CN102819651A - Simulation-based parameter optimizing method for precise casting process of single crystal turbine blade - Google Patents
Simulation-based parameter optimizing method for precise casting process of single crystal turbine blade Download PDFInfo
- Publication number
- CN102819651A CN102819651A CN2012102966281A CN201210296628A CN102819651A CN 102819651 A CN102819651 A CN 102819651A CN 2012102966281 A CN2012102966281 A CN 2012102966281A CN 201210296628 A CN201210296628 A CN 201210296628A CN 102819651 A CN102819651 A CN 102819651A
- Authority
- CN
- China
- Prior art keywords
- single crystal
- turbine blade
- precision casting
- model
- casting process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 99
- 239000013078 crystal Substances 0.000 title claims abstract description 33
- 238000004088 simulation Methods 0.000 title claims abstract description 21
- 238000005266 casting Methods 0.000 title claims abstract description 20
- 230000008569 process Effects 0.000 claims abstract description 64
- 238000005495 investment casting Methods 0.000 claims abstract description 61
- 238000005457 optimization Methods 0.000 claims abstract description 28
- 238000012360 testing method Methods 0.000 claims abstract description 27
- 238000004458 analytical method Methods 0.000 claims abstract description 12
- 238000013461 design Methods 0.000 claims abstract description 12
- 238000003062 neural network model Methods 0.000 claims abstract description 9
- 238000012545 processing Methods 0.000 claims abstract description 7
- 238000006073 displacement reaction Methods 0.000 claims description 29
- 238000013528 artificial neural network Methods 0.000 claims description 17
- 238000005516 engineering process Methods 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 238000012549 training Methods 0.000 claims description 7
- 238000011161 development Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000011156 evaluation Methods 0.000 claims 1
- 238000000605 extraction Methods 0.000 claims 1
- 238000009415 formwork Methods 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 238000010606 normalization Methods 0.000 claims 1
- 230000000704 physical effect Effects 0.000 claims 1
- 230000002459 sustained effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- 239000011257 shell material Substances 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 230000002452 interceptive effect Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000007713 directional crystallization Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
本发明公开了一种基于仿真的单晶涡轮叶片精铸工艺参数优化方法,用于解决现有的单晶涡轮叶片精铸工艺参数优化方法优化效果差的技术问题。技术方案是通过设计单晶涡轮叶片浇注系统模型,采用有限元分析方法对浇注系统模型进行单元划分,对叶片精铸工艺参数提取与辨析,并通过单因素工艺试验得到对精铸叶片型面尺寸精度影响较大的精铸工艺参数及合理参数变化范围;根据建立的试验表格进行浇注过程的数值模拟;通过数据处理与分析,评估铸件相对于设计模型的变形情况,通过建立BP神经网络模型,采用采用小步长搜索方法,逐渐缩小精铸工艺参数优化的搜索范围。提高了单晶涡轮叶片精铸工艺参数优化方法的优化效果。
The invention discloses a simulation-based single crystal turbine blade precision casting process parameter optimization method, which is used to solve the technical problem that the existing single crystal turbine blade precision casting process parameter optimization method has poor optimization effect. The technical solution is to design the gating system model of the single crystal turbine blade, use the finite element analysis method to divide the gating system model into units, extract and analyze the precision casting process parameters of the blade, and obtain the surface size of the precision casting blade through the single factor process test. Precision casting process parameters and reasonable parameter variation ranges that have a greater impact on precision; numerical simulation of the pouring process based on the established test table; through data processing and analysis, evaluate the deformation of the casting relative to the design model, and establish a BP neural network model, The search range of precision casting process parameter optimization is gradually narrowed by adopting the small step size search method. The optimization effect of the single crystal turbine blade precision casting process parameter optimization method is improved.
Description
技术领域 technical field
本发明涉及一种单晶涡轮叶片精铸工艺参数优化方法,特别是涉及一种基于仿真的单晶涡轮叶片精铸工艺参数优化方法。The present invention relates to a single crystal turbine blade precision casting process parameter optimization method, in particular to a single crystal turbine blade precision casting process parameter optimization method based on simulation.
背景技术 Background technique
复杂空心涡轮叶片是高推重比发动机的核心技术,是发动机最核心的部件,也是易断裂失效件。其性能水平,特别是承高温能力,是一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志。由于其内部冷却结构复杂、气动外形和尺寸精度要求较高,且长期服役在强烈热冲击与复杂循环热应力工况条件下,故空心涡轮叶片结构设计与制造技术成为高推重比航空发动机的核心技术。The complex hollow turbine blade is the core technology of the high thrust-to-weight ratio engine, the core component of the engine, and the easily broken and failed parts. Its performance level, especially its ability to withstand high temperatures, is an important symbol of the advanced level of a type of engine, and in a certain sense, it is also a significant symbol of the level of a country's aviation industry. Due to its complex internal cooling structure, high requirements for aerodynamic shape and dimensional accuracy, and long-term service under conditions of strong thermal shock and complex cyclic thermal stress, the structural design and manufacturing technology of hollow turbine blades has become the core of high thrust-to-weight ratio aeroengines technology.
