CN102393884B - Hot continuous rolling electromagnetic induction heating temperature prediction method based on BP (back-propagation) neural network - Google Patents
Hot continuous rolling electromagnetic induction heating temperature prediction method based on BP (back-propagation) neural network Download PDFInfo
- Publication number
- CN102393884B CN102393884B CN201110307393.7A CN201110307393A CN102393884B CN 102393884 B CN102393884 B CN 102393884B CN 201110307393 A CN201110307393 A CN 201110307393A CN 102393884 B CN102393884 B CN 102393884B
- Authority
- CN
- China
- Prior art keywords
- neural network
- billet
- temperature
- matrix
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 51
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 48
- 230000005674 electromagnetic induction Effects 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000005096 rolling process Methods 0.000 title claims abstract description 11
- 238000012360 testing method Methods 0.000 claims abstract description 22
- 238000012549 training Methods 0.000 claims abstract description 22
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 11
- 239000010959 steel Substances 0.000 claims abstract description 11
- 238000004458 analytical method Methods 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 45
- 230000006698 induction Effects 0.000 claims description 32
- 238000012545 processing Methods 0.000 claims description 12
- 238000010606 normalization Methods 0.000 claims description 7
- 238000004088 simulation Methods 0.000 claims description 6
- 238000003062 neural network model Methods 0.000 claims description 5
- 210000002569 neuron Anatomy 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 238000010219 correlation analysis Methods 0.000 claims description 2
- 238000004134 energy conservation Methods 0.000 claims description 2
- 230000007547 defect Effects 0.000 abstract 1
- 230000001419 dependent effect Effects 0.000 abstract 1
- 238000005098 hot rolling Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000009749 continuous casting Methods 0.000 description 5
- 238000013507 mapping Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Control Of Metal Rolling (AREA)
Abstract
Description
技术领域 technical field
本发明属于自动化技术领域,具体涉及一种基于神经网络的热连轧电磁感应加热钢坯温度的预测方法。 The invention belongs to the technical field of automation, and in particular relates to a neural network-based method for predicting the temperature of a billet heated by electromagnetic induction for hot continuous rolling.
背景技术 Background technique
在钢铁行业,传统的炼钢、连铸、轧钢工艺是各自独立的生产环节。但是现代化的生产模式正在逐步转变为“炼钢-连铸-轧钢”的热连轧一体化工艺,这就是目前国内外普遍推崇的高集约化的热连轧自动生产线模式。在连铸与连轧之间采用的加热设备(加热,均热,保温炉)是衔接连铸连轧生产线的关键设备。从工艺角度讲,中间加热设备需要在完成输送连铸坯的过程中对其进行补热以使铸坯温度均匀达到连轧温度要求的功能,解决板坯温度场不均的问题。加热炉作为连铸机与连轧机两种不同工艺速度部分之间的缓冲区,对铸机与轧机间的物流进行衔接、缓冲,协调二者的生产。 In the iron and steel industry, the traditional steelmaking, continuous casting, and steel rolling processes are independent production links. However, the modern production mode is gradually transforming into an integrated hot rolling process of "steelmaking-continuous casting-steel rolling". This is the highly intensive automatic hot rolling production line model widely praised at home and abroad. The heating equipment (heating, soaking, holding furnace) used between continuous casting and rolling is the key equipment connecting the continuous casting and rolling production line. From a technical point of view, the intermediate heating equipment needs to supplement the heat during the process of conveying the continuous casting slab to make the temperature of the slab uniform and meet the temperature requirements of continuous rolling, so as to solve the problem of uneven temperature field of the slab. The heating furnace is used as a buffer zone between two parts with different process speeds of the continuous casting machine and the continuous rolling mill. It connects and buffers the logistics between the casting machine and the rolling mill, and coordinates the production of the two.
