CN1979496A - Copper-alloy pipe-material casting-milling technology parameter designing and optimizing method - Google Patents
Copper-alloy pipe-material casting-milling technology parameter designing and optimizing method Download PDFInfo
- Publication number
- CN1979496A CN1979496A CN 200510047903 CN200510047903A CN1979496A CN 1979496 A CN1979496 A CN 1979496A CN 200510047903 CN200510047903 CN 200510047903 CN 200510047903 A CN200510047903 A CN 200510047903A CN 1979496 A CN1979496 A CN 1979496A
- Authority
- CN
- China
- Prior art keywords
- design
- rolling
- neural network
- parameters
- finite element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 159
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 33
- 238000005516 engineering process Methods 0.000 title claims description 16
- 239000000463 material Substances 0.000 title description 25
- 238000003801 milling Methods 0.000 title 1
- 238000005096 rolling process Methods 0.000 claims abstract description 116
- 230000008569 process Effects 0.000 claims abstract description 104
- 238000013461 design Methods 0.000 claims abstract description 103
- 238000004088 simulation Methods 0.000 claims abstract description 63
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 53
- 238000005457 optimization Methods 0.000 claims abstract description 50
- 230000002068 genetic effect Effects 0.000 claims abstract description 42
- 238000013528 artificial neural network Methods 0.000 claims description 88
- 238000009749 continuous casting Methods 0.000 claims description 54
- 230000007547 defect Effects 0.000 claims description 48
- 238000005266 casting Methods 0.000 claims description 36
- 230000000977 initiatory effect Effects 0.000 claims description 25
- 238000004364 calculation method Methods 0.000 claims description 24
- 239000011159 matrix material Substances 0.000 claims description 22
- 238000012549 training Methods 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 18
- 230000006870 function Effects 0.000 claims description 18
- 238000004513 sizing Methods 0.000 claims description 11
- 238000007667 floating Methods 0.000 claims description 10
- 230000004913 activation Effects 0.000 claims description 8
- 238000013401 experimental design Methods 0.000 claims description 6
- 238000009877 rendering Methods 0.000 claims description 2
- 238000003754 machining Methods 0.000 abstract 2
- 210000005036 nerve Anatomy 0.000 abstract 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 56
- 229910052802 copper Inorganic materials 0.000 description 56
- 239000010949 copper Substances 0.000 description 56
- 230000009182 swimming Effects 0.000 description 16
- 238000012360 testing method Methods 0.000 description 13
- 229910000570 Cupronickel Inorganic materials 0.000 description 12
- 230000035772 mutation Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000009396 hybridization Methods 0.000 description 5
- 239000000956 alloy Substances 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000012356 Product development Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000013400 design of experiment Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000012938 design process Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000010845 search algorithm Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000009785 tube rolling Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000012248 genetic selection Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Continuous Casting (AREA)
Abstract
Description
技术领域technical field
本发明涉及铜合金管材加工技术,具体地说是一种将神经网络、遗传算法,有限元模拟、试验设计、CAD参数化设计与数据库技术运用到工艺参数设计和优化中,来确定铜合金管材铸轧生产最优工艺参数的方法。The present invention relates to copper alloy pipe processing technology, specifically a method of applying neural network, genetic algorithm, finite element simulation, test design, CAD parametric design and database technology to process parameter design and optimization to determine the copper alloy pipe material. Method for optimal process parameters of casting and rolling production.
技术背景technical background
铸轧工艺又称水平连铸——行星轧管供坯法,是芬兰OUTOKUMPU公司上世纪八十年代中期研制发明的用来生产精密铜管的方法。该工艺具有流程短、成品率高、成本低、设备投资少等显著优点,是当前先进的ARC铜管生产技术。它取消了铸锭加热、挤压等,直接由水平连铸机组生产出空心管坯,采用三辊行星轧机轧制铸坯,轧制后进行游动芯头拉拔,然后在线卷曲成盘,它使生产单重超过500kg的铜管成为可能。该工艺包括三大主要工序:水平连铸、三辊行星轧制和游动芯头拉拔。The casting and rolling process, also known as horizontal continuous casting-planetary rolling tube feeding method, is a method for the production of precision copper tubes developed and invented by the Finnish OUTOKUMPU company in the mid-1980s. This process has significant advantages such as short process, high yield, low cost, and less investment in equipment. It is the current advanced ARC copper tube production technology. It cancels ingot heating, extrusion, etc., and the hollow billet is directly produced by the horizontal continuous casting unit. The billet is rolled by a three-roll planetary rolling mill. After rolling, the floating core is drawn, and then rolled into a coil online. It makes it possible to produce copper pipes with a single weight exceeding 500kg. The process includes three main processes: horizontal continuous casting, three-roller planetary rolling and drawing of floating core.
铜合金管材铸轧生产是典型的多品种、多规格,多工序的加工工艺,管材经常在尺寸、形状和材料等方面变化,使得铜合金管材加工工艺设计有很大的变动性,而且工作量大、效率低,即使是有专门知识和丰富经验的工程师也很难在短时间内完成。由于生产的规模化和连续化,一旦出现工艺设计失误,很可能造成大量的资源浪费,严重影响企业生产。研究开发铜合金管材铸轧工艺参数的设计及优化方法,可以指导管材加工生产,提高产品质量,加快生产和研发周期,降低成本,增强企业竞争力。The casting and rolling production of copper alloy pipes is a typical multi-variety, multi-standard, multi-process processing technology. The pipes often change in size, shape and material, which makes the processing design of copper alloy pipes very variable, and the workload Large and inefficient, even engineers with specialized knowledge and rich experience are difficult to complete in a short period of time. Due to the large-scale and continuous production, once a process design error occurs, it is likely to cause a lot of waste of resources and seriously affect the production of the enterprise. Research and development of the design and optimization method of copper alloy pipe casting and rolling process parameters can guide pipe processing and production, improve product quality, speed up production and research and development cycles, reduce costs, and enhance enterprise competitiveness.
以往的工艺参数的设计是根据工程师自身经验和反复的现场试验来确定生产工艺参数,这种方法不但智能和自动化程度低、设计方法单一、影响企业的正常生产,而且难以有效的进行工艺参数设计,特别是很难保证得到工艺参数是最优参数。目前,也有企业用推理机的形式,通过将经验知识、公式等经过归纳和整理后,建立知识库。根据知识的表达模型将知识映射为计算机可识别的结构或程序,使之能够以逻辑方式来推理工艺参数的设计和优化。但金属成形加工是一个非常复杂的变形过程,既有材料非线性,又有几何非线性,再加上复杂的外界约束的影响,导致成形过程非常复杂。多种工艺参数的交互影响使得难以用传统的推理机来寻找最优的工艺参数组合。而且由于经验知识的获取是间接的,这样推理机的知识获取困难,常会因知识库的不良结构造成知识组合爆炸。In the past, the design of process parameters was based on the engineer's own experience and repeated field tests to determine the production process parameters. This method not only has low intelligence and automation, but also has a single design method, which affects the normal production of the enterprise, and it is difficult to effectively design process parameters. , especially it is difficult to ensure that the obtained process parameters are optimal parameters. At present, some enterprises also use the form of reasoning machines to build knowledge bases by summarizing and sorting out empirical knowledge and formulas. According to the expression model of knowledge, the knowledge is mapped to a structure or program that can be recognized by the computer, so that it can reason about the design and optimization of process parameters in a logical way. However, metal forming is a very complex deformation process, which has both material nonlinearity and geometric nonlinearity, coupled with the influence of complex external constraints, resulting in a very complicated forming process. The interactive effects of various process parameters make it difficult to use traditional reasoning machines to find the optimal combination of process parameters. Moreover, because the acquisition of empirical knowledge is indirect, it is difficult for the inference engine to acquire knowledge, and the knowledge combination explosion will often be caused by the bad structure of the knowledge base.
发明内容Contents of the invention
为了克服现有方法不足,本发明的目的在于提出一种铜合金管材铸轧工艺参数设计及优化的方法。采用本发明可根据成品规格和所用合金材料,按照铜管生产流程实现铸轧工艺中水平连铸、三辊行星轧制和游动芯头拉拔三个主要工序的智能化工艺参数设计和优化,它自动化程度高、能适用于各种复杂的加工变形,使缺少丰富专业知识人员也能制定出准确规范的加工工艺。In order to overcome the shortcomings of the existing methods, the purpose of the present invention is to propose a method for designing and optimizing the parameters of the copper alloy pipe casting and rolling process. By adopting the present invention, the intelligent process parameter design and optimization of the three main processes of horizontal continuous casting, three-roll planetary rolling and floating core head drawing in the casting and rolling process can be realized according to the finished product specification and the alloy material used, and according to the copper pipe production process , it has a high degree of automation and can be applied to various complex processing deformations, so that personnel who lack rich professional knowledge can also formulate accurate and standardized processing techniques.
本发明技术方案是以数据库为设计基础,神经网络为工艺参数和工艺指标的设计方法,遗传算法为工艺参数优化手段,综合集成神经网络、遗传算法,有限元模拟、试验设计、CAD参数化设计和数据库技术,并运用到工艺设计和参数优化中,对铜合金管材铸轧的三个工艺步骤进行工艺参数设计和优化,以得到最优的工艺参数。具体如下:The technical solution of the present invention is based on the database, the neural network is the design method of process parameters and process indicators, the genetic algorithm is the process parameter optimization means, and the neural network, genetic algorithm, finite element simulation, test design and CAD parametric design are comprehensively integrated. And database technology, and applied to the process design and parameter optimization, the process parameter design and optimization of the three process steps of copper alloy pipe casting and rolling, in order to obtain the optimal process parameters. details as follows:
一、数据库的设计1. Database design
建立水平连铸、三辊行星轧制和游动芯头拉拔的数据库,将数据库作为参数设计和优化的基础,数据库中储存了工厂这三种工序的生产数据,标准数据和临时数据;工厂生产数据包括有:规格库、设备库、操作库、原材料库、模具库、备件库、成份库、工艺设计库和设计结果库;标准数据包括各种规格产品的国家标准以及欧美、日本等国的标准文件;临时数据包括初始设计数据和计算产生的中间数据。Establish a database for horizontal continuous casting, three-roll planetary rolling and moving core drawing, and use the database as the basis for parameter design and optimization. The database stores the production data, standard data and temporary data of these three processes in the factory; the factory Production data includes: specification library, equipment library, operation library, raw material library, mold library, spare parts library, component library, process design library, and design result library; standard data include national standards for products of various specifications as well as European, American, Japanese and other countries’ standards. Standard documents; temporary data include initial design data and intermediate data generated by calculation.