空心涡轮叶片一般采用定向结晶或单晶无余量精密铸造,由于涡轮叶片为大量自由曲面和复杂内腔组成的薄壁结构(壁厚0.5mm-2mm),精铸叶片的型面精度低、壁厚尺寸漂移大、质量不稳、废品率很高,一直是制约我国新型航空发动机研制的瓶颈。Hollow turbine blades are generally precision cast with directional crystallization or single crystal without margin. Since the turbine blades are thin-walled structures (with a wall thickness of 0.5mm-2mm) composed of a large number of free-form surfaces and complex inner cavities, the surface precision of precision casting blades is low and the wall Large thickness drift, unstable quality, and high scrap rate have always been the bottleneck restricting the development of new aero-engines in my country.
叶片精铸是一个多形变因素和多种应、抗力源相互耦合的复杂的动态过程,影响叶片尺寸的也是多因素的耦合作用。国内铸造工艺一般采用“经验+试验”法,即依靠生产经验工艺参数,通过反复的现场试验研究精铸工艺参数对单晶涡轮叶片成型质量的影响。这种方法智能和自动化程度低,成本较高,且研发周期长,没有科学的理论依据,难以有效地进行精铸工艺参数优化,已经不能适应现代市场高速发展和激烈竞争的需求。Precision casting of blades is a complex dynamic process in which multiple deformation factors and multiple stress and resistance sources are coupled with each other, and what affects blade size is also the coupling effect of multiple factors. The domestic casting process generally adopts the "experience + test" method, that is, relying on production experience process parameters, through repeated field tests to study the influence of precision casting process parameters on the forming quality of single crystal turbine blades. This method is low in intelligence and automation, high in cost, and has a long research and development cycle. There is no scientific theoretical basis, and it is difficult to effectively optimize the parameters of the precision casting process. It can no longer meet the needs of the rapid development and fierce competition of the modern market.
发明内容 Contents of the invention
为了克服现有的单晶涡轮叶片精铸工艺参数优化方法优化效果差的不足,本发明提供一种基于仿真的单晶涡轮叶片精铸工艺参数优化方法。该方法通过设计单晶涡轮叶片浇注系统,采用有限元分析方法对浇注系统模型进行单元划分,对叶片精铸工艺参数提取与辨析,并通过单因素工艺试验得到对精铸叶片型面尺寸精度影响较大的精铸工艺参数及合理参数变化范围;设计交互正交试验,根据建立的试验表格进行浇注过程的数值模拟,以获取浇注过程中的涡轮叶片铸件变形情况;通过数据处理与分析,评估铸件相对于设计模型的变形情况,通过建立BP神经网络模型,采用采用小步长搜索方法,逐渐缩小精铸工艺参数优化的搜索范围,可以提高单晶涡轮叶片精铸工艺参数优化方法的优化效果。In order to overcome the disadvantage of poor optimization effect of the existing single crystal turbine blade investment casting process parameter optimization method, the present invention provides a simulation-based single crystal turbine blade precision casting process parameter optimization method. In this method, the gating system of the single crystal turbine blade is designed, the gating system model is divided into units by the finite element analysis method, the parameters of the precision casting process of the blade are extracted and analyzed, and the influence on the accuracy of the precision casting blade surface size is obtained through the single factor process test. Large investment casting process parameters and reasonable parameter variation range; design interactive orthogonal experiments, and perform numerical simulation of the pouring process according to the established test table to obtain the deformation of the turbine blade castings during the pouring process; through data processing and analysis, evaluate For the deformation of the casting relative to the design model, by establishing the BP neural network model and using the small step size search method, the search range for the optimization of the precision casting process parameters can be gradually narrowed, and the optimization effect of the single crystal turbine blade precision casting process parameter optimization method can be improved. .
本发明解决其技术问题所采用的技术方案是:一种基于仿真的单晶涡轮叶片精铸工艺参数优化方法,其特点是包括以下步骤:The technical solution adopted by the present invention to solve the technical problem is: a simulation-based optimization method for single crystal turbine blade precision casting process parameters, which is characterized in that it includes the following steps:
步骤一:建立单晶涡轮叶片浇注系统模型,采用有限元分析方法对浇注系统模型进行单元划分。Step 1: Establish a single crystal turbine blade gating system model, and use the finite element analysis method to divide the gating system model into units.
步骤二:对单晶涡轮叶片精铸工艺参数提取与辨析,并通过单因素工艺试验得到对单晶涡轮叶片型面尺寸精度影响较大的精铸工艺参数及合理参数变化范围。Step 2: Extract and analyze the precision casting process parameters of the single crystal turbine blade, and obtain the precision casting process parameters and reasonable parameter variation ranges that have a great influence on the dimension accuracy of the single crystal turbine blade surface through a single factor process test.
步骤三:根据步骤二中的精铸工艺参数设计交互正交试验表格。Step 3: Design an interactive orthogonal test form according to the investment casting process parameters in
步骤四:根据建立的交互正交试验表格进行浇注过程的数值模拟,以获取浇注过程中的涡轮叶片铸件变形情况。首先施加数值模拟边界条件,包括合金材料与模壳材料的热物性参数、初始浇注的合金温度、中止数值计算的合金温度、合金材料与精铸模壳间的界面换热系数、模型位移的约束条件。通过精铸过程应力场的求解,得出精铸过程涡轮叶片网格模型各节点的应力分布,进而导出各节点的位移量,建立位移场模型。Step 4: Carry out numerical simulation of the pouring process according to the established interactive orthogonal test table, so as to obtain the deformation of the turbine blade casting during the pouring process. Firstly, the numerical simulation boundary conditions are applied, including the thermophysical parameters of the alloy material and the mold shell material, the alloy temperature of the initial pouring, the alloy temperature at which the numerical calculation is terminated, the interface heat transfer coefficient between the alloy material and the precision casting mold shell, and the constraint conditions of the model displacement . Through the solution of the stress field in the precision casting process, the stress distribution of each node of the turbine blade mesh model in the precision casting process is obtained, and then the displacement of each node is derived, and the displacement field model is established.