由于电磁感应加热技术的诸多优点,例如加热速度快、功率密度可控、无污染、易于控制、氧化烧损极少等,相比于传统的煤气加热炉,无需明火热源,具有零排放的优点,更适合在热连轧生产线中使用。因此,大功率中频感应加热器已逐步应用于热连轧生产线,参见图1。 Due to the many advantages of electromagnetic induction heating technology, such as fast heating speed, controllable power density, no pollution, easy control, and minimal oxidation loss, etc., compared with traditional gas heating furnaces, no open flame heat source is required, and it has zero emissions. Advantages, more suitable for use in hot rolling production lines. Therefore, high-power medium-frequency induction heaters have been gradually applied to hot rolling production lines, see Figure 1.
由于电磁感应加热是一个复杂的非线性大滞后过程,很难建立精确的机理模型,用常规的控制方法(如PID调节)难以得到满意的效果,一般采用人工经验加以调试及控制。 Since electromagnetic induction heating is a complex nonlinear process with a large lag, it is difficult to establish an accurate mechanism model, and it is difficult to obtain satisfactory results with conventional control methods (such as PID adjustment). Generally, manual experience is used for debugging and control.
鉴于神经网络具有强大的非线性映射能力和良好的容错性,可以很好的逼近系统的真实状态数据。因此,在已积累的大量感应加热运行数据基础上,采用神经网络方法建立热连轧电磁感应加热温度预测模型,对钢坯温度进行预测,可为电磁感应加热精确控温提供依据。 In view of the strong nonlinear mapping ability and good fault tolerance of the neural network, it can well approximate the real state data of the system. Therefore, on the basis of a large amount of accumulated induction heating operation data, the neural network method is used to establish a hot rolling electromagnetic induction heating temperature prediction model to predict the billet temperature, which can provide a basis for precise temperature control of electromagnetic induction heating.
发明内容 Contents of the invention
本发明针对现有技术的不足,提供一种基于神经网络的热连轧电磁感应加热钢坯温度的预测方法。该方法的具体步骤是: Aiming at the deficiencies of the prior art, the invention provides a neural network-based method for predicting the temperature of a steel slab heated by electromagnetic induction for hot rolling. The specific steps of this method are:
步骤(1)选择预测模型变量。 Step (1) Select predictive model variables.
采用神经网络技术建立热连轧电磁感应加热钢坯温度预测模型,为保证基于数据的神经网络建模有效性,避免纯黑箱建模的盲目性,首先利用机理分析和先验信息,合理选择预测模型的输入输出变量。 Using neural network technology to establish a temperature prediction model for hot rolling electromagnetic induction heating slabs, in order to ensure the effectiveness of data-based neural network modeling and avoid the blindness of pure black box modeling, first use mechanism analysis and prior information to select a reasonable prediction model input and output variables.
基于机理分析选择电磁感应加热后的钢坯温度为神经网络模型的输出变量,选择影响钢坯温度的主要因素为神经网络模型输入变量:①电磁感应加热前的钢坯温度; ②感应加热器的电压;③感应加热器的电流。神经网络模型输出变量为电磁感应加热后的钢坯温度。 Based on the mechanism analysis, the billet temperature after electromagnetic induction heating is selected as the output variable of the neural network model, and the main factors affecting the billet temperature are selected as the input variables of the neural network model: ①The temperature of the billet before electromagnetic induction heating; ②The voltage of the induction heater; ③ Induction heater current. The output variable of the neural network model is the billet temperature after electromagnetic induction heating.
对于钢坯在感应线圈中受感应加热过程,是从钢坯进入线圈磁场开始到钢坯脱离磁场为止。首先,在忽略热传导、热辐射情况下,钢坯某一截面升温主要是受到该过程感应加热器的电压、电流作用。因此,感应加热器的电压、电流均为序列变量。其次,考虑热传导、热辐射情况,电磁感应加热前后的钢坯温度也取序列变量。 For the induction heating process of the steel billet in the induction coil, it starts from the time when the steel billet enters the coil magnetic field until the steel billet leaves the magnetic field. First of all, in the case of ignoring heat conduction and heat radiation, the temperature rise of a certain section of the billet is mainly affected by the voltage and current of the induction heater in the process. Therefore, the voltage and current of the induction heater are sequence variables. Secondly, considering heat conduction and heat radiation, the billet temperature before and after electromagnetic induction heating is also taken as a sequence variable.
