CN211831598U - Heat dissipation assembly of mobile device - Google Patents
Heat dissipation assembly of mobile device Download PDFInfo
- Publication number
- CN211831598U CN211831598U CN201921919662.3U CN201921919662U CN211831598U CN 211831598 U CN211831598 U CN 211831598U CN 201921919662 U CN201921919662 U CN 201921919662U CN 211831598 U CN211831598 U CN 211831598U
- Authority
- CN
- China
- Prior art keywords
- valve
- plate
- heat dissipation
- chamber
- piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 58
- 239000007788 liquid Substances 0.000 claims abstract description 35
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 239000000725 suspension Substances 0.000 claims description 42
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 14
- 238000009423 ventilation Methods 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 8
- 239000002210 silicon-based material Substances 0.000 claims description 8
- 238000003032 molecular docking Methods 0.000 claims description 4
- 230000035515 penetration Effects 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 3
- 239000000565 sealant Substances 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 238000007599 discharging Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 18
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Reciprocating Pumps (AREA)
Abstract
Description
技术领域technical field
本案关于一种行动装置散热组件,尤指一种极薄型,用以与可携式电子装置或行动装置结合的液体散热模块。This case relates to a heat dissipation component for a mobile device, especially a very thin liquid heat dissipation module for combining with a portable electronic device or a mobile device.
背景技术Background technique
近年来智能手机的快速发展,其规格、配备、功能都急速的升级,为了因应其需求,内部的处理芯片能力同样也必须已大幅提升,但处理芯片在高速运转时所产生的热能若无法快速排除,将大幅影响其能效,如当前各国皆在发展的 5G高速传输,更需要在其内部具备快速散热的功能;有鉴于此,如何提供一种行动装置散热模块,使行动装置能够快速散热,实乃目前需要解决的问题。With the rapid development of smartphones in recent years, their specifications, equipment, and functions have been rapidly upgraded. In order to meet their needs, the internal processing chip capability must also be greatly improved. However, if the heat energy generated by the processing chip is not fast enough Exclusion will greatly affect its energy efficiency. For example, 5G high-speed transmission, which is currently being developed in various countries, needs to have the function of rapid heat dissipation inside it. In view of this, how to provide a mobile device heat dissipation module, so that mobile devices can quickly dissipate heat, It is a problem that needs to be solved at present.
实用新型内容Utility model content
本案的主要目的是提供一种液体散热模块,可设置于可携式电子装置内,用以提升散热效果。The main purpose of this application is to provide a liquid cooling module, which can be installed in a portable electronic device to improve the cooling effect.
本案的一广义实施态样为一种行动装置散热组件,包括:一机壳本体,具有一通气孔及一定位容置座,其中,该定位容置座与该通气孔对应设置,且该定位容置座底部连通该通气孔;一微型泵,设置于该定位容置座内,与该定位容置座底部连通的该通气孔相对应,供使该微型泵受驱动运作时所传输的气体由该通气孔排出;一散热管板,内部含有散热液,且一端定位该定位容置座上,并与该行动装置的发热元件接触,以对该发热元件所发出热源作液态对流热交换;其中,该微型泵导送的气体形成热对流,对该散热管板所吸收的热作热交换,并由该通气孔排出。A broad implementation aspect of the present application is a heat dissipation component of a mobile device, comprising: a casing body having a ventilation hole and a positioning accommodating seat, wherein the positioning accommodating seat is disposed corresponding to the ventilation hole, and the positioning accommodating seat The bottom of the seat is communicated with the ventilation hole; a micro-pump is arranged in the positioning and accommodating seat, corresponding to the ventilation hole communicated with the bottom of the positioning and accommodating seat, for the gas transmitted when the micro-pump is driven to operate by The vent hole is discharged; a heat dissipation tube plate contains heat dissipation liquid inside, and one end is positioned on the positioning and accommodating seat, and is in contact with the heating element of the mobile device, so as to perform liquid convection heat exchange with the heat source emitted by the heating element; wherein , the gas guided by the micro-pump forms heat convection, heats the heat absorbed by the heat dissipation tube plate, and is discharged through the ventilation hole.
附图说明Description of drawings
图1为本案行动装置散热组件立体示意图。FIG. 1 is a three-dimensional schematic diagram of the heat dissipation component of the mobile device of the present invention.
图2为本案行动装置散热组件另一角度立体示意图。FIG. 2 is another perspective schematic diagram of the heat dissipation assembly of the mobile device of the present invention.
图3为本案行动装置散热组件剖面立体示意图。FIG. 3 is a cross-sectional three-dimensional schematic diagram of the heat dissipation component of the mobile device of the present invention.
图4为本案行动装置散热组件剖面示意图。FIG. 4 is a schematic cross-sectional view of the heat dissipation component of the mobile device of the present invention.
图5A为本案微型泵第一实施例分解示意图。FIG. 5A is an exploded schematic diagram of the first embodiment of the micropump of the present invention.
图5B为本案微型泵第一实施例另一角度分解示意图。FIG. 5B is another perspective exploded schematic diagram of the first embodiment of the micropump of the present invention.
图6A为本案微型泵第一实施例剖面示意图。6A is a schematic cross-sectional view of the first embodiment of the micropump of the present invention.
图6B至图6C为本案微型泵第一实施例作动示意图。6B to 6C are schematic diagrams of the operation of the first embodiment of the micropump of the present invention.
图7A为本案微型泵第二实施例分解示意图。FIG. 7A is an exploded schematic diagram of the second embodiment of the micropump of the present invention.
图7B为本案微型泵第二实施例另一角度分解示意图。FIG. 7B is another perspective exploded schematic diagram of the second embodiment of the micropump of the present invention.
图8A为本案微型泵第二实施例剖面示意图。FIG. 8A is a schematic cross-sectional view of the second embodiment of the micropump of the present invention.
图8B为本案微型泵第二实施例其衍生实施方式示意图。FIG. 8B is a schematic diagram of a derivative implementation of the second embodiment of the micropump of the present invention.
图8C至图8E为本案微型泵第二实施例作动示意图。8C to 8E are schematic diagrams of the operation of the second embodiment of the micropump of the present invention.
图9A为本案微型泵第三实施例剖面示意图。FIG. 9A is a schematic cross-sectional view of the third embodiment of the micropump of the present invention.
图9B为本案微型泵第三实施例分解示意图FIG. 9B is an exploded schematic diagram of the third embodiment of the micropump of the present invention
图10A至图10C为本案微型泵第三实施例作动示意图。10A to 10C are schematic diagrams of the operation of the third embodiment of the micro pump of the present invention.
图11为本案液体泵立体示意图。Fig. 11 is a three-dimensional schematic diagram of the liquid pump of the present invention.
图12为本案液体泵俯视示意图。Figure 12 is a schematic top view of the liquid pump of the present invention.
图13A为本案液体泵分解示意图。FIG. 13A is an exploded schematic diagram of the liquid pump of the present invention.
图13B为本案液体泵另一角度分解示意图。FIG. 13B is a schematic exploded view of another angle of the liquid pump of the present invention.
图14为图12中AA’剖面线的剖面示意图。Fig. 14 is a schematic sectional view of the section line AA' in Fig. 12 .
图15为图12中BB’剖面线的剖面示意图。Fig. 15 is a schematic cross-sectional view of the section line BB' in Fig. 12 .
图16A至图16B为液体泵作动示意图。16A to 16B are schematic diagrams of the operation of the liquid pump.
附图标记说明Description of reference numerals
1:机壳本体1: case body
11:通气孔11: Air vents
12:定位容置座12: Positioning the receptacle
2:微型泵2: Micro pump
21:喷气孔片21: Air blow hole sheet
210:悬浮片210: Suspension Tablets
211:中空孔洞211: Hollow Hole
212:连接件212: Connector
213:空隙213: void
22:腔体框架22: Cavity frame
23:致动体23: Actuator
231:压电载板231: Piezoelectric Carrier
2311:压电接脚2311: Piezo Pins
232:调整共振板232: Adjust the resonance plate
233:压电板233: Piezo Plate
24:绝缘框架24: Insulation frame
25:导电框架25: Conductive Frame
251:导电接脚251: Conductive pins
252:导电电极252: Conductive Electrodes
26:共振腔室26: Resonance Chamber
27:气流腔室27: Airflow Chamber
21A:进气板21A: Air intake plate
211A:进气孔211A: Air intake
212A:汇流排槽212A: Bus bar slot
213A:汇流腔室213A: Combined Chamber
22A:共振片22A: Resonant sheet
221A:中空孔221A: Hollow hole
222A:可动部222A: Movable part
223A:固定部223A: Fixed part
23A:压电致动器23A: Piezoelectric Actuator
231A:悬浮板231A: Hoverboard
232A:外框232A: Outer frame
233A:支架233A: Bracket
234A:压电元件234A: Piezoelectric element
235A:空隙235A: void
236A:凸部236A: convex part
24A:第一绝缘片24A: First insulating sheet
25A:导电片25A: Conductive sheet
26A:第二绝缘片26A: Second insulating sheet
27A:腔室空间27A: Chamber Space
21B:第一基板21B: First substrate
211B:流入孔211B: Inflow hole
212B:第一表面212B: First Surface
213B:第二表面213B: Second Surface
22B:第一氧化层22B: First oxide layer
221B:汇流通道221B: Busway
222B:汇流腔室222B: Combined Chamber
23B:第二基板23B: Second substrate
231B:硅晶片层231B: Silicon Wafer Layer
2311B:致动部2311B: Actuator
2312B:外周部2312B: Peripheral Department
2313B:连接部2313B: Connector
2314B:流体通道2314B: Fluid Channels
232B:第二氧化层232B: Second oxide layer
2321B:振动腔室2321B: Vibration Chamber
233B:硅材层233B: Silicon layer
2331B:穿孔2331B: Perforated
2332B:振动部2332B: Vibration Department
2333B:固定部2333B: Fixed part
2334B:第三表面2334B: Third Surface
2335B:第四表面2335B: Fourth Surface
24B:压电组件24B: Piezoelectric Components
241B:下电极层241B: Lower electrode layer
242B:压电层242B: Piezoelectric Layer
243B:绝缘层243B: Insulation layer
244B:上电极层244B: Upper electrode layer
3:散热管板3: heat pipe plate
4:液体泵4: Liquid pump
41:阀盖体41: Bonnet body
411:阀盖第一表面411: Bonnet first surface
412:阀盖第二表面412: Bonnet second surface
413:入口通道413: Entryway
413a:入口突缘413a: Entrance flange
413b:第一凸出结构413b: first protruding structure
414:出口通道414: Exit Channel
414a:出口突缘414a: Exit lugs
414b:出口腔室414b: Exit Chamber
415:卡掣件415: Detent
42:阀门片42: valve piece
42a:第一阀门片42a: The first valve piece
42b:第二阀门片42b: Second valve plate
421a、421b:中央阀片421a, 421b: Central valve plate
422a、422b:延伸支架422a, 422b: Extension brackets
423a、423b:透空通孔423a, 423b: through holes
43:阀底座43: Valve base
431:阀底第一表面431: The first surface of the bottom of the valve
432:阀底第二表面432: The second surface of the valve bottom
433:入口阀门通道433: Inlet valve passage
433a:入口凹缘433a: Entry Recess
433b:入口腔室433b: Entry Chamber
434:出口阀门通道434: Outlet valve channel
434a:出口凹缘434a: Outlet Recess
434b:第二凸出结构434b: Second protruding structure
435:对接卡孔435: Docking card hole
436:集流腔室436: Collection Chamber
44:致动器44: Actuator
441:振动片441: Vibration plate
441a:电性接脚441a: Electrical pins
442:压电元件442: Piezoelectric element
45:外筒45: outer cylinder
451:内壁凹置空间451: Inner wall recessed space
452:中心凹槽452: Center groove
453:穿透框口453: Penetration frame
46:密封胶46: Sealant
5:发热元件5: Heating element
具体实施方式Detailed ways
体现本案特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本案能够在不同的态样上具有各种的变化,其皆不脱离本案的范围,且其中的说明及图示在本质上当作说明之用,而非用以限制本案。Some typical embodiments embodying the features and advantages of the present case will be described in detail in the description of the latter paragraph. It should be understood that this case can have various changes in different aspects, all of which do not depart from the scope of this case, and the descriptions and diagrams therein are essentially used for illustration rather than limiting this case.
请参阅图1至图4所示,本案提供一种行动装置散热组件,包含一机壳本体1、微型泵2、散热管板3;机壳本体1具有一通气孔11及一定位容置座12,定位容置座12位于机壳本体1内部,与通气孔11对应设置,并与其相通,且定位容置座12通过通气孔11与机壳本体1外相连通;微型泵2设置于定位容置座12,并与通气孔11对应,当微型泵2开始作动,传输气体由通气孔11排出;散热管板3内部具有一散热液,位于机壳本体1内,其一端定位于定位容置座12,并与行动装置的一发热元件5接触,以对发热元件5所发出的热源进行热交换,散热液于散热管板3内流动,使热源能够平均扩散,并且再通过微型泵2导送的气体形成热对流,对散热管板3 所吸收的热进行热交换,最后气体由通气孔11排出。Please refer to FIG. 1 to FIG. 4 , the present application provides a heat dissipation component for a mobile device, including a
请参阅图5A至图6A,微型泵2的第一实施例为鼓风机微型泵,包含有:一喷气孔片21、一腔体框架22、一致动体23、一绝缘框架24及一导电框架25。喷气孔片21由具有可挠性的材料制作,具有一悬浮片210、一中空孔洞211以及多个连接件212。悬浮片210为可弯曲振动的片状结构,但不以此为限,悬浮片210的形状亦可为方形、圆形、椭圆形、三角形及多角形其中之一。中空孔洞211是贯穿于悬浮片210的中心处,以供气体流通。本实施例中,连接件212的数量是为四个,喷气孔片21通过连接件212固设于定位容置座12内。腔体框架22叠设于喷气孔片21,且其外型与喷气孔片21对应,致动体23叠设于腔体框架22上,并与腔体框架22、悬浮片 210之间定义一共振腔室26。绝缘框架24叠设于致动体23,其外观与腔体框架22近似。导电框架25叠设于绝缘框架24,其外观与绝缘框架24近似,且导电框架25具有一导电接脚251及一导电电极252,导电接脚251自导电框架25的外缘向外延伸,导电电极252自导电框架25内缘向内延伸。此外,致动体23更包含有一压电载板231、一调整共振板232及一压电板233,压电载板231承载叠置于腔体框架22上,调整共振板232承载叠置于压电载板231上,压电板233承载叠置于调整共振板232上,而调整共振板232及压电板233容设于绝缘框架24内,并由导电框架25的导电电极252电连接压电板233,其中,压电载板231、调整共振板232皆为可导电的材料所制成,压电载板231具有一压电接脚2311,压电接脚2311与导电接脚251连接驱动信号(驱动频率及驱动电压),驱动信号得以由压电接脚2311、压电载板231、调整共振板232、压电板233、导电电极252、导电框架25、导电接脚251形成一回路,并由绝缘框架 24将导电框架25与致动体23阻隔,避免短路发生,使驱动信号得以传递至压电板233,压电板233接受驱动信号(驱动频率及驱动电压)后,因压电效应产生形变,来进一步驱动压电载板231及调整共振板232产生往复式地弯曲振动。Please refer to FIGS. 5A to 6A , the first embodiment of the
承上所述,调整共振板232位于压电板233与压电载板231之间,作为两者之间的缓冲物,可调整压电载板231的振动频率。基本上,调整共振板232的厚度大于压电载板231的厚度,且调整共振板232的厚度可变动,借此调整致动体23 的振动频率。As mentioned above, the
多个连接件212在悬浮片210及定位容置座12的内缘之间定义出多个空隙213,以供气体流通。请继续参阅图6A,喷气孔片21、腔体框架22、致动体23、绝缘框架24及导电框架25依序对应堆叠并设置于定位容置座12,喷气孔片21与定位容置座12的底面(未标示)之间形成一气流腔室27。气流腔室27通过喷气孔片21的中空孔洞211,连通致动体23、腔体框架22及悬浮片210之间的共振腔室26。通过控制共振腔室26中气体的振动频率,使其与悬浮片210的振动频率趋近于相同,可使共振腔室26与悬浮片210产生亥姆霍兹共振效应(Helmholtz resonance),俾使气体传输效率提高。The plurality of connecting
图6B及图6C为图6A的微型泵作动示意图,请先审阅图6B所示,当压电板233向远离定位容置座12底面的方向移动时,带动喷气孔片21的悬浮片210以远离定位容置座12的底面方向移动,使气流腔室27的容积急遽扩张,其内部压力下降形成负压,吸引微型泵2外部的气体由多个空隙213流入,并经由中空孔洞211进入共振腔室26,使共振腔室26内的气压增加而产生一压力梯度。再如图6C所示,当压电板233带动喷气孔片21的悬浮片210朝向定位容置座12的底面移动时,共振腔室26 中的气体经中空孔洞211快速流出,挤压气流腔室27内的气体,并使汇聚后的气体以接近伯努利定律的理想气体状态快速且大量地喷出。依据惯性原理,排气后的共振腔室26内部气压低于平衡气压,会导引气体再次进入共振腔室26中。是以,通过重复图6B及图6C的动作后,得以控制压电板233往复式地振动,以及控制共振腔室 26中气体的振动频率与压电板233的振动频率趋近于相同,以产生亥姆霍兹共振效应,俾实现气体高速且大量的传输。6B and 6C are schematic diagrams of the operation of the micro-pump shown in FIG. 6A . Please review FIG. 6B first. When the
请参阅图7A至图8A所示,微型泵2的第二实施例为一压电泵,包含了一进气板21A、一共振片22A、一压电致动器23A、一第一绝缘片24A、一导电片25A 及第二绝缘片26A等结构,其中,压电致动器23A对应于共振片22A而设置,并使进气板21A、共振片22A、压电致动器23A、第一绝缘片24A、导电片25A及第二绝缘片 26A等依序堆叠设置。Please refer to FIGS. 7A to 8A , the second embodiment of the
进气板21A具有至少一进气孔211A、至少一汇流排槽212A及一汇流腔室213A,于本实施例中,进气孔211A的数量以4个为较佳,但不以此为限。进气孔 211A是贯穿进气板21A,用以供气体顺应大气压力的作用而自进气孔211A流入微型泵2内。进气板21A上具有至少一汇流排槽212A,其数量与位置与进气板21A另一表面的进气孔211A对应设置,本实施例的进气孔211A其数量为4个,与其对应的汇流排槽212A其数量亦为4个;汇流腔室213A位于进气板21A的中心处,前述的4个汇流排槽212A的一端连通于对应的进气孔211A,其另一端则连通于进气板21A的中心处的汇流腔室213A,借此可将自进气孔211A进入汇流排槽212A的气体引导并汇流集中至汇流腔室213A。于本实施例中,进气板21A具有一体成型的进气孔211A、汇流排槽212A及汇流腔室213A。The
于一些实施例中,进气板21A的材质可为不锈钢材质所构成,但不以此为限。于另一些实施例中,汇流腔室213A的深度与汇流排槽212A的深度相同,但不以此为限。In some embodiments, the material of the
共振片22A是由一可挠性材质所构成,但不以此为限,且于共振片22A 上具有一中空孔221A,是对应于进气板21A的汇流腔室213A而设置,以供气体通过。于另一些实施例中,共振片22A是可由一铜材质所构成,但不以此为限。The
压电致动器23A是由一悬浮板231A、一外框232A、至少一支架233A 以及一压电元件234A所共同组装而成;悬浮板231A为一正方形型态,并可弯曲振动,外框232A环绕悬浮板231A设置,至少一支架233A连接于悬浮板231A与外框232A之间,提供弹性支撑的效果,压电元件234A亦为正方形型态,贴附于悬浮板231A的一表面,用以随施加电压产生形变以驱动悬浮板231A弯曲振动,且压电元件234A的边长小于或等于悬浮板231A的边长;其中,悬浮板231A、外框232A及支架233A之间具有多个空隙235A,空隙235A供气体通过;此外,压电致动器23A更包含一凸部236A,凸部236A设置于悬浮板231A的另一表面,并与压电元件234A相对设置于悬浮板231A 的两表面。The
如图8A所示,进气板21A、共振片22A、压电致动器23A、第一绝缘片 24A、导电片25A、第二绝缘片26A依序推叠设置,压电致动器23A的悬浮板231A其厚度小于外框232A的厚度,当共振片22A堆叠于压电致动器23A时,压电致动器23A的悬浮板231A、外框232A与共振片22A之间可形成一腔室空间27A。As shown in FIG. 8A , the
请再参阅图8B,压电泵的另一实施例,其元件与前一实施例(图8A) 相同,故不加以赘述,其差异在于,于未作动时,其压电致动器23A的悬浮板231A 以冲压方式往远离共振片22A的方向延伸,并未与外框232A位于同一水平,其延伸距离可由支架233A所调整,且支架233A与悬浮板231A之间呈现非平行,使得压电致动器23A呈凸出状。Please refer to FIG. 8B again, another embodiment of the piezoelectric pump, the components of which are the same as those of the previous embodiment (FIG. 8A), so they will not be repeated. The difference is that the
为了了解上述微型泵2提供气体传输的输出作动方式,请继续参阅图 8C至图8E所示,请先参阅图8C,压电致动器23A的压电元件234A被施加驱动电压后产生形变带动悬浮板231A向上位移,此时腔室空间27A的容积提升,于腔室空间27A 内形成了负压,便汲取汇流腔室213A内的气体进入腔室空间27A内,同时共振片22A 受到共振原理的影响被同步向上带动,连带增加了汇流腔室213A的容积,且因汇流腔室213A内的气体进入腔室空间27A的关系,造成汇流腔室213A内同样为负压状态,进而通过进气孔211A及汇流排槽212A来吸取气体进入汇流腔室213A内。请再参阅图 8D,压电元件234A带动悬浮板231A向下位移,压缩腔室空间27A,推挤腔室空间27A 内的气体通过空隙235A将其向上输送,将气体由微型泵2排出,同时,共振片22A 与悬浮板231A共振而向下位移,并使通过进气孔211A及汇流排槽212A进入汇流腔室 213A内的气体通过中空孔221A进入腔室空间27A。最后请参阅图8E,当悬浮板231A 回复原位时,共振片22A因共振及惯性而向上位移,此时的共振片22A将压缩腔室空间27A内的气体并使其向空隙235A移动,并且提升汇流腔室213A内的容积,让气体能够持续地通过进气孔211A、汇流排槽212A来汇聚于汇流腔室213A内,通过不断地重复上述图8C至图8E所示的微型泵2提供气体传输作动步骤,使微型泵2能够使气体连续自进气孔211A进入进气板21A及共振片22A所构成流道产生压力梯度,再由空隙 235A向上输送,使气体高速流动,达到微型泵2传输气体的效果。In order to understand the output operation mode of the gas transmission provided by the
本案的微型泵2的第三实施例可为一微机电泵,请参阅图9A及图9B,微机电泵包含有一第一基板21B、一第一氧化层22B、一第二基板23B以及一压电组件24B。本实施例的微机电泵是通过半导体制程中的磊晶、沉积、光刻及蚀刻等制程一体成型制出,理应无法拆解,为了详述其内部结构,特以图9B所示的分解图详述。The third embodiment of the
第一基板21B为一硅晶片(Si wafer),其厚度介于150至400微米 (μm)之间,第一基板21B具有多个流入孔211B、一第一表面212B及一第二表面213B,于本实施例中,该多个流入孔211B的数量为4个,但不以此为限,且每个流入孔211B 皆由第二表面213B贯穿至第一表面212B,而流入孔211B为了提升流入效果,将流入孔211B自第二表面213B至第一表面212B呈现渐缩的锥形。The
第一氧化层22B为一二氧化硅(SiO2)薄膜,其厚度介于10至20微米 (μm)之间,第一氧化层22B叠设于第一基板21B的第一表面212B上,第一氧化层22B 具有多个汇流通道221B以及一汇流腔室222B,汇流通道221B与第一基板21B的流入孔211B其数量及位置相互对应。于本实施例中,汇流通道221B的数量同样为4个,4 个汇流通道221B的一端分别连通至第一基板21B的4个流入孔211B,而4个汇流通道 221B的另一端则连通于汇流腔室222B,让气体分别由流入孔211B进入之后,通过其对应相连的汇流通道221B后汇聚至汇流腔室222B内。The
第二基板23B结合至第一基板21B,且包含硅晶片层231B、第二氧化层232B以及硅材层233B。硅晶片层231B具有致动部2311B、外周部2312B、多个连接部2313B及多个流体通道2314B。其中,致动部2311B呈圆形,外周部2312B呈中空环状,环绕于致动部2311B的外围,连接部2313B分别连接于致动部2311B与外周部 2312B之间,流体通道2314B环绕于致动部2311B的外围,且分别位于连接部2313B 之间。第二氧化层232B为一氧化硅层,其厚度介于0.5至2微米(μm)之间,形成于硅晶片层231B上,呈中空环状,并与硅晶片层231B定义一振动腔室2321B。硅材层 233B呈圆形,位于第二氧化层232B且结合至第一氧化层22B,硅材层233B为二氧化硅(SiO2)薄膜,厚度介于2至5微米(μm)之间,具有一穿孔2331B、一振动部2332B、一固定部2333B、一第三表面2334B及一第四表面2335B。穿孔2331B形成于硅材层233B的中心,振动部2332B位于穿孔2331B的周边区域,且垂直对应于振动腔室 2321B,固定部2333B则为硅材层233B的周缘区域,由固定部2333B固定于第二氧化层232B,第三表面2334B与第二氧化层232B接合,第四表面2335B与第一氧化层22B 接合;压电组件24B叠设于硅晶片层231B的致动部2311B。The
压电组件24B包含有一下电极层241B、压电层242B、绝缘层243B及上电极层244B,下电极层241B叠置于硅晶片层231B的致动部2311B,而压电层242B叠置于下电极层241B,两者通过其接触的区域做电性连接,此外,压电层242B的宽度小于下电极层241B的宽度,使得压电层242B无法完全遮蔽住下电极层241B,再于压电层242B的部分区域以及下电极层241B未被压电层242B所遮蔽的区域上叠置绝缘层243B,最后再于绝缘层243B以及未被绝缘层243B遮蔽的压电层242B的区域上叠置上电极层244B,让上电极层244B得以与压电层242B接触来电性连接,同时利用绝缘层243B阻隔于上电极层244B及下电极层241B之间,避免两者直接接触造成短路。The
请参考第10A至图10C,第10A至10C图为微机电泵其作动示意图。请先参考图10A,在压电组件24B的下电极层241B及上电极层244B接收到驱动电压及驱动信号并将其传导至压电层242B后,压电层242B因逆压电效应的影响开始产生形变,会带动硅晶片层231B的致动部2311B开始位移,当压电组件24B带动致动部2311B 向上位移拉开与第二氧化层232B之间的距离,此时,第二氧化层232B的振动腔室 2321B的容积将提升,让振动腔室2321B内形成负压,并将第一氧化层22B的汇流腔室222B内的气体通过穿孔2331B吸入其中。请继续参阅图10B,当致动部2311B受到压电组件24B的牵引向上位移时,硅材层233B的振动部2332B会因共振原理而向上位移,当振动部2332B向上位移时,会压缩振动腔室2321B的空间并且推动振动腔室 2321B内的气体往硅晶片层231B的流体通道2314B移动,让气体能够通过流体通道 2314B向上排出,在振动部2332B向上位移来压缩振动腔室2321B的同时,汇流腔室222B的容积因振动部2332B位移而提升,其内部形成负压,将吸取微机电泵外的气体由流入孔211B进入其中。最后如图10C所示,压电组件24B带动硅晶片层231B的致动部2311B向下位移时,将振动腔室2321B的气体往流体通道2314B推动,并将气体排出,而硅材层233B的振动部2332B亦受致动部2311B的带动向下位移,同步压缩汇流腔室222B的气体,使其通过穿孔2331B向振动腔室2321B移动,后续再将压电组件 24B带动致动部2311B向上位移时,其振动腔室2321B的容积会大幅提升,进而有较高的汲取力将气体吸入振动腔室2321B,再重复以上的动作,以至于通过压电组件 24B持续带动致动部2311B上下位移且连动振动部2332B上下位移,改变微机电泵的内部压力,使其不断地汲取及排出气体,借此以完成微机电泵的动作。Please refer to FIG. 10A to FIG. 10C , which are schematic diagrams of the operation of the MEMS pump. Referring to FIG. 10A , after the
请继续参阅图4所示,本案的行动装置散热组件更包含有一液体泵4,液体泵4连接散热管板3且连通于散热管板3内部,液体泵4作动后,可抽送并带动散热液循环流动,加快散热液的流动速度,使散热管板3上的热源快速地扩散,加速散热管板3的热交换作用。Please continue to refer to FIG. 4 , the heat dissipation component of the mobile device in this case further includes a
请参阅图11至图13B所示,液体泵4包含一阀盖体41、两组阀门片42、一阀底座43、一致动器44及一外筒45。其中一致动器44、一阀底座43、两组阀门片 42、一阀盖体41分别依序置设于外筒45内,再以密封胶46密封外筒45之内部所定位组装而成。Referring to FIGS. 11 to 13B , the
请参阅图11、图13A、图13B以及图15所示,阀盖体41具有一阀盖第一表面411、阀盖第二表面412、一入口通道413、一出口通道414及多个卡掣件415,其中,入口通道413及出口通道414分别贯穿阀盖第一表面411及阀盖第二表面412 之间,以及入口通道413于阀盖第二表面412上的外缘凸设有一入口突缘413a,且在入口突缘413a上凸设一第一凸出结构413b,而出口通道414于阀盖第二表面412上的外缘凸设有一出口突缘414a,且在出口突缘414a的中心凹设一出口腔室414b,又多个卡掣件415由阀盖第二表面412向外凸出。于本实施例中,卡掣件415数量为2,但不以此为限,可依实际定位需求的数量而设置。11, 13A, 13B and 15, the
上述两组阀门片42,主要材质为聚亚酰胺(Polyimide,PI)高分子材料,其制造方法主要利用反应离子气体干蚀刻(reactive ion etching,RIE)的方法,以感光性光阻涂布于阀门片42结构之上,并曝光显影出阀门片42结构图案后,再以进行蚀刻,由于有光阻覆盖处会保护聚亚酰胺(Polyimide,PI)片不被蚀刻,因而可蚀刻出阀门片42,两组阀门片42包含一第一阀门片42a及一第二阀门片42b,且第一阀门片42a及第二阀门片42b分别设有一中央阀片421a、421b,而中央阀片 421a、421b周边各设置多个延伸支架422a、422b以作弹性支撑,并使每一延伸支架 422a、422b相邻之间各形成一透空通孔423a、423b。The above-mentioned two groups of
上述的阀底座43与阀盖体41对接,且第一阀门片42a及第二阀门片 42b定置在两者之间,阀底座43具有一阀底第一表面431、一阀底第二表面432、一入口阀门通道433及一出口阀门通道434,其中,入口阀门通道433及出口阀门通道434贯穿设置于阀底第一表面431及阀底第二表面432之间,以及入口阀门通道433 于阀底第一表面431上之内缘凹设有一入口凹缘433a,供与阀盖体41的入口突缘 413a相对接,且第一阀门片42a置设在其间,使中央阀片421a受阀盖体41的第一凸出结构413b顶触,供以封闭阀盖体41的入口通道413,第一阀门片42a的中央阀片 421a常态顶触第一凸出结构413b,以产生一预力作用并有助于预盖紧以防止逆流 (如图15所示),又入口凹缘433a的中心凹设一入口腔室433b,而出口阀门通道434 于阀底第一表面431上之内缘凹设有一出口凹缘434a,且在出口凹缘434a的中心凸设一第二凸出结构434b,又出口凹缘434a与阀盖体41的出口突缘414a相对接,且第二阀门片42b置设在其间,使中央阀片421b受第二凸出结构434b顶触,供以封闭阀底座43的出口阀门通道434,第二阀门片42b的中央阀片421b常态顶触第二凸出结构 434b,以产生一预力作用并有助于预盖紧以防止逆流(如图15所示),又阀底第一表面431对应到阀盖体41的多个卡掣件415的位置也设有相同数量的对接卡孔435,如此如图14所示,阀盖体41的多个卡掣件415对应卡入阀盖体41的多个对接卡孔435 中,供使阀底座43与阀盖体41得以对接封盖第一阀门片42a及第二阀门片42b并实现定位组装,于本实施例中,卡掣件415数量为2,所以对接卡孔435的数量为2,但不以此为限,可依实际定位需求的数量而设置。又,阀底第二表面432上凹陷形成一集流腔室436,集流腔室436连通入口阀门通道433及出口阀门通道434。The above-mentioned
上述的致动器44包含有一振动片441及一压电元件442,振动片441 为金属材质,压电元件442采用高压电数的锆钛酸铅(PZT)系列的压电粉末制造而成,且压电元件442贴附于振动片441一侧面,以及振动片441封盖于阀底座43的阀底第二表面432,以封闭集流腔室436,又该振动片441具有一电性接脚441a,供以对外与电源电性连接,以使压电元件442得以驱动变形而振动位移。The above-mentioned
上述外筒45为一侧凹设有一内壁凹置空间451,且在内壁凹置空间 451底部具有一挖空的中心凹槽452及贯穿外筒45的一侧并连通外部的穿透框口453,其中,内壁凹置空间451内依序由致动器44、阀底座43、两组阀门片42以及阀盖体41置入其中,且致动器44的电性接脚441a穿置定位于穿透框口453中。并以填封密封胶46于内壁凹置空间451中予以定位,而致动器44的压电元件442对应设置于中心凹槽452中,且受驱动时得于中心凹槽452内振动位移。The
本案微液泵在具体实施液体传输的操作是如图16A所示,当压电元件 442受电压驱动而向下振动位移时,阀底座43的入口腔室433b形成吸力,以拉引第一阀门片42a的中央阀片421a位移,此时第一阀门片42a的中央阀片421a不封闭阀盖体41的入口通道413,使液体由阀盖体41的入口通道413导入经由第一阀门片42a的透空通孔423a流入阀底座43的入口腔室433b,并流入集流腔室436中缓冲集中液体,其后,图16B所示,致动器44的压电元件442向上振动位移时,集流腔室436中缓冲集中的液体往阀底座43的出口阀门通道434推挤,使第二阀门片42b的中央阀片421b 脱离第二凸出结构434b的顶触,使流体顺利由第二阀门片42b的透空通孔423b流入阀盖体41的出口腔室414b,再由出口通道414流出,来达到液体的传输。As shown in FIG. 16A , when the
综上所述,本案所提供的行动装置散热组件,利用内部具有散热液的散热管板对行动装置的发热元件(如处理芯片)进行散热,利用液体泵加快散热液的流动,使热能可以快速平均分散于整个散热管板,加快散入效果,再利用微型泵对散热管板输送气体,进行热交换,降低散热管板的温度,大幅提升散热效果,能够有效降低行动装置处理器过热的问题,极具产业利用性及进步性。To sum up, the heat dissipation component of the mobile device provided in this case uses the heat dissipation tube plate with the heat dissipation liquid inside to dissipate heat from the heat generating element (such as the processing chip) of the mobile device, and uses the liquid pump to speed up the flow of the heat dissipation liquid, so that the heat energy can be quickly It is evenly distributed on the entire heat dissipation tube plate to speed up the diffusion effect, and then the micro pump is used to transport gas to the heat dissipation tube plate for heat exchange, reducing the temperature of the heat dissipation tube plate, greatly improving the heat dissipation effect, and effectively reducing the problem of overheating of the mobile device processor. , with great industrial utilization and progress.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921919662.3U CN211831598U (en) | 2019-11-08 | 2019-11-08 | Heat dissipation assembly of mobile device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921919662.3U CN211831598U (en) | 2019-11-08 | 2019-11-08 | Heat dissipation assembly of mobile device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211831598U true CN211831598U (en) | 2020-10-30 |
Family
ID=73147521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921919662.3U Active CN211831598U (en) | 2019-11-08 | 2019-11-08 | Heat dissipation assembly of mobile device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211831598U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112788910A (en) * | 2019-11-08 | 2021-05-11 | 研能科技股份有限公司 | Heat dissipation assembly of mobile device |
US20210144884A1 (en) * | 2019-11-08 | 2021-05-13 | Microjet Technology Co., Ltd. | Heat-dissipating component for mobile device |
-
2019
- 2019-11-08 CN CN201921919662.3U patent/CN211831598U/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112788910A (en) * | 2019-11-08 | 2021-05-11 | 研能科技股份有限公司 | Heat dissipation assembly of mobile device |
US20210144884A1 (en) * | 2019-11-08 | 2021-05-13 | Microjet Technology Co., Ltd. | Heat-dissipating component for mobile device |
US11770913B2 (en) * | 2019-11-08 | 2023-09-26 | Microjet Technology Co., Ltd. | Heat-dissipating component for mobile device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI747076B (en) | Heat dissipating component for mobile device | |
TWI687151B (en) | Air cooling heat dissipation device and system | |
TWI686538B (en) | Air cooling heat dissipation device | |
TWI599309B (en) | Air cooling heat dissipation device | |
CN206251548U (en) | Air cooling heat dissipation device | |
CN211831598U (en) | Heat dissipation assembly of mobile device | |
CN107795465B (en) | Micro fluid control device | |
CN112788910A (en) | Heat dissipation assembly of mobile device | |
CN206224363U (en) | Air cooling heat dissipation device | |
CN206251547U (en) | Air cooling device and system | |
CN108112216B (en) | Air cooling heat dissipation device | |
TW202138677A (en) | Thin gas transportation device | |
TWM557308U (en) | Gas delivery device | |
CN112649561B (en) | Gas detection module | |
CN108112214B (en) | Air cooling radiator | |
TWI778431B (en) | Thin gas transportation device | |
TWI720649B (en) | Gas detection module | |
CN211955369U (en) | Gas detection module | |
CN211500945U (en) | Fluid control device | |
TW202115372A (en) | Gas detection module | |
CN112649559B (en) | Gas detection module | |
CN211825897U (en) | Gas detection module | |
CN112649558B (en) | Gas detection module | |
TWI771885B (en) | Thin gas transportation device | |
TWI755307B (en) | Thin gas transportation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |