen eine Promotorregion in funktioneller Kombination mit einem Polynukleotid, das für eine inhibitorische RNA kodiert, d.h. für eine Antisense-RNA oder eine Kosuppressor-RNA kodiert. Die genetischen Konstrukte der Erfindung können so aufgebaut sein, dass sie im Zytoplasma von Pflanzenzellen replizieren. In einer Pflanzenzelle stammt das genetische Konstrukt vorzugsweise von einem Pflanzen-RNA-Virus, besonders bevorzugt einem positiven einzelsträngigen RNA-Virus. Genetische Konstrukte, die von einem Pflanzen-RNA-Virus stammen, können einen subgenomischen Pflanzenvi rus-Promotor, einschließlich subgenomische Promotoren von Tobamoviren, in funktioneller Kombination mit der für die inhibitorische RNA kodierenden Region umfassen.
- Ein anderer Aspekt der Erfindung ist es, Zellen zur Verfügung zu stellen, die die genetischen Konstrukte der Erfindung umfassen, und Pflanzen zur Verfügung zu stellen, die eine Vielzahl solcher Zellen aufweisen.
- Ein anderer Aspekt der Erfindung ist es, Verfahren zur Verringerung der Expression eines interessanten Gens in Pflanzenzellen zur Verfügung zu stellen, d.h. Verfahren zur Erzeugung von Pflanzenzellen, die reduzierte Expressionsniveaus eines interessanten Gens zeigen. Die Verfahren der Erfindung umfassen den Schritt des Transformierens einer Zelle mit einem genetischen Konstrukt der Erfindung, wobei die für die inhibitorische RNA kodierende Region für das interessante Gen spezifisch ist. Ein anderer Aspekt der Erfindung ist es, Pflanzenzellen zur Verfügung zu stellen, die erhöhte Niveaus an Karotinoidphytoen erzeugen. Die erhöhten Phytoenniveaus werden durch Hemmen der Expression bei dem Enzym Phytoendesaturase mittels der Vektoren der Erfindung erzielt.
- KURZE BESCHREIBUNG DER FIGUREN
-
1 . Phytoenexpressionsvektor TTO1/PSY+. Dieses Plasmid enthält die TMV-U1 126, 183 und 30 kDa ORFs, das ToMV-Hüllproteingen (ToMVcp), den SP6-Promotor, das Tomatenphytoensynthasegen und einen Teil des pBR322-Plasmids. Das TAA-Stoppkodon im 30 kDa ORF ist unterstrichen. Der subgenomische TMV-U1-Promotor, der sich im Minus-Strang des 30 kDa ORF befindet, steuert die Expression von Phytoensynthase. Der mutmaßliche Transkriptionsstartpunkt (tsp) der subgenomischen RNA ist mit einem Punkt (.) angegeben (SEQ ID NO: 12 und 13). -
2 . Nukleotidsequenzvergleich von N. benthamiana-Blattphytoendesaturase (PDS1-Nb) und Tomatenphytoendesaturase (PDS-Le). Die Nukleotide sind abgestimmt, um die Sequenzähnlichkeit zu maximieren. (SEQ ID NO: 14 und 15). - BESCHREIBUNG DER SPEZIELLEN AUSFÜHRUNGSFORMEN
- Definitionen
- Der Begriff „inhibitorische RNA", wie er hier verwendet wird, betrifft ein RNA-Molekül, das die Expression eines Zielgens stört. Eine „inhibitorische RNA" ist für ein oder mehr Zielgene spezifisch. Eine inhibitorische RNA kann eine Antisense-RNA bezüglich eines vom Zielgen transkribierten RNA-Moleküls sein. Alternativ kann die inhibitorische RNA des Zielgens eine Kosuppressor-RNA bezüglich eines vom Zielgen transkribierten RNA-Moleküls sein.
- Der Begriff „Antisense-RNA", wie er hier verwendet wird, betrifft ein RNA-Molekül, das in der Lage ist, einen Doppelstrang mit einem zweiten RNA-Molekül zu bilden. Daher soll ein gegebenes RNA-Molekül ein Antisense-RNA-Molekül im Hinblick auf ein zweites, komplementäres oder teilweise komplementäres RNA-Molekül sein, d.h. das Zielmolekül. Ein Antisense-RNA-Molekül kann komplementär zu einer translatierten oder nicht translatierten Region eines RNA-Zielmoleküls sein. Die Antisense-RNA braucht nicht völlig zur Ziel-RNA komplementär zu sein. Die Antisense-RNA kann dieselbe Länge wie das Zielmolekül haben oder auch nicht; das Antisense-RNA-Molekül kann entweder länger oder kürzer als das Zielmolekül sein.
- Der Begriff „Kosuppressor-RNA" betrifft ein RNA-Molekül, das die Unterdrückung der Expression eines Zielgens dort bewirkt, wo die RNA teilweise zu einem vom Zielgen transkribierten RNA-Molekül homolog ist. Ein Kosuppressor-RNA-Molekül ist das RNA-Molekül, das die Kosuppression bewirkt, wie im US-Patent 5,231,020, Krol u.a., Biotechniques 6: 958–976 (1988), Mol u.a., FEBS Lett. 268: 427–430 (1990) und Grierson u.a., Trends in Biotech. 9: 122–123 (1991) und ähnlichen Veröffentlichungen beschrieben. Eine „Kosuppressor"-RNA hat eine Sense-Orientierung bezüglich des Zielgens, d.h. die entgegengesetzte Orientierung der Antisense-Orientierung.
- Der Begriff „für inhibitorische RNA kodierendes Polynukleotid", wie er hier verwendet wird, betrifft ein Polynukleotid, z.B. DNA, RNA und dergleichen, das transkribiert werden kann, wenn es sich in funktioneller Kombination mit einem Promotor befindet, um so ein inhibitorisches RNA-Molekül zu erzeugen, z.B. eine Antisense-RNA oder eine Kosuppressor-RNA. Für Antisense-RNA kodierende Polynukleotide und für Kosuppressor kodierende Polynukleotide sind beides Ausführungsformen der für inhibitorische RNA kodierenden Polynukleotide. Wenn die inhibitorische RNA eine Antisense-RNA ist, ist die inhibitorische RNA, die von der für inhibitorische RNA kodierenden Polynukleotidregion der genetischen Konstrukte der Erfindung transkribiert wird, vorzugsweise völlig komplementär zur gesamten Länge des RNA-Moleküls oder der RNA-Moleküle, für die die Antisense-RNA spezifisch ist, d.h. das Ziel. Das für Antisense-RNA kodierende Polynukleotid in den vorliegenden Vektoren kann für eine Antisense-RNA kodieren, die einen Doppelstrang mit einer nicht translatierten Region eines RNA-Transkripts, wie beispielsweise einer Intron-Region, oder nicht translatierten 5'-Region, einer nicht translatierten 3'-Region und dergleichen bildet. In ähnlicher Weise kann ein für einen Kosuppressor kodierendes Polynukleotid in den vorliegenden Vektoren für eine RNA kodieren, die zu translatierten oder nicht translatierten Abschnitten einer Ziel-RNA homolog ist. Ein für Antisense-RNA kodierendes Polynukleotid kann in geeigneter Weise mittels des nicht kodierenden Strangs, oder eines Abschnitts davon, einer DNA-Sequenz, die für ein interessantes Protein kodiert, erzeugt werden.
- Der Begriff „verringerte Expression", wie er hier verwendet wird, ist ein relativer Begriff, der das Expressionsniveau eines bestimmten Gens in einer Zelle betrifft, die durch die beanspruchten Verfahren verglichen mit einer vergleichbaren nicht modifizierten Zelle, d.h. einer Zelle, der der vorliegende Vektor fehlt, bei einer ähnlichen Reihe von Umweltbedingungen erzeugt oder modifiziert wird. Daher kann eine durch die vorliegenden Verfahren modifizierte Zelle, d.h. eine Zelle mit „verringerter Expression" des interessanten Gens, höhere Niveaus dieses Gens bei einer ersten Reihe von Umweltbedingungen als eine vergleichbare nicht modifizierte Zelle bei einer zweiten Reihe von Umweltbedingungen exprimieren, wenn die zweite Reihe von Bedingungen für eine Genexpression äußerst günstig ist.
- Die Erfindung
- Die hier beschriebene Erfindung nutzt die Entdeckung aus, dass RNA die Expression eines Zielgens durch inhibitorische RNA-Wechselwirkungen mit Ziel-mRNA verringert, die im Zytoplasma einer eukaryontischen Zelle und nicht im Nukleus stattfinden. Vor der Erfindung war nicht bekannt, ob inhibitorische RNA eine Genexpression mittels einer Wechselwirkung, die im Zytoplasma stattfindet, oder einer Wechselwirkung, die im Nukleus stattfindet, verringert. Daher war es vor der Erfindung notwendig, inhibitorische RNA im Nukleus zu erzeugen, um so sicher zu sein, dass eine Hemmung erreicht würde. Weiterhin war nicht bekannt, ob ausreichende Konzentrationen an inhibitorischer RNA im Zytoplasma zur Verfügung gestellt werden könnten. Die zytoplasmatische Expression von inhibitorischer RNA (die für Zielgene spezifisch ist) hat zahlreiche Vorteile gegenüber einer Kernexpression, wobei diese Vorteile die Fähigkeit umfassen, Vektoren mit hohem Expressionsniveau zu verwenden, die für eine Kernexpression nicht geeignet sind. Die Verwendung von solchen Vektoren ist teilweise bei Pflanzen von Vorteil, weil Vektoren, die in der Lage sind, Pflanzen systemisch zu infizieren, verwendet werden können, um die inhibitorische RNA zu erzeugen. Die hier beschriebene Erfindung hat viele Aspekte. Diese Aspekte umfassen neue genetische Konstrukte zur Expression von inhibitorischer Zielgen-RNA im Zytoplasma von Pflanzenzellen, Zellen, die mit diesen genetischen Konstrukten transfiziert sind, vielzellige Organismen, die die transfizierten Zellen umfassen, und Verfahren zur Reduzierung der Expression von ausgewählten Genen in einer Zelle durch Transformation einer Zelle mit einem genetischen Konstrukt der Erfindung.
- Es gibt zahlreiche Arten, um die genetischen Konstrukte der Erfindung zu erzeugen. Verfahren zum Manipulieren von Polynukleotiden, z.B. Restriktionsendonukleaseverdau und Ligation, sind dem Durchschnittsfachmann wohlbekannt. Diese herkömmlichen Polynukleotidmanipulationsverfahren können dazu verwendet werden, das genetische Konstrukt der Erfindung zu erzeugen und zu verwenden. Während eine gewisse Optimierung von Standardverfahren verwendet werden kann, um die vorliegenden genetischen Konstrukte zu erzeugen, ist ein bedeutsames Experimentieren nicht erforderlich, um die genetischen Konstrukte zu erzeugen oder die beanspruchten Verfahren zu praktizieren.
- Die genetischen Konstrukte der Erfindung umfassen eine Promotorregion in funktioneller Kombination mit einem für inhibitorische RNA kodierenden Polynukleotid. Die Promotorregion wird so ausgewählt, dass die Transkription einer Polynukleotidsequenz in einer interessanten Wirtszelle betrieben wird. Zum Beispiel wird in einer Pflanzenzelle daher der Promotor so ausgewählt, dass die Transkription in Pflanzenzellen betrieben werden kann. Promotoren, die in einer bestimmten eukaryontischen Zelle funktionieren können, sind dem Durchschnittsfach wohlbekannt. Beispiele für Promotoren, die in der Lage sind, die Transkription in einer interessanten Zelle zu betreiben, können unter anderem bei Goeddel u.a., Gene Expression Technology Methods in Enzymology, Bd. 185, Academic Press, San Diego (1991), Ausubel u.a., Protocols in Molecular Biology, Wiley Interscience (1994) und ähnlichen Veröffentlichungen gefunden werden. Wenn die Zelle für die Transformation eine Pflanzenzelle ist, werden die subgenomischen RNA-Virus-Promotoren vorzugsweise als Promotorregionen verwendet. Subgenomische RNA-Virus-Promotoren werden unter anderem in Dawson und Lehto, Advances in Virus Research, 38: 307–342, veröffentlichte PCT-Anmeldung WO93/03161 beschrieben.
- Die genetischen Konstrukte der Erfindung sind replikations- oder erhaltungsfähig, zumindest vorübergehend, und zwar im Zytoplasma von interessanten Pflanzenzellen, d.h. einem Basenvektor. Daher umfassen die genetischen Konstrukte der Erfindung notwendigerweise eine Polynukleotidregion, die von einem Vektor stammt, der in interessanten Pflanzenzellen replikationsfähig oder stabil erhaltungsfähig ist. Es sind viele Vektoren, die replikationsfähig (oder stabil erhaltungsfähig) in unterschiedlichen Arten von eukaryontischen Zellen sind, bekannt.
- Vektoren zur Verwendung in Pflanzen umfassen Vektoren, die vom Blumenkohlmosaikvirus, Tabakmosaikvirus, Tomatenmosaikvirus und dergleichen stammen. Informationen, die Pflanzenzellvektoren und ihre Verwendung in Pflanzenzellen beschreiben, können unter anderem in der PCT-Anmeldung WO93/03161 und Donson u.a., Proc. Natl. Acad. Sci. USA, 88: 7204–7208 (1991) gefunden werden.
- Die vom Promotor betriebene Transkription der die inhibitorische RNA kodierenden Region der vorliegenden genetischen Konstrukte können so ausgewählt werden, dass ein Transkriptionsaktivitätsniveau erhalten wird, das ausreicht, um den gewünschten Expressionsgrad der interessanten inhibitorischen Zielgen-RNA zu erzielen. Der Promotor kann für die genetische Modifikation nativ oder heterolog zur Zelle sein. Der Promotor kann auch nativ oder heterolog zum Basenvektor sein, d.h. dem Abschnitt des Vektors, der nicht der Promotor und die für inhibitorische RNA kodierende Region ist. Der Promotor kann induzierbar oder konstitutiv sein. Vorzugsweise werden starke Promotoren verwendet, um die Transkription des für die inhibitorische RNA kodierenden Polynukleotids zu betreiben, wenn die Ziel-RNA stark exprimiert ist.
- Die Erfindung stellt auch Verfahren zur Reduzierung der Expression eines interessanten Gens oder von interessanten Genen in einer eukaryontischen Zelle zur Verfügung. Als Ergebnis des Bereitstellens der vorliegenden Verfahren zur Reduzierung der Genexpression in einer Pflanzenzelle liefert die vorliegende Erfindung auch Verfahren zur Herstellung einer Pflanzenzelle mit reduzierter Expression eines interessanten Gens und Pflanzenzellen, die eine verringerte Expression eines interessanten Gens aufweisen, wie durch die Verfahren der Erfindung erzeugt. Die Verringerung der Genexpression wird durch Einführen von einem oder mehr Vektoren der Erfindung in eine Pflanzenzelle erzielt. Der zum Transformieren der interessanten Zelle verwendete Vektor umfasst ein für inhibitorische RNA kodierendes Polynukleotid, das für eine inhibitorische RNA kodiert, die für das Gen spezifisch ist, für das eine verringerte Expression angestrebt wird. Das Verfahren zur Verringerung der Expression des interessanten Gens umfasst den Schritt des Einführens des vorliegenden genetischen Vektors in eine Wirtszelle, die in der Lage ist, das interessante Gen unter bestimmten Umweltbedingungen zu exprimieren. Der Vektor kann in eine interessante Zelle durch jedes einer Auswahl von bekannten Transformationsverfahren eingeführt werden. Solche Verfahren umfassen: Infektion, Transfektion, Elektroporation, ballistische Projektiltransformation, Konjugation und dergleichen. Der erfinderische Aspekt der vorliegenden Verfahren hängt nicht von den besonderen Mitteln ab, durch die der die inhibitorische RNA kodierende Vektor in die interessante Zelle eingeführt wird. Die besonderen Verfahren zum Einführen des Vektors in eine interessante Zelle hängen teilweise von der bestimmten Zelle zur Modifikation und der genauen Art des ausgewählten Vektors ab.
- Für Pflanzenzellen stammen die Vektoren vorzugsweise von RNA-Pflanzenviren. Bevorzugte RNA-Pflanzenvirusvektoren sind einzelsträngige Positivstrang-RNA-Viren. RNA-Pflanzenvirusvektoren können bequem manipuliert und in Zellen in einer DNA-Form eingeführt werden, anstatt dass direkt mit RNA-Vektoren gearbeitet wird. Virusvektoren, die von Tobamoviren stammen, sind besonders bevorzugt. Beschreibungen von geeigneten Pflanzenvirusvektoren, die so modifiziert sein können, dass sie eine inhibitorische RNA kodierende Region in funktioneller Kombination mit einem Promotor enthalten, sowie die Herstellung und Verwendung von solchen Vektoren können unter anderem in der PCT-Veröffentlichung WO 93/03161, Kumagai u.a., Proc. Natl. Aca. Sci. USA 90: 427–430 (1993) gefunden werden.
- Die Erfindung stellt auch Polynukleotide zur Verfügung, die Phytoensynthase und Phytoendesaturase kodieren, sowie verschiedene Vektoren zur Expression von inhibitorischer Zielgen-RNA, die für Phytoensynthasegene oder Phytoendesaturasegene spezifisch ist. Der erste engagierte Schritt in der Karotinoidbiosynthese in höheren Pflanzen ist die Kondensation von zwei Geranylgeranlypyrophosphatmolekülen zu Phytoen, einem farblosen C40-Kohlenwasserstoff, durch Enzymphytoensynthase. Der anschließende Schritt im Biosyntheseweg ist die Modifikation des farblosen Phytoens zu Phytofluen und ζ-Karotin durch Phytoendesaturase.
- Die Erfindung stellt Polynukleotide zur Verfügung, die das Phytoendesaturaseenzym von Nicotiana-Arten und zahlreichen Derivaten davon kodiert. Insbesondere stellt die Erfindung in gereinigter Form Polynukleotide zur Verfügung, die für die Phytoendesaturase von Nicotiana benthamiana kodiert. Darüber hinaus liefert die Erfindung Polynukleotide, die für Tomaten (Lycopersicon esculentum) Phytoensynthase und Phytoendesaturase kodiert. Die hier beschriebenen, die Phytoensynthase und Phytoendesaturase kodierenden Polynukleotide können dazu verwendet werden, um inhibitorische RNAs, die für Phytoensynthase- und Phytoendesaturasegene spezifisch sind, aus einer Auswahl von Pflanzenarten erzeugen. Die inhibitorische RNAs für Phytoensynthase und Phytoendesaturase werden bevorzugt durch Transkription von Polynukleotiden, die inhibitorische RNA für Phytoensynthase oder Phytoendesaturase kodiert, in funktioneller Kombination mit einer Promotorregion erzeugt.
- Die Aminosäuresequenz der verschiedenen Phytoendesaturase- und der Phytoensynthaseenzyme, wie hier beschrieben, und die natürlich auftretenden Polynukleotidsequenzen, die für diese Enzyme kodieren, ermöglichen es einem Durchschnittsfachmann der Molekularbiologie, eine Auswahl von verwandten Molekülen mit nützlichen Eigenschaften auszubilden und aufzubauen, die diesen Enzymen und den direkt aus dem Klonieren der für diese Enzyme kodierenden cDNAs erhaltenden Polynukleotiden ähnlich sind. Im Fall von Polynukleotiden erlaubt die Degeneration des genetischen Codes es dem Durchschnittsfachmann, zahlreiche unterschiedliche Polynukleotide zu erzeugen, die für dasselbe Polypeptid kodieren, d.h. isocodierende Polynukleotide. Die genaue erzeugte Polynukleotidsequenz kann so ausgewählt werden, dass die Expression in einem bestimmten Wirtszelltyp optimiert wird, was Faktoren, die die Expression, wie beispielsweise Kodonhäufigkeit, potentielle sekundäre mRNA-Strukturen, Methylierung und dergleichen beeinflussen, berücksichtigt. Die Erfindung stellt auch eine Auswahl von Polypeptiden mit derselben enzymatischen Aktivität wie Phytoendesaturase und Phytoensynthase zur Verfügung, unterscheidet sich aber in einem oder mehr Aminosäureresten, um so Phytoendesaturase- und Phytoensynthase-Varianten-Polypeptide zu erzeugen. Varianten-Polypeptide können auf vielfältige Art erzeugt und aufgebaut werden. Phytoendesaturase- und Phytoensynthasevarianten können durch Einführen von Mutationen (entweder willkürlich oder durch Anordnung) in eine Polynukleotidsequenz erzeugt und aufgebaut werden, die für das Enzym kodiert, indem das mutierte Enyzm-kodierende Polynukleotid (das funktionsfähig mit einem geeigneten Promotor verbunden ist) in eine Wirtszelle transformiert wird und anschließend die Wirtszelle auf Expression der gewünschten enzymatischen Aktivität untersucht wird. Die Identität von Mutationen in Srf I kodierende Polynukleotide, die willkürlich eingeführt werden, kann durch Sequenzierung des das Enzym kodierenden Polynukleotids bestimmt werden.