步骤(2)数据归一化处理。 Step (2) Data normalization processing.
训练样本中的输入数据包含三项,数量级相差较大,为保证各因素同等地位,加快收敛速度,对数据进行归一化处理,转化为[0, 1]区间范围的值 。 The input data in the training sample contains three items, and the order of magnitude differs greatly. In order to ensure the equal status of each factor and speed up the convergence speed, the data is normalized and converted into a value in the range of [0, 1] .
其中为输入数据中的最大值,为输入数据中的最小值。为输入数据,为输入数据归一化处理后的值。 in is the maximum value in the input data, is the minimum value in the input data. for the input data, Normalizes the processed value for the input data.
步骤(3)搭建BP神经网络框架。 Step (3) Build the BP neural network framework.
调用MatlabR2009a神经网络工具箱中的newff函数建立BP神经网络, Net= newff (PR, , , BTF, BLF, PF );Net为BP神经网络框架,PR为输入矩阵中由最大元素和最小元素决定的一个取值范围,为第i层神经元的个数,为第i层的传递函数,,为神经网络总层数,BTF为BP神经网络的训练函数,BLF为权值和偏置值,PF为网络性能函数。 Call the newff function in the MatlabR2009a neural network toolbox to establish a BP neural network, Net= newff (PR, , , BTF, BLF, PF ); Net is the BP neural network framework, PR is a value range determined by the largest and smallest elements in the input matrix, is the number of neurons in the i-th layer, is the transfer function of the i-th layer, , is the total number of layers of the neural network, BTF is the training function of the BP neural network, BLF is the weight and bias value, and PF is the network performance function.
步骤(4)训练BP神经网络。具体方法是: Step (4) training BP neural network. The specific method is:
a、初始化BP神经网络,利用随机函数产生的值赋值给权值和偏置值,然后调用init函数来初始化BP神经网络。 a. Initialize the BP neural network, use the value generated by the random function to assign the weight and bias value, and then call the init function to initialize the BP neural network.
b、设置网络训练次数和训练目标误差。 b. Set the number of network training times and the training target error.
c、设置训练数据为输入矩阵P,设置目标值为矩阵T,调用MatlabR2009a神经网络工具箱中的train函数对BP神经网络Net进行数据训练直至收敛, Net = train (Net, P, T)。 c. Set the training data as the input matrix P, set the target value as the matrix T, and call the train function in the MatlabR2009a neural network toolbox to perform data training on the BP neural network Net until convergence, Net = train (Net, P, T).
步骤(5)测试BP神经网络。 Step (5) Test the BP neural network.
对训练好的BP神经网络进行测试,将历史数据组成用于电磁感应加热温度预测网络测试矩阵P_test,直接调用MatlabR2009a神经网络工具箱中的sim函数,D=sim(Net, P_test),对测试矩阵进行仿真,其中D为目标函数。 Test the trained BP neural network, use historical data to form the network test matrix P_test for electromagnetic induction heating temperature prediction, directly call the sim function in the MatlabR2009a neural network toolbox, D=sim(Net, P_test), and test the matrix Carry out simulation, where D is the objective function.
步骤(6)数据反归一化处理。 Step (6) Data denormalization processing.
对测试所得的电磁感应加热后的钢坯温度按照公式进行反归一化处理,其中为反归一化处理后的钢坯温度,为仿真测试得到的钢坯温度,为钢坯最高温度,为钢坯最低温度。 According to the formula Perform denormalization processing, where is the billet temperature after inverse normalization processing, is the billet temperature obtained from the simulation test, is the maximum billet temperature, is the minimum temperature of the billet.
本发明将利用计算机的仿真计算能力,搭建一个误差反向传播(BP)神经网络,从感应加热器运行历史数据中自动获取知识,逐步地把新知识结合到其映射函数中,从而实现非线性函数的逼近,能够对经感应器加热后的钢坯温度进行准确预测。 The present invention will use the computer's simulation computing ability to build an error backpropagation (BP) neural network, automatically acquire knowledge from the operation history data of the induction heater, and gradually combine the new knowledge into its mapping function, thereby realizing nonlinearity The approximation of the function can accurately predict the temperature of the billet heated by the inductor.
本发明方法的有益效果: The beneficial effect of the inventive method:
1. BP神经网络具有逼近非线性映射函数的能力,因此利用电磁感应加热器运行历史数据来预测钢坯温度,比传统工程计算方法得到的预测精度高。 1. The BP neural network has the ability to approximate the nonlinear mapping function, so the use of electromagnetic induction heater operation history data to predict the billet temperature is higher than the prediction accuracy obtained by traditional engineering calculation methods.
2. 基于BP神经网络的热连轧电磁感应钢坯温度预测避免了求解传统基于感应加热、热传导、热辐射理论所建立的电磁场与温度场耦合的有限元模型,同时也避免计算机求解该有限元模型对边界条件等基础数据的苛刻要求,只需利用大量的电磁感应加热历史运行数据,实用更强。 2. The temperature prediction of hot rolling electromagnetic induction billet based on BP neural network avoids solving the traditional finite element model of electromagnetic field and temperature field coupling based on induction heating, heat conduction and heat radiation theory, and also avoids solving the finite element model by computer For the strict requirements of basic data such as boundary conditions, only a large amount of electromagnetic induction heating historical operation data is needed, which is more practical.
3. 增加BP神经网络训练数据的长度、输入矩阵的维数,提高计算机的计算速度,能提高预测精度。 3. Increase the length of BP neural network training data and the dimension of the input matrix, improve the calculation speed of the computer, and improve the prediction accuracy.
附图说明 Description of drawings
图1为热连轧感应加热示意图。 Figure 1 is a schematic diagram of induction heating for hot rolling.
具体实施方式 Detailed ways
以某钢厂热连轧生产线的钢坯感应加热为例,开展基于BP神经网络的热连轧电磁感应加热钢坯温度预测模型建模具体实施方式。 Taking the billet induction heating of the hot rolling production line of a steel factory as an example, the specific implementation of the modeling of the billet temperature prediction model for hot rolling electromagnetic induction heating based on BP neural network is carried out.
步骤(1)预测模型变量选择 Step (1) Prediction model variable selection
机理分析。模型的输出为加热后的钢坯温度。根据能量守恒定律,钢坯加热后的能量 = 钢坯加热前的能量+钢坯吸收的能量,其中钢坯吸收的能量来自感应加热器。由电磁感应加热器的PLC控制系统可知各测得感应加热器的电压、电流,若钢坯经过感应加热器的时间已知,那么理论上感应加热器的电压、电流、时间的乘积就是钢坯吸收的能量。基于上述机理分析可确定神经网络模型的输入为3项:钢坯加热前的温度,感应器的电压和电流。 Mechanism analysis. The output of the model is the heated slab temperature. According to the law of energy conservation, the energy after billet heating = the energy before billet heating + the energy absorbed by the billet, and the energy absorbed by the billet comes from the induction heater. From the PLC control system of the electromagnetic induction heater, it can be known that the voltage and current of the induction heater are measured. If the time for the billet to pass through the induction heater is known, then theoretically the product of the voltage, current and time of the induction heater is the amount absorbed by the billet. energy. Based on the above mechanism analysis, it can be determined that the input of the neural network model is three items: the temperature of the billet before heating, the voltage and current of the inductor.
本次建模之前,先对各采样数据进行预处理,对于每一个样本(一次钢坯感应加热过程)数据进行整合,其中,钢坯加热前的温度及加热后的温度整合成100个值,根据感应器和钢坯的长度,将电压和电流整合成152个值。根据位置相关性分析,第n点的钢坯温度对应第n+25至n+46的感应器的电流和电压值,现取第n点的钢坯加热前的温度及其对应的电压电流值,作为输入矩阵,第n点的钢坯加热后的温度作为输出矩阵,如此,每一个样本就可以构成100对输入输出矩阵。 Before this modeling, the sampling data are preprocessed first, and the data of each sample (a steel billet induction heating process) is integrated. Among them, the temperature of the billet before heating and the temperature after heating are integrated into 100 values, according to the induction The length of the device and the billet, the voltage and current are integrated into 152 values. According to the position correlation analysis, the billet temperature at the nth point corresponds to the current and voltage values of the n+25th to n+46th inductors, and the temperature of the billet at the nth point before heating and its corresponding voltage and current values are taken as Input the matrix, and the temperature of the billet at the nth point after heating is used as the output matrix. In this way, each sample can form 100 pairs of input and output matrices.
令A矩阵为钢坯加热前的温度,B矩阵为感应加热器的电压,C矩阵为感应加热器的电流,D为钢坯加热后的温度。则输入矩阵:P=,具体的排列方式为: Let the A matrix be the temperature of the billet before heating, the B matrix be the voltage of the induction heater, the C matrix be the current of the induction heater, and D be the temperature of the billet after heating. Then enter the matrix: P= , the specific arrangement is:
P=,其中为第n时刻的钢坯加热前的温度, P = ,in is the temperature of the billet before heating at the nth moment,
为第n个时刻的感应加热器的电压, is the voltage of the induction heater at the nth moment,
为第n个时刻的感应加热器的电流,这样,矩阵P的每一列构成输入矩阵。 is the current of the induction heater at the nth moment, so that each column of the matrix P constitutes the input matrix.
相应输出矩阵:D= Corresponding output matrix: D=
步骤(2)数据归一化处理 Step (2) data normalization processing
利用归一化公式分别对输入输出矩阵进行归一化处理。 Using the normalization formula Normalize the input and output matrices separately.
对于输入矩阵P,具体做法是分别对A ,B,C三个矩阵进行归一化处理。以A矩阵为例: For the input matrix P, the specific method is to normalize the three matrices A, B, and C respectively. Take the A matrix as an example:
A= A=
对A矩阵按照归一化公式进行归一化处理,得到。再依次对B, C矩阵进行类似的处理,归一化处理后的输入矩阵为:=。 The A matrix is normalized according to the normalization formula to get . Then perform similar processing on the B and C matrices in turn, and the normalized input matrix is: = .
对于输出矩阵D=,为钢坯加热后的温度, 为钢坯加热后的温度的最小值,为钢坯加热后的温度的最大值,为归一化处理之后钢坯加热后的温。归一化后的输入矩阵为。 For the output matrix D= , is the temperature of the billet after heating, is the minimum value of the temperature after the billet is heated, is the maximum value of the temperature of the billet after heating, is the temperature of the billet after heating after the normalization treatment. The normalized input matrix is .
步骤(3)构建BP神经网络 Step (3) Construct BP neural network
搭建BP神经网络框架,调用MatlabR2009a函数库中的newff函数, Build the BP neural network framework, call the newff function in the MatlabR2009a function library,
Net=newff(threshold,[5,1],’tansig’,’purelin’,trainlm) Net=newff(threshold,[5,1],'tansig','purelin',trainlm)
其中Threshold是一个45*2的矩阵定义45个输入输出向量的最小值和最大值;[5,1]表示第一层有5个神经元,第二层有1个神经元;tansig为输入层传递函数;purelin为输出层传递函数;trainlm为基于l-m算法的训练函数。 Where Threshold is a 45*2 matrix defining the minimum and maximum values of 45 input and output vectors; [5,1] means that there are 5 neurons in the first layer and 1 neuron in the second layer; tansig is the input layer Transfer function; purelin is the transfer function of the output layer; trainlm is the training function based on the l-m algorithm.
步骤(4)训练BP神经网络 Step (4) training BP neural network
a. 初始化网络 a. Initialize the network
net.initFcn用来决定整个网络的初始化函数。参数net.layer{i}.initFcn用来决定每一层的初始化函数。initwb函数根据每一层自己的初始化参数(net.inputWeights{i,j}.initFcn)初始化权重矩阵和偏置,初始化权重通常设为rands,具体方法如下: net.initFcn is used to determine the initialization function of the entire network. The parameter net.layer{i}.initFcn is used to determine the initialization function of each layer. The initwb function initializes the weight matrix and bias according to each layer's own initialization parameters (net.inputWeights{i,j}.initFcn). The initialization weight is usually set to rans. The specific method is as follows:
net.layers{1}.initFcn = 'initwb'; net.layers{1}.initFcn = 'initwb';
net.inputWeights{1,1}.initFcn = 'rands'; net.inputWeights{1,1}.initFcn = 'rands';
net.layerWeights{2,1}.initFcn = 'rands'; net.layerWeights{2,1}.initFcn = 'rands';
net.biases{1,1}.initFcn = 'rands'; net.biases{1,1}.initFcn = 'rands';
net.biases{2,1}.initFcn = 'rands'; net.biases{2,1}.initFcn = 'rands';
net = init(net); net = init(net);
net.IW{1,1}为输入层到隐含层的权重矩阵 net.IW{1,1} is the weight matrix from the input layer to the hidden layer
net.LW{2,1}为隐含层和输出层间的权重矩阵; net.b{1,1}为隐含层的阀值向量, net.b{2,1}为输出接点的阀值; net.LW{2,1} is the weight matrix between the hidden layer and the output layer; net.b{1,1} is the threshold vector of the hidden layer, net.b{2,1} is the valve of the output node value;
b. 设置网络训练次数、训练目标误差及用来显示的步数 b. Set the number of network training times, training target error and the number of steps for display
net.trainParam.epochs=2000; net.trainParam.epochs=2000;
net.trainParam.goal=0.002; net.trainParam.goal=0.002;
net.trainParam.show=50; net.trainParam.show=50;
设置网络训练次数为2000步,训练目标误差为0.0002,显示训练步数为50步。 Set the number of network training times to 2000 steps, the training target error to 0.0002, and display the number of training steps as 50 steps.
c.利用输入矩阵和目标矩阵设为,通过调用train函数,net=train(net, ,) 进行钢坯加热后的温度预测网络训练直至收敛。 c. Using the input matrix and the target matrix is set to , by calling the train function, net=train(net, , ) to train the temperature prediction network after billet heating until convergence.
步骤(5)网络测试 Step (5) Network test
将用于测试的历史数据按照步骤 (1) 中的输入矩阵格式组成用于钢坯温度网络测试的矩阵p_test,再按照步骤 (2) 进行归一化处理,归一化后的测试矩阵为。调用Matlab工具箱中的sim()函数,对训练好的网络进行仿真。调用程序代码为:D=sim(net, );D矩阵即为污水泵站前池水位预测值。 The historical data used for testing is composed of the matrix p_test for billet temperature network testing according to the input matrix format in step (1), and then normalized according to step (2), the normalized test matrix is . Call the sim() function in the Matlab toolbox to simulate the trained network. The calling program code is: D=sim(net, ); the D matrix is the predicted value of the forebay water level of the sewage pumping station.
步骤(6)反归一化处理 Step (6) denormalization processing
对测试所得的钢坯加热后的温度按照公式进行反归一化处理,其中为反归一化处理后最终的钢坯温度,为仿真测试得到的钢坯温度,为钢坯温度的最大值,为钢坯温度的最小值。反归一化后钢坯温度为,即测试所得到的钢坯温度为。 According to the formula Perform denormalization processing, where is the final slab temperature after denormalization, is the billet temperature obtained from the simulation test, is the maximum billet temperature, is the minimum value of billet temperature. After denormalization, the billet temperature is , that is, the billet temperature obtained by the test is .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110307393.7A CN102393884B (en) | 2011-10-12 | 2011-10-12 | Hot continuous rolling electromagnetic induction heating temperature prediction method based on BP (back-propagation) neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110307393.7A CN102393884B (en) | 2011-10-12 | 2011-10-12 | Hot continuous rolling electromagnetic induction heating temperature prediction method based on BP (back-propagation) neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102393884A CN102393884A (en) | 2012-03-28 |
CN102393884B true CN102393884B (en) | 2015-04-15 |
Family
ID=45861207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110307393.7A Active CN102393884B (en) | 2011-10-12 | 2011-10-12 | Hot continuous rolling electromagnetic induction heating temperature prediction method based on BP (back-propagation) neural network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102393884B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102662039A (en) * | 2012-04-17 | 2012-09-12 | 戴会超 | BP neutral network-based method for predicting dissolved oxygen saturation in water body |
CN102719644B (en) * | 2012-06-29 | 2013-12-04 | 武汉大学 | Forecasting method of inner and outer wall temperature difference of 9% Cr martensitic steel thick wall pipeline in heat treatment |
CN102779216B (en) * | 2012-07-30 | 2014-09-17 | 杭州电子科技大学 | Systematic identification method of electromagnetic induction heating process based on finite element model |
CN102816917B (en) * | 2012-09-11 | 2014-12-17 | 河北沧海重工股份有限公司 | Position determining method for postweld heat treatment temperature equivalent points of inner walls of steel pipes with 9 percent of Cr |
CN104007659B (en) * | 2014-05-28 | 2016-08-24 | 重庆科技学院 | BP neutral net implementation method in S7-300 series of PLC |
CN104407642B (en) * | 2014-12-01 | 2016-09-07 | 杭州电子科技大学 | A kind of continuous casting billet sensing heating process temp. control method controlled based on iterative learning |
CN107729694B (en) * | 2017-11-17 | 2020-09-25 | 电子科技大学 | A Multi-parameter Electromagnetic Field Modeling and Simulation Method Based on Neural Network |
CN109033505A (en) * | 2018-06-06 | 2018-12-18 | 东北大学 | A kind of ultrafast cold temprature control method based on deep learning |
CN110909508B (en) * | 2019-10-29 | 2024-11-26 | 中国石油化工股份有限公司 | Real-time prediction method of heating furnace temperature field based on convolutional long short-term memory network |
CN113924173B (en) * | 2020-05-11 | 2023-11-28 | 东芝三菱电机产业系统株式会社 | Induction heating method and induction heating system |
CN113849020B (en) * | 2021-09-22 | 2022-04-19 | 北京科技大学 | Billet heating curve design method and device based on artificial intelligence algorithm |
CN114418181A (en) * | 2021-12-16 | 2022-04-29 | 江苏中路信息科技有限公司 | Asphalt pavement disease prediction method and system |
CN115081308B (en) * | 2022-04-29 | 2024-11-12 | 同济大学 | Accurate prediction method of transient temperature field of electric drive transmission considering time-space correlation characteristics |
CN118131678B (en) * | 2024-05-06 | 2024-07-09 | 海能未来技术集团股份有限公司 | Artificial intelligence control system of dietary fiber tester |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1588346A (en) * | 2004-08-30 | 2005-03-02 | 邢台钢铁有限责任公司 | Method for predicting converter terminal point using artificial nurve network technology |
CN1979496A (en) * | 2005-12-02 | 2007-06-13 | 中国科学院金属研究所 | Copper-alloy pipe-material casting-milling technology parameter designing and optimizing method |
CN101850410A (en) * | 2010-06-22 | 2010-10-06 | 攀钢集团钢铁钒钛股份有限公司 | A method of continuous casting breakout prediction based on neural network |
-
2011
- 2011-10-12 CN CN201110307393.7A patent/CN102393884B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1588346A (en) * | 2004-08-30 | 2005-03-02 | 邢台钢铁有限责任公司 | Method for predicting converter terminal point using artificial nurve network technology |
CN1979496A (en) * | 2005-12-02 | 2007-06-13 | 中国科学院金属研究所 | Copper-alloy pipe-material casting-milling technology parameter designing and optimizing method |
CN101850410A (en) * | 2010-06-22 | 2010-10-06 | 攀钢集团钢铁钒钛股份有限公司 | A method of continuous casting breakout prediction based on neural network |
Non-Patent Citations (3)
Title |
---|
基于BP 神经网络的热轧带钢卷取温度预报;马丽坤等;《钢铁研究学报》;20061130;第18卷(第11期);第27-30页 * |
基于MATLAB神经网络工具箱的BP网络实现;罗成汉;《计算机仿真》;20040531;第21卷(第5期);第109-115页 * |
归一化问题;王红旗;《科学网》;20091106;第1-3页 * |
Also Published As
Publication number | Publication date |
---|---|
CN102393884A (en) | 2012-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102393884B (en) | Hot continuous rolling electromagnetic induction heating temperature prediction method based on BP (back-propagation) neural network | |
He et al. | Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network | |
Li et al. | Dynamic time features expanding and extracting method for prediction model of sintering process quality index | |
CN105045949B (en) | A kind of walking beam furnace steel billet temperature modeling and on-line correction method | |
CN110070217A (en) | A kind of Forcasting Sinter Quality method of Kernel-based methods parameter | |
CN113849020B (en) | Billet heating curve design method and device based on artificial intelligence algorithm | |
CN107045289A (en) | A kind of nonlinear neural network optimization PID control method of electric furnace temperature | |
CN106600050A (en) | BP neural network-based ultra-short load prediction method | |
CN102937784A (en) | Artificial neural network based method for controlling online prediction of casting billet quality | |
CN111832215A (en) | An online method for predicting the microstructure and properties of steel plates | |
CN110097929A (en) | A kind of blast furnace molten iron silicon content on-line prediction method | |
CN106934209A (en) | A kind of coal fired power plant flue gas oxygen content on-line prediction method | |
CN101509812A (en) | Soft measurement method for billet temperature distribution in smelting and heating-furnace | |
CN104899425A (en) | Variable selection and forecast method of silicon content in molten iron of blast furnace | |
CN111310348A (en) | A material constitutive model prediction method based on PSO-LSSVM | |
CN107390524A (en) | A kind of blast-melted quality optimization control method based on bilinearity Subspace Identification | |
CN102564644A (en) | Temperature online measuring method for plate blank in production process of heating furnace | |
CN114925569A (en) | Steel plate quenching temperature prediction method combining finite element and neural network | |
CN101221437B (en) | Optimal control method for the whole process of industrial production under network information exchange mode | |
CN102719644A (en) | Forecasting method of inner and outer wall temperature difference of 9% Cr martensitic steel thick wall pipeline in heat treatment | |
CN104407642B (en) | A kind of continuous casting billet sensing heating process temp. control method controlled based on iterative learning | |
Zhikharev et al. | Artificial intelligence and machine learning in metallurgy. Part 2. Application examples | |
CN107030121A (en) | A kind of quick self-adapted temperature control method of continuous casting billet sensing heating | |
CN113223634A (en) | Blast furnace molten iron silicon content prediction method based on two-dimensional self-attention enhanced GRU model | |
CN102799938B (en) | Optimizing method of 9% martensite steel pipeline postweld heat treatment heating width |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190904 Address after: 311305 No. 59 South Ring Road, Qingshan Lake Street, Linan District, Hangzhou City, Zhejiang Province Patentee after: Hangzhou Sida Electric Cooker Complete Plant Co., Ltd. Address before: Hangzhou City, Zhejiang province 310018 Xiasha Higher Education Park No. 2 street Patentee before: Hangzhou Electronic Science and Technology Univ |
|
TR01 | Transfer of patent right |