步骤五:根据步骤三得到的仿真结果进行数据处理与分析。用等参数法截取叶片不同高度上的多个二维截面,采用对应点的方法计算铸件截面的二维位移分布,再由多个截面的二维位移分布集合来表达铸件的三维位移场,评估铸件相对于设计模型的变形情况。结合步骤三中的交互正交试验表格得到神经网络训练样本及最佳精铸工艺参数。具体步骤如下:Step 5: Perform data processing and analysis according to the simulation results obtained in
[1]通过ProCAST的ViewCAST模块将叶片仿真模型导出,数据格式为“*.sm”;[1] Export the blade simulation model through the ViewCAST module of ProCAST, and the data format is "*.sm";
[2]将“*.sm”格式转换为“*.STL”格式;[2] Convert "*.sm" format to "*.STL" format;
[3]将步骤一建立单晶涡轮叶片浇注系统模型与单晶涡轮叶片蜡模CAD模型导入进行三维配准;[3] Import the casting system model of the single crystal turbine blade and the CAD model of the single crystal turbine blade wax model in
[4]经三维配准以后,沿着模型高度方向截取5~8条截面线,得到单晶涡轮叶片浇注系统模型与单晶涡轮叶片蜡模CAD模型在同一高度的二维截面,同时导出截面线;[4] After 3D registration, 5 to 8 section lines are cut along the height direction of the model to obtain the two-dimensional cross section of the single crystal turbine blade casting system model and the single crystal turbine blade wax model CAD model at the same height, and the cross section is derived at the same time Wire;
[5]对截取的截面线进行等参数离散,并将离散点排序,应用UG二次开发模块将离散点读入计算对应离散点之间的位移量;[5] Discretize the intercepted section lines with equal parameters, sort the discrete points, and use the UG secondary development module to read the discrete points into the calculation of the displacement between the corresponding discrete points;
[6]结合步骤三中的交互正交试验表格,对数据作归一化处理及极差分析,得到神经网络训练样本和最佳精铸工艺参数组合。[6] Combined with the interactive orthogonal test table in
步骤六:建立BP神经网络模型,用步骤五中得到的神经网络训练样本训练神经网络。Step 6: Establish a BP neural network model, and use the neural network training samples obtained in
步骤七:结合步骤六中建立的BP神经网络模型,采用采用小步长搜索办法,逐渐缩小精铸工艺参数优化的搜索范围,最终使优化参数对应的型面位移量小于要求数值。小步长搜索优化方法过程如下:Step 7: Combining with the BP neural network model established in
[1]在已得到的最值点附近对每个变量增加和减小微小步长δi(i=1,2,3,4),把这些参数搭配成多组精铸工艺参数的组合,即生成新的正交表;[1] Increase and decrease the micro-step size δ i (i=1, 2, 3, 4) for each variable near the obtained maximum point, and combine these parameters into a combination of multiple sets of precision casting process parameters, That is, a new orthogonal table is generated;
[2]通过BP神经网络模型计算得到一系列叶片型面位移量△Z;[2] Through the calculation of BP neural network model, a series of blade surface displacements △Z are obtained;
[3]查找得到更小叶片型面位移量对应的精铸工艺参数组合;[3] Find the investment casting process parameter combination corresponding to the smaller blade surface displacement;
返回步骤[1]直到叶片型面位移量△Z数值达到要求为止。Return to step [1] until the value of displacement ΔZ of the blade profile meets the requirement.
本发明的有益效果是:由于通过设计单晶涡轮叶片浇注系统,采用有限元分析方法对浇注系统模型进行单元划分,对叶片精铸工艺参数提取与辨析,并通过单因素工艺试验得到对精铸叶片型面尺寸精度影响较大的精铸工艺参数及合理参数变化范围;设计交互正交试验,根据建立的试验表格进行浇注过程的数值模拟,以获取浇注过程中的涡轮叶片铸件变形情况;通过数据处理与分析,评估铸件相对于设计模型的变形情况,通过建立BP神经网络模型,采用采用小步长搜索方法,逐渐缩小精铸工艺参数优化的搜索范围。提高了单晶涡轮叶片精铸工艺参数优化方法的优化效果。The beneficial effects of the present invention are: due to the design of the single crystal turbine blade gating system, the finite element analysis method is used to divide the gating system model into units, the blade precision casting process parameters are extracted and analyzed, and the accuracy of the precision casting is obtained through the single factor process test. The precision casting process parameters and reasonable parameter variation ranges that greatly affect the blade profile size accuracy; design interactive orthogonal experiments, and conduct numerical simulations of the pouring process according to the established test table to obtain the deformation of the turbine blade castings during the pouring process; through Data processing and analysis, evaluating the deformation of the casting relative to the design model, through the establishment of a BP neural network model, and the use of a small step size search method, gradually narrowed the search range for the optimization of investment casting process parameters. The optimization effect of the single crystal turbine blade precision casting process parameter optimization method is improved.
下面结合附图和实施例对本发明作详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
附图说明 Description of drawings
图1是本发明基于仿真的单晶涡轮叶片精铸工艺参数优化方法的流程图。Fig. 1 is a flow chart of the simulation-based method for optimizing the technical parameters of single crystal turbine blade precision casting in the present invention.
图2是本发明方法所用某型号涡轮动力叶片模型图。Fig. 2 is a model diagram of a certain type of turbine power blade used in the method of the present invention.
图3是本发明方法所用浇注系统的CAD模型。Figure 3 is a CAD model of the gating system used in the method of the present invention.
图4是本发明方法中型面位移量随抽拉速度变化曲线。Fig. 4 is the variation curve of profile displacement with drawing speed in the method of the present invention.
图5是本发明方法所用某型号涡轮动力叶片凝固过程的温度场示意图。Fig. 5 is a schematic diagram of the temperature field during the solidification process of a certain type of turbine power blade used in the method of the present invention.
图6是本发明方法BP神经网络训练流程图。Fig. 6 is a flowchart of BP neural network training of the method of the present invention.
图7是本发明方法小步长的搜索优化流程图。Fig. 7 is a search optimization flow chart of the method of the present invention with a small step size.
具体实施方式 Detailed ways
以下实施例参照图1~7。The following embodiments refer to FIGS. 1-7.
步骤1:采用某型号涡轮动力叶片,其主要参数为叶身长106.10mm,最大弦长56.21mm,最大内切圆半径5.7mm,前缘半径4.12mm,后缘半径1.25mm。叶片选用第二代单晶高温合金DD6,模壳选用硅砂。根据铸造补缩理论和实际生产经验,针对动力叶片设计叶片铸造工艺及浇注系统,采用顶注式,2片一组。Step 1: Use a certain type of turbine power blade, the main parameters of which are blade body length 106.10mm, maximum chord length 56.21mm, maximum inscribed circle radius 5.7mm, leading edge radius 4.12mm, and trailing edge radius 1.25mm. The blade is made of the second generation single crystal superalloy DD6, and the mold shell is made of silica sand. According to casting feeding theory and actual production experience, the blade casting process and gating system are designed for power blades, using top injection, 2 pieces in a set.
步骤2:采用商用有限元前处理软件Hypermesh(美国Altair公司的产品)基于非均匀网格剖分技术对模型进行单元划分,首先将浇注系统模型导入Hypermesh中,将其离散为四面体单元,单元质量满足一般企业有限元分析质量要求,在本实施例中,要求95%以上的单元质量满足:单元翘曲小于5.0、单元长短边比值小于5.0、偏斜小于60.0、单元雅克比大于0.7。四面体单元总数73万7千。Step 2: Use commercial finite element pre-processing software Hypermesh (product of Altair, USA) to divide the model into units based on non-uniform mesh division technology. First, import the gating system model into Hypermesh and discretize it into tetrahedral units. The quality meets the quality requirements of general enterprise finite element analysis. In this embodiment, more than 95% of the unit quality is required to meet: unit warpage less than 5.0, unit long-short side ratio less than 5.0, skew less than 60.0, and unit Jacobian ratio greater than 0.7. The total number of tetrahedral units is 737,000.
步骤:3:提取出对涡轮叶片精铸型面精度尺寸影响比较大的精铸工艺参数,如抽拉速度、浇注温度、模壳预热温度、冷铜温度、模壳厚度、保温温度等等,本发明仅对前四个参数进行研究,其余参数在试验中保持固定值。Step: 3: Extract the investment casting process parameters that have a greater impact on the accuracy and size of the precision casting surface of the turbine blade, such as drawing speed, pouring temperature, mold shell preheating temperature, cold copper temperature, mold shell thickness, heat preservation temperature, etc. , the present invention only studies the first four parameters, and the remaining parameters are kept at fixed values in the test.
采用单因素工艺试验研究精铸工艺参数对涡轮叶片型面精度尺寸的影响。试验表格及试验结果如表1所示。A single factor process test was used to study the influence of investment casting process parameters on the precision dimension of the turbine blade profile. The test form and test results are shown in Table 1.
表1单因素工艺试验表及结果Table 1 Single factor process test table and results
为了能够更直观地看到各个工艺参数对精铸型面尺寸的影响及其规律,采用绘图工具,以精铸工艺参数为横坐标,随之变化的型面位移量为纵坐标进行绘图。In order to be able to more intuitively see the influence and regularity of each process parameter on the size of the investment casting surface, a drawing tool is used to plot the precision casting process parameters as the abscissa and the resulting displacement of the profile as the ordinate.
根据绘制的曲线图,可以发现随着精铸工艺参数的变化,叶片型面尺寸呈现明显的变化规律,以此来确定参数的合理选取值及正交试验的因素水平表,如表2所示。According to the drawn curve, it can be found that with the change of investment casting process parameters, the size of the blade surface shows an obvious change rule, so as to determine the reasonable selection of parameters and the factor level table of the orthogonal test, as shown in Table 2 Show.
表2因素水平表Table 2 Factor level table
步骤4:由步骤2,需要进行优化的精铸工艺参数有抽拉速度、浇注温度、模壳预热温度、冷铜温度。每个因素选取三个水平,同时考虑抽拉速度、浇注温度、模壳预热温度这三个因素之间的交互作用,采用L23(313)交互作用表设计,具体试验表格如下:Step 4: From
表3交互试验表Table 3 Interactive test table
A抽拉速度 B浇注温度 C模壳预热温度 D冷铜温度A Pulling speed B Pouring temperature C Mold shell preheating temperature D Cold copper temperature
步骤5:按照步骤3中的正交试验表,采用ProCAST对涡轮叶片进行精铸过程数值模拟。合金选用DD6高温镍基合金,其液相线温度为1380℃,固相线温度为1310℃。其热传导率为33.2W/m·K,密度为8780kg/m3,比热为99.0KJ/Kg/K。模壳选用硅砂,其热传导率为0.59W/m·K,密度为1520kg/m3,比热为1.20KJ/Kg/K。数值模拟中止计算的合金温度为600℃。位移约束条件为浇道底部和叶片引晶段底部固定以及冷铜底部固定。Step 5: According to the orthogonal test table in
步骤6:处理与分析定向凝固过程数值模拟结果。将完成三维配准的叶片仿真模型与叶片CAD模型沿Z轴截取5条截面线,高度分别为320mm、330mm、340mm、350mm、360mm、370mm、380mm、390mm,处理分析结果如下表所示:Step 6: Process and analyze the numerical simulation results of the directional solidification process. The blade simulation model and the blade CAD model that have completed the three-dimensional registration are cut along the Z-axis to 5 section lines with heights of 320mm, 330mm, 340mm, 350mm, 360mm, 370mm, 380mm, and 390mm. The processing and analysis results are shown in the following table:
表4Table 4
27组试验作为神经网络训练样本,最佳精铸工艺参数为抽拉速度5mm/min,浇注温度1550℃,模壳预热温度1470℃,冷铜温度24℃。27 groups of experiments were used as neural network training samples. The optimal investment casting process parameters were drawing speed 5mm/min, pouring temperature 1550°C, mold shell preheating temperature 1470°C, and cold copper temperature 24°C.
步骤7:采用三层人工神经网络,训练并建立神经网络优化模型。神经网络采用基于Liebenberg-Marquardt优化算法的BP网络,隐含层为Sigmoid型激活函数,输出层选用Purelin型激活函数。精铸工艺参数与叶片型面位移的神经网络结构为:输入层4个节点,其参量为提取的精铸工艺参数,包括抽拉速度、浇注温度、模壳预热温度、冷铜温度。输出层为1个节点,其参量为数值模拟的结果输出量,即叶片型面位移量。用训练样本对建立的神经网络进行训练,并对神经网络进行验证,若误差在许可范围内,将得到神经网络的阈值和权值矩阵作为神经网络矩阵。这样建立起一个映射关系模型,可映射精铸工艺参数与叶片型面位移量之间的关系。图6为BP神经网络结构图,其中A为抽拉速度,B为浇注温度,C为模壳预热温度,D为冷铜温度。Step 7: Using a three-layer artificial neural network, train and establish a neural network optimization model. The neural network adopts the BP network based on the Liebenberg-Marquardt optimization algorithm, the hidden layer is a Sigmoid activation function, and the output layer is a Purelin activation function. The neural network structure of investment casting process parameters and blade surface displacement is: 4 nodes in the input layer, whose parameters are the extracted investment casting process parameters, including drawing speed, pouring temperature, mold shell preheating temperature, and cold copper temperature. The output layer is a node whose parameter is the output of the numerical simulation results, that is, the displacement of the blade profile. Use the training samples to train the established neural network and verify the neural network. If the error is within the allowable range, the threshold and weight matrix of the neural network will be obtained as the neural network matrix. In this way, a mapping relationship model is established, which can map the relationship between the precision casting process parameters and the displacement of the blade profile. Figure 6 is a BP neural network structure diagram, where A is the drawing speed, B is the pouring temperature, C is the preheating temperature of the mold shell, and D is the cold copper temperature.
步骤8:结合神经网络,采用小步长搜索方法优化精铸工艺参数。初始微小步长δi(i=1,2,3,4)分别为δ1=0.2mm/min、δ2=20℃、δ3=20℃、δ4=1℃,叶片型面尺寸精度△Z=0.185mm。经过第一次计算之后,△Zmin=0.1820mm,已经符合精度要求。最终得到的优化精铸工艺参数组如下表:Step 8: Combining with neural network, adopt small step size search method to optimize investment casting process parameters. The initial micro-step size δ i (i=1, 2, 3, 4) is δ 1 =0.2mm/min, δ 2 =20°C, δ 3 =20°C, δ 4 =1°C, and the precision of the blade surface size ΔZ=0.185mm. After the first calculation, △Zmin=0.1820mm, already meets the precision requirement. The finally obtained optimized investment casting process parameter group is as follows:
表5table 5
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102966281A CN102819651A (en) | 2012-08-20 | 2012-08-20 | Simulation-based parameter optimizing method for precise casting process of single crystal turbine blade |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012102966281A CN102819651A (en) | 2012-08-20 | 2012-08-20 | Simulation-based parameter optimizing method for precise casting process of single crystal turbine blade |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102819651A true CN102819651A (en) | 2012-12-12 |
Family
ID=47303762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012102966281A Pending CN102819651A (en) | 2012-08-20 | 2012-08-20 | Simulation-based parameter optimizing method for precise casting process of single crystal turbine blade |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102819651A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103020373A (en) * | 2012-12-24 | 2013-04-03 | 湖南大学 | Method for simulating steel/aluminum laser welding temperature field based on ProCAST numerical value |
CN103231025A (en) * | 2013-04-18 | 2013-08-07 | 西安交通大学 | Preparation method of wall thickness controllable directional solidification casting mould |
CN104283393A (en) * | 2014-09-25 | 2015-01-14 | 南京工程学院 | A Method for Optimizing Structural Parameters of Single Winding Magnetic Levitation Switched Reluctance Motor |
CN104765916A (en) * | 2015-03-31 | 2015-07-08 | 西南交通大学 | Dynamics performance parameter optimizing method of high-speed train |
CN105247339A (en) * | 2013-05-17 | 2016-01-13 | 斯奈克玛 | Optimisation of a cycle fatigue or cycle and high-cycle fatigue test bench |
CN105290380A (en) * | 2015-11-12 | 2016-02-03 | 沈阳黎明航空发动机(集团)有限责任公司 | Design method of internal baffle for directional solidification blade casting system |
CN107577874A (en) * | 2017-09-06 | 2018-01-12 | 厦门大学 | A Method for Determining Design Shrinkage Rate of Precision Casting Mold for Hollow Turbine Blades |
CN107745093A (en) * | 2017-12-06 | 2018-03-02 | 安徽应流航源动力科技有限公司 | A kind of precise casting mold group and using its preparation can essence control crystal orientation nickel-based monocrystal stator casting method |
CN108959717A (en) * | 2018-06-08 | 2018-12-07 | 昆明理工大学 | A method of improving Ti alloy casting performance |
CN109338456A (en) * | 2018-12-03 | 2019-02-15 | 上海交通大学 | Intelligent control technology of single crystal product production based on numerical simulation and neural network judgment |
CN109624150A (en) * | 2018-12-11 | 2019-04-16 | 青岛科技大学 | Rubber injection cold runner design and optimization method |
CN110252946A (en) * | 2019-07-16 | 2019-09-20 | 中国航发北京航空材料研究院 | A preparation method for reducing the surface roughness of titanium alloy investment precision castings |
CN110869728A (en) * | 2017-07-19 | 2020-03-06 | 林德股份公司 | Method for determining the stress level in a material of a process engineering device |
CN112001037A (en) * | 2020-06-11 | 2020-11-27 | 北京科技大学 | Simulation method for casting and forming of dual-performance blisk |
CN112069622A (en) * | 2020-09-08 | 2020-12-11 | 北京航空航天大学 | Intelligent recommendation system and recommendation method for turbine guide vane cooling structure |
CN112182791A (en) * | 2020-08-20 | 2021-01-05 | 无锡量子感知技术有限公司 | Analysis method for optimization of turbine generator flow passage structure |
CN113158483A (en) * | 2021-05-04 | 2021-07-23 | 嘉善鑫海精密铸件有限公司 | Wax mold injection process parameter determination method based on injection molding numerical simulation |
CN113188495A (en) * | 2021-05-07 | 2021-07-30 | 西安医学院 | Dimension out-of-tolerance intelligent verification system applied to preparation of single crystal blade mould shell |
CN113343524A (en) * | 2021-06-01 | 2021-09-03 | 西安建筑科技大学 | Fe-Al-Ta ternary alloy directional solidification process optimization method based on simulation |
CN113806890A (en) * | 2021-09-18 | 2021-12-17 | 山东大学 | Verification method for machining process of turbine disc parts |
CN114416193A (en) * | 2021-12-15 | 2022-04-29 | 中国科学院深圳先进技术研究院 | A method to accurately and quickly determine the configuration parameter range of a big data analysis system |
CN115292925A (en) * | 2022-07-29 | 2022-11-04 | 中国航发沈阳发动机研究所 | Method for evaluating working blade of single crystal high-pressure turbine |
WO2023108486A1 (en) * | 2021-12-15 | 2023-06-22 | 中国科学院深圳先进技术研究院 | Method for accurately and quickly determining configuration parameter value domain of big data analysis system |
CN119249765A (en) * | 2024-11-29 | 2025-01-03 | 国网浙江省电力有限公司杭州供电公司 | A microchannel deep groove structure optimization method, storage medium and system based on parameter optimization |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1979496A (en) * | 2005-12-02 | 2007-06-13 | 中国科学院金属研究所 | Copper-alloy pipe-material casting-milling technology parameter designing and optimizing method |
US7751917B2 (en) * | 2002-04-26 | 2010-07-06 | Bae Systems Plc | Optimisation of the design of a component |
CN102169518A (en) * | 2011-03-24 | 2011-08-31 | 西北工业大学 | Accurate forming method for precise-casting turbine blade die cavity |
-
2012
- 2012-08-20 CN CN2012102966281A patent/CN102819651A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7751917B2 (en) * | 2002-04-26 | 2010-07-06 | Bae Systems Plc | Optimisation of the design of a component |
CN1979496A (en) * | 2005-12-02 | 2007-06-13 | 中国科学院金属研究所 | Copper-alloy pipe-material casting-milling technology parameter designing and optimizing method |
CN102169518A (en) * | 2011-03-24 | 2011-08-31 | 西北工业大学 | Accurate forming method for precise-casting turbine blade die cavity |
Non-Patent Citations (3)
Title |
---|
傅将威等: ""基于UG二次开发的单晶涡轮叶片浇注系统建模"", 《特种铸造及有色合金》 * |
刘杰等: ""涡轮叶片铸件收缩率计算与分析"", 《现代制造工程》 * |
董一巍等: ""精铸涡轮叶片蜡模模具型面优化设计方法"", 《TRANSACTION OF NONFERROUS METALS SOCIETY OF CHINA》 * |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103020373B (en) * | 2012-12-24 | 2016-01-06 | 湖南大学 | A kind of method based on ProCAST numerical simulation steel/aluminium laser welding temperature field |
CN103020373A (en) * | 2012-12-24 | 2013-04-03 | 湖南大学 | Method for simulating steel/aluminum laser welding temperature field based on ProCAST numerical value |
CN103231025A (en) * | 2013-04-18 | 2013-08-07 | 西安交通大学 | Preparation method of wall thickness controllable directional solidification casting mould |
CN103231025B (en) * | 2013-04-18 | 2015-01-21 | 西安交通大学 | Preparation method of wall thickness controllable directional solidification casting mould |
CN105247339A (en) * | 2013-05-17 | 2016-01-13 | 斯奈克玛 | Optimisation of a cycle fatigue or cycle and high-cycle fatigue test bench |
CN105247339B (en) * | 2013-05-17 | 2018-03-30 | 斯奈克玛 | The optimization and high cycles fatigue testing stand of cyclic fatigue or circulation |
CN104283393B (en) * | 2014-09-25 | 2017-02-15 | 南京工程学院 | Method for optimizing structure parameter of single-winding magnetic suspension switch reluctance machine |
CN104283393A (en) * | 2014-09-25 | 2015-01-14 | 南京工程学院 | A Method for Optimizing Structural Parameters of Single Winding Magnetic Levitation Switched Reluctance Motor |
CN104765916A (en) * | 2015-03-31 | 2015-07-08 | 西南交通大学 | Dynamics performance parameter optimizing method of high-speed train |
CN104765916B (en) * | 2015-03-31 | 2018-01-19 | 成都天佑创软科技有限公司 | A kind of Dynamics Performance of High Speed Trains parameter optimization method |
CN105290380A (en) * | 2015-11-12 | 2016-02-03 | 沈阳黎明航空发动机(集团)有限责任公司 | Design method of internal baffle for directional solidification blade casting system |
CN105290380B (en) * | 2015-11-12 | 2017-07-04 | 沈阳黎明航空发动机(集团)有限责任公司 | A kind of method for designing of directional solidification blade running gate system internal baffle |
CN110869728A (en) * | 2017-07-19 | 2020-03-06 | 林德股份公司 | Method for determining the stress level in a material of a process engineering device |
CN107577874A (en) * | 2017-09-06 | 2018-01-12 | 厦门大学 | A Method for Determining Design Shrinkage Rate of Precision Casting Mold for Hollow Turbine Blades |
CN107577874B (en) * | 2017-09-06 | 2019-07-19 | 厦门大学 | A Method for Determining Design Shrinkage Rate of Precision Casting Die for Hollow Turbine Blades |
CN107745093A (en) * | 2017-12-06 | 2018-03-02 | 安徽应流航源动力科技有限公司 | A kind of precise casting mold group and using its preparation can essence control crystal orientation nickel-based monocrystal stator casting method |
CN108959717A (en) * | 2018-06-08 | 2018-12-07 | 昆明理工大学 | A method of improving Ti alloy casting performance |
CN108959717B (en) * | 2018-06-08 | 2022-07-19 | 昆明理工大学 | A method for improving the casting properties of titanium alloys |
CN109338456A (en) * | 2018-12-03 | 2019-02-15 | 上海交通大学 | Intelligent control technology of single crystal product production based on numerical simulation and neural network judgment |
CN109624150A (en) * | 2018-12-11 | 2019-04-16 | 青岛科技大学 | Rubber injection cold runner design and optimization method |
CN109624150B (en) * | 2018-12-11 | 2020-10-27 | 青岛科技大学 | Design and optimization method of rubber injection cold runner |
CN110252946A (en) * | 2019-07-16 | 2019-09-20 | 中国航发北京航空材料研究院 | A preparation method for reducing the surface roughness of titanium alloy investment precision castings |
CN110252946B (en) * | 2019-07-16 | 2021-09-14 | 北京航空材料研究院有限公司 | Preparation method for reducing surface roughness of titanium alloy investment precision casting |
CN112001037B (en) * | 2020-06-11 | 2024-06-04 | 北京科技大学 | Simulation method for casting forming of dual-performance blisk |
CN112001037A (en) * | 2020-06-11 | 2020-11-27 | 北京科技大学 | Simulation method for casting and forming of dual-performance blisk |
CN112182791A (en) * | 2020-08-20 | 2021-01-05 | 无锡量子感知技术有限公司 | Analysis method for optimization of turbine generator flow passage structure |
CN112069622A (en) * | 2020-09-08 | 2020-12-11 | 北京航空航天大学 | Intelligent recommendation system and recommendation method for turbine guide vane cooling structure |
CN112069622B (en) * | 2020-09-08 | 2021-04-06 | 北京航空航天大学 | Intelligent recommendation system and recommendation method for turbine guide vane cooling structure |
CN113158483A (en) * | 2021-05-04 | 2021-07-23 | 嘉善鑫海精密铸件有限公司 | Wax mold injection process parameter determination method based on injection molding numerical simulation |
CN113158483B (en) * | 2021-05-04 | 2024-08-23 | 嘉善鑫海精密铸件有限公司 | Wax mold injection process parameter determination method based on injection molding numerical simulation |
CN113188495A (en) * | 2021-05-07 | 2021-07-30 | 西安医学院 | Dimension out-of-tolerance intelligent verification system applied to preparation of single crystal blade mould shell |
CN113188495B (en) * | 2021-05-07 | 2024-03-26 | 西安医学院 | Intelligent verification system for dimension out-of-tolerance for preparing single crystal blade mould shell |
CN113343524A (en) * | 2021-06-01 | 2021-09-03 | 西安建筑科技大学 | Fe-Al-Ta ternary alloy directional solidification process optimization method based on simulation |
CN113806890B (en) * | 2021-09-18 | 2023-07-14 | 山东大学 | A Verification Method for Machining Technology of Turbine Disc Parts |
CN113806890A (en) * | 2021-09-18 | 2021-12-17 | 山东大学 | Verification method for machining process of turbine disc parts |
WO2023108486A1 (en) * | 2021-12-15 | 2023-06-22 | 中国科学院深圳先进技术研究院 | Method for accurately and quickly determining configuration parameter value domain of big data analysis system |
CN114416193A (en) * | 2021-12-15 | 2022-04-29 | 中国科学院深圳先进技术研究院 | A method to accurately and quickly determine the configuration parameter range of a big data analysis system |
CN115292925A (en) * | 2022-07-29 | 2022-11-04 | 中国航发沈阳发动机研究所 | Method for evaluating working blade of single crystal high-pressure turbine |
CN119249765A (en) * | 2024-11-29 | 2025-01-03 | 国网浙江省电力有限公司杭州供电公司 | A microchannel deep groove structure optimization method, storage medium and system based on parameter optimization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102819651A (en) | Simulation-based parameter optimizing method for precise casting process of single crystal turbine blade | |
CN102169518A (en) | Accurate forming method for precise-casting turbine blade die cavity | |
CN108984920B (en) | Direct fluid-solid coupling heat transfer analysis method for engine cooling water jacket | |
CN102231170B (en) | Parameterized sizing method for turbine blade mould cavity | |
CN101767185B (en) | Quantitative reverse deformation arrangement based method for designing cast model | |
CN110472355A (en) | A kind of 3D printing method for previewing solved based on multi- scenarios method modeling and simulation | |
CN107577874B (en) | A Method for Determining Design Shrinkage Rate of Precision Casting Die for Hollow Turbine Blades | |
CN106557612A (en) | A kind of aeroperformance emulated computation method of process of truck wind-shielding | |
Chi et al. | Multi-dimensional platform for cooling design of air-cooled turbine blades | |
CN106682299B (en) | Design and manufacturing method for sand mold regional variable strength by selective laser sintering | |
CN115788598B (en) | Turbine blade air film hole parameterization control and design method | |
CN104281751A (en) | Feature-based parametric build system and method of turbine cooling blade | |
Wang et al. | An optimization method of gating system for impeller by RSM and simulation in investment casting | |
CN116502358A (en) | A Stress Prediction System and Method for Precision Castings of Turbine Blades Based on Digital Twins | |
CN103473391B (en) | Pneumatic plant experiment blade mold die cavity reverse adjustment method | |
CN102867097A (en) | Method for designing photo-cure quickly formed wind tunnel model in consideration of influence of static elastic deformation | |
CN111177906A (en) | Method for accurately compensating discrete die profile | |
CN113642160A (en) | An optimization method for casting process design of aluminum alloy engine block based on BP neural network and fish swarm algorithm | |
CN104657565B (en) | Design method of hot working die near surface water channel | |
CN104615835B (en) | A kind of engine intercooler analysis method | |
CN109002581A (en) | High temperature alloy non-standard fastener Plastic Forming Reverse Design based on emulation | |
CN114398728B (en) | Mold temperature simulation analysis method considering cooling water temperature change | |
CN111797547A (en) | Method for calculating temperature field of mold | |
CN104014633B (en) | Simulation method for removing bar core defects based on finite element analysis method and punching method based on simulation method | |
CN114491855A (en) | A Finite Element Calculation Method for Solidification Heat Transfer of Round Billet Continuous Casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C53 | Correction of patent of invention or patent application | ||
CB03 | Change of inventor or designer information |
Inventor after: Bo Kun Inventor after: Ding Xiaoyi Inventor after: Fu Jiangwei Inventor after: Chen Chen Inventor after: Zhou Limin Inventor after: Qiao Yan Inventor after: Dong Yiwei Inventor after: Qiu Fei Inventor after: Gao Bin Inventor after: Wang Lu Inventor before: Fu Jiangwei Inventor before: Ding Xiaoyi Inventor before: Chen Chen Inventor before: Bo Kun Inventor before: Zhou Limin Inventor before: Qiao Yan Inventor before: Dong Yiwei Inventor before: Qiu Fei Inventor before: Gao Bin Inventor before: Wang Lu |
|
COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: FU JIANGWEI CHEN CHEN BU KUN ZHOU LIMIN QIAO YAN DONG YIWEI QIU FEI GAO BIN WANG LU DING XIAOYI TO: BU KUN FU JIANGWEI CHEN CHEN ZHOU LIMIN QIAO YAN DONG YIWEI QIU FEI GAO BIN WANG LU DING XIAOYI |
|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121212 |