- Die Erfindung sieht auch die rekombinante DNA-Expression von Phytoendesaturase und Phytoensynthase (sowie Varianten davon) vor. Die rekombinante Ex pression dieser Enzyme kann durch die übliche rekombinante DNA-Expressionstechnologie erzielt werden. Eine geeignete rekombinante DNA-Expressionstechnologie kann unter anderem in Goeddel u.a., Gene Expression Technology: Methods in Enzymology, Bd. 185, Academic Press, San Diego (1991) gefunden werden. Das Enzym kann in einer großen Auswahl von Wirtszellen, einschließlich sowohl eukaryontischen und prokaryontischen Wirtszellen, exprimiert werden. Ein Vorteil des Bereitstellens der vorliegenden Enzyme durch rekombinante DNA-Methodik ist das Erzielen von erhöhten Mengen an Enzym aus geringeren Mengen an Zellmaterial.
- Ein anderer Vorteil der rekombinanten Herstellung der Enzyme ist die Fähigkeit, das Enzym ohne bestimmte Verunreinigungen zu erzeugen. Phytoensynthase und Phytoendesaturase (und Varianten davon), die durch rekombinante DNA-Verfahren hergestellt werden, können durch Verfahren gereinigt werden, die den hier beschriebenen Verfahren zur Reinigung des nicht rekombinanten Enzyms ähnlich sind. Anleitung bei der Entwicklung und Modifikation von Enzymreinigungsverfahren kann unter anderem in Deutschers ,Guide to Protein Purification Methods in Enzymology', Bd. 182, Academic Press, San Diego (1990), Scopes ,Protein Purification: Principles and Practice', 3. Ausg., Springer-Verlag, NY (1993) und dergleichen gefunden werden.
- Die Erfindung lässt sich mit Bezug auf die folgenden Beispiele besser nachvollziehen. Die folgenden Beispiele werden zur Veranschaulichung der Erfindung angeführt und sind nicht als Einschränkung der Erfindung auszulegen.
- BEISPIELE
- Beispiel 1
- Isolierung der Tomatenmosaikvirus-cDNA
- Ein 861 bp langes Fragment (5524–6384) vom Tomatenmosaikvirus (Fruchtnekrosestamm F; ToMV-F), enthaltend den mutmaßlichen subgenomischen Hüll protein-Promotor, das Hüllproteingen und das 3'-Ende, wurde mittels PCR unter Verwendung der ToMV-Primer 5' CTCGCAAAGTTTCGAACCAAATCCTC 3' (SEQ ID NO: 1) (vorwärts) und 5'CGGGGTACCTGGGCCCCAACCGGGGGTTCCGGGGG3' (SEQ ID NO: 2) (rückwärts) isoliert und in die HincII-Stelle von pBluescript KS– subkloniert. Ein Hybridvirus, bestehend aus TMV-U1 und ToMV-F wurde konstruiert, indem ein 874 bp langes XhoI-KpnI-ToMV-Fragment in pBGC152 ausgelagert wurde (Kumagai u.a., Proc. Natl. Acad. Sci USA, 90: 427–430 (1993)), wodurch das Plasmid TTO1 erzeugt wurde. Das insertierte Fragment wurde durch Didesoxynukleotidsequenzierung verifiziert. Eine einzige AvrII-Stelle wurde abwärts von der XhoI-Stelle in TTO1 durch PCR-Mutagene insertiert, wodurch das Plasmid TTO1A entstand, und zwar mittels der folgenden Oligonukleotide:
5' TCCTCGAGCCTAGGCTCGCAAAGTTTCGAACCAAATCCTCA 3' (SEQ ID NO: 3) (aufwärts)
5' CGGGGTACCTGGGCCCCAACCGGGGGTTCCGGGGG 3' (SEQ ID NO: 2) (abwärts). - Beispiel 2
- Isolierung einer cDNA, die für Tomatenphytoensynthase kodiert, und einer unvollständigen cDNA, die für Tomatenphytoendesaturase kodiert.
- Unvollständige cDNAs wurden von reifender Tomatenfrucht-RNA mittels Polymerasekettenreaktion (PCR) unter Verwendung der folgenden Oligonukleotide isoliert: PSY. 5' TATGTATGGTGCAGAAGAACAGAT 3' (SEQ ID NO: 4) (vorwärts). 5' AGTCGACTCTTCCTCTTCTGGCATC 3' (SEQ ID NO: 5) (rückwärts); PDS, 5' TGCTCGAGTGTGTTCTTCAGTTTTCTGTCA 3' (SEQ ID NO: 6) (vorwärts). 5' AACTCGAGCGCTTTGATTTCTCCGAAGCTT 3' (SEQ ID NO: 7) (rückwärts). Ungefähr 3 × 104 Kolonien von einer Lycopersicon esculentum cDNA-Bibliothek wurden durch Koloniehybridisierung unter Verwendung eines 32 P markierten Tomatenphytoensynthase-PCR-Produkt gescreent. Die Hybridisierung wurde bei 42°C 48 h lang in 50% Formamid, 5× SSC, 0,02 M Phosphatpuffer, 5× Denhart-Lösung und 0,1 mg/ml gescherte Kalbsthymus-DNA durchgeführt. Die Filter wurden bei 65°C in 0,1× SSC, 0,1% SDS vor der Autoradiographie gewaschen. Die PCR-Produkte und die Phytoensynthase-cDNA-Klone wurden mittels Didesoxynukleotidsequenzierung verifiziert.
- Beispiel 3
- DNA-Sequenzierung und Computeranalyse
- Ein 1,2 Kb PstI,BamHI-Fragment, enthaltend die Phytoensynthase-cDNA und eine 0,7 Kb unvollständige Phytoendesaturase-cDNA wurde in pBluescript KS+ (Stratagene, La Jolla, Kalifornien) subkloniert. Die Nukleotidsequenzierung von KS+/PDS #38 und KS+/5'3'PSY wurde mittels Didesoxy-Terminierung unter Verwendung von einzelsträngigen Matrizen durchgeführt. Die Nukleotidsequenzanalyse und Aminosäuresequenzvergleiche wurden mittels der Programme PCGENE und DNA Inspector IIE durchgeführt.
- Beispiel 4
- Aufbau des Tomatenphytoensynthaseexpressionsvektors.
- Ein XhoI-Fragment mit 1253 Basenpaaren, enthaltend die Tomatenphytoensynthase-cDNA wurde in TTO1 subkloniert. Der Vektor TTO1/PSY+ (
1 ) enthält die Phytoensynthase-cDNA (positive Orientierung) unter der Kontrolle des subgenomischen TMV-U1-Hüllprotein-Promotors, während der Vektor TTO1/PSY– die Phytoensynthase-cDNA in der Antisense-Orientierung enthält. - Beispiel 5
- Aufbau eines Virusvektors enthaltend eine unvollständige Tomatenphytoen-cDNA
- Ein XhoI-Fragment, enthaltend die unvollständige Tomatenphytoendesaturase-cDNA wurde in TTO1 subkloniert. Der Vektor TTO1A/PDS+ enthält die Phytoendesaturase-cDNA (positive Orientierung) unter der Kontrolle des subgenomischen TMV-U1-Hüllprotein-Promators, während der Vektor TTO1/PDS– die Phytoendesaturase-cDNA in der Antisense-Orientierung enthält.
- Eine unvollständige cDNA, die für Phytoendesaturase kodiert, wurde von N. benthamiana-Blatt-RNA mittels RT-PCR unter Verwendung der folgenden Oligonukleotide isoliert: PDS, 5' GGCACTCAACTTTATAAACC 3' (SEQ ID NO: 8) (vorwärts), 5'- CTTCAGTTTTCTGTCAAACC 3' (SEQ ID NO: 9) (rückwärts) und durch Didesoxynukleotidsequenzierung verifiziert.
- Beispiel 6
- Transfektion und Analyse von N. benthamiana [TTO1/PSY+, TTO1/PSY–, TTO1A/PDS700+, TTO1/PDS700–]
- Infektiöse RNAs von TTO1/PSY+ (
1 ), TTO1/PSY–, TTO1A/PDS+, TTO1/PDS– wurden mittels In-vitro-Transkription unter Verwendung von SP6-DNA-abhängiger RNA-Polymerase hergestellt und wurden zur mechanischen Beimpfung von N. benthamiana verwendet (Dawson u.a., Adv. Virus Res. 38: 307 (1990)). Die Hybridviren breiteten sich über die ganzen nicht beimpften oberen Blätter aus, wie mittels Transmissionselektronenmikroskopie, Infektiositätsuntersuchung mittels lokaler Läsion und Polymerasekettenreaktion(PCR)-Amplifikation verifiziert. Die viralen Symptome bestanden aus Verformung von systemischen Blättern, Pflanzenverkrüppelung und leichter Chlorose. Die mit TTO1/PSY+ transfizierten Pflanzen zeigten einen mindestens zweifachen Anstieg der Phytoensynthaseaktivität gegenüber Pflanzen, die mit Virusvektorkontrollen transfiziert waren. Blätter von systemisch infizierten TTO1/PSY+-Pflanzen entwickelten einen leuchtend orangefarbenen Phänotyp und sammelten hohen Niveaus an Phytoen an (Tabelle 1). Die Blätter und Kelchblätter von TTO1/PDS–-Pflanzen entwickelten einen weißen bleichen Phänotyp ähnlich dem mit dem Herbizid Norflurazon festgestellten. Der Aufbau der Chloroplasten von mit TTO1/PSY+ und TTO1/PDS– transfizierten Pflanzen erschien bei Analyse mit Transmissionselektronenmikroskopie normal. Blätter von systemisch infizierten TTO1A/PDS+-Pflanzen entwickelten einen bleichen weißen Phänotyp etwa eine Woche später als Blätter von Antisense-TTO1/PDS–-Pflanzen und sammelten auch hohe Niveaus an Phytoen an. - Agarosegelelektrophorese von PCR-cDNA, die von Virion-RNA isoliert wurde, und Northern-Blot-Analyse von Virion-RNA zeigten, dass die Vektoren in einem extrachromosomalen Zustand erhalten bleiben und keinen feststellbaren intramolekularen Änderungen unterlagen.
- Beispiel 7
- Reinigung und Analyse von Phytoen aus transfizierten Pflanzen
- Phytoen wurde in Methanol extrahiert und durch seine Peak-Rückhaltezeit und Absorptionsspektren auf einer 25 cm Spherisorb ODS-1 5 μm Säule mittels Acetonitril/Methanol/2-Propanol (85:10:5) als Entwicklungslösungsmittel bei einer Strömungsrate von 1 ml/min identifiziert. Das aus dem systemisch infizierten Gewebe isolierte Phytoen hatte eine identische Rückhaltezeit zu Phytoen aus mit Norflurozon behandelten Pflanzen. Die Phytoenspitze von N. benthaminiana, das mit TTO1/PSY+ transfiziert war, hatte charakteristische optische maximale Absorptionsvermögen bei 276, 285 und 298 nm. Eine Woche nach der Beimpfung zeigten Pflanzen, die mit viraler kodierter Phytoensynthase transfiziert waren, eine hundertfache Steigerung des Phytoens im Vergleich zu den Niveaus in nicht infizierten Pflanzen, wie mittels HPLC-Abtrennung von Karotinoiden gemessen. Die Karotinoide wurden in Methanol extrahiert und durch die Peak-Rückhhaltezeit und Absorptionsspektren auf einer 25 cm Spherisorb ODS-1 5 μm Säule mittels Acetonitril/Methanol/2-Propanol (85:10:5) als Entwicklungslösungsmittel identifi ziert. Die Expression der Sense-RNA (TTO1A/PDS+) und Antisense-RNA (TTO1/PDS–) zu einer teilweisen Phytoendesaturase in transfizierten Pflanzen hemmte die Synthese von farbigen Karotinoiden und bewirkte die systemisch infizierten Blätter daran, einen weißen Phänotyp zu entwickeln. Die HPLC-Analyse dieser Pflanzen zeigte, dass auch sie hohe Niveaus an Phytoen ansammelten. Das Bleichen von Blättern wurde in Kontrollpflanzen reproduziert, die mit dem Herbizid Norflurozon, einem nicht kompetitiven Hemmer von Phytoendesaturase, behandelt wurden.
- Beispiel 8
- Isolierung einer unvollständigen cDNA, die für N. benthamiana-Phytoendesaturase kodiert
- Ein unvollständiger cDNA-Klon, der für N. benthamiana-Phytoendesaturase kodiert, wurde aus jungem Blattgewebe isoliert. Der Nukleotidsequenzvergleich von 369 bp in den entsprechenden Regionen zwischen Tomaten- und N. benthamiana-Phytoendesaturase zeigt, dass sie 92% Ähnlichkeit zueinander haben (
2 ). Da die beiden Pflanzengene Bereiche hoher Homologie aufweisen, kann die zytoplasmatische Hemmung des endogenen Pflanzengens mittels von Viren stammender Antisense-RNA durch die Bildung von hybriden, doppelsträngigen RNA-Molekülen auftreten. Die Runterregulation von Phytoendesaturase in mit TTO1A/PDS+ transfizierten Pflanzen kann durch direkte Interferenz während der Translation von mRNA in das Protein oder durch Doppelstränge, die zwischen mRNA und von Viren stammender Negativstrang-RNA gebildet wurden, bewirkt werden, obwohl der genaue Wirkmechanismus nicht bekannt sein muss, um die Erfindung durchzuführen. - Beispiel 9
- Aufbau von TTO1- und TTO1A-Expressionsvektoren
- Ein 861 bp langes Fragment (5524–6384) vom Tomatenmosaikvirus (Fruchtnekrosestamm F; ToMV-F), enthaltend den mutmaßlichen subgenomischen Hüllprotein-Promotor, das Hüllproteingen und das 3'-Ende, wurde mittels PCR unter Verwendung der ToMV-Primer 5' CTCGCAAAGTTTCGAACCAAATCCTC 3' (SEQ ID NO: 1) (vorwärts) und 5' CGGGGTACCTGGGCCCCAACCGGGGGTTCCGGGGG 3' (SEQ ID NO: 2) (rückwärts) isoliert und in die HincII-Stelle von pBluescript KS– subkloniert. Ein Hybridvirus, der aus TMV-U1 und ToMV-F bestand, wurde mittels Auslagern eines 874 bp langen XhoI-KpnI-ToMV-Fragments in pBGC152 gebildet (I. Pecker u.a., Proc. Natl. Acad. Sci. USA, 89, 4962 (1992)), wodurch das Plasmid TTO1 erzeugt wurde. Das insertierte Fragment wurde mittels Didesoxynukleotidsequenzierung verifiziert. Eine einzelne AvrII-Stelle wurde abwärts der XhoI-Stelle in TTO1 mittels PCR-Mutagenese insertiert, wodurch das Plasmid TTO1A erzeugt wurde, und zwar mittels der folgenden Oligonukleotide: 5' TCCTCGAGCCTAGGCTCGCAAAGTTTCGAACCAAATCCTCA 3' (aufwärts) (SEQ ID NO: 3), 5' CGGGGTACCTGGGCCCCAACCGGGGGTTCCGGGGG 3' (SEQ ID NO: 2) (abwärts).
- Beispiel 10
- Aufbau von TTO1/PDS–, TTO1A/PDS+
- Mittels PCR-Mutagenese wurde ein XhoI-Fragment, das für Tomatenphytoensynthase kodiert, von einem Lycopersicon esculentum-cDNA-Klon, der aus einer cDNA-Bibliothek einer reifenden Frucht isoliert wurde, amplifiziert und unter die Kontrolle des subgenomischen TMV-U1-Hüllprotein-Promotors durch Subklonieren in TTO1 gestellt.
- Beispiel 11
- Hemmung der Expression eines spezifischen endogenen Pflanzengens (Phytoendesaturase) mittels eines RNA-Virusvektors: Transfektion und Analyse von N. benthamiana I[TTO1/PDS–, TTO1A/PDS+
- Infektiöse RNAs von TTO1A/PDS+, TTO1/PDS– wurden mittels In vitro-Transkription unter Verwendung von SP6-DNA-abhäniger RNA-Polymerase hergestellt und dazu verwendet, N. benthamiana mechanisch zu beimpfen. Die Hyb ridviren breiteten sich über alle nicht beimpften oberen Blätter aus, wie mittels Transmissionselektronenmikroskopie, Infektivitätsuntersuchung mittels lokaler Läsion und Polymerasekettenreaktion(PCR)-Amplifikation verifiziert. Die viralen Symptome bestanden aus einer Verformung der systemischen Blätter, Pflanzenverkrüppelung und leichter Chlorose. Die Blätter und Kelchblätter von TTO1/PDS–-Pflanzen entwickelten einen weißen bleichen Phänotyp ähnlich dem mit dem Herbizid Norflurazon auftretenden. Der Aufbau der Chloroplasten von TTO1/PDS– transfizierten Pflanzen schien bei Analyse mittels Transmissionselektronenmikroskopie normal zu sein. Blätter von systemisch infizierten TTO1A/PDS+-Pflanzen entwickelten einen bleichen weißen Phänotyp ungefähr eine Woche später als die Blätter von Antisense-TTO1/PDS-Pflanzen und sammelten auch hohe Niveaus an Phytoen an.
- Beispiel 12
- Hemmung der Expression eines spezifischen endogenen Pflanzengens (Phytoensynthase) mittels RNA-Virusvektor: Transfektion und Analyse von N. benthamiana [TTO1/PSY–]
- Infektiöse RNAs von TTO1/PSY– wurden durch In vitro-Transkription mittels SP6-DNA-abhängiger RNA-Polymerase hergestellt und dazu verwendet, N. benthamiana mechanisch zu beimpfen. Die Hybridviren breiteten sich über alle nicht beimpften oberen Blätter aus, wie mittels Transmissionselektronenmikroskopie, Infektivitätsuntersuchung mittels lokaler Läsion und Polymerasekettenreaktion(PCR)-Amplifikation verifiziert. Die viralen Symptome bestanden aus einer Verformung der systemischen Blätter, Pflanzenverkrüppelung und leichter Chlorose. Pflanzen, die mit TTO1/PSY+ transfiziert waren, zeigten einen mindestens 2-fachen Anstieg der Phytoensynthaseaktivität gegenüber Pflanzen, die mit Virusvektorkontrollen transfiziert waren (Daten nicht gezeigt). Blätter von systemisch infizierten TTO1/PDS+-Pflanzen entwickelten einen leuchtend organefarbenen Phänotyp und sammelten hohe Niveaus an Phytoen an (Tabelle 1). Die Blätter von TTO1/PDS–-Pflanzen entwickelten einen bleichen weißen Phänotyp. Der Aufbau der Chloroplasten aus TTO1/PSY– schien bei Analyse mit Transmissi onselektronenmikroskopie normal zu sein. Blätter von systemisch infizierten TTO1A/PSY–-Pflanzen sammelten kein Phytoen an.
- Beispiel 13
- Isolierung einer unvollständigen cDNA, die für N. benthamiana-Phytoendesaturase kodiert
- Ein unvollständiger cDNA-Klon, der für N. benthamiana-Phytoendesatuase kodiert, wurde aus jungem Blattgewebe isoliert. Ein Nukleotidsequenzvergleich von 380 bp in den entsprechenden Bereichen zwischen Tomaten- und N. benthamiana-Phytoendesatuase zeigt, dass sie 92% Ähnlichkeit zueinander haben (
2 ). Da die beiden Pflanzengene Bereiche hoher Homologie aufweisen, kann die zytoplasmatische Hemmung des endogenen Pflanzengens mittels von Viren stammender Antisense-RNA durch die Bildung von hybriden, doppelsträngigen RNA-Molekülen auftreten. Die Runterregulation von Phytoendesaturase in Pflanzen, die mit TTO1A/PDS+ transfiziert sind, kann durch direkte Interferenz während der Translation von mRNA in Protein oder durch Doppelstränge, die zwischen mRNA und von Viren stammenden Negativstrang-RNA gebildet sind, bewirkt werden. - Beispiel 14 (15)
- Analyse von PDS-mRNA in Nicotina-Zellen, die von Tomaten-PDS stammende spezifische Antisense-RNA erzeugen
- Es wurden reverse Transkriptase-PCR-Experimente, die das Vorhandensein oder Fehlen von feststellbaren PDS-mRNA-Transkripten in N. benthamiana-Zellen messen, enthaltend TTO1/PDS– (das PDS-Antisense-RNA erzeugt), durchgeführt. RNA wurde aus transfizierten Pflanzen durch das Verfahren von Gailiano u.a. isoliert. Die zur Detektion von TTO1/L. esculeutum verwendeten Primer waren 5'TAATCGATGATGATTCGGAGGCTAC3' (SEQ ID NO: 10) (vorwärts) 5'GGCACTCAACTTTATAAACC3' (SEQ ID NO: 8) (rückwärts). Die zur Erfassung von N. benthamiana-Transkripten verwendeten Primer waren 5'GGCACTCAACTTTATAAACC3' (SEQ ID NO: 8) (vorwärts) und 5'CTCCTTTAATTGTACTGCCA3' (SEQ ID NO: 11) (rückwärts). Mit den PCR-Versuchen war es nicht möglich, endogene PDS-mRNA in den durch Vektor transfizierten Pflanzen festzustellen, während das erwartete 452 bp lange Antisense-Transkript festgestellt werden konnte. Die 219 bp lange PDS-mRNA konnte nur in den nicht infizierten N. benthamiana-Pflanzen der Kontrolle festgestellt werden.
Claims (15)
- Viraler genetischer Vektor, der von einem positiven einzelsträngigen Virus stammt und zur Replikation im Zytoplasma einer Pflanzenzelle in der Lage ist, umfassend: a) einen ersten subgenomischen Pflanzenviruspromotor in funktionaler Kombination mit einer ersten Nukleinsäuresequenz, die für eine Antisense-RNA oder eine Kosuppressor-RNA kodiert, die für ein interessierendes Gen in einer Pflanze spezifisch ist, wobei die Transkription der ersten Nukleinsäuresequenz durch den ersten subgenomischen Pflanzenviruspromotor reguliert wird; und b) einen zweiten subgenomischen Pflanzenviruspromotor, der funktionsfähig mit einer zweiten Nukleinsäuresequenz verbunden ist, die für ein Pflanzenvirus-Hüllprotein kodiert, wobei die Transkription der zweiten Nukleinsäuresequenz durch den zweiten subgenomischen Pflanzenviruspromotor reguliert wird.
- Vektor nach Anspruch 1, wobei der Vektor von einem positiv-strängigen einzelsträngigen RNA-Pflanzenvirus stammt.
- Vektor nach Anspruch 1, wobei der erste und zweite subgenomische Promotor zueinander heterolog sind.
- Vektor nach Anspruch 1, wobei das interessierende Gen Phytoendesaturase ist.
- Vektor nach Anspruch 1, wobei das interessierende Gen Phytoensynthase ist.
- Verfahren zur Erzeugung einer Pflanzenzelle mit reduzierter Expression eines interessierenden Gens, umfassend die Schritte der Transfektion einer Pflanzenzelle mit dem Vektor nach einem der Ansprüche 1 bis 5, wobei die Nukleinsäuresequenz, die für eine Antisense-RNA oder eine Kosuppressor-RNA kodiert, für das interessierende Gen spezifisch ist.
- Verfahren nach Anspruch 6, wobei der Vektor von einem positiv-strängigen einzelsträngigen RNA-Pflanzenvirus stammt.
- Verfahren nach Anspruch 7, wobei der erste und zweite subgenomische Promotor zur Pflanzenzelle heterolog sind.
- Verfahren zur Erzeugung einer Pflanzenzelle mit reduzierter Expression eines interessierenden Gens, umfassend die Schritte der Transfektion einer Zelle mit einem genetischen Vektor nach Anspruch 4 oder 5.
- Verfahren nach Anspruch 9, wobei die Pflanzenzelle eine Nicotiana-Zelle ist.
- Pflanzenzelle umfassend einen Vektor nach einem der Ansprüche 1 bis 5.
- Pflanzenzelle nach Anspruch 11, wobei der Vektor von einem einzelsträngigen RNA-Pflanzenvirus stammt.
- Pflanzenzelle nach Anspruch 11, umfassend den Vektor von Anspruch 4 oder 5.
- Pflanzenzelle nach Anspruch 13, wobei die Pflanzenzelle eine Nicotiana-Zelle ist.
- Pflanze, umfassend eine Vielzahl von Zellen nach einem der Ansprüche 11 bis 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/260,546 US5922602A (en) | 1988-02-26 | 1994-06-16 | Cytoplasmic inhibition of gene expression |
US260546 | 1994-06-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
DE69534421D1 DE69534421D1 (de) | 2005-10-06 |
DE69534421T2 true DE69534421T2 (de) | 2006-06-29 |
Family
ID=22989605
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE69534421T Expired - Fee Related DE69534421T2 (de) | 1994-06-16 | 1995-05-26 | Cytoplasmatische Inhibition des Genexpression |
DE69527654T Expired - Fee Related DE69527654T2 (de) | 1994-06-16 | 1995-05-26 | Cytoplasmatische inhibition des genexpression |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE69527654T Expired - Fee Related DE69527654T2 (de) | 1994-06-16 | 1995-05-26 | Cytoplasmatische inhibition des genexpression |
Country Status (12)
Country | Link |
---|---|
US (6) | US5922602A (de) |
EP (2) | EP1087017B1 (de) |
JP (1) | JPH10501968A (de) |
AT (2) | ATE221574T1 (de) |
AU (1) | AU710588B2 (de) |
CA (1) | CA2193094C (de) |
DE (2) | DE69534421T2 (de) |
ES (2) | ES2246210T3 (de) |
IL (1) | IL113955A0 (de) |
MX (1) | MX9606476A (de) |
WO (1) | WO1995034668A2 (de) |
ZA (1) | ZA954451B (de) |
Families Citing this family (160)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030150019A1 (en) * | 1988-02-26 | 2003-08-07 | Large Scale Biology Corporation | Monopartite RNA virus transformation vectors |
US6054566A (en) * | 1988-02-26 | 2000-04-25 | Biosource Technologies, Inc. | Recombinant animal viral nucleic acids |
US5922602A (en) * | 1988-02-26 | 1999-07-13 | Biosource Technologies, Inc. | Cytoplasmic inhibition of gene expression |
GB9611981D0 (en) * | 1996-06-07 | 1996-08-07 | Zeneca Ltd | Enhancement of gene expression |
CA2261577A1 (en) * | 1996-08-09 | 1998-02-19 | Calgene, Inc. | Methods for producing carotenoid compounds and speciality oils in plant seeds |
US6429356B1 (en) | 1996-08-09 | 2002-08-06 | Calgene Llc | Methods for producing carotenoid compounds, and specialty oils in plant seeds |
GB9703146D0 (en) | 1997-02-14 | 1997-04-02 | Innes John Centre Innov Ltd | Methods and means for gene silencing in transgenic plants |
US6586661B1 (en) * | 1997-06-12 | 2003-07-01 | North Carolina State University | Regulation of quinolate phosphoribosyl transferase expression by transformation with a tobacco quinolate phosphoribosyl transferase nucleic acid |
GB9720148D0 (en) * | 1997-09-22 | 1997-11-26 | Innes John Centre Innov Ltd | Gene silencing materials and methods |
US6632980B1 (en) | 1997-10-24 | 2003-10-14 | E. I. Du Pont De Nemours And Company | Binary viral expression system in plants |
US6077992A (en) * | 1997-10-24 | 2000-06-20 | E. I. Du Pont De Nemours And Company | Binary viral expression system in plants |
US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
JP2002508957A (ja) * | 1998-01-16 | 2002-03-26 | ラージ スケール バイオロジー コーポレイション | 宿主へのトランスフェクションによりヌクレオチド配列及びそれがコードするタンパク質の機能を決定する方法 |
US6303848B1 (en) | 1998-01-16 | 2001-10-16 | Large Scale Biology Corporation | Method for conferring herbicide, pest, or disease resistance in plant hosts |
US6700040B2 (en) | 1998-01-16 | 2004-03-02 | Large Scale Biology Corporation | Cytoplasmic gene inhibition or gene expression in transfected plants by a tobraviral vector |
US6300134B1 (en) | 1998-01-16 | 2001-10-09 | Large Scale Biology Corporation | RNA transformation vectors derived from a single-component RNA virus and contain an intervening sequence between the cap and the 5′ end |
US20030027173A1 (en) * | 1998-01-16 | 2003-02-06 | Della-Cioppa Guy | Method of determining the function of nucleotide sequences and the proteins they encode by transfecting the same into a host |
US6300133B1 (en) | 1998-01-16 | 2001-10-09 | Large Scale Biology Corporation | RNA transformation vectors derived from an uncapped single-component RNA virus |
US20020164585A1 (en) * | 1998-01-16 | 2002-11-07 | Sean Chapman | Method for enhancing RNA or protein production using non-native 5' untranslated sequences in recombinant viral nucleic acids |
US6426185B1 (en) | 1998-01-16 | 2002-07-30 | Large Scale Biology Corporation | Method of compiling a functional gene profile in a plant by transfecting a nucleic acid sequence of a donor plant into a different host plant in an anti-sense orientation |
US6468745B1 (en) * | 1998-01-16 | 2002-10-22 | Large Scale Biology Corporation | Method for expressing a library of nucleic acid sequence variants and selecting desired traits |
US6653530B1 (en) | 1998-02-13 | 2003-11-25 | Calgene Llc | Methods for producing carotenoid compounds, tocopherol compounds, and specialty oils in plant seeds |
CN1294631A (zh) | 1998-03-20 | 2001-05-09 | 贝尼泰克澳大利亚有限公司 | 控制基因表达 |
AUPP249298A0 (en) | 1998-03-20 | 1998-04-23 | Ag-Gene Australia Limited | Synthetic genes and genetic constructs comprising same I |
US6759571B1 (en) | 1998-04-01 | 2004-07-06 | North Carolina State University | Method of suppressing gene expression in plants |
SI1068311T1 (sl) | 1998-04-08 | 2011-07-29 | Commw Scient Ind Res Org | Postopki in sredstva za pridobivanje modificiranih fenotipov |
US6600089B1 (en) | 1998-04-24 | 2003-07-29 | E. I. Du Pont De Nemours And Company | Carotenoid biosynthesis enzymes |
WO1999055887A2 (en) * | 1998-04-24 | 1999-11-04 | E.I. Du Pont De Nemours And Company | Carotenoid biosynthesis enzymes |
FR2784688B1 (fr) * | 1998-10-20 | 2002-12-13 | Univ Grenoble 1 | SEQUENCE D'ADNc DECRITE PAR SEQ ID N°1 TRANSCRIVANT UN ARNm CODANT POUR L'OXYDASE TERMINALE ASSOCIEE A LA BIOSYNTHESE DES CAROTENOIDES |
WO2000044914A1 (en) * | 1999-01-28 | 2000-08-03 | Medical College Of Georgia Research Institute, Inc. | Composition and method for in vivo and in vitro attenuation of gene expression using double stranded rna |
MXPA01010486A (es) | 1999-04-15 | 2002-03-27 | Calgene Llc | Secuencias de acido nucleico para proteinas implicadas en la sintesis de tocoferol. |
ES2316363T3 (es) * | 1999-04-20 | 2009-04-16 | Bayer Bioscience N.V. | Metodos para administracion de rna inhibidor a las plantas y aplicaciones de los mismos. |
US7148400B1 (en) | 1999-04-20 | 2006-12-12 | Bayer Bioscience N.V. | Methods and means for delivering inhibitory RNA to plants and applications thereof |
DE19926216A1 (de) * | 1999-06-09 | 2001-02-22 | Metallgesellschaft Ag | Verfahren zur Herstellung von Bariumsulfat, Bariumsulfat und Verwendung des Bariumsulfats |
EP1196557A1 (de) * | 1999-07-21 | 2002-04-17 | Large Scale Biology Corporation | Methode zur überprüfung der funktion einer sequenz mittels transfektion einer nukleinsäuresequenz aus einem donor-organismus in einen pflanzlichen wirt in gegensinn oder positiver sinn-orientierung |
US6423885B1 (en) | 1999-08-13 | 2002-07-23 | Commonwealth Scientific And Industrial Research Organization (Csiro) | Methods for obtaining modified phenotypes in plant cells |
US6872815B1 (en) | 2000-10-14 | 2005-03-29 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
AU2001290522B2 (en) | 2000-08-07 | 2006-11-30 | Monsanto Technology Llc | Methyl-D-erythritol phosphate pathway genes |
US7192771B2 (en) * | 2000-08-30 | 2007-03-20 | North Carolina State University | Plant promoter sequence |
DE10049587A1 (de) * | 2000-10-06 | 2002-05-02 | Icon Genetics Ag | Vektorsystem für Pflanzen |
JP2004533807A (ja) | 2000-11-07 | 2004-11-11 | ノース・キャロライナ・ステイト・ユニヴァーシティ | プトレッシン−n−メチルトランスフェラーゼプロモーター |
DE10061150A1 (de) | 2000-12-08 | 2002-06-13 | Icon Genetics Ag | Verfahren und Vektoren zur Erzeugung von transgenen Pflanzen |
DE10102389A1 (de) | 2001-01-19 | 2002-08-01 | Icon Genetics Ag | Verfahren und Vektoren zur Plastidentransformation höherer Pflanzen |
US6800748B2 (en) * | 2001-01-25 | 2004-10-05 | Large Scale Biology Corporation | Cytoplasmic inhibition of gene expression and expression of a foreign protein in a monocot plant by a plant viral vector |
CA2369944A1 (en) | 2001-01-31 | 2002-07-31 | Nucleonics Inc. | Use of post-transcriptional gene silencing for identifying nucleic acid sequences that modulate the function of a cell |
DE10114209A1 (de) | 2001-03-23 | 2002-12-05 | Icon Genetics Ag | Ortsgerichtete Transformation durch Verwendung von Amplifikationsvektoren |
DE10115507A1 (de) | 2001-03-29 | 2002-10-10 | Icon Genetics Ag | Verfahren zur Kodierung von Information in Nukleinsäuren eines genetisch veränderten Organismus |
DE10121283B4 (de) | 2001-04-30 | 2011-08-11 | Icon Genetics GmbH, 80333 | Verfahren und Vektoren zur Amplifikation oder Expression von gewünschten Nucleinsäuresequenzen in Pflanzen |
WO2002089561A1 (en) | 2001-05-09 | 2002-11-14 | Monsanto Technology Llc. | Tyra genes and uses thereof |
US7161061B2 (en) | 2001-05-09 | 2007-01-09 | Monsanto Technology Llc | Metabolite transporters |
WO2002100199A2 (en) | 2001-06-08 | 2002-12-19 | Vector Tobacco Ltd. | Modifying nicotine and nitrosamine levels in tobacco |
DE10132780A1 (de) | 2001-07-06 | 2003-01-16 | Icon Genetics Ag | Plastidäre Genexpression über autonom replizierende Vektoren |
WO2003016482A2 (en) | 2001-08-17 | 2003-02-27 | Monsanto Technology Llc | Methyltransferase genes and uses thereof |
DE10143238A1 (de) | 2001-09-04 | 2003-03-20 | Icon Genetics Ag | Identifizierung eukaryotischer interner Ribosomen-Eingangsstellen (IRES)-Elemente |
DE10143237A1 (de) | 2001-09-04 | 2003-03-20 | Icon Genetics Ag | Herstellung künstlicher interner ribosomaler Eingangsstellenelemente (Ires-Elemente) |
US7262339B2 (en) | 2001-10-25 | 2007-08-28 | Monsanto Technology Llc | Tocopherol methyltransferase tMT2 and uses thereof |
AU2002361997B2 (en) * | 2001-12-18 | 2007-10-04 | Bayer Bioscience N.V. | Improved methods and means for delivering inhibitory RNA to plants and applications thereof |
AU2003222018A1 (en) * | 2002-03-14 | 2003-09-29 | Yale University | Tobacco rattle virus vectors and related compositions and methods |
BR0308740A (pt) | 2002-03-19 | 2007-01-09 | Monsanto Technology Llc | ácidos nucléicos e polipeptìdeos de homogentisado prenil transferase ("hpt"), e empregos destes |
DE10212892A1 (de) | 2002-03-20 | 2003-10-09 | Basf Plant Science Gmbh | Konstrukte und Verfahren zur Regulation der Genexpression |
KR20050002921A (ko) * | 2002-04-09 | 2005-01-10 | 벡터 토바코 리미티드 | 니코틴과 니트로사민류를 감소시킨 담배 |
US20060005282A1 (en) * | 2002-04-23 | 2006-01-05 | Activx Biosciences, Inc | Production and use of salt tolerant and culture density tolerant organisms |
US20040180438A1 (en) * | 2002-04-26 | 2004-09-16 | Pachuk Catherine J. | Methods and compositions for silencing genes without inducing toxicity |
CA2487274A1 (en) * | 2002-05-06 | 2003-11-13 | Nucleonics Inc. | Spermine chemically linked to lipids and cell-specific targeting molecules as a transfection agent |
US20040126823A1 (en) * | 2002-05-31 | 2004-07-01 | Tsichlis Philip N. | Modulation of prostaglandin synthesis and cancer growth |
EP1527183B1 (de) | 2002-07-26 | 2008-08-20 | BASF Plant Science GmbH | Neue selektionsverfahren |
JP2006500012A (ja) * | 2002-07-31 | 2006-01-05 | ヌクレオニクス インコーポレーティッド | 二本鎖rnaの構造および構築物、並びにその作製法および使用法 |
US20050106731A1 (en) * | 2002-08-05 | 2005-05-19 | Davidson Beverly L. | siRNA-mediated gene silencing with viral vectors |
US20080274989A1 (en) * | 2002-08-05 | 2008-11-06 | University Of Iowa Research Foundation | Rna Interference Suppression of Neurodegenerative Diseases and Methods of Use Thereof |
US20050042646A1 (en) * | 2002-08-05 | 2005-02-24 | Davidson Beverly L. | RNA interference suppresion of neurodegenerative diseases and methods of use thereof |
US20080176812A1 (en) * | 2002-08-05 | 2008-07-24 | Davidson Beverly L | Allele-specific silencing of disease genes |
US20040023390A1 (en) * | 2002-08-05 | 2004-02-05 | Davidson Beverly L. | SiRNA-mediated gene silencing with viral vectors |
US20050255086A1 (en) * | 2002-08-05 | 2005-11-17 | Davidson Beverly L | Nucleic acid silencing of Huntington's Disease gene |
WO2004013312A2 (en) | 2002-08-05 | 2004-02-12 | Monsanto Technology, Llc | Tocopherol biosynthesis related genes and uses thereof |
US20040241854A1 (en) * | 2002-08-05 | 2004-12-02 | Davidson Beverly L. | siRNA-mediated gene silencing |
WO2004044161A2 (en) * | 2002-11-06 | 2004-05-27 | Fraunhofer Usa | Expression of foreign sequences in plants using trans-activation system |
US7692063B2 (en) * | 2002-11-12 | 2010-04-06 | Ibio, Inc. | Production of foreign nucleic acids and polypeptides in sprout systems |
US8148608B2 (en) * | 2004-02-20 | 2012-04-03 | Fraunhofer Usa, Inc | Systems and methods for clonal expression in plants |
US7683238B2 (en) * | 2002-11-12 | 2010-03-23 | iBio, Inc. and Fraunhofer USA, Inc. | Production of pharmaceutically active proteins in sprouted seedlings |
US20040248299A1 (en) * | 2002-12-27 | 2004-12-09 | Sumedha Jayasena | RNA interference |
ES2531125T3 (es) | 2003-02-03 | 2015-03-10 | Ibio Inc | Sistema para la expresión de genes en plantas |
WO2004113573A2 (en) * | 2003-06-19 | 2004-12-29 | The Samuel Roberts Noble Foundation, Inc. | Methods and compositions for analysis of plant gene function |
US7696406B2 (en) * | 2003-07-03 | 2010-04-13 | Board Of Trustees Operating Michigan State University | Expression of a recombinant transgene |
US20050260652A1 (en) * | 2004-04-15 | 2005-11-24 | The General Hospital Corporation | Compositions and methods that modulate RNA interference |
US7644624B2 (en) | 2004-06-04 | 2010-01-12 | The Board Of Trustees Of The University Of Illinois | Artificial lateral line |
CN1330756C (zh) * | 2005-03-14 | 2007-08-08 | 姜国勇 | 抗番茄花叶病毒基因及其分离方法 |
BRPI0608829A2 (pt) | 2005-04-19 | 2011-03-15 | Basf Plant Science Gmbh | método para a expressão transgênica com especificidade intensificada em uma planta, uso de um construto de ácido nucleico quimérico, seqüência de ribonucleotìdeo quimérica, construto de expressão, vetor de expressão, organismo não-humano ou célula transformada, semente transformada, e, preparação farmacêutica |
WO2007039454A1 (en) | 2005-09-20 | 2007-04-12 | Basf Plant Science Gmbh | Methods for controlling gene expression using ta-siran |
US8431080B2 (en) | 2006-06-02 | 2013-04-30 | The Board Of Trustees Of The University Of Illinois | Soft MEMS |
US7661319B2 (en) * | 2006-06-02 | 2010-02-16 | The Board Of Trustees Of The University Of Illinois | Micromachined artificial haircell |
WO2008005466A2 (en) * | 2006-06-30 | 2008-01-10 | The Board Of Trustees Of The University Of Illinois | Artificial lateral line |
CN101605896A (zh) | 2007-02-06 | 2009-12-16 | 巴斯福植物科学有限公司 | 使用rna干扰控制线虫的组合物和方法 |
MX2009007811A (es) | 2007-02-06 | 2009-07-31 | Basf Plant Science Gmbh | El uso de genes de alanina racemasa para conferir resistencia contra los nematodos a las plantas. |
CN101605894A (zh) | 2007-02-08 | 2009-12-16 | 巴斯福植物科学有限公司 | 用opr3-样基因的rna干扰控制线虫的组合物和方法 |
WO2008095970A1 (en) | 2007-02-09 | 2008-08-14 | Basf Plant Science Gmbh | Compositions and methods using rna interference of cdpk-like for control of nematodes |
CN101679995A (zh) | 2007-03-15 | 2010-03-24 | 巴斯福植物科学有限公司 | 线虫几丁质酶基因用于控制植物寄生性线虫的用途 |
US20100317078A1 (en) * | 2007-08-27 | 2010-12-16 | Cornell Research Foundation Inc | Methods to improve alcohol tolerance of microorganisms |
US8097712B2 (en) | 2007-11-07 | 2012-01-17 | Beelogics Inc. | Compositions for conferring tolerance to viral disease in social insects, and the use thereof |
WO2009126573A2 (en) * | 2008-04-07 | 2009-10-15 | Pioneer Hi-Bred International, Inc. | Use of virus-induced gene silencing (vigs) to down-regulate genes in plants |
BRPI0917371A2 (pt) | 2008-08-27 | 2015-11-17 | Basf Plant Science Gmbh | planta trangênica transformada com um vetor de expressão, semente, vetor de expressão, e, método para produzir uma planta trangênica resistente a nematóides. |
CN102245776A (zh) | 2008-12-11 | 2011-11-16 | 巴斯夫植物科学有限公司 | 植物根特异的线虫抗性 |
MX2011009415A (es) | 2009-03-20 | 2011-09-27 | Basf Plant Science Co Gmbh | Plantas transgenicas resistentes a los nematodos. |
DE112010003389T5 (de) | 2009-08-25 | 2012-06-14 | Basf Plant Science Company Gmbh | Nematodenresistente transgene Pflanzen |
US8962584B2 (en) | 2009-10-14 | 2015-02-24 | Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. | Compositions for controlling Varroa mites in bees |
US8927812B2 (en) | 2009-12-09 | 2015-01-06 | Basf Plant Science Company Gmbh | Methods for increasing the resistance of plants to fungi by silencing the fungal SMT1-gene |
MX2012009033A (es) | 2010-02-23 | 2012-11-23 | Basf Plant Science Co Gmbh | Plantas transgenicas resistentes a los nematodos. |
PL2545182T4 (pl) | 2010-03-08 | 2017-11-30 | Monsanto Technology Llc | Cząsteczki polinukeotydu do regulacji genów w roślinach |
CA2802275A1 (en) | 2010-06-16 | 2011-12-22 | Plant Bioscience Limited | Control of plant seed shattering |
CA2822004A1 (en) | 2010-12-20 | 2012-06-28 | Basf Plant Science Company Gmbh | Nematode-resistant transgenic plants |
EP2535416A1 (de) | 2011-05-24 | 2012-12-19 | BASF Plant Science Company GmbH | Entwicklung einer Phytophthora-resistenten Kartoffel mit verbessertem Ertrag |
UA116093C2 (uk) | 2011-09-13 | 2018-02-12 | Монсанто Текнолоджи Ллс | Спосіб та композиція для боротьби з бур'янами (варіанти) |
US10760086B2 (en) | 2011-09-13 | 2020-09-01 | Monsanto Technology Llc | Methods and compositions for weed control |
MX362810B (es) | 2011-09-13 | 2019-02-13 | Monsanto Technology Llc | Metodos y composiciones para controlar malezas. |
US10806146B2 (en) | 2011-09-13 | 2020-10-20 | Monsanto Technology Llc | Methods and compositions for weed control |
US10829828B2 (en) | 2011-09-13 | 2020-11-10 | Monsanto Technology Llc | Methods and compositions for weed control |
WO2013040049A1 (en) | 2011-09-13 | 2013-03-21 | Monsanto Technology Llc | Methods and compositions for weed control |
EP2755466A4 (de) | 2011-09-13 | 2015-04-15 | Monsanto Technology Llc | Verfahren und zusammensetzungen zur unkrautbekämpfung |
WO2013050318A1 (en) | 2011-10-07 | 2013-04-11 | Basf Plant Science Company Gmbh | Method of producing plants having increased resistance to pathogens |
WO2013050593A1 (en) | 2011-10-07 | 2013-04-11 | Basf Plant Science Company Gmbh | Method of producing plants having increased resistance to pathogens |
WO2013050611A1 (en) | 2011-10-07 | 2013-04-11 | Basf Plant Science Company Gmbh | Method of producing plants having increased resistance to pathogens |
WO2013053686A1 (en) | 2011-10-10 | 2013-04-18 | Basf Plant Science Company Gmbh | Method of producing plants having increased resistance to pathogens |
WO2013053711A1 (en) | 2011-10-10 | 2013-04-18 | Basf Plant Science Company Gmbh | Method of producing plants having increased resistance to pathogens |
US10240161B2 (en) | 2012-05-24 | 2019-03-26 | A.B. Seeds Ltd. | Compositions and methods for silencing gene expression |
CA2888264A1 (en) | 2012-10-18 | 2014-04-24 | Monsanto Technology Llc | Methods and compositions for plant pest control |
US10683505B2 (en) | 2013-01-01 | 2020-06-16 | Monsanto Technology Llc | Methods of introducing dsRNA to plant seeds for modulating gene expression |
AU2013371825B2 (en) | 2013-01-01 | 2019-10-24 | A.B. Seeds Ltd. | Methods of introducing dsRNA to plant seeds for modulating gene expression |
EP2945484A4 (de) | 2013-01-15 | 2017-03-29 | Monsanto Technology LLC | Verfahren und zusammensetzungen zur schädlingsbekämpfung bei pflanzen |
US10000767B2 (en) | 2013-01-28 | 2018-06-19 | Monsanto Technology Llc | Methods and compositions for plant pest control |
US10462994B2 (en) | 2013-01-29 | 2019-11-05 | Basf Plant Science Company Gmbh | Fungal resistant plants expressing HCP7 |
CN104994725B (zh) | 2013-01-29 | 2022-07-01 | 巴斯夫植物科学有限公司 | 表达hcp6的抗真菌植物 |
CN104981149B (zh) | 2013-01-29 | 2022-03-04 | 巴斯夫植物科学有限公司 | 表达ein2的抗真菌植物 |
CA2900005A1 (en) | 2013-03-08 | 2014-09-12 | Basf Plant Science Company Gmbh | Fungal resistant plants expressing mybtf |
EP2967082A4 (de) | 2013-03-13 | 2016-11-02 | Monsanto Technology Llc | Verfahren und zusammensetzungen zur unkrautbekämpfung |
EP3604535A3 (de) | 2013-03-13 | 2020-04-22 | Monsanto Technology LLC | Verfahren und zusammensetzungen zur unkrautbekämpfung |
US20140283211A1 (en) | 2013-03-14 | 2014-09-18 | Monsanto Technology Llc | Methods and Compositions for Plant Pest Control |
US10568328B2 (en) | 2013-03-15 | 2020-02-25 | Monsanto Technology Llc | Methods and compositions for weed control |
WO2014202463A1 (en) | 2013-06-17 | 2014-12-24 | Rheinisch-Westfälische Technische Hochschule Aachen | Method for identifying substances which prime cells for a stress response and cells for use in this method |
WO2015004174A1 (en) | 2013-07-10 | 2015-01-15 | Basf Se | Rnai for the control of phytopathogenic fungi and oomycetes by inhibiting the expression of cyp51 genes |
WO2015010026A2 (en) | 2013-07-19 | 2015-01-22 | Monsanto Technology Llc | Compositions and methods for controlling leptinotarsa |
US9850496B2 (en) | 2013-07-19 | 2017-12-26 | Monsanto Technology Llc | Compositions and methods for controlling Leptinotarsa |
ES2706499T3 (es) | 2013-08-14 | 2019-03-29 | Inst Of Genetics And Developmental Biology | Métodos de modulación del tamaño de la semilla y de los órganos de plantas |
EP3066200B1 (de) | 2013-11-04 | 2024-12-04 | Greenlight Biosciences, Inc. | Zusammensetzungen und verfahren zur bekämpfung eines befalls durch arthropoden und andere schädlinge |
UA119253C2 (uk) | 2013-12-10 | 2019-05-27 | Біолоджикс, Інк. | Спосіб боротьби із вірусом у кліща varroa та у бджіл |
US10334848B2 (en) | 2014-01-15 | 2019-07-02 | Monsanto Technology Llc | Methods and compositions for weed control using EPSPS polynucleotides |
EP3420809A1 (de) | 2014-04-01 | 2019-01-02 | Monsanto Technology LLC | Zusammensetzungen und verfahren zur bekämpfung von insektenbefall |
AU2015280252A1 (en) | 2014-06-23 | 2017-01-12 | Monsanto Technology Llc | Compositions and methods for regulating gene expression via RNA interference |
US11807857B2 (en) | 2014-06-25 | 2023-11-07 | Monsanto Technology Llc | Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression |
RU2021123470A (ru) | 2014-07-29 | 2021-09-06 | Монсанто Текнолоджи Ллс | Композиции и способы борьбы с насекомыми-вредителями |
MX395326B (es) | 2015-01-22 | 2025-03-25 | Monsanto Technology Llc | Composiciones y métodos para controlar leptinotarsa. |
BR112017016688B1 (pt) | 2015-02-04 | 2024-01-23 | Basf Plant Science Company Gmbh | Método para aumentar a resistência fúngica, método para a produção de um produto e método para criar uma planta resistente a fungos |
WO2016196738A1 (en) | 2015-06-02 | 2016-12-08 | Monsanto Technology Llc | Compositions and methods for delivery of a polynucleotide into a plant |
US10655136B2 (en) | 2015-06-03 | 2020-05-19 | Monsanto Technology Llc | Methods and compositions for introducing nucleic acids into plants |
EP3054014A3 (de) | 2016-05-10 | 2016-11-23 | BASF Plant Science Company GmbH | Benutzung einer fungizids auf transgenen pflanzen |
GB201721600D0 (en) | 2017-12-21 | 2018-02-07 | Plant Bioscience Ltd | Metabolic engineering |
GB201808617D0 (en) | 2018-05-25 | 2018-07-11 | Plant Bioscience Ltd | Scaffold modification |
GB201908431D0 (en) | 2019-06-12 | 2019-07-24 | Plant Bioscience Ltd | Biosynthetic genes and polypeptides |
GB201909104D0 (en) | 2019-06-25 | 2019-08-07 | Plant Bioscience Ltd | Transferase enzymes |
EP4508189A1 (de) | 2022-04-14 | 2025-02-19 | Institute of Agricultural Resources and Regional Planning of the Chinese Academy of Agricultural Sciences | Modifizierte mikroalgen für verbesserte phosphatuptade mit überexpression von psrr1 und optional unterexpression von ptc1 |
GB202209501D0 (en) | 2022-06-29 | 2022-08-10 | Plant Bioscience Ltd | Biosynthetic enzymes |
LU503053B1 (en) | 2022-11-14 | 2024-05-14 | Univ Birmingham | Somaclonal Variation |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59216245A (ja) | 1983-05-25 | 1984-12-06 | Nec Corp | 正規化回路 |
US5272065A (en) * | 1983-10-20 | 1993-12-21 | Research Foundation Of State University Of New York | Regulation of gene expression by employing translational inhibition of MRNA utilizing interfering complementary MRNA |
US5190931A (en) * | 1983-10-20 | 1993-03-02 | The Research Foundation Of State University Of New York | Regulation of gene expression by employing translational inhibition of MRNA utilizing interfering complementary MRNA |
US5107065A (en) * | 1986-03-28 | 1992-04-21 | Calgene, Inc. | Anti-sense regulation of gene expression in plant cells |
US5453566A (en) * | 1986-03-28 | 1995-09-26 | Calgene, Inc. | Antisense regulation of gene expression in plant/cells |
ES2076143T3 (es) * | 1986-04-02 | 1995-11-01 | Pioneer Hi Bred Int | Plantas resistentes a virus que tienen arn antisentido. |
US5316931A (en) * | 1988-02-26 | 1994-05-31 | Biosource Genetics Corp. | Plant viral vectors having heterologous subgenomic promoters for systemic expression of foreign genes |
US5922602A (en) * | 1988-02-26 | 1999-07-13 | Biosource Technologies, Inc. | Cytoplasmic inhibition of gene expression |
US5034323A (en) * | 1989-03-30 | 1991-07-23 | Dna Plant Technology Corporation | Genetic engineering of novel plant phenotypes |
US5231020A (en) * | 1989-03-30 | 1993-07-27 | Dna Plant Technology Corporation | Genetic engineering of novel plant phenotypes |
WO1990012107A1 (en) * | 1989-03-31 | 1990-10-18 | The Salk Institute Biotechnology/Industrial Associates, Inc. | Recombinant expression system based on satellite tobacco mosaic virus |
SE466123B (sv) | 1989-04-25 | 1991-12-16 | Kvaser Consultant Ab | Anordning foer att synkonisera data i ett datoriserat system, som innefattar en gemensam seriell datakommunikationskanal |
NL9001711A (nl) * | 1989-10-03 | 1991-05-01 | Clovis Matton N V | Genetische manipulaties met recombinant dna, dat van rna virus afgeleide sequenties omvat. |
GB8928179D0 (en) * | 1989-12-13 | 1990-02-14 | Ici Plc | Dna,constructs,cells and plants derived therefrom |
JP3782442B2 (ja) * | 1990-03-02 | 2006-06-07 | ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド | 遺伝子操作した宿主におけるカロテノイドの生合成 |
WO1991013994A1 (en) * | 1990-03-13 | 1991-09-19 | Commonwealth Scientific And Industrial Research Organisation | Gene expression |
ATE212671T1 (de) * | 1991-08-01 | 2002-02-15 | Large Scale Biology Corp | Rekombinierte virale nukleinsäure aus pflanzen |
GB9210273D0 (en) * | 1992-05-13 | 1992-07-01 | Ici Plc | Dna |
US5539093A (en) * | 1994-06-16 | 1996-07-23 | Fitzmaurice; Wayne P. | DNA sequences encoding enzymes useful in carotenoid biosynthesis |
-
1994
- 1994-06-16 US US08/260,546 patent/US5922602A/en not_active Expired - Fee Related
-
1995
- 1995-05-26 DE DE69534421T patent/DE69534421T2/de not_active Expired - Fee Related
- 1995-05-26 EP EP00127988A patent/EP1087017B1/de not_active Expired - Lifetime
- 1995-05-26 JP JP8502208A patent/JPH10501968A/ja not_active Ceased
- 1995-05-26 DE DE69527654T patent/DE69527654T2/de not_active Expired - Fee Related
- 1995-05-26 CA CA002193094A patent/CA2193094C/en not_active Expired - Fee Related
- 1995-05-26 ES ES00127988T patent/ES2246210T3/es not_active Expired - Lifetime
- 1995-05-26 AU AU26534/95A patent/AU710588B2/en not_active Ceased
- 1995-05-26 MX MX9606476A patent/MX9606476A/es unknown
- 1995-05-26 EP EP95921458A patent/EP0804600B1/de not_active Expired - Lifetime
- 1995-05-26 AT AT95921458T patent/ATE221574T1/de not_active IP Right Cessation
- 1995-05-26 AT AT00127988T patent/ATE303446T1/de not_active IP Right Cessation
- 1995-05-26 WO PCT/US1995/006741 patent/WO1995034668A2/en active IP Right Grant
- 1995-05-26 ES ES95921458T patent/ES2180641T3/es not_active Expired - Lifetime
- 1995-05-31 IL IL11395595A patent/IL113955A0/xx unknown
- 1995-05-31 ZA ZA954451A patent/ZA954451B/xx unknown
-
1999
- 1999-03-09 US US09/265,576 patent/US6479291B2/en not_active Expired - Fee Related
- 1999-11-08 US US09/436,068 patent/US6376752B1/en not_active Expired - Fee Related
-
2002
- 2002-03-20 US US10/103,450 patent/US6720183B2/en not_active Expired - Fee Related
-
2004
- 2004-02-06 US US10/773,601 patent/US20040142477A1/en not_active Abandoned
-
2005
- 2005-05-13 US US11/129,170 patent/US20050204422A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
MX9606476A (es) | 1997-05-31 |
AU710588B2 (en) | 1999-09-23 |
DE69527654T2 (de) | 2003-04-03 |
US6720183B2 (en) | 2004-04-13 |
ES2180641T3 (es) | 2003-02-16 |
ES2246210T3 (es) | 2006-02-16 |
JPH10501968A (ja) | 1998-02-24 |
IL113955A0 (en) | 1995-08-31 |
WO1995034668A2 (en) | 1995-12-21 |
DE69527654D1 (de) | 2002-09-05 |
US20040142477A1 (en) | 2004-07-22 |
EP1087017B1 (de) | 2005-08-31 |
ATE221574T1 (de) | 2002-08-15 |
ZA954451B (en) | 1996-02-05 |
CA2193094C (en) | 2002-07-16 |
CA2193094A1 (en) | 1995-12-21 |
EP1087017A3 (de) | 2001-11-28 |
WO1995034668A3 (en) | 1996-02-01 |
US6479291B2 (en) | 2002-11-12 |
US20020155605A1 (en) | 2002-10-24 |
AU2653495A (en) | 1996-01-05 |
US20050204422A1 (en) | 2005-09-15 |
ATE303446T1 (de) | 2005-09-15 |
EP1087017A2 (de) | 2001-03-28 |
US5922602A (en) | 1999-07-13 |
EP0804600B1 (de) | 2002-07-31 |
DE69534421D1 (de) | 2005-10-06 |
US20030219897A9 (en) | 2003-11-27 |
US6376752B1 (en) | 2002-04-23 |
EP0804600A1 (de) | 1997-11-05 |
US20010006797A1 (en) | 2001-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69534421T2 (de) | Cytoplasmatische Inhibition des Genexpression | |
DE68929521T2 (de) | Nicht-nukleare chromosomale Transformation | |
DE69233353T2 (de) | Transitpeptid-dna sequenz | |
DE3689802T2 (de) | "Hervorrufung somatischer Veränderungen in Pflanzen durch Verwendung von minussträngigen RNAs". | |
DE69332763T2 (de) | Virale amplifikation rekombinanter boten-rna in transgenen pflanzen | |
DE69535064T2 (de) | Herstellung von gamma-linolensaüre durch eine delta 6-desaturase | |
DE69636392T2 (de) | Polypeptide und polynukleotide bezüglich alpha-und-beta-glutamat-dehydrogenase-untereinheiten und deren verwendung | |
DE69634361T2 (de) | Für eine cinnamoyl-coa-reduktase kodierende dna sequenzen, und ihre verwendung zur regulation des lignun-gehalts von pflanzen | |
EP0421376B1 (de) | Multifunktionelle RNA mit Selbstprozessierungsaktivität, ihre Herstellung und Verwendung | |
DE60207714T2 (de) | Am semidwarfing von pflanzen beteiligtes gen sd1 und seine verwendungen | |
DE69734512T2 (de) | Steigerung der genexpression | |
EP0513054B1 (de) | Virus/herbizidresistenz-gene, verfahren zu ihrer herstellung und ihre verwendung | |
EP2379725B1 (de) | Verfahren zur steigerung des saccharoseertrages beim landwirtschaftlichen anbau von zuckerrüben und zuckerrohr | |
EP0428881B1 (de) | RNA mit Endonuclease- und antisense-Aktivität, ihre Herstellung und ihre Verwendung | |
DE69331216T2 (de) | Planze resistent gegen mindestens zwei viren und dessen preparation | |
WO2001059135A1 (de) | Verfahren zur beeinflussung der pollenentwicklung durch veränderung des saccharosestoffwechsels | |
JPH09173069A (ja) | 4−クマル酸:補酵素aリガーゼ遺伝子、及び該遺伝子を用いた植物中のリグニンの低減方法 | |
WO1994026912A1 (de) | Verfahren und vektorkonstrukte zur expressionssteigerung von transgenen | |
WO1997045547A2 (de) | Lokalisierter zelltod in pflanzen | |
CA2309028C (en) | The cytoplasmic inhibition of gene expression | |
DE69723383T2 (de) | Gen kodierend für Pflanze-Indolacetaldehyd-Oxidase und seine Verwendung | |
DE10313795A1 (de) | Veränderte PPase-Expression in Zuckerrübe | |
EP0979874A2 (de) | Protein und DNA-Sequenz der Pinosylvin-3-0-Methyltransferase (PMT) | |
WO2002103023A2 (de) | Verfahren zur herstellung von c9-aldehyden, c9-alkoholen durch divinylethersynthase | |
WO2001059131A2 (de) | Verwendung von palatinase- und trehalulase-sequenzen als nutritive marker in transformierten zellen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |