DE2504817B2 - Verfahren zur herstellung eines korrosionsbestaendigen schneidewerkzeuges - Google Patents
Verfahren zur herstellung eines korrosionsbestaendigen schneidewerkzeugesInfo
- Publication number
- DE2504817B2 DE2504817B2 DE19752504817 DE2504817A DE2504817B2 DE 2504817 B2 DE2504817 B2 DE 2504817B2 DE 19752504817 DE19752504817 DE 19752504817 DE 2504817 A DE2504817 A DE 2504817A DE 2504817 B2 DE2504817 B2 DE 2504817B2
- Authority
- DE
- Germany
- Prior art keywords
- saw blade
- cutting edge
- tooth
- metal
- implanted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D65/00—Making tools for sawing machines or sawing devices for use in cutting any kind of material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/24—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for saw blades
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C12/00—Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Gear Processing (AREA)
- Heat Treatment Of Articles (AREA)
Description
50
Die Erfindung betrifft ein Verfahren zur Herstellung eines korrosionsbeständigen Schneidwerkzeuges, insbesondere Bandsägeblattes, aus martensitischem Stahl mit
hoher Standzeit, dessen Schneidekante mit einer harten Metallverbindung überzogen ist. SS
Schneidwerkzeuge aus Stahl und Verfahren zur ihrer Herstellung sind aus den US-PS 7 06 701, 7 06 702,
18 572, 26 85 535, 26 98 912. 27 14 563, 27 19 820,
54 225, 27 99 760, 28 75112, 2916 409, 29 21877,
39 943, 3010 009, 3019126, 3046 936, 3048 498,
180, 3131097, 33 35 169, 33 36 903, 33 41352,
76 156, 33 82 085, 34 04 084, 34 26 730, 34 72 751,
85 654, 35 01334, 35 03 775, 35 13 810, 35 14 388,
62 002, 35 73 090, 35 73 098, 35 75 138, 31 17 022 und
874 sowie aus der DT-PS 19 57 884 bereits fi5 bekannt.
Bisher wurden Bandsägeblätter und andere schneid- oder verschleißfeste Werkzeuge aus einem martensiti
schen Stahl hergestellt, der einer Wärmebehandlung
unterzogen wurde, um ihm eine harte Schneide (Schneidekante) zu verleihen. Man hat auch bereits die
Schneidekanten mit Wolframcarbid, Titancarbid oder anderen harten Materialien beschichtet, um sie zu
härten und sn ihre Standzeit zu verlängern.
Aus der US-PS 3003 370 ist es bereits bekannt,
Schneidwerkzeuge an den besonders beanspruchten Stellen aufzukohlen und diese somit einer Carbidhärtung zu unterziehen. Aus der US· PS 38 32 219 ist die
Verwendung eines linearen Beschleunigers für die Implantation von Chromionen oder Kohlenstoffionen in
die Oberfläche eines Metalls, um dieses zu härten, beschrieben. Aus der US-PS 24 22 561 ist es ferner
bekannt, die gesamte Fläche eines Schneidwerkzeuges, insbesondere eines konventionellen Stahlsägeblattes,
einer Impulshärtung zu unterwerfen. Dies hat jedoch den Nachteil, daß in diesem Falle der gesamte
Sägeblattkörper gehärtet und dadurch die an sich erwünschte Flexibilität des Bereiches außerhalb der
Schneidekanten vermindert wird.
Mit keinem dieser bekannten Verfahren ist es jedoch möglich. Schneidwerkzeuge, insbesondere Bandsägeblätter, aus martensitischem Stahl selektiv so zu härten,
daß sie nur an den besonders beanspruchten Stellen, d.h. an den Schneidekanten, die gewünschte Härte
aufweisen bei gleichzeitiger hoher Korrosionsbeständigkeit und Standzeit.
Aufgabe der Erfindung ist es daher, ein Verfahren anzugeben, mit dessen Hilfe es möglich ist, ein
Schneidwerkzeug, insbesondere ein Bandsägeblatt, aus martensitischem Stahl mit hoher Standzeit selektiv nur
an dessen Schneidekante auf wirksamere Weise zu härten als es bisher mit den bekannten Verfahren
möglich war, das auf technisch einfache und dennoch wirksame Weise durchgeführt werden kann.
Diese Aufgabe wird bei einem Verfahren zur Herstellung eines korrosionsbeständigen Schneidwerkzeuges, insbesondere Bandsägeblattes, aus martensitischem Stahl mit hoher Standzeit, dessen Schneidekante
mit einer harten Metallverbindung überzogen ist, erfindungsgemäß dadurch gelöst, daß man den Stahlkörper des Werkzeuges mit Argongas einer lonenreinigung unterwirft, dann in seine Schneidekante Ionen
eines hochschmelzenden Metalls implantiert, die implantierten Metallionen durch chemische Umsetzung in
das entsprechende Metallcarbid, -nitrid oder -borid überführt und danach die auf diese Weise behandelte
Schneidekante einer an sich bekannten Impulshärtung unterwirft.
Nach dem Verfahren der Erfindung erhält man ein Schneidwerkzeug, insbesondere ein Bandsägeblatt, aus
einem martensitischen Stahl, das selektiv an der Schneidekante in einem solchen Grade gehärtet ist, wie
er mit den bisher bekannten Methoden nicht erzielbar war, wobei gleichzeitig der martensitische Stahlkörper
des Schneidewerkzeuges außerhalb der Schneidekante seine erwünschte Flexibilität beibehält. Das nach dem
erfindungsgemäßen Verfahren gehärtete Schneidewerkzeug besitzt ferner eine ungewöhnlich hohe
Korrosionsbeständigkeit und eine lange Standzeit (Gebrauchsdauer), die ein Vielfaches derjenigen eines
nach einem der bisher bekannten Verfahren gehärteten Schneidewerkzeuges beträgt.
Das nach dem erfindungsgemäßen Verfahren zu behandelnde Schneidwerkzeug, insbesondere Bandsägeblatt, wird zuerst in die gewünschte Endform
gebracht und geschärft. Bei einem Bandsägeblatt
werden entlang einer Kante eines Stahlbandes einer gleichmäßigen Breite Zähne eingeschnitten und dann
werden diese Zähne in üblicher Weise aufgebogen und geschräft. Das Bandsägeblatt wird dann auf die
beanspruchte Weise gereinigt, zu einem Bund fest aufgerollt und in eine Ionenimplantationskammer so
eingeführt, daß die Spitzen der Zähne der Atmosphäre innerhalb der Kammer ausgesetzt sind. Der Bund wird
in einem elektrischen Gleichstromkreis so geschaltet, daß er die Kathode bildet, während das verdampfende
schwerschmelzbare Metall, dessen Ionen in die Schneidekante des Bandsägeblattes implantiert werden sollen,
die Anode bildet. Nach mehrmaligem Spülen der Kammer mit Argon oder einem anderen Inertgas und
Anlegen eines Vakuums entsteht durch den Stromkreis ein Plasma, wodurch die Oberfläche der Schneidekanten
gereinigt wird. Danach wird das schweirschmelzbare Metall zum Schmelzen erhitzt, die dabei entstehenden
Ionen des schwerschmelzbaren Metalls wenden in die Spitzen implantiert (eingelagert). Als Anode kann ein
Elektronenstrahlerzeuger verwendet werden.
Das in die Schneidekante des zu härtenden Schneidewerkzeuges implantierte schwerschmelzbare Metall
wird anschließend durch Umsetzung mit einem geeigneten chemischen Reagens innerhalb der Ionenimplantationskammer
oder durch eine spezielle Behandlung außerhalb der Kammer in ein Carbid, Nitrid oder
Borid dieses Metalls überführt.
Abschließend wird eine Impulshärtung der so behandelten Schneidekante auf an sich bekannte Weise
durchgeführt. Danach wird das Schneidwerkzeug, insbesondere das Bandsägeblatt, auf die: gewünschte
Länge zugeschnitten und die Enden werden miteinander verschweißt, wenn beispielsweise eine kontinuierliche
Bandsägeschleife hergestellt werden soll.
Unter dem hier verwendeten Ausdruck »Bandsäge« ist vorzugsweise eine Fleich- und Knochen-Schneidebandsäge
zu verstehen, bei der in die Spitze jedes Zahns des martensitischen Sägeblattes Titanionen implantiert
worden sind. Diese Titanionen werden dann in Titancarbid umgewandelt und die so behandelten
Sägezähne werden nacheinander durch die Spule einer üblichen Impulshärtungsvorrichtung geführt Jeder
behandelte Sägezahn besteht aus einem gehärteten Martensitsubstrat mit submikroskopischen Kristallen
und einem Überzug aus einem gehärteten Titancarbid. Der Körper der Säge besteht aus Martensit, der keiner
Impulshärtung unterzogen worden ist und daher seine gewünschte Flexibilität beibehält. Das auf diese Weise
erhaltene Sägeblatt zeichnet sich durch eine hohe Korrosionsbeständigkeit und eine hohe Standzeit
(Lebensdauer) aus.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnungen, in denen sich entsprechende Teile
durch gleiche Bezugsziffern gekennzeichnet sind, näher erläutert. Es zeigt
F i g. 1 eine Seitenaufrißansicht eines Teils eines Bandsägeblattes, die eine Form eines erfindungsgemäß
hergestellten Schneidwerkzeuges erläutert;
Fig. 2 eine vergrößerte fragmentarische Seitenaufrißansicht, die einen Zahn des in F i g. 1
dargestellten Sägeblattes zeigt;
F i g. 3 eine schematische Ansicht einer Ionenimplantierungsvakuumkammer,
die ein aufgewickeltes Stück des Bandsägeblattes zeigt, in das Metallionen implantiert
werden sollen;
F i g. 4 eine Seitenaufrißansicht eines Teils des durch eine Impulshärtungsspule einer Impulshärtungsvorrichtung
geführten Bandsägeblattes; und
Fig.5 eine ebene Draufsicht auf das Bandsägeblatt,
die Spule und die Vorrichtung, wie sie in Fig.4 dargestellt sind.
S Im Detail ist das Schneidwerkzeug dargestellt als
Bandsägeblatt 10, das über seine Länge eine gleichmäßige Breite aufweist, wobei die Zähne 12 des Bandsägeblattes
10 am besten aus den F i g. 1 und 2 zu ersehen sind. Die Umrißform des Sägeblattes 10 ist konventionell
und umfaßt eine gerade hintere Kante U und eine Vielzahl von aufeinanderfolgenden, in gleichem Abstand
voneinander angeordneten Zähnen 12 entlang seiner vorderen Kante.
Jeder Zahn 12 weist einen vorderen (ansteigenden)
Jeder Zahn 12 weist einen vorderen (ansteigenden)
is Rand (Schneiderand) 13 und einen hinteren (abfallenden)
Rand 14 auf, die sich nach außen zu einer Spitze 15 verjüngen. Die Zähne 12 sind abwechselnd seitlich in
entgegengesetzten Richtungen gegeneinander versetzt. Der vordere Rand oder Schneiderand 13 wird auf
übliche Weise geschärft. Das Sägeblatt 10 besteht aus einem martensitischen Stahl mit 0,95 bis 1,05%
Kohlenstoff, der auf der Rockwell-30N-Skala eine Härte von etwa 70 aufweist (dies entspricht einem Wert
von etwa 50 auf der Rockwell C-Skala). Jeder Zahn 12
weist einen Überzug 16 auf, der seine Spitze bedeckt und aus einem harten Metall, beispielsweise einer
schwerschmelzbaren Metallverbindung, z. B. Wolframcarbid oder Titancarbid, besteht. Der Überzug 16 ist
etwa 0,0254 mm dick und bedeckt etwa 1 mm3 in einer L-Form entlang des Spitzenbereiches des Sägeblattes
10, wobei er sich etwa 1,52 mm bis etwa 1,78 mm von der
Spitze 15 weg nach innen entlang des Schneiderandes 13 erstreckt Der Überzug 16 erstreckt sich etwa 1,76 mm
bis etwa 12,7 mm entlang des hinteren Randes 14.
Bei der Herstellung des Sägeblattes wird ein Stahlbund gestanzt, um die aufeinanderfolgenden Zähne
12 zu erzeugen. Die Zähne 12 werden dann nacheinander aus der Ebene des flachen Körpers 18 herausgebogen,
wobei jeder Zahn 12 in seitlicher Richtung entgegengesetzt zu dem benachbarten Zahn 12
herausgebogen wird. Die Schneideränder 13 der Zähne 12 werden dann geschärft.
Erfindungsgemäß wird ein Stück des so hergestellten Sägeblattes 10, das in der Regel etwa 150 bis etwa 180 m
lang ist aufgewickelt zur Herstellung des in der F i g. 3 dargestellten Sägeblattbundes 20. Der Bund 20 wird
vorher auf normale Weise gereinigt und dann mit den Zähnen nach oben auf eine Kathodenplatte 21 in eine
Vakuumkammer 22 gelegt. Der Bund wird mit der Platte 21 fest elektrisch verbunden. Die Kammer 22 ist mit
einem Wolframanodenfaden 23 oberhalb der Platte 21 ausgestattet und der Faden 23 ist von dem lonenimplantierungsmaterial,
beispielsweise einem Stück Wolframoder Titandraht 24, umhüllt. Die elektrischen Leiter 26
und 27 verbinden den Anodenfaden 23 und die Kathodenplatte 21 mit einem Gleichstrompotential £
Es ist eine Vakuumpumpe P vorgesehen, um die Kammer 22 zu evakuieren und die Gasleitungen 28 und
29 dienen der selektiven Einführung des inerten
Spülgases (Argon) und des Aufkohlungsgases (Methan) in die Kammer 22. Jede Leitung weist ein Steuerventil V
auf. Die Kammer 22 wird dann durch Pumpen bis auf ein Vakuum von 2 χ 10~5 Torr oder besser evakuiert unter
häufigem Spülen mit Argongas. Ein derart niedriger
f'5 Druck ist erforderlich, um die darin erzeugten absorbierten Gase zu entfernen. Danach wird das
Argongas in die Kammer eingeführt bis zu einem ein Plasma aufrechterhaltenden Druck von etwa 10~2 Torr.
Dann wird an den Anodenfaden 23 und die Kathodenplatte 21 eine elektrische Gleichspannung angelegt und
sie wird allmählich erhöht, wodurch eine bessere Reinigungswirkung erzielt wird. Die Plasmabildung
beginnt innerhalb des Bereiches von 1 kV und 50 mA und kann dann bei einem viel niedrigeren Potential
aufrechterhalten werden. Die Potentialeinstellung kann je nach den Bedürfnissen variiert werden, sie beträgt im
allgemeinen 2 bis 3 kV.
Der Bund 20, in dessen Schneidekante Metallionen implantiert werden sollen, wird zuerst mit dem
Argonplasma durch die Ionen gereinigt. Das Argon spritzt jegliche Atomverunreinigungen oder jeglichen
Schmutz, die (der) auf den freiliegenden Oberflächen, insbesondere den Zähnen 12, vorhanden sind (ist),
herunter. Ein Teil des Argons dringt in den Stahl ein und bewirkt die Bildung des superfeinen Martensits, der bei
der nachfolgenden Impulshärtung entsteht. Das Ionenimplantierungsmaterial auf einem Faden (z. B. einem
Draht 24) oder aus einem Bad eines geschmolzenen Metalls, das durch einen Elektrostrahlerzeuger erhitzt
wird, bildet innerhalb der Kammer die Anode. Durch Durchleiten eines ausreichenden Stroms durch den
Faden 23 unter Aufrechterhaltung des Argonplasmas werden der Faden 23 und der Draht 24 allmählich
erhitzt, bis der Draht 24 auf der Anode schmilzt und dann, unterstützt durch das beträchtliche Vakuum
innerhalb der Kammer, verdampft. Diese ionisierten Teilchen werden von einem Bund 20 auf der
Kathodenplatte 23 aufgrund der großen Potentialdifferenz (die von 500 bis 50 000 V variieren kann) angezogen und dadurch wird eine Ionenimplantation bewirkt. Tatsächlich werden die ersten Ionen, die auf die
Oberfläche des Bundes 20 auftreffen, in die Zähne 12 implantiert (eingelagert) und führen zu einem allmählichen Übergang zwischen dem Metall der Zähne 12 und
der Oberfläche. Wenn die Fläche durch die Ionenimplantation »gesättigt« ist, wird d·"· Rest der Ionen auf
der Oberfläche der Zähne 12 über den eingelagerten Ionen abgelagert. Die Eindringtiefe der implantierten
Ionen in das Substrat hängt von der Härte des Substrats ab. Wenn die implantierten Metallionen, z. B. Titanoder Vanadinionen, mit dem in dem Stahlblattsubstrat
vorhandenen Kohlenstoff reagieren, ist es bis heute nicht bekannt, ob sie innerhalb des Kristallgitters des
Substrats eine Ausscheidung bilden oder »in Lösung« vorliegen. Dies ist darauf zurückzuführen, daß die durch
die implantierten Ionen gebildeten Verbindungen zu klein sind, um durch die heutigen Methoden nachgewiesen werden zu können. Die Dauer der Ionenimplanta-
tion kann von einigen Bruchteilen von Sekunden bis zu mehreren Minuten variiert werden. Während des
Ionenimplantlerungsverfahrens nimmt das Vakuum in der Kammer etwas ab, es solltejedoch durch Einstellung
des Argondruckes oder der Metallverdampfung auf dem ss richtigen Wert gehalten werden.
Die vorstehend beschriebene lonenimplantierung kann bei einer Reihe von Stählen oder Eisen
enthaltenden Legierungen, wie z.B. Rasierklingen, technischen Klingen, Bandsägen, Pellen, Nägeln u. dgl,
sowie bei anderen Metallen und Formkörpern, wie z. B. Fleischhackmaschinenplatten, durchgeführt werden.
Empfehlenswert sind martensltische Stähle. Ein solcher
martensitlscher Stahl wird far den Körper des
Sägeblattes 10 verwendet *s
Obwohl Titan oder Wolfram das am besten geeignete Implantlerungsmetall zu sein scheint, können gewünsch·
tenfalis auch verschiedene andere Elemente in Form
von Ionen in die Oberfläche implantiert (eingelagert)
werden. Dazu gehören alle schwerschmelzbaren Elemente, wie Scandium, Titan, Yttrium, Zirkonium,
Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän und Wolfram, die Elemente der Seltenen Erden, wie
Lanthan, Cer, Praseodym, Neodym, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium und Lutetium, die Elemente der Actinidenreihe, wie Actinium,
Thorium, Protactinium, Uran, Neptunium, Plutonium, Americium, Curium, Berkelium Californium, Einsteinium, Fermium, Mendelevium, Nobelium und Lawrencium, sowie Eisen, Kobalt, Nickel und Bor. Einige dieser
Metalle erfordern die Verwendung einer Hochenergie-Verdampfungseinheit, beispielsweise einen Elektronenstrahlerzeuger, um sie zu verdampfen. Bei der
technischen Herstellung ist die Elektronenstrahlverdampfung bevorzugt.
Mit superharten Materialien, die der Substratoberfläche mit implantierten Ionen zugegeben werden können,
können verschleißfeste und korrosionsbeständige Schneidekanten hergestellt werden. Die härtesten
bekannten Materialien sind die Carbide, Boride und Nitride, bei denen es sich um Verbindungen von
Elementen der Übergangsreihe mit Elementen der zweiten Periode, wie z. B. TiC, ScN, VC, Cr4O3 und TiB,
handelt. Außerdem kann der Oberfläche der Zähne mit den implantierten Ionen jedes beliebige andere Metall
innerhalb der oben angegebenen Liste der lonenimplantierungsmaterialien zugesetzt werden. Diese Materialien können dem Stahlsubstrat der Zähne in Form von
Verbindungen zugesetzt werden, diese sind jedoch sehr stabil und schwierig zu verdampfen. Das beste
Verfahren besteht darin, für die lonenimplantierung in die Schneidekante das reine Metall (Ti, Cr, B, Sc u. dgl.)
zu verwenden und dann das Metall in das jeweilige Carbid, Borid oder Nitrid umzuwandeln. Ob Kohlenstoff, Bor oder Stickstoff verwendet wird, hängt von
dem Substratüberzug ab. So ist beispielsweise Kohlenstoff das beste Material für die Umsetzung mit Titan,
Bor ist das beste Material für die Umsetzung mit Vanadin und Stickstoff ist das beste Material für die
Umsetzung mit Scandium.
Die Carburierung, Boridierung oder Nitrierung muß in einer sauerstofffreien Atmosphäre durchgeführt
werden, weil sich sonst ein Oxid des Metallüberzugs auf dem Substrat bilden könnte, das spröder wäre als das
Carbid, Borid oder Nitrid dieses Metalls. Die Carburierung kann auf verschiedene Weise erfolgen: ein
Kohlenstoff enthaltendes Gas, z. B. ein Kohlenwasserstoff, kann mit dem ionenimplantierten Bund 20 auf eine
Temperatur innerhalb des Bereiches von 600 bis 9000C
(In der Regel oberhalb 800° C) erhitzt werden, so daß der Kohlenstoff und die implantierten Metallionen miteinander reagieren unter Bildung eines Carbids, z. B. von
TiC, u. dgl. Zu geeigneten Carbonislerungsgasen gehören Methan, Erdgas, Propan, Acetylen und Benzin. Die
Schneidezähne können auch auf irgendeine andere geeignete Weise carburiert werden, beispielsweise nach
irgendeinem konventionellen Kisten-, Cyanid- oder Oascarburierungsverfahren. Sie können auch in einem
durch eine Stlcketoff/Propan-Mlsohung (oder irgendeine andere carburierende Oasmischung, die aus einem
Lichtbogen verdampften Kohlenstoff enthält) gebildeten Plasma behandelt werden.
Nachdem das Implantlerungsmetall (Titan oder Wolfram) auf etwa 1 mm3 der Zahnspltzenfiäche der
Zähne 12 bis zu einer Dicke von etwa 0,0234 mm
1 92fi
abgelagert worden ist, wird die lonenimplantierung vorzugsweise unterbrochen, und das den Überzug
bildende Titan oder Wolfram wird in ein Carbid umgewandelt. Dies wird dadurch erzielt, daß man eine
Mischung aus Methan, Wasserstoff und Argon oder Propan, Wasserstoff und Argon unmittelbar nach
Beendigung der Ionenimplantation in die Kammer 22 einführt. Der Wasserstoff braucht nur in einer Menge
eingeführt zu werden, die ausreicht, um eine reduzierende Atmosphäre sicherzustellen. Dann wird der Bund 20 to
des Sägeblattes 10 abkühlengelassen und aus der Vakuumkammer 20 herausgenommen, jeder Zahn 12
weist einen Überzug 16 aus Titancarbid oder Wolframcarbid auf, der sich entlang seines Schneiderandes 13
von einer Position zwischen der Spitze 15 und der Einschweifung 13 von einer Position zwischen der
Spitze 15 und der Einschweifung (Einkerbung) des Sägezahns 17 bis zur Spitze selbst erstreck., und er
erstreckt sich von der Spitze 15 entlang des hinteren Randes 14 und endet in einer Position zwischen der
Spitze 15 und der Einschweifung 17. Dies ist in der Fig.2 dargestellt. Wie oben angegeben, beträgt die
Länge des Überzugs 16 entlang der Schneidekante 13 etwa 1,52 bis etwa 1,78 mm, während die Länge entlang
der hinteren Kante etwa 1,78 bis etwa 3,81 mm beträgt. Der Überzug 16 überlappt die Seitenflächen auf beiden
Seiten der Schneidekante 13 und der hinteren Kante 14. Die Überlappung auf den Seiten ist jedoch nur etwa
0,0254 bis etwa 0,0762 mm breit.
Eine wichtige Stufe in dem erfindungsgemäßen Verfahren ist die Impulshärtung der beschichteten
Zähne 12, die erfolgt, nachdem der Bund 20 des Sägeblattes 10 abgekühlt und Luft in die Kammer 22
eingelassen worden ist. Der Bund 20 wird dann aus der Kammer 22 herausgenommen und eine lineare Wegstrecke
mit einer Geschwindigkeit von etwa 10 bis etwa 12 Zähnen pro Sekunde entlang zugeführt. Auf dieser
Wegstrecke werden die Zähne 12 nacheinander dem Hochfrequenz-Magnetfluß der Drossel (Spule) 31 einer
an sich bekannten Impulshärtungsvorrichtung ausgesetzt, die allgemein durch die Ziffer 30 bezeichnet ist.
Eine solche Impulshärtungsvorrichtungsvorrichtung 30 ist auch in der US-PS 27 99 760 beschrieben. Die
Vorrichtung 30 ist mit einer Spule oder Drossel 31 ausgestattet, die aus einem Stück eines schweren
elektrischen Drahtes so geformt ist, daD sie ein Paar
Stege 32 aufweist (die mit der Vorrichtung 30 elektrisch verbunden sind), die jeweils zu einer oberen Schleife 33
und einer unteren Schleife 34 führen. Die Schleifen 33 und 34 sind in parallelen Ebenen in einem Abstand so
voneinander konzentrisch auf einer vertikalen Achse angeordnet. Die Sohlelfen 33 und 34 umfassen Jeweils
etwa 360°, wobei die Enden der Sohlelfen 33 und 34 durch ein Zwischenteil 35 miteinander verbunden sind.
führt, daß die Spitze 15 jedes Zahns 12 der Achse durch die Schleifen 33 und 34, die sich auch zwischen ihnen
befindet, zugeführt und vorübergehend an dieser angeordnet ist. Die Schleifen 33 und 34 sollten auch
einen Durchmesser aufweisen, der groß genug ist, so daß mindestens die äußere Hälfte jedes Zahns 12 sich
vorübergehend innerhalb des Innendurchmessers der Schleifen 33 und 34 befindet, wie es in F i g. 4 dargestellt
ist. Die Vorrichtung 30 ist so angeordnet, daß sie Impulse von 20 MHz oder mehr abgibt und sie wird bei
etwa 6000 Volt betrieben, wodurch eine Induktionserhitzung einer Dauer von etwa 9 bis etwa 10
Millisekunden erzielt wird. Dadurch entstehen pulsierende Rechteckwellen von mehr als 10 Kilowatt pro cm2
für die Induktionsimpulshärtung. Normalerweise benötigt ein vorgehärteter Stahl nur einen einzigen Impuls
pro Zahn. Ein nichtvorgehärteter Stahl wird durch den ersten Impuls gehärtet und erhält dann durch den
zweiten Impuls sein Feinkorngefüge.
Das Hochfrequenz-Magnetfeld der Drossel 31 bewirkt überraschenderweise eine Strukturänderung sowohl
bei dem kohlenstoffimplantierten Titan als auch bei dem darunterliegenden Stahl des Z^hns 12. Wenn
ein Impuls einer kurzen Dauer (1 bis 20 Millisekunden) einwirkt, wird nur eine verhältnismäßig dünne Stahlschicht
einer Dicke von etwa 0,1 bis etwa 0,2 mm eriiitzt. Dieser Bereich wird auf eine Temperatur innerhalb des
Austenitisierungsbereiches, nämlich auf eine Temperatur von etwa 1000 bis etwa 12000C, er'iitzt und der
erhitzte Bereich wird sofort durch die Wärmeleitung der großen, nichterhitzten Sägeblattfläche auf eine tiefe
Temperatur schockartig abgekühlt. Auf diese Weise wird ein martensitisches Feingefüge mit feinen Körnern
gebildet, die so fein sind, daß ihre Struktur durch optische Mikroskope nicht mehr aufgelöst werden kann.
Diese umklammert die Titancarbidschicht, die sich sättigt, und hält sie fest und durch lonenimplantierung
werden sie tief in den Stahl eingebettet. Die Härte des Überzugs 16 wird ebenfalls verbessert, obgleich er
nichtmagnetisch ist.
Nach einem solchen Verfahren erhält man Zähne mit einem martensitischen Abschnitt, der eine Härte von
1000 bis 1350 HV und in einigen Fällen von mehr als 1400 HV »uf der Vickers-Skala aufweist. Der Überzug
(Titancarbid) weist eine Härte von 3000 bis 4000 HV auf der Vickers-Skala auf. Bei Verwendung selbst unter
korrosiven Bedingungen, beispielsweise zum Zerschneiden von Fleisch und Knochen, hält ein erfindungsgemäß
hergestelltes Sägeblatt mindestens 8 bis 10 mal so Itng
wie ein konventionelles Sägeblatt. Die letzte Stufe zur Herstellung eines Bandsägeblattes besteht darin, das
Sägeblatt auf eine bestimmte Lange zuzuschneiden und die Enden miteinander zu verschweißen zur Herstellung
einer kontinuierlichen Sohlelfe.
709629/423
Claims (6)
1. Verfahren zur Herstellung eines korrosionsbeständigen Schneidwerkzeuges, insbesondere Bandsägeblattes, aus martensitischem Stahl mit hoher
Standzeit, dessen Schneidekante mit einer harten Metallverbindung Oberzogen ist, dadurch gekennzeichnet, daß man den Stahlkörper des
Werkzeuges mit Argongas einer Ionenreinigung unterwirft, dann in seine Schneidekante Ionen eines <o
hochschmelzenden Metalls implantiert, die implantierten Metallionen durch chemische Umsetzung in
das entsprechende Metallcarbid, -nitrid oder -bond überführt und danach die auf diese Weise behandelte
Schneidkante einer an sich bekannten Impulshärtung unterwirft.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die implantierten Metallionen
durch Umsetzung mit Kohlenstoff in das entsprechende Metallcarbid überführt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man die Schneidekante mit
einem Überzug aus Wolframcarbid und/oder Titancarbid versieht.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man einen Stahlkörper
mit einer Vickers-Härte von mehr als 1000 HV verwendet und diesen mit einem Überzug aus einer
Metallverbindung mit einer Vickers-Härte von mehr als 3000 HV versieht.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man als Stahlkörper
ein Sägeblatt mit einer Vielzahl von im Abstand voneinander angeordneten Zähnen verwendet, deren Schneidekante der Spitze jedes Zahns benach-
bart ist und bei dem sich der Überzug aus der harten Metallverbindung über die hintere und die vordere
Kante jedes Zahns erstreckt.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man als Stahlkörper ein Sägeblatt
verwendet, bei dem sich der Überzug aus der harten Metallverbindung von einer Position in der Mitte
zwischen der Einschweifung und der Spitze jedes Zahns des Sägeblattes bis zu der Spitze selbst
entlang sowohl der Schneidekante als auch entlang der hinteren Kante jedes Zahns erstreckt.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/505,148 US3988955A (en) | 1972-12-14 | 1974-09-11 | Coated steel product and process of producing the same |
Publications (3)
Publication Number | Publication Date |
---|---|
DE2504817A1 DE2504817A1 (de) | 1976-04-01 |
DE2504817B2 true DE2504817B2 (de) | 1977-07-21 |
DE2504817C3 DE2504817C3 (de) | 1978-03-02 |
Family
ID=24009214
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19757503466U Expired DE7503466U (de) | 1974-09-11 | 1975-02-05 | Korrosionsbestaendiges schneidwerkzeug |
DE2504817A Expired DE2504817C3 (de) | 1974-09-11 | 1975-02-05 | Verfahren zur Herstellung eines korrosionsbeständigen Schneidewerkzeuges |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19757503466U Expired DE7503466U (de) | 1974-09-11 | 1975-02-05 | Korrosionsbestaendiges schneidwerkzeug |
Country Status (12)
Country | Link |
---|---|
JP (1) | JPS5135180A (de) |
AT (1) | AT352372B (de) |
CA (1) | CA1041881A (de) |
CH (1) | CH587702A5 (de) |
DE (2) | DE7503466U (de) |
DK (1) | DK649274A (de) |
FR (1) | FR2284408A1 (de) |
GB (1) | GB1513667A (de) |
IE (1) | IE40786B1 (de) |
IT (1) | IT1035546B (de) |
SE (1) | SE7500377L (de) |
ZA (1) | ZA747567B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3607907C1 (de) * | 1986-03-10 | 1987-08-13 | Andreas Dr-Ing Gerve | Schneidwerkzeug |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT382892B (de) * | 1983-08-25 | 1987-04-27 | Vni Instrument Inst | Verfahren zum auftragen einer beschichtung |
JPS6187833A (ja) * | 1984-10-05 | 1986-05-06 | Univ Osaka | 高エネルギ−電子線による固体深部への異種原子の過飽和注入と濃度の制御方法 |
GB8512542D0 (en) * | 1985-05-17 | 1985-06-19 | Atomic Energy Authority Uk | Improved cutting edges |
AT388394B (de) * | 1987-01-09 | 1989-06-12 | Vni Instrument Inst | Verfahren zur herstellung von schneidwerkzeug |
DE19840950A1 (de) * | 1998-09-08 | 2000-03-09 | Jagenberg Papiertech Gmbh | Messer zum Schneiden laufender Materialbahnen |
DE19842515C1 (de) * | 1998-09-17 | 2000-04-20 | Sabine Boehm | Verfahren zur Oberflächenbehandlung metallischer Werkstoffe |
WO2001019578A1 (de) * | 1999-09-11 | 2001-03-22 | Handschuh & Scheider Gmbh. | Sägeblatt sowie verfahren zur herstellung eines sägeblatts |
CN101160192B (zh) * | 2005-02-24 | 2012-10-24 | 欧瑞康贸易股份公司(特吕巴赫) | 锯带和锯带的生产方法 |
JP5174467B2 (ja) * | 2005-02-24 | 2013-04-03 | エリコン トレーディング アーゲー.,トリュープバッハ | 帯鋸及び帯鋸の製造方法 |
CN100384585C (zh) * | 2005-04-06 | 2008-04-30 | 三一重工股份有限公司 | 高耐磨平地机刀片制造方法 |
CN100376356C (zh) * | 2005-04-06 | 2008-03-26 | 三一重工股份有限公司 | 高强度高耐磨闸板制造方法 |
DE102012106351B4 (de) * | 2012-07-13 | 2015-11-19 | C. & E. Fein Gmbh | Sägeblatt oder Trennschleifblatt aus martensitischem Edelstahl oder Stahl sowie Verfahren zu dessen Herstellung |
GB2540385B (en) * | 2015-07-15 | 2017-10-11 | C4 Carbides Ltd | Improvements in or relating to tool blades and their manufacture |
EP3117943B1 (de) * | 2015-07-15 | 2018-12-05 | C4 Carbides Limited | Werkzeugklingen und deren herstellung |
SE542356C2 (en) | 2017-04-21 | 2020-04-14 | Husqvarna Ab | Cutting blade and method for producing a cutting blade |
-
1974
- 1974-10-31 CA CA212,749A patent/CA1041881A/en not_active Expired
- 1974-11-01 GB GB47387/74A patent/GB1513667A/en not_active Expired
- 1974-11-14 IE IE2348/74A patent/IE40786B1/xx unknown
- 1974-11-22 IT IT54183/74A patent/IT1035546B/it active
- 1974-11-26 ZA ZA00747567A patent/ZA747567B/xx unknown
- 1974-11-29 JP JP49136334A patent/JPS5135180A/ja active Pending
- 1974-12-10 CH CH1641174A patent/CH587702A5/xx not_active IP Right Cessation
- 1974-12-13 DK DK649274A patent/DK649274A/da unknown
- 1974-12-19 AT AT1017474A patent/AT352372B/de not_active IP Right Cessation
-
1975
- 1975-01-02 FR FR7500067A patent/FR2284408A1/fr active Granted
- 1975-01-15 SE SE7500377A patent/SE7500377L/xx unknown
- 1975-02-05 DE DE19757503466U patent/DE7503466U/de not_active Expired
- 1975-02-05 DE DE2504817A patent/DE2504817C3/de not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3607907C1 (de) * | 1986-03-10 | 1987-08-13 | Andreas Dr-Ing Gerve | Schneidwerkzeug |
EP0237034A1 (de) * | 1986-03-10 | 1987-09-16 | Andreas Dr.-Ing. Gervé | Schneidwerkzeug |
Also Published As
Publication number | Publication date |
---|---|
DE2504817A1 (de) | 1976-04-01 |
SE7500377L (sv) | 1976-03-12 |
DE2504817C3 (de) | 1978-03-02 |
IT1035546B (it) | 1979-10-20 |
GB1513667A (en) | 1978-06-07 |
ATA1017474A (de) | 1979-02-15 |
IE40786L (en) | 1976-03-11 |
JPS5135180A (en) | 1976-03-25 |
FR2284408A1 (fr) | 1976-04-09 |
AT352372B (de) | 1979-09-10 |
DK649274A (da) | 1976-03-12 |
CA1041881A (en) | 1978-11-07 |
FR2284408B1 (de) | 1978-09-29 |
CH587702A5 (de) | 1977-05-13 |
DE7503466U (de) | 1978-12-07 |
IE40786B1 (en) | 1979-08-15 |
ZA747567B (en) | 1976-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2504817C3 (de) | Verfahren zur Herstellung eines korrosionsbeständigen Schneidewerkzeuges | |
DE2340282C3 (de) | Verfahren zum Härten der Oberfläche eines Substrats durch Implantieren von Metallionen in die Oberfläche des Substrats und Aufbringen eines Metallüberzugs | |
US3988955A (en) | Coated steel product and process of producing the same | |
DE3144192C2 (de) | Verfahren zum Bedampfen einer Oberfläche mit Hartstoffen und Anwendung des Verfahrens | |
DE3117299C3 (de) | Verfahren zur Herstellung eines mit einem Hartstoff beschichteten Gegenstandes | |
DE69208359T2 (de) | Ätzverfahren | |
DE2823876C2 (de) | Verfahren zum Verdampfen von Material mittels eines Niedervoltbogens | |
EP0105835B1 (de) | Verfahren zur Bildung einer Härteschicht im Bauteil aus Titan oder Titanlegierungen | |
DE3513014C2 (de) | Verfahren zur Behandlung der Oberfläche von Werkstücken | |
DE2233700A1 (de) | Verfahren zur erhoehung der abreibfestigkeit der oberflaeche von schneidwerkzeugen u.dgl. hartmetallteilen | |
DE1298851B (de) | Verfahren zur Materialbearbeitung mittels Strahlungsenergie | |
DE3841730C2 (de) | Verfahren zum Beschichten eines metallischen Grundkörpers mit einem nichtleitenden Beschichtungsmaterial | |
DE3042469C2 (de) | Verfahren zum zweistufigen Nitrieren von ggf. Chrom enthaltenden Eisenlegierungen | |
EP0430872B1 (de) | Werkzeug oder Instrument mit einer verschleissresistenten Hartschicht zum Be- oder Verarbeiten von organischem Material | |
EP0113907A1 (de) | Zur Verhinderung von Störungen durch Sekundärelektronenemission dienende Beschichtung und Verfahren zum Herstellen einer solchen Beschichtung | |
DE1954366B1 (de) | Verfahren und Vorrichtung zur Herstellung von harten UEberzuegen aus Titan- und/oder Tantalverbindungen | |
CH681083A5 (de) | ||
DE2820183C3 (de) | Verfahren und Vorrichtung zum Überziehen der Oberfläche eines elektrisch leitenden Werkstücks | |
DE2431797A1 (de) | Verfahren zum herstellen von bandstahl | |
DE3390522C2 (de) | Spanendes Werkzeug und Verfahren zu dessen Herstellung | |
WO1998026721A1 (de) | Medizinische schere mit verschleissmindernder beschichtung | |
DE4238993C1 (de) | ||
DE2322157A1 (de) | Verfahren zur bildung einer carbidschicht aus einem element der gruppe va des periodensystems auf der oberflaeche eines gegenstandes aus eisen, eisenlegierung oder sintercarbid | |
DE4006457C2 (de) | Verfahren zum Verdampfen von Material in einer Vakuumaufdampfanlage sowie Anlage derselben | |
DE60024445T2 (de) | Verfahren zur Härtung von Oberflächen eines Substrats |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C3 | Grant after two publication steps (3rd publication) | ||
8339 | Ceased/non-payment of the annual fee |