二、有限元模拟2. Finite element simulation
采用有限元模拟技术可以解决各种复杂的边界以及非线性问题,用于加工领域可以提高产品质量、缩减产品研发周期,并能降低成本、提高生产率。随着计算机水平的提高,用商用有限元软件模拟成形加工工艺已经成为一种强有力的分析手段,而且精度可以满足工程设计的应用,可替代现场工艺试验。设计人员在有限元前处理中输入几何参数、工艺参数和材料参数,经过计算后,可在后处理环境中得到需要的计算结果。采用有限元数值模拟步骤,分别得到水平连铸中的水平连铸温度场、温度梯度和冷却速度值,并导出裂纹萌生倾向值;三辊行星轧制中轧制力计算数值和轧制成形缺陷模拟结果;以及游动芯头拉拔中的拉拔力计算数值和拉拔成形缺陷模拟结果。轧制成形缺陷包括断裂、撕裂和轧卡。拉拔成形缺陷是拉断。The use of finite element simulation technology can solve various complex boundary and nonlinear problems. It can improve product quality, shorten product development cycle, reduce cost and increase productivity when used in the processing field. With the improvement of computer level, simulating forming process with commercial finite element software has become a powerful analysis method, and the accuracy can meet the application of engineering design, and can replace on-site process test. Designers input geometric parameters, process parameters and material parameters in the finite element pre-processing, and after calculation, they can get the required calculation results in the post-processing environment. Using finite element numerical simulation steps, the horizontal continuous casting temperature field, temperature gradient and cooling rate values in horizontal continuous casting are respectively obtained, and the crack initiation tendency value is derived; the rolling force calculation value and rolling forming defects in three-roll planetary rolling The simulation results; and the calculation value of the drawing force in the drawing of the moving core and the simulation results of the drawing forming defects. Roll forming defects include breakage, tearing and jamming. The defect of drawing forming is breakage.
由于有限元其建模需要相应的专业知识,而且计算长,为了让非专业人员能快速进行设计,本发明用均匀试验设计的方法安排有限元数值模拟方案。均匀试验设计可经济地、科学地、合理地安排有限元数值模拟次数。合理的试验方案设计可以在进行较少的数值模拟时间、较低的成本情况下,得到全面的反映输入量和输出量之间定量规律的信息。Since the finite element modeling requires corresponding professional knowledge and long calculation, in order to allow non-professionals to quickly design, the present invention arranges the finite element numerical simulation scheme with the method of uniform experimental design. Uniform experimental design can economically, scientifically and rationally arrange the number of finite element numerical simulations. Reasonable test program design can obtain comprehensive information reflecting the quantitative law between input and output with less time for numerical simulation and lower cost.
三、神经网络3. Neural Network
多层神经网络具有高度非线性拟合性质以及对多输入多输出问题广泛的适应性,它长于处理联想记忆、形象思维等方面的推理,并具有自组织和自学习能力。可以解决获取知识的瓶颈问题。基于神经网络的方法可以看作是规则的一种隐式表示。Multi-layer neural network has highly nonlinear fitting properties and wide adaptability to multiple input and multiple output problems. It is good at dealing with reasoning in associative memory, image thinking, etc., and has self-organization and self-learning capabilities. It can solve the bottleneck problem of knowledge acquisition. Neural network-based methods can be viewed as an implicit representation of rules.
对于已有的工艺设计方案,本发明通过多层人工神经网络来学习,用训练后的神经网络来计算得到相应产品规格所对应的游动芯头拉拔中的拉拔配模设计工艺参数(总拉拔道次和每道次的铜管壁厚、外径值)。For the existing process design scheme, the present invention learns by multi-layer artificial neural network, calculates and obtains the drawing matching mold design process parameter ( The total drawing passes and the copper pipe wall thickness and outer diameter value of each pass).
神经网络还可与有限元数值计算结合,对丰富的有限元数值计算知识进行挖掘,从中发现有用的信息规则。神经网络训练后得到的阀值和权值矩阵作为一种隐含规则,可映射工艺参数与工艺指标的关系。铜合金管材铸轧的工艺指标包括水平连铸的裂纹萌生倾向值,三辊行星轧制的轧制力和轧制成形缺陷值、游动芯头拉拔的拉拔力和拉拔成形缺陷值。根据有限元数值模拟计算结果,本发明通过多层人工神经网络来学习,用训练后的神经网络来计算得到的在不同条件下工艺参数所对应的水平连铸工艺、三辊行星轧制工艺和游动芯头拉拔工艺中的工艺指标值。Neural network can also be combined with finite element numerical calculation to mine rich knowledge of finite element numerical calculation and find useful information rules. The threshold value and weight matrix obtained after neural network training are used as an implicit rule, which can map the relationship between process parameters and process indicators. The process indicators of copper alloy pipe casting and rolling include the crack initiation tendency value of horizontal continuous casting, the rolling force and rolling forming defect value of three-roll planetary rolling, the drawing force and drawing forming defect value of floating core drawing . According to the finite element numerical simulation calculation results, the present invention learns through a multi-layer artificial neural network, and uses the trained neural network to calculate the horizontal continuous casting process, the three-roll planetary rolling process and the corresponding process parameters under different conditions. The process index value in the drawing process of the moving core.
四、遗传算法4. Genetic Algorithm
遗传算法不同于传统优化算法,它是一种借鉴生物界自然选择和进化机制发展起来的高度并行、随机、自适应搜索算法,有较大可能性得到全局最优解。它采用人工进化的方式对目标空间进行随机化搜索,将问题域中的可能解看作是群体的一个个体或染色体,并将每一个体编码成符号串形式,模拟达尔文的遗传选择和自然淘汰的生物进化过程,对群体反复进行基于遗传学的操作(遗传,交叉和变异),根据预定的目标适应度函数对每个个体进行评价,依据适者生存,优胜劣汰的进化规则,不断得到更优的群体,同时以全局并行搜索方式来搜索优化群体中的最优个体,求得满足要求的最优解。以遗传算法来搜索最优化的工艺参数的步骤特别适用于处理以往搜索算法解决不好的复杂和非线形问题,在工程领域得到了广泛的应用。The genetic algorithm is different from the traditional optimization algorithm. It is a highly parallel, random and adaptive search algorithm developed by referring to the natural selection and evolution mechanism in the biological world. It is more likely to obtain the global optimal solution. It uses artificial evolution to search the target space randomly, regards the possible solutions in the problem domain as an individual or chromosome of the group, and encodes each individual into a symbolic string form, simulating Darwin's genetic selection and natural elimination In the process of biological evolution, repeated operations based on genetics (heredity, crossover and mutation) are carried out on the population, and each individual is evaluated according to the predetermined target fitness function, and the better ones are continuously obtained according to the evolution rules of survival of the fittest and survival of the fittest. At the same time, the optimal individual in the optimization group is searched by the global parallel search method to obtain the optimal solution that meets the requirements. The step of using genetic algorithm to search for optimal process parameters is especially suitable for dealing with complex and nonlinear problems that cannot be solved by previous search algorithms, and has been widely used in engineering fields.
对工艺参数中的待优化工艺参数,包括水平连铸的拉坯制度参数和冷却制度参数;三辊行星轧制的轧辊偏转角、轧辊倾斜角、开口度和推车速度;游动芯头拉拔每道次的外模锥角、芯头锥角、拉拔速度、外模定径段长度和芯头定径段长度。本发明以遗传算法做为优化方法来搜索最优工艺参数。The process parameters to be optimized in the process parameters include the drawing system parameters and cooling system parameters of horizontal continuous casting; the roll deflection angle, roll inclination angle, opening degree and trolley speed of three-roll planetary rolling; Outer die cone angle, core head cone angle, drawing speed, outer die sizing section length and core head sizing section length for each pass. The invention uses the genetic algorithm as an optimization method to search for optimal process parameters.
首先根据相应的优化目标,进行参数编码,构成初始化种群;由神经网络计算每个个体的工艺指标值,也就是遗传算法中的适应度值,再进行操作算子操作;种群一代一代的进化,直到搜索到最优化解,确定最佳的工艺参数,将结果制成工艺卡片和设计文件。其中:操作算子操作包括选择、交叉和变异三种基本形式。First, according to the corresponding optimization objectives, parameter encoding is performed to form an initial population; the neural network calculates the process index value of each individual, that is, the fitness value in the genetic algorithm, and then performs operator operations; the evolution of the population from generation to generation, Until the optimal solution is found, the best process parameters are determined, and the results are made into process cards and design documents. Among them: the operator operation includes three basic forms of selection, crossover and mutation.
五、工艺参数设计及优化的图形结果表达5. Graphical result expression of process parameter design and optimization
采用CAD参数化设计方法,将得到的最佳工艺参数结合CAD软件进行模具的三辊行星轧制中轧制辊形CAD、游动芯头拉拔的芯头模具CAD参数化设计,将设计计算、数据处理和图形绘制进行综合处理。Using the CAD parametric design method, the best process parameters obtained are combined with CAD software to carry out the CAD parametric design of the rolling roll shape CAD in the three-roller planetary rolling of the mold, and the core head die CAD parametric design of the floating core head drawing, and the design calculation , data processing and graphics rendering for comprehensive processing.
本发明具有如下优点:The present invention has the following advantages:
1.自动化程度高。本发明将神经网络、遗传算法,有限元模拟、试验设计、CAD参数化设计与数据库集成,能避免铜合金管材铸造工艺成形过程中出现断裂、起皱、颈缩等不良影响,是一种实现铜合金管材铸轧工艺参数设计及优化的智能方法。1. High degree of automation. The present invention integrates neural network, genetic algorithm, finite element simulation, test design, CAD parametric design and database, and can avoid adverse effects such as fracture, wrinkling and necking during the forming process of copper alloy pipe material casting, and is a realization An intelligent method for the design and optimization of copper alloy pipe casting and rolling process parameters.
2.与传统工艺主要是依据设计者的经验中为了避免铜合金管材铸轧工艺成形过程中出现断裂、成形力过大、配模设计不合理等不良影响,而反复修改成形加工的某些参数或修改模具形状相比,传统工艺过程耗资大、产品开发周期长,已不能适应世界范围内激烈的市场竞争和现代工业的发展要求。本发明由于自动化程度高,耗资小、产品开发周期短,能适用于复杂的铜合金管材铸轧成形工艺,使缺少丰富专业知识人员也能制定出准确规范的加工工艺。2. The traditional process is mainly based on the experience of the designer in order to avoid the adverse effects of fracture, excessive forming force, unreasonable mold design and other adverse effects during the forming process of the copper alloy pipe casting and rolling process, and repeatedly modify some parameters of the forming process Or modifying the shape of the mold, the traditional process is costly and the product development cycle is long, which can no longer adapt to the fierce market competition worldwide and the development requirements of modern industry. Due to the high degree of automation, low cost and short product development cycle, the present invention can be applied to the complex casting and rolling forming process of copper alloy pipes, enabling personnel lacking rich professional knowledge to formulate accurate and standardized processing processes.
附图说明Description of drawings
图1-1是水平连铸工艺的有限元模型。Figure 1-1 is the finite element model of the horizontal continuous casting process.
图1-2是三辊行星轧制工艺的有限元模型。Figure 1-2 is the finite element model of the three-roll planetary rolling process.
图1-3是游动芯头拉拔工艺的有限元模型。Figure 1-3 is the finite element model of the drawing process of the moving core.
图2是水平连铸裂纹萌生倾向值的神经网络结构。Figure 2 is the neural network structure of the crack initiation tendency value in horizontal continuous casting.
图3是三辊行星轧制的轧制力和轧制成形缺陷预测的神经网络结构。Fig. 3 is the neural network structure for prediction of rolling force and rolling forming defects in three-roll planetary rolling.
图4是游动芯头拉拔力和拉拔缺陷预测的神经网络结构。Figure 4 is the neural network structure for the prediction of the drawing force and drawing defects of the moving core.
图5是游动芯头拉拔配模设计的人工神经网络结构。Fig. 5 is the artificial neural network structure for the drawing and matching die design of the swimming core.
图6是遗传算法优化水平连铸的冷却制度和连铸拉坯制度参数。Figure 6 shows the parameters of the cooling system and continuous casting casting system optimized by genetic algorithm.
图7是遗传算法优化三辊行星轧制参数。Figure 7 is the genetic algorithm optimization of three-roller planetary rolling parameters.
图8是遗传算法优化游动芯头参数。Fig. 8 is a genetic algorithm optimization of the parameters of the swimming core.
图9是铜合金管材铸轧工艺参数设计及优化方法的操作流程。Fig. 9 is the operation process of the design and optimization method of the copper alloy pipe casting and rolling process parameters.
具体实施方式Detailed ways
下面结合附图进一步说明本发明。Further illustrate the present invention below in conjunction with accompanying drawing.
实施例Example
本发明将神经网络、遗传算法,有限元模拟、试验设计、CAD参数化设计、数据库技术运用到工艺设计和参数优化中,综合集成起来,对铜合金管材铸轧的每个工艺步骤进行优化设计,得到最优的工艺参数。工艺参数设计包括:水平连铸拉坯制度、冷却制度优化设计;三辊行星轧制的速度场计算、轧制参数设计;游动芯头拉拔的拉拔配模设计和每道次拉拔参数优化设计。The present invention applies neural network, genetic algorithm, finite element simulation, test design, CAD parametric design, and database technology to process design and parameter optimization, and integrates them comprehensively to optimize the design of each process step of copper alloy pipe casting and rolling. , to get the optimal process parameters. Process parameter design includes: horizontal continuous casting billet drawing system, optimization design of cooling system; velocity field calculation and rolling parameter design of three-roll planetary rolling; Parameter optimization design.
具体如下:details as follows:
1)建立水平连铸、三辊行星轧制和游动芯头拉拔的数据库,将数据库作为参数设计和优化的基础。数据库中储存了工厂这三种工序的生产数据,标准数据和临时数据。工厂生产数据包括有:规格库、设备库、操作库、原材料库、模具库、备件库、成份库、工艺设计库和设计结果库;标准数据包括各种规格产品的国家标准以及欧美、日本等国的标准文件;临时数据包括初始设计数据和计算产生的中间数据。1) Establish the database of horizontal continuous casting, three-roll planetary rolling and moving core drawing, and use the database as the basis for parameter design and optimization. The production data, standard data and temporary data of these three processes in the factory are stored in the database. Factory production data includes: specification library, equipment library, operation library, raw material library, mold library, spare parts library, component library, process design library and design result library; standard data include national standards for products of various specifications, Europe, America, Japan, etc. National standard documents; temporary data include initial design data and intermediate data generated by calculation.
2)建立水平连铸、三辊行星轧制和游动芯头拉拔的有限元模型。2) Establish the finite element model of horizontal continuous casting, three-roll planetary rolling and moving core drawing.
有限元数值计算知识来源于商用有限元前处理输入变量和相对应的数值计算结果。设计人员在有限元前处理中输入几何参数、工艺参数和材料参数,经过计算后,可在后处理环境中得到需要的计算结果。采用有限元数值模拟步骤,分别得到水平连铸中的水平连铸温度场、温度梯度和冷却速度值,并可导出裂纹萌生倾向值;三辊行星轧制中轧制力计算数值和轧制成形缺陷模拟结果;以及游动芯头拉拔中的拉拔力计算数值和拉拔成形缺陷模拟结果。其中轧制成形缺陷包括断裂、撕裂和轧卡,拉拔成形缺陷是拉断。The knowledge of finite element numerical calculation comes from the input variables of commercial finite element preprocessing and the corresponding numerical calculation results. Designers input geometric parameters, process parameters and material parameters in the finite element pre-processing, and after calculation, they can get the required calculation results in the post-processing environment. Using finite element numerical simulation steps, the horizontal continuous casting temperature field, temperature gradient and cooling rate values in horizontal continuous casting can be obtained respectively, and the crack initiation tendency value can be derived; the calculation value of rolling force and rolling forming in three-roll planetary rolling Defect simulation results; and the calculation value of the drawing force in the drawing of the moving core and the simulation results of drawing forming defects. Among them, the defects of rolling forming include breakage, tearing and jamming, and the defects of drawing forming are breaking.
为了在减少有限元模拟次数、时间和降低模拟成本的情况下,得到全面的反映有限元模拟输入量和有限元模拟输出量之间定量规律的信息,本发明用均匀试验设计的方法安排有限元数值模拟方案。均匀试验设计可经济地、科学地、合理地安排有限元数值模拟次数。In order to obtain comprehensive information that reflects the quantitative law between the finite element simulation input and the finite element simulation output while reducing the number of finite element simulations, time and the cost of simulation, the present invention arranges the finite element with the method of uniform test design Numerical simulation scheme. Uniform experimental design can economically, scientifically and rationally arrange the number of finite element numerical simulations.
①水平连铸有限元模拟① Horizontal continuous casting finite element simulation
采用均匀试验设计的方法安排水平连铸有限元模拟。通过水平连铸有限元模拟,可得到在不同规格尺寸的铜管铸坯、材料参数、拉坯制度和冷却制度所对应的温度场T、温度梯度G和冷却速度值R,有限元模型如图1-1所示(其中1为冷却系统,2为铜合金熔液,3为连铸出的铜管,4为石墨芯棒,5为结晶器采用的石墨内衬)。在水平连铸中,温度、温度梯度和冷却速度与裂纹产生的几率成正比,故此根据有限元模拟得到的温度场、温度梯度和冷却速度值,由下式计算得到每个有限元单元节点的裂纹萌生倾向值。The finite element simulation of horizontal continuous casting is arranged by the method of uniform design of experiments. Through the finite element simulation of horizontal continuous casting, the temperature field T, temperature gradient G and cooling rate value R corresponding to copper tube billets of different sizes, material parameters, casting system and cooling system can be obtained. The finite element model is shown in the figure 1-1 (where 1 is the cooling system, 2 is the copper alloy melt, 3 is the continuous casting copper tube, 4 is the graphite mandrel, and 5 is the graphite lining used in the crystallizer). In horizontal continuous casting, the temperature, temperature gradient and cooling rate are directly proportional to the probability of crack generation. Therefore, according to the temperature field, temperature gradient and cooling rate value obtained by finite element simulation, the value of each finite element element node is calculated by the following formula Crack initiation propensity value.
式中,Ci是裂纹萌生倾向值,T是温度,G是温度梯度,R是冷却速度,i表示单元节点号。In the formula, C i is the crack initiation tendency value, T is the temperature, G is the temperature gradient, R is the cooling rate, and i is the unit node number.
在所有单元节点中找出最大的裂纹萌芽倾向值CMax,并计算出的裂纹萌芽倾向平均值,表示如下:Find the maximum crack initiation tendency value C Max in all unit nodes, and calculate the average value of crack initiation tendency, which is expressed as follows:
式中, 是裂纹萌生倾向平均值,i表示单元节点号,N是有限元模型的节点总数。In the formula, is the average value of crack initiation tendency, i represents the unit node number, and N is the total number of nodes in the finite element model.
表1 水平连铸影响参数:Table 1 Influencing parameters of horizontal continuous casting:
这样就建立了水平连铸影响参数与裂纹萌生倾向的定量关系。In this way, the quantitative relationship between the influencing parameters of horizontal continuous casting and the tendency of crack initiation is established.
②三辊行星轧制有限元模拟②Three-high planetary rolling finite element simulation
采用均匀试验设计的方法安排三辊行星轧制有限元模拟。通过三辊行星轧制有限元模拟,可得到不同规格尺寸的铜管轧制坯、材料参数、轧制参数与轧制力值和轧制缺陷值的定量关系,有限元模型如图1-2所示(其中,6为轧辊,7为铜管,8为芯棒)。这里轧制成形缺陷值用0和1表示,1代表没有缺陷产生,0代表有缺陷产生。The finite element simulation of three-roll planetary rolling is arranged by the method of uniform design of experiments. Through the finite element simulation of three-roll planetary rolling, the quantitative relationship between copper tube rolling blanks of different sizes, material parameters, rolling parameters, rolling force values and rolling defect values can be obtained. The finite element model is shown in Figure 1-2 Shown (wherein, 6 is a roll, 7 is a copper tube, and 8 is a mandrel). Here, the rolling defect value is represented by 0 and 1, 1 represents no defect, and 0 represents defect.
表2 三辊行星轧制影响参数:Table 2 Influencing parameters of three-roll planetary rolling:
③游动芯头拉拔有限元模拟③Swimming core drawing finite element simulation
采用均匀试验设计的方法安排游动芯头拉拔有限元模拟。通过游动芯头拉拔模拟,可得到不同规格尺寸的铜管、材料参数、拉拔参数与拉拔力PDraw和拉拔成形缺陷值QDraw的定量关系,有限元模型如图1-3所示(其中9为外模,10为铜管,11为游动芯头)。这里拉拔成形缺陷值用0和1表示,1代表没有缺陷产生,0代表有缺陷产生。The method of uniform design of experiments is used to arrange the finite element simulation of the drawing of the moving core head. Through the drawing simulation of the swimming core, the quantitative relationship between copper pipes of different sizes, material parameters, drawing parameters, drawing force P Draw and drawing defect value Q Draw can be obtained. The finite element model is shown in Figure 1-3 Shown (wherein 9 is an outer mold, 10 is a copper pipe, and 11 is a swimming core head). Here, the drawing defect value is represented by 0 and 1, 1 represents no defect, and 0 represents defect.
表3 游动芯头拉拔影响参数:Table 3 Parameters affecting the drawing of the moving core head:
3)神经网络3) neural network
将用均匀试验设计安排有限元模拟得到的模拟输入量和结果输出量,经过整理和均一化处理后,做为神经网络的训练样本。针对水平连铸、三辊行星轧制和游动芯头拉拔这三种工序,分别用多层(本实施例采用3层)人工神经网络学习相应的样本数据,训练并建立相应的神经网络。用训练后的神经网络,经过测试后,可计算得到在不同条件下,所对应的水平连铸工艺的裂纹萌生倾向值、三辊行星轧制中的轧制力数值和轧制缺陷值,游动芯头拉拔中的拉拔力数值和拉拔缺陷值。The simulated input quantity and the result output quantity obtained by finite element simulation with uniform experimental design arrangement are sorted and homogenized, and used as the training samples of the neural network. For the three processes of horizontal continuous casting, three-roll planetary rolling, and swimming core drawing, use multi-layer (this embodiment uses 3 layers) artificial neural networks to learn corresponding sample data, train and establish corresponding neural networks . Using the trained neural network, after testing, the crack initiation tendency value of the corresponding horizontal continuous casting process, the rolling force value and rolling defect value in the three-roll planetary rolling can be calculated under different conditions. Drawing force value and drawing defect value in moving core drawing.
①水平连铸裂纹萌生倾向值的神经网络①Neural network of crack initiation tendency value in horizontal continuous casting
水平连铸裂纹萌生倾向值的神经网络结构为:输入层11个节点,其参量为有限元模拟的输入量,分别是铸坯外径尺寸X1、铸坯壁厚X2、材料参数X3、拉坯时间X4、一停时间X5、推程X6、推程时间X7、二停时间X8、铸造温度X9、入口水温X10、水压X11。其中材料参数用0代表紫铜、1代表白铜B10、2代表白铜B30,以此类推到其它铜合金材料。输出层2个节点,其参量为有限元模拟的结果输出量,为裂纹萌芽倾向平均值C和裂纹萌芽倾向最大值CMax。神经网络采用基于Levenberg-Marquardt优化算法(LM算法)的BP网络,隐含层为Sigmoid型激活函数,输出层选用Purelin型激活函数。LM算法能大大缩短训练时间。The neural network structure of the crack initiation tendency value in horizontal continuous casting is as follows: the input layer has 11 nodes, and its parameters are the input quantities of the finite element simulation, which are the outer diameter of the slab X 1 , the wall thickness of the slab X 2 , and the material parameters X 3 , casting time X 4 , first stop time X 5 , push X 6 , push time X 7 , second stop time X 8 , casting temperature X 9 , inlet water temperature X 10 , water pressure X 11 . The material parameters are 0 for copper, 1 for cupronickel B10, 2 for cupronickel B30, and so on for other copper alloy materials. There are two nodes in the output layer, whose parameters are the output of the finite element simulation results, which are the average value C of the crack initiation tendency and the maximum value C Max of the crack initiation tendency. The neural network adopts the BP network based on the Levenberg-Marquardt optimization algorithm (LM algorithm), the hidden layer is a Sigmoid activation function, and the output layer is a Purelin activation function. The LM algorithm can greatly shorten the training time.
将用均匀试验设计安排的有限元模拟输入量和输出量,做归一化处理后,生成训练样本文件,保存入数据库中。用神经网络训练后,若误差在许可范围内,将得到神经网络的阀值和权值矩阵做为神经网络矩阵文件存入数据库中。这样建立起一个映射关系模型,可映射水平连铸各个影响参数与裂纹萌芽倾向值之间的关系,该关系是一种隐含关系(参见图2)。After normalizing the finite element simulation input and output arranged by uniform test design, a training sample file is generated and stored in the database. After training with the neural network, if the error is within the allowable range, the threshold value and weight matrix of the neural network will be stored in the database as a neural network matrix file. In this way, a mapping relationship model is established, which can map the relationship between various influencing parameters of horizontal continuous casting and the value of crack initiation tendency, which is an implicit relationship (see Figure 2).
如果有新增加的有限元模拟结果,可归一化处理后,整合入原有的训练样本文件,重新训练后,将新得到的神经网络阀值和权值矩阵做为神经网络矩阵文件存入数据库中。该训练样本文件和神经网络矩阵文件可随着有限元模拟数目的增多随时更新。If there is a newly added finite element simulation result, it can be normalized and integrated into the original training sample file. After retraining, the newly obtained neural network threshold and weight matrix can be stored as a neural network matrix file. in the database. The training sample file and the neural network matrix file can be updated at any time as the number of finite element simulations increases.
②三辊行星轧制的轧制力和轧制成形缺陷预测的神经网络②Neural network for prediction of rolling force and rolling forming defects in three-roll planetary rolling
三辊行星轧制的轧制力和轧制成形缺陷预测的神经网络结构为:输入层10个节点,其参量为三辊行星轧制有限元模拟的输入量,分别是轧辊偏转角Y1、轧辊倾斜角Y2、开口度Y3、轧辊转速Y4、推车的速度Y5、摩擦系数Y6、材料参数Y7、延伸系数Y8、初始径壁比Y9和减径减壁比Y10。其中材料参数用0代表紫铜、1代表白铜B10、2代表白铜B30,以此类推到其它铜合金材料。按照相似性原理,延伸系数、初始径壁比和减径减壁比可用来表示轧制前、后铜管尺寸的变化,三个值分别表示如下:The neural network structure for predicting the rolling force and rolling forming defects of the three-roll planetary rolling is as follows: the input layer has 10 nodes, and its parameters are the input quantities of the finite element simulation of the three-roll planetary rolling, which are the roll deflection angle Y 1 , Roll inclination angle Y 2 , opening degree Y 3 , roll speed Y 4 , trolley speed Y 5 , friction coefficient Y 6 , material parameters Y 7 , elongation coefficient Y 8 , initial diameter-to-wall ratio Y 9 and reduction-to-wall ratio Y10 . The material parameters are 0 for copper, 1 for cupronickel B10, 2 for cupronickel B30, and so on for other copper alloy materials. According to the principle of similarity, the elongation coefficient, the initial diameter-to-wall ratio and the reduced diameter-to-wall ratio can be used to represent the change in the size of the copper tube before and after rolling, and the three values are expressed as follows:
延伸率
初始径壁比
减壁减径比
式中,X1,X2分别为轧制前铜管外径和壁厚,也就是铜管铸坯外径尺寸和铜管铸坯壁厚;DRoll,SRoll分别为轧制后铜管外径和壁厚。In the formula, X 1 , X 2 are the outer diameter and wall thickness of the copper tube before rolling, that is, the outer diameter of the copper tube slab and the wall thickness of the copper tube slab; D Roll and S Roll are the copper tube after rolling, respectively. outside diameter and wall thickness.
输出层2个节点,其参量为有限元模拟的结果输出量,为拉拔力PRoll和拉拔成形缺陷值QRoll。神经网络采用基于Levenberg-Marquardt优化算法(LM算法)的BP网络,隐含层为Sigmoid型激活函数,输出层选用Purelin型激活函数。There are two nodes in the output layer, whose parameters are the output of the finite element simulation results, which are the drawing force P Roll and the drawing defect value Q Roll . The neural network adopts the BP network based on the Levenberg-Marquardt optimization algorithm (LM algorithm), the hidden layer is a Sigmoid activation function, and the output layer is a Purelin activation function.
将用均匀试验设计安排的有限元模拟输入量和输出量,做归一化处理后,生成训练样本文件,保存入数据库中。用神经网络训练后,若误差在许可范围内,将得到神经网络的阀值和权值矩阵做为神经网络矩阵文件存入数据库中。这样建立起一个映射关系模型,可映射游动芯头拉拔各个影响参数与拉拔力和拉拔成形缺陷值之间的关系,该关系是一种隐含关系(参见图3)。After normalizing the finite element simulation input and output arranged by uniform test design, a training sample file is generated and stored in the database. After training with the neural network, if the error is within the allowable range, the threshold value and weight matrix of the neural network will be stored in the database as a neural network matrix file. In this way, a mapping relationship model is established, which can map the relationship between the various influencing parameters of the drawing of the moving core head, the drawing force and the value of the drawing defect. This relationship is an implicit relationship (see Figure 3).
如果有新增加的有限元模拟结果,可归一化处理后,整合入原有的训练样本文件,重新训练后,将新得到的神经网络阀值和权值矩阵做为神经网络矩阵文件存入数据库中。该训练样本文件和神经网络矩阵文件可随着有限元模拟数目的增多随时更新。If there is a newly added finite element simulation result, it can be normalized and integrated into the original training sample file. After retraining, the newly obtained neural network threshold and weight matrix can be stored as a neural network matrix file. in the database. The training sample file and the neural network matrix file can be updated at any time as the number of finite element simulations increases.
③游动芯头拉拔力和拉拔缺陷预测的神经网络③Neural network for prediction of drawing force and drawing defect of swimming core
游动芯头拉拔力和拉拔缺陷预测的神经网络结构为:输入层10个节点,其参量为游动芯头拉拔有限元模拟的输入量,分别是初始径壁比Z1、减径减壁比Z2、延伸系数Z3、拉拔速度Z4、芯头锥角Z5、外模锥角Z6、、摩擦系数Z7、材料参数Z8、外模定径段长度Z9、芯头定径段长度Z10。其中材料参数用0代表紫铜、1代表白铜B10、2代表白铜B30,以此类推到其它铜合金材料。按照相似性原理,延伸系数、初始径壁比和减径减壁比可用来表示拉拔前、后铜管尺寸的变化,三个值分别表示如下:The neural network structure for the prediction of the drawing force and the drawing defect of the swimming core is as follows: the input layer has 10 nodes, and its parameters are the input quantities of the finite element simulation of the swimming core drawing, which are the initial diameter-to-wall ratio Z 1 , minus Diameter-to-wall ratio Z 2 , elongation coefficient Z 3 , drawing speed Z 4 , core cone angle Z 5 , external die cone angle Z 6 , friction coefficient Z 7 , material parameters Z 8 , length of external die sizing section Z 9. Length Z 10 of the sizing section of the core head. The material parameters are 0 for copper, 1 for cupronickel B10, 2 for cupronickel B30, and so on for other copper alloy materials. According to the principle of similarity, the elongation coefficient, the initial diameter-to-wall ratio and the reduced-diameter-to-wall ratio can be used to represent the change in the size of the copper tube before and after drawing, and the three values are expressed as follows:
延伸率
初始径壁比
减壁减径比
式中,DDraw0,SDraw0分别为拉拔前铜管外径和壁厚,DDraw1,SDraw1分别为拉拔后铜管外径和壁厚。In the formula, D Draw0 and S Draw0 are the outer diameter and wall thickness of the copper tube before drawing, respectively, and D Draw1 and S Draw1 are the outer diameter and wall thickness of the copper tube after drawing, respectively.
输出层2个节点,其参量为有限元模拟的结果输出量,为拉拔力PDraw和拉拔成形缺陷值QDraw。神经网络采用基于Levenberg-Marquardt优化算法(LM算法)的BP网络,隐含层为Sigmoid型激活函数,输出层选用Purelin型激活函数。There are two nodes in the output layer, whose parameters are the output of the finite element simulation results, which are the drawing force P Draw and the drawing defect value Q Draw . The neural network adopts the BP network based on the Levenberg-Marquardt optimization algorithm (LM algorithm), the hidden layer is a Sigmoid activation function, and the output layer is a Purelin activation function.
将用均匀试验设计安排的有限元模拟输入量和输出量,做归一化处理后,生成训练样本文件,保存入数据库中。用神经网络训练后,若误差在许可范围内,将得到神经网络的阀值和权值矩阵做为神经网络矩阵文件存入数据库中。这样建立起一个映射关系模型,可映射游动芯头拉拔各个影响参数与拉拔力和拉拔成形缺陷值之间的关系,该关系是一种隐含关系(参见图4)。After normalizing the finite element simulation input and output arranged by uniform test design, a training sample file is generated and stored in the database. After training with the neural network, if the error is within the allowable range, the threshold value and weight matrix of the neural network will be stored in the database as a neural network matrix file. In this way, a mapping relationship model is established, which can map the relationship between the various influencing parameters of the drawing of the moving core head, the drawing force and the value of the drawing defect. This relationship is an implicit relationship (see Figure 4).
如果有新增加的有限元模拟结果,可归一化处理后,整合入原有的训练样本文件,重新训练后,将新得到的神经网络阀值和权值矩阵做为神经网络矩阵文件存入数据库中。该训练样本文件和神经网络矩阵文件可随着有限元模拟数目的增多随时更新。If there is a newly added finite element simulation result, it can be normalized and integrated into the original training sample file. After retraining, the newly obtained neural network threshold and weight matrix can be stored as a neural network matrix file. in the database. The training sample file and the neural network matrix file can be updated at any time as the number of finite element simulations increases.
4)游动芯头拉拔的配模设计方法很多,主要有递减方程法,递减系数法,金属硬化程度法,等比数列递减法和Kd-Ks法等。这些方法具有一定的实用价值,但并不一定适合实际生产。配模设计需考虑设备条件、润滑条件、管坯的材料性能等各种外在因素,因此这些理论方法不具备通用性。有经验的工程师通常有自己的一套适合自身企业特点、行之有效的配模设计方法。为了能充分利用这种经验,采用人工神经网络的方法,对从现场收集的各种规格产品配模设计方案进行训练和学习。这样神经网络就能按照工程师的设计思想自动进行配模设计。4) There are many design methods for matching molds in the drawing of moving cores, mainly including the method of decreasing equation, the method of decreasing coefficient, the method of metal hardening degree, the method of decreasing proportional number sequence and the method of Kd-Ks, etc. These methods have certain practical value, but they are not necessarily suitable for actual production. Die matching design needs to consider various external factors such as equipment conditions, lubrication conditions, material properties of tube blanks, etc., so these theoretical methods are not universal. Experienced engineers usually have their own set of effective mold matching design methods suitable for their own enterprise characteristics. In order to make full use of this experience, the method of artificial neural network is used to train and study the matching design schemes of various specifications of products collected from the field. In this way, the neural network can automatically carry out the mold matching design according to the engineer's design idea.
根据已有各种规格的拉拔配模方案,从中挑选生产正常、稳定的配模方案,做为有效配模方案,经过整理后做为神经网络的样本数据。以一种规格尺寸的配模方案为例,整理方法如下:According to the existing drawing matching schemes of various specifications, select the normal and stable matching schemes as the effective matching schemes, and use them as the sample data of the neural network after sorting out. Taking a mold matching scheme of a standard size as an example, the finishing method is as follows:
某种规格尺寸铜管的总拉拔道次为:n;成品铜管外径和壁厚为:Dn和Sn;三辊行星轧后的铜管外径和壁厚,也就是开始拉拔前的铜管外径和壁厚为:D0和S0;第i道次拉拔后的铜管外径和壁厚为:Di和Si。样本输入量有5个分别为:Dn、Sn、D0、S0和i/n,样本输出量有2个分别为Di和Si。这样每种规格尺寸的铜管拉拔配模方案可构成n-1个样本。该种规格配模方案构成的样本可用下表表示:The total number of drawing passes for a copper tube of a certain size is: n; the outer diameter and wall thickness of the finished copper tube are: D n and S n ; the outer diameter and wall thickness of the copper tube after three-roll planetary rolling The outer diameter and wall thickness of the copper tube before drawing are: D 0 and S 0 ; the outer diameter and wall thickness of the copper tube after the i-th drawing are: D i and S i . There are five sample input quantities: D n , S n , D 0 , S 0 and i/n, and two sample output quantities are D i and S i . In this way, n-1 samples can be formed by drawing and matching schemes for copper pipes of each specification and size. The samples formed by the mold matching scheme of this specification can be expressed in the following table:
将各种有效配模方案按照这种整理方法,共同构成一个训练样本文件,将该文件保存入数据库中,并用多层人工神经网络来学习训练样本文件。进行游动芯头拉拔配模设计的人工神经网络结构可用如图5所示。According to this sorting method, various effective model matching schemes are combined to form a training sample file, which is stored in the database, and the training sample file is learned by using a multi-layer artificial neural network. The structure of the artificial neural network for the drawing and matching mold design of the swimming core can be shown in Figure 5.
训练后的人工神经网络经过测试后,若满足测试要求,将得到神经网络的阀值和权值矩阵做为神经网络矩阵文件存入数据库中。这样建立起一个映射关系模型,可映射铜管尺寸规格与拉拔配模之间的关系。After the trained artificial neural network is tested, if it meets the test requirements, the threshold value and weight matrix of the neural network will be stored in the database as a neural network matrix file. In this way, a mapping relationship model is established, which can map the relationship between the size specification of the copper pipe and the drawing and matching die.
用该神经网络进行游动芯头拉拔配模设计前,首先要计算出总拉拔道次n值。其计算方法通常是根据经验公式来确定。Before using the neural network to design the drawing matching mold of the swimming core, the value of the total drawing pass n must be calculated first. Its calculation method is usually determined based on empirical formulas.
根据拉拔前的铜管外径D0和壁厚S0、成品铜管外径Dn和壁厚Sn、平均道次延伸系数 来确定总道次数。平均道次延伸系数根据不同的En值来确定的,En值为材料厚度指数According to the outer diameter D 0 and wall thickness S 0 of the copper tube before drawing, the outer diameter D n and wall thickness S n of the finished copper tube, and the average pass elongation coefficient to determine the total number of runs. The average pass elongation coefficient is determined according to different E n values, and the E n value is the material thickness index
在拉拔机性能较好,润滑良好、模具状况正常的情况下,En可适当取大些,即En+1;反之取小些,即En-1。When the performance of the drawing machine is good, the lubrication is good, and the condition of the mold is normal, E n can be appropriately larger, that is, E n+1 ; otherwise, it should be smaller, that is, E n-1 .
拉拔的总延伸系数λ∑的计算公式如下:The formula for calculating the total elongation coefficient λ ∑ of drawing is as follows:
拉拔总道次数n的计算公式为:The formula for calculating the total number of drawing passes n is:
将要配模的产品尺寸规格,也就是成品铜管外径Dn和壁厚Sn,以及三辊行星轧后的铜管外径和壁厚,也就是开始拉拔前的铜管外径D0和壁厚S0,以及i/n值,i是指当前要预测的第i道次(1≤i<n)拉拔后铜管尺寸,n是根据经验公式计算出来的总拉拔道次值。将这些数值做为神经网络预测输入量,在调入神经网络矩阵文件后,用神经网络进行配模设计,可得到第i道次拉拔后铜管尺寸Di和Si。The dimensions and specifications of the product to be molded, that is, the outer diameter D n and wall thickness S n of the finished copper tube, and the outer diameter and wall thickness of the copper tube after three-roll planetary rolling, that is, the outer diameter D of the copper tube before drawing 0 and wall thickness S 0 , and the value of i/n, i refers to the size of the copper tube after drawing the i-th pass (1≤i<n) to be predicted at present, and n is the total drawing pass calculated according to the empirical formula secondary value. These values are used as the neural network prediction input. After the neural network matrix file is transferred, the neural network is used to carry out mold matching design, and the dimensions D i and S i of the copper tube after the i-th drawing can be obtained.
5)遗传算法5) Genetic algorithm
以遗传算法来搜索最优化的水平连铸中连铸冷却制度和连铸拉坯制度参数、三辊行星轧制中的轧制参数和游动芯头拉拔的拉拔参数,进行参数编码,构成初始化种群;根据神经网络计算每个个体的适应度值,再进行操作算子操作;种群一代一代的进化,直到搜索到最优化解,确定最佳的工艺设计参数,将结果制成工艺卡片和设计文件。其中:操作算子操作包括选择、交叉和变异三种基本形式。Use genetic algorithm to search for the optimized parameters of continuous casting cooling system and continuous casting casting system in horizontal continuous casting, rolling parameters in three-roll planetary rolling and drawing parameters of floating core drawing, and perform parameter coding. Constitute the initial population; calculate the fitness value of each individual according to the neural network, and then perform operator operations; the population evolves from generation to generation until the optimal solution is found, the optimal process design parameters are determined, and the results are made into process cards and design files. Among them: the operator operation includes three basic forms of selection, crossover and mutation.
①遗传算法优化水平连铸的冷却制度和连铸拉坯制度参数① Genetic algorithm optimizes the parameters of cooling system and continuous casting casting system in horizontal continuous casting
水平连铸中,拉坯时间、一停时间、推程、推程时间、二停时间、铸造温度、入口水温、水压是影响水平连铸裂纹萌生倾向值大小的关键因素。以水平连铸裂纹萌生倾向值平均值最小和最大值低于安全值为优化目标,铸坯外径尺寸、铸坯壁厚、材料参数做为固定参数,用遗传算法寻找在此条件下的拉坯时间、一停时间、推程、推程时间、二停时间、铸造温度、入口水温和水压的最优值,如图6所示。In horizontal continuous casting, casting time, first stop time, push stroke, push time, second stop time, casting temperature, inlet water temperature, and water pressure are the key factors affecting the value of crack initiation tendency in horizontal continuous casting. The minimum and maximum value of the horizontal continuous casting crack initiation tendency value are lower than the safety value as the optimization target, and the outer diameter of the slab, the wall thickness of the slab, and the material parameters are used as fixed parameters, and the genetic algorithm is used to find the tensile strength under this condition. The optimal values of billet time, first stop time, push, push time, second stop time, casting temperature, inlet water temperature and water pressure are shown in Figure 6.
遗传算法的评价函数又称适应度函数,将待求解的优化目标转换成适应度函数,这里的适应度值可用水平连铸裂纹萌生倾向值预测神经网络来计算每个个体的适应度值。因为优化目标为裂纹萌生倾向值的平均值最小和最大值低于安全值的问题,构造公式为:The evaluation function of the genetic algorithm is also called the fitness function, which converts the optimization goal to be solved into a fitness function. The fitness value here can be calculated by the horizontal continuous casting crack initiation tendency value prediction neural network to calculate the fitness value of each individual. Because the optimization goal is the problem that the average minimum and maximum value of the crack initiation tendency value are lower than the safe value, the construction formula is:
适应度值为:
其中,Cmax(Xi), Among them, C max (X i ),
式中,Xi表示水平连铸裂纹萌生倾向值预测的神经网络中的各个输入量;C为裂纹萌生倾向值的安全值,为常系数,可根据实际情况选择确定;Cmax(Xi),C(Xi)表示用神经网络得到的裂纹萌生倾向值的最大值和平均值。In the formula, X i represents each input quantity in the neural network for predicting the crack initiation tendency value in horizontal continuous casting; C is the safety value of the crack initiation tendency value, which is a constant coefficient and can be selected and determined according to the actual situation; C max (X i ) , C(X i ) represents the maximum value and the average value of the crack initiation tendency obtained by the neural network.
遗传算法可采用浮点编码和整数编码。遗传算法的种群规模一般取20~100,一般说来,选择较大数目的初始种群可以同时处理更多的解,因而容易找到全局最优解,缺点是增加了每次迭代时间。遗传算法的杂交率一般取0.4~0.9,杂交操作的频率越高,可以越快地收敛到最有希望的最优解区域,但太高的频率也可能导致过早收敛。遗传算法的变异率一般取值0.001~0.1,种群大小及染色体长度越大,变异率选取越小。遗传算法的最大进化代数,作为一种模拟终止条件,视具体情况根据多次试运行而定,一般在100~500代。Genetic algorithms can use floating-point encoding and integer encoding. The population size of the genetic algorithm is generally 20 to 100. Generally speaking, choosing a larger number of initial populations can process more solutions at the same time, so it is easy to find the global optimal solution. The disadvantage is that each iteration time is increased. The hybridization rate of the genetic algorithm is generally set at 0.4~0.9. The higher the frequency of the hybridization operation, the faster it can converge to the most promising optimal solution area, but too high frequency may also lead to premature convergence. The mutation rate of the genetic algorithm generally ranges from 0.001 to 0.1. The larger the population size and chromosome length, the smaller the mutation rate. The maximum evolutionary generation of the genetic algorithm, as a simulation termination condition, depends on the specific situation and according to multiple trial runs, generally in the range of 100 to 500 generations.
本实施例中,水平连铸优化用到的遗传算法采用浮点编码,初始种群取值为100,杂交率取值为0.85,变异率取值0.08,最大进化代数取值为200。In this embodiment, the genetic algorithm used for horizontal continuous casting optimization adopts floating-point coding, the value of the initial population is 100, the value of the hybridization rate is 0.85, the value of the mutation rate is 0.08, and the value of the maximum evolution algebra is 200.
②遗传算法优化三辊行星轧制参数②Genetic algorithm to optimize three-high planetary rolling parameters
三辊行星轧制中,轧辊偏转角、轧辊倾斜角、开口度、推车速度,这些模具参数和工艺参数是影响轧制力、轧制成形缺陷的关键因素。以轧制力最小和无轧制成形缺陷为优化目标,将材料参数、摩擦系数、轧辊转速、延伸系数、初始径壁比和减壁减径比做为固定参数,用遗传算法寻找在此条件下的轧辊偏转角、轧辊倾斜角、开口度和推车速度的最优值,如图7所示。In the three-roll planetary rolling, the roll deflection angle, roll inclination angle, opening degree, trolley speed, these die parameters and process parameters are the key factors affecting the rolling force and rolling forming defects. Taking the minimum rolling force and no rolling defect as the optimization goal, the material parameters, friction coefficient, roll speed, elongation coefficient, initial diameter-to-wall ratio, and wall-to-diameter ratio are used as fixed parameters, and the genetic algorithm is used to find the condition The optimal values of roll deflection angle, roll inclination angle, opening degree and trolley speed are shown in Figure 7.
遗传算法的评价函数又称适应度函数,将待求解的优化目标转换成适应度函数,这里的适应度值可用三辊行星轧制的轧制力和成形缺陷预测神经网络来计算每个个体的适应度值。因为优化目标为轧制力最小值和无成形缺陷问题,构造公式为:The evaluation function of the genetic algorithm is also called the fitness function, which converts the optimization target to be solved into a fitness function. The fitness value here can be calculated by the rolling force of the three-roll planetary rolling and the neural network for forming defect prediction. fitness value. Because the optimization goal is the minimum rolling force and no forming defects, the construction formula is:
适应度值为:
其中,PRoll(Yi),SRoll(Yi)=ANN三辊行星轧制的轧制力和成形缺陷预测神经网络(Yi)Among them, P Roll (Y i ), S Roll (Y i )=ANN three-roll planetary rolling rolling force and forming defect prediction neural network (Y i )
式中,Yi表示三辊行星轧制的轧制力和成形缺陷预测神经网络中的各个输入量;PRoll(Yi),SRoll(Yi)表示用神经网络得到的轧制力值和缺陷预测值。In the formula, Y i represents the rolling force of the three-roll planetary rolling and each input value in the forming defect prediction neural network; P Roll (Y i ), S Roll (Y i ) represent the rolling force value obtained by the neural network and defect predictions.
本实施例中,三辊行星轧制参数优化用的遗传算法编码采用浮点编码,初始种群取值为80,杂交率取值为0.75,变异率取值0.08,最大进化代数取值为100。In this embodiment, the genetic algorithm encoding used for parameter optimization of the three-roll planetary rolling adopts floating-point encoding, the value of the initial population is 80, the value of the hybridization rate is 0.75, the value of the mutation rate is 0.08, and the value of the maximum evolution algebra is 100.
③遗传算法优化游动芯头参数③Genetic algorithm optimizes the parameters of the swimming core head
铜合金的游动芯头拉拔中,外模锥角、芯头锥角、拉拔速度、外模定径段长度和芯头定径段长度,这些模具参数和工艺参数是影响拉拔力、拉拔成形缺陷的关键因素。以拉拔力最小和无成形缺陷为优化目标,将材料参数、摩擦系数、拉拔速度、延伸系数、初始径壁比和减壁减径比做为固定参数,用遗传算法寻找在此条件下的外模锥角、芯头锥角、外模定径段长度和芯头定径段长度的最优值,如图8所示。In the drawing of the moving core of copper alloy, the cone angle of the outer mold, the cone angle of the core, the drawing speed, the length of the sizing section of the outer mold and the length of the sizing section of the core, these mold parameters and process parameters affect the drawing force , The key factor of drawing forming defects. Taking the minimum drawing force and no forming defect as the optimization goal, the material parameters, friction coefficient, drawing speed, elongation coefficient, initial diameter-to-wall ratio and wall-to-diameter ratio are used as fixed parameters, and the genetic algorithm is used to find the The optimal values of the cone angle of the outer die, the taper angle of the core head, the length of the sizing section of the outer die and the length of the sizing section of the core head are shown in Figure 8.
遗传算法的评价函数又称适应度函数,将待求解的优化目标转换成适应度函数,本实施例的适应度值可用游动芯头拉拔的拉拔力和成形缺陷预测神经网络来计算每个个体的适应度值。因为优化目标为拉拔力最小值和无成形缺陷问题,构造公式为:The evaluation function of the genetic algorithm is also called the fitness function, which converts the optimization target to be solved into a fitness function. The fitness value of this embodiment can be calculated by the drawing force of the swimming core head and the forming defect prediction neural network. The fitness value of an individual. Because the optimization goal is the minimum value of the pulling force and no forming defects, the construction formula is:
PDraw(Zi),SDraw(Zi)=ANN游动芯头拉拔的拉拔力和成形缺陷预测神经网络(Zi)P Draw (Z i ), S Draw (Z i )=The drawing force and forming defect prediction neural network (Z i ) of ANN swimming core drawing
式中,Zi表示游动芯头拉拔的拉拔力和成形缺陷预测神经网络中的各个输入量;PDraw(Zi),SDraw(Zi)表示用神经网络得到的拉拔力值和缺陷预测值。In the formula, Z i represents the drawing force of the moving core and the input quantities in the forming defect prediction neural network; P Draw (Z i ), S Draw (Z i ) represent the drawing force obtained by the neural network values and defect predictions.
本实施例中,游动芯头参数优化用的遗传算法编码采用浮点编码,初始种群取值为50,杂交率取值为0.8,变异率取值0.1,最大进化代数取值为100。In this embodiment, the genetic algorithm encoding used for the optimization of the parameters of the swimming core adopts floating-point encoding, the value of the initial population is 50, the value of the hybridization rate is 0.8, the value of the mutation rate is 0.1, and the value of the maximum evolution algebra is 100.
6)采用CAD参数化设计方法,将得到的最佳工艺参数结合CAD软件进行模具的三辊行星轧制中轧制辊形CAD、游动芯头拉拔的芯头模具CAD参数化设计,将设计计算、数据处理和图形绘制进行综合处理。6) Adopt the CAD parametric design method, combine the best process parameters obtained with CAD software to carry out the CAD parametric design of the rolling roll shape CAD in the three-roller planetary rolling of the mold, and the core head mold CAD of the floating core head drawing. Comprehensive processing of design calculation, data processing and graphic drawing.
本发明所建立的铜合金管材铸轧工艺参数设计及优化方法的操作流程如图9所示,具体为:The operation process of the copper alloy pipe casting and rolling process parameter design and optimization method established by the present invention is shown in Figure 9, specifically:
(1)按系统提示,输入所要设计的产品材料类型和光管尺寸规格;(1) According to the system prompt, input the product material type and light pipe size specification to be designed;
(2)输入水平连铸铜管尺寸;(2) Input the size of the horizontal continuous casting copper pipe;
(3)水平连铸设计:神经网络计算水平连铸温度场裂纹萌生倾向值,并根据用遗传算法优化水平连铸的冷却制度和连铸拉坯制度参数,如果得到的是最终优化参数,则执行步骤(5),否则返回步骤(3);(3) Horizontal continuous casting design: The neural network calculates the crack initiation tendency value of the horizontal continuous casting temperature field, and optimizes the cooling system and continuous casting casting system parameters of the horizontal continuous casting according to the genetic algorithm. If the final optimized parameters are obtained, then Execute step (5), otherwise return to step (3);
(4)输入三辊行星轧制铜管尺寸;(4) Input the size of the three-roll planetary rolling copper tube;
(5)三辊行星轧制设计:用神经网络计算轧制力和轧制成形缺陷值;根据用遗传算法优化轧制参数;如果得到的是最终优化参数,则执行步骤(6),否则返回步骤(5);(5) Three-roller planetary rolling design: use neural network to calculate rolling force and rolling forming defect value; optimize rolling parameters according to genetic algorithm; if you get the final optimized parameters, then perform step (6), otherwise return Step (5);
(6)三辊行星轧制的轧辊辊形CAD参数化设计;(6) CAD parametric design of roll shape CAD for three-roll planetary rolling;
(7)游动芯头拉拔配模设计:用神经网络进行拉拔配模设计;(7) Design of drawing and matching mold for swimming core head: use neural network to design drawing and matching mold;
(8)用神经网络计算拉拔每道次的拉拔力和拉拔成形缺陷值;并用遗传算法优化设计游动芯头拉拔参数;(8) Use the neural network to calculate the drawing force and drawing forming defect value of each pass; and use the genetic algorithm to optimize and design the drawing parameters of the swimming core;
(9)游动芯头拉拔的CAD参数化设计;如果得到的是最终优化参数,则结束程序,否则返回步骤(8)。(9) CAD parametric design of the drawing of the moving core; if the final optimized parameters are obtained, the program is ended, otherwise, return to step (8).
综上所述,本发明所建立的铜合金管材铸轧工艺参数设计及优化的方法,将神经网络、遗传算法,有限元模拟、试验设计、CAD参数化设计与数据库技术运用到工艺设计和参数优化中,一方面充分发挥以往经验,另一方面将智能技术和有限元等技术结合、实现高效的工艺参数优化设计。这样克服了以往设计方法单一等缺点。In summary, the method for the design and optimization of copper alloy pipe casting and rolling process parameters established by the present invention applies neural network, genetic algorithm, finite element simulation, test design, CAD parametric design and database technology to process design and parameter In the process of optimization, on the one hand, the past experience is fully utilized, and on the other hand, intelligent technology and finite element technology are combined to achieve efficient process parameter optimization design. This overcomes the disadvantages of single design method in the past.
随着经验的积累、有限元模拟技术的改进和对铜管加工各个工序理解的加强,将进一步增进该系统的有效性。With the accumulation of experience, the improvement of finite element simulation technology and the strengthening of understanding of the various processes of copper tube processing, the effectiveness of the system will be further enhanced.
本发明将神经网络、有限元模拟、遗传算法、CAD技术和数据库技术结合起来,弥补了以往传统设计方法的不足。采用有限元软件对成形过程模拟,能够准确反映管材实际生产加工过程,对产品的开发、研制与加工进行指导和预测。利用神经网络所具有的高度非线性拟合性质对有限元模拟输入参数和对应的模拟结果、以及经验数据进行学习、训练,训练后得到的阀值和权值矩阵作为隐含规则,可映射工艺参数与工艺指标的关系。克服了以往推理机获取知识的瓶颈问题和推理组合爆炸问题,而且易于更新。用遗传算法的全局寻优特性搜索最优的工艺参数以达到期望的工艺指标,解决了以往优化方法易陷入局部极值的问题。建立的铜管生产数据库,将生产技术数据和长期积累的技术经验集成,用于指导工艺设计。根据设计结果,结合CAD软件进行参数化设计,自动生成模具图。该系统用于铜合金管水平连铸、三辊行星轧制和游动芯头拉拔生产过程的工艺设计,解决铜管材加工过程中的各种实际问题,制定出准确规范的加工工艺。The invention combines neural network, finite element simulation, genetic algorithm, CAD technology and database technology to make up for the shortcomings of traditional design methods in the past. The finite element software is used to simulate the forming process, which can accurately reflect the actual production and processing process of the pipe, and guide and predict the development, development and processing of the product. Using the highly nonlinear fitting properties of the neural network to learn and train the finite element simulation input parameters, corresponding simulation results, and empirical data, the threshold and weight matrix obtained after training are used as implicit rules, which can map the process The relationship between parameters and process indicators. It overcomes the bottleneck problem of obtaining knowledge and the explosion of reasoning combinations in the past, and is easy to update. The global optimization feature of genetic algorithm is used to search for the optimal process parameters to achieve the desired process index, which solves the problem that the previous optimization methods are easy to fall into local extremum. The established copper pipe production database integrates production technical data and long-term accumulated technical experience to guide process design. According to the design results, combined with CAD software for parametric design, automatic generation of mold drawings. This system is used in the process design of copper alloy tube horizontal continuous casting, three-roller planetary rolling and moving core drawing production process, solves various practical problems in the process of copper tube processing, and formulates accurate and standardized processing technology.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100479036A CN100383796C (en) | 2005-12-02 | 2005-12-02 | Method of Design and Optimization of Copper Alloy Pipe Casting and Rolling Process Parameters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100479036A CN100383796C (en) | 2005-12-02 | 2005-12-02 | Method of Design and Optimization of Copper Alloy Pipe Casting and Rolling Process Parameters |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1979496A true CN1979496A (en) | 2007-06-13 |
CN100383796C CN100383796C (en) | 2008-04-23 |
Family
ID=38130659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100479036A Expired - Fee Related CN100383796C (en) | 2005-12-02 | 2005-12-02 | Method of Design and Optimization of Copper Alloy Pipe Casting and Rolling Process Parameters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100383796C (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101201871B (en) * | 2007-12-18 | 2010-06-09 | 东北大学 | A Rigid-Plastic Finite Element Method for Predicting Rolling Force in Hot Rolling Process |
CN101850410A (en) * | 2010-06-22 | 2010-10-06 | 攀钢集团钢铁钒钛股份有限公司 | A method of continuous casting breakout prediction based on neural network |
CN101414321B (en) * | 2008-11-14 | 2010-11-10 | 西安交通大学 | Design method for evaporation type cooler/condenser for chemical industry |
CN101221416B (en) * | 2007-12-28 | 2010-12-15 | 东北大学 | Finite element method for on-line board temperature calculation in course of hot rolling |
CN102172812A (en) * | 2010-12-31 | 2011-09-07 | 马志强 | Hollow aluminium division bar continuous moulding method |
CN102393884A (en) * | 2011-10-12 | 2012-03-28 | 杭州电子科技大学 | Hot continuous rolling electromagnetic induction heating temperature prediction method based on BP (back-propagation) neural network |
CN102819651A (en) * | 2012-08-20 | 2012-12-12 | 西北工业大学 | Simulation-based parameter optimizing method for precise casting process of single crystal turbine blade |
CN103042366A (en) * | 2013-01-14 | 2013-04-17 | 湖南金龙国际铜业有限公司 | Manufacturing technique for copper pipes for magnetrons |
CN104144758A (en) * | 2012-03-01 | 2014-11-12 | 西门子公司 | Simulation of casting and rolling equipment |
CN104408259A (en) * | 2014-12-03 | 2015-03-11 | 南通友星线束有限公司 | Automatic drawing method for crimping die blade figure |
US9317626B2 (en) | 2011-11-16 | 2016-04-19 | Wai Man Chan | Method and system for combinatorial layout design |
CN106295795A (en) * | 2016-08-09 | 2017-01-04 | 衢州学院 | A kind of copper pipe interior whorl forming qualitative forecasting method based on BP neural network algorithm |
CN106446413A (en) * | 2016-09-26 | 2017-02-22 | 北京无线电测量研究所 | Parameterization technological designing method for waveguide |
CN107784142A (en) * | 2016-08-31 | 2018-03-09 | 株洲中车时代电气股份有限公司 | The hot emulation mode of semiconductor power component |
CN108334712A (en) * | 2018-02-14 | 2018-07-27 | 武汉科技大学 | A kind of process parameter optimizing method of three-roller planetary rolling mill rolled bar material |
CN108345749A (en) * | 2018-02-11 | 2018-07-31 | 中国电子科技集团公司第二十九研究所 | Modeling and packaging method of the radio frequency integrated technique tolerance with electrical property coupled characteristic |
CN109101712A (en) * | 2018-07-27 | 2018-12-28 | 石家庄创天电子科技有限公司 | Product model designing system and method based on figure network |
CN109241686A (en) * | 2018-11-02 | 2019-01-18 | 中国航空工业集团公司西安飞机设计研究所 | A kind of pull rod parameter optimization method for installing aircraft airborne equipment |
CN110008636A (en) * | 2019-04-20 | 2019-07-12 | 福州大学 | A computer-aided design method for casting process of thin-walled copper alloy water meter shell |
CN110457824A (en) * | 2019-08-13 | 2019-11-15 | 沈阳理工大学 | A Calculation Method for Dimensions of Multi-pass Drawing Copper Tube Blank Based on Tensile Strength |
CN111027240A (en) * | 2019-11-14 | 2020-04-17 | 哈尔滨工业大学(深圳) | Buried pipeline safety assessment method and related equipment |
CN111061219A (en) * | 2019-12-16 | 2020-04-24 | 南京航空航天大学 | Method for rapidly determining forming process parameters |
CN111681607A (en) * | 2020-08-17 | 2020-09-18 | 武汉精立电子技术有限公司 | Gamma adjusting method and system based on genetic algorithm |
CN114798779A (en) * | 2022-03-23 | 2022-07-29 | 中南大学 | Intelligent metal drawing device and method based on neural network |
CN115330091A (en) * | 2022-10-12 | 2022-11-11 | 邢台纳科诺尔精轧科技股份有限公司 | Precision rolling process optimization method based on artificial neural network and genetic algorithm |
CN117350598A (en) * | 2023-11-16 | 2024-01-05 | 张家港广大特材股份有限公司 | Gear steel process control method and system |
CN117399435A (en) * | 2023-12-11 | 2024-01-16 | 常州润来科技有限公司 | Self-adaptive compensation adjustment method and system for copper pipe rolling process |
CN118155779A (en) * | 2024-05-11 | 2024-06-07 | 常州润来科技有限公司 | Ultra-thin wall internal thread expansion and contraction rate evaluation method and system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1190518A (en) * | 1997-09-18 | 1999-04-06 | Nkk Corp | Method for controlling continuous hot rolling mill |
JP2003266157A (en) * | 2002-03-14 | 2003-09-24 | Furukawa Electric Co Ltd:The | Method for manufacturing low oxygen copper wire rod with belt and wheel type continuous casting and rolling method |
CN1270838C (en) * | 2003-08-29 | 2006-08-23 | 东北大学 | Automatic controlling technical parameter optimization method of metal plate rolling |
-
2005
- 2005-12-02 CN CNB2005100479036A patent/CN100383796C/en not_active Expired - Fee Related
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101201871B (en) * | 2007-12-18 | 2010-06-09 | 东北大学 | A Rigid-Plastic Finite Element Method for Predicting Rolling Force in Hot Rolling Process |
CN101221416B (en) * | 2007-12-28 | 2010-12-15 | 东北大学 | Finite element method for on-line board temperature calculation in course of hot rolling |
CN101414321B (en) * | 2008-11-14 | 2010-11-10 | 西安交通大学 | Design method for evaporation type cooler/condenser for chemical industry |
CN101850410A (en) * | 2010-06-22 | 2010-10-06 | 攀钢集团钢铁钒钛股份有限公司 | A method of continuous casting breakout prediction based on neural network |
CN101850410B (en) * | 2010-06-22 | 2012-06-20 | 攀钢集团钢铁钒钛股份有限公司 | Continuous casting breakout prediction method based on neural network |
CN102172812A (en) * | 2010-12-31 | 2011-09-07 | 马志强 | Hollow aluminium division bar continuous moulding method |
CN102172812B (en) * | 2010-12-31 | 2012-11-07 | 马志强 | Hollow aluminium division bar continuous moulding method |
CN102393884A (en) * | 2011-10-12 | 2012-03-28 | 杭州电子科技大学 | Hot continuous rolling electromagnetic induction heating temperature prediction method based on BP (back-propagation) neural network |
CN102393884B (en) * | 2011-10-12 | 2015-04-15 | 杭州电子科技大学 | Hot continuous rolling electromagnetic induction heating temperature prediction method based on BP (back-propagation) neural network |
US9317626B2 (en) | 2011-11-16 | 2016-04-19 | Wai Man Chan | Method and system for combinatorial layout design |
CN104144758A (en) * | 2012-03-01 | 2014-11-12 | 西门子公司 | Simulation of casting and rolling equipment |
CN104144758B (en) * | 2012-03-01 | 2016-08-10 | 西门子公司 | Simulation of casting and rolling equipment |
US9764379B2 (en) | 2012-03-01 | 2017-09-19 | Siemens Aktiengesellschaft | Modelling of a cast rolling device |
CN102819651A (en) * | 2012-08-20 | 2012-12-12 | 西北工业大学 | Simulation-based parameter optimizing method for precise casting process of single crystal turbine blade |
CN103042366A (en) * | 2013-01-14 | 2013-04-17 | 湖南金龙国际铜业有限公司 | Manufacturing technique for copper pipes for magnetrons |
CN104408259A (en) * | 2014-12-03 | 2015-03-11 | 南通友星线束有限公司 | Automatic drawing method for crimping die blade figure |
CN104408259B (en) * | 2014-12-03 | 2017-11-17 | 南通友星线束有限公司 | A kind of automatic drafting method of crimp blade figure |
CN106295795A (en) * | 2016-08-09 | 2017-01-04 | 衢州学院 | A kind of copper pipe interior whorl forming qualitative forecasting method based on BP neural network algorithm |
CN107784142A (en) * | 2016-08-31 | 2018-03-09 | 株洲中车时代电气股份有限公司 | The hot emulation mode of semiconductor power component |
CN107784142B (en) * | 2016-08-31 | 2021-10-19 | 株洲中车时代半导体有限公司 | Thermal simulation method of semiconductor power component |
CN106446413A (en) * | 2016-09-26 | 2017-02-22 | 北京无线电测量研究所 | Parameterization technological designing method for waveguide |
CN108345749B (en) * | 2018-02-11 | 2021-06-15 | 中国电子科技集团公司第二十九研究所 | Modeling and packaging method for radio frequency integrated process tolerance and electrical performance coupling characteristics |
CN108345749A (en) * | 2018-02-11 | 2018-07-31 | 中国电子科技集团公司第二十九研究所 | Modeling and packaging method of the radio frequency integrated technique tolerance with electrical property coupled characteristic |
CN108334712A (en) * | 2018-02-14 | 2018-07-27 | 武汉科技大学 | A kind of process parameter optimizing method of three-roller planetary rolling mill rolled bar material |
CN109101712B (en) * | 2018-07-27 | 2023-06-20 | 石家庄创天电子科技有限公司 | Product Model Design System and Method Based on Graph Network |
CN109101712A (en) * | 2018-07-27 | 2018-12-28 | 石家庄创天电子科技有限公司 | Product model designing system and method based on figure network |
CN109241686A (en) * | 2018-11-02 | 2019-01-18 | 中国航空工业集团公司西安飞机设计研究所 | A kind of pull rod parameter optimization method for installing aircraft airborne equipment |
CN110008636A (en) * | 2019-04-20 | 2019-07-12 | 福州大学 | A computer-aided design method for casting process of thin-walled copper alloy water meter shell |
CN110457824A (en) * | 2019-08-13 | 2019-11-15 | 沈阳理工大学 | A Calculation Method for Dimensions of Multi-pass Drawing Copper Tube Blank Based on Tensile Strength |
CN110457824B (en) * | 2019-08-13 | 2023-04-18 | 沈阳理工大学 | Method for calculating size of multi-pass drawn copper pipe blank based on tensile strength |
CN111027240A (en) * | 2019-11-14 | 2020-04-17 | 哈尔滨工业大学(深圳) | Buried pipeline safety assessment method and related equipment |
CN111027240B (en) * | 2019-11-14 | 2023-05-09 | 哈尔滨工业大学(深圳) | Buried pipeline safety assessment method and related equipment |
CN111061219B (en) * | 2019-12-16 | 2021-03-23 | 南京航空航天大学 | Method for rapidly determining forming process parameters |
CN111061219A (en) * | 2019-12-16 | 2020-04-24 | 南京航空航天大学 | Method for rapidly determining forming process parameters |
CN111681607A (en) * | 2020-08-17 | 2020-09-18 | 武汉精立电子技术有限公司 | Gamma adjusting method and system based on genetic algorithm |
CN114798779A (en) * | 2022-03-23 | 2022-07-29 | 中南大学 | Intelligent metal drawing device and method based on neural network |
CN115330091A (en) * | 2022-10-12 | 2022-11-11 | 邢台纳科诺尔精轧科技股份有限公司 | Precision rolling process optimization method based on artificial neural network and genetic algorithm |
CN117350598A (en) * | 2023-11-16 | 2024-01-05 | 张家港广大特材股份有限公司 | Gear steel process control method and system |
CN117350598B (en) * | 2023-11-16 | 2024-04-02 | 张家港广大特材股份有限公司 | Gear steel process control method and system |
CN117399435A (en) * | 2023-12-11 | 2024-01-16 | 常州润来科技有限公司 | Self-adaptive compensation adjustment method and system for copper pipe rolling process |
CN117399435B (en) * | 2023-12-11 | 2024-03-15 | 常州润来科技有限公司 | Self-adaptive compensation adjustment method and system for copper pipe rolling process |
CN118155779A (en) * | 2024-05-11 | 2024-06-07 | 常州润来科技有限公司 | Ultra-thin wall internal thread expansion and contraction rate evaluation method and system |
Also Published As
Publication number | Publication date |
---|---|
CN100383796C (en) | 2008-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100383796C (en) | Method of Design and Optimization of Copper Alloy Pipe Casting and Rolling Process Parameters | |
CN103761423B (en) | A kind of hot rolled plate microstructure and property prediction method based on PSO-ELM | |
Hu et al. | New CBR adaptation method combining with problem–solution relational analysis for mechanical design | |
CN114897227A (en) | Prediction method of multi-steel mechanical properties based on improved random forest algorithm | |
Lambiase | Optimization of shape rolling sequences by integrated artificial intelligent techniques | |
CN111652402A (en) | A method for intelligent optimization of optical fiber preform deposition process based on big data analysis | |
CN116882585A (en) | A method for optimizing the low-pressure casting process of aluminum alloy wheels coupled with genetic algorithm and neural network | |
CN115860211B (en) | A method for predicting billet quality based on local online modeling | |
CN116502455A (en) | Process parameter determination method and system for laser selective melting technology | |
CN106295795A (en) | A kind of copper pipe interior whorl forming qualitative forecasting method based on BP neural network algorithm | |
Feng et al. | Endpoint temperature prediction of molten steel in RH using improved case-based reasoning | |
CN116825253B (en) | Method for establishing mechanical properties prediction model of hot-rolled strip based on feature selection | |
CN117350146A (en) | A health evaluation method of drainage pipe network based on GA-BP neural network | |
CN108710964A (en) | A kind of prediction technique of Fuzzy time sequence aquaculture water quality environmental data | |
CN109920489A (en) | A hydrocracking model and its establishment method based on Lasso-CCF-CNN | |
CN104732067A (en) | Industrial process modeling forecasting method oriented at flow object | |
Ciancio et al. | Design of a high performance predictive tool for forging operation | |
CN115688870A (en) | Product quality prediction method based on dual-channel information complementary fusion stacking self-encoder | |
CN110362861A (en) | A kind of mold structure parameter Multipurpose Optimal Method considering efficiency | |
CN102620980B (en) | Method for predicting plate forming performance by using neural network | |
Görüş et al. | Machine learning for the prediction of problems in steel tube bending process | |
CN114970813A (en) | Dissolved oxygen concentration data restoration and prediction method | |
WO2021240900A1 (en) | Steel pipe collapse strength prediction model generation method, steel pipe collapse strength prediction method, steel pipe manufacturing characteristics determination method, and steel pipe manufacturing method | |
CN103593493B (en) | Reducer quality prediction method based on integrated gradient data ELM-PLS method | |
CN114764525A (en) | Grain size prediction method for multi-pass and multi-step forging forming process of axle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080423 Termination date: 20111